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Abstract— The quantile function of probability distributions 

is often sought after because of their usefulness. The quantile 

function of some distributions cannot be easily obtained by 

inversion method and approximation is the only alternative 

way. Several ways of quantile approximation are available, of 

which quantile mechanics is one of such approach. This paper 

is focused on the use of quantile mechanics approach to obtain 

the quantile ordinary differential equation of the Chi-square 

distribution since the quantile function of the distribution does 

not have close form representations except at degrees of 

freedom equals to two. Power series, Adomian decomposition 

method (ADM) and differential transform method (DTM) was 

used to find the solution of the nonlinear Chi-square quantile 

differential equation at degrees of freedom equals to two. The 

approximate solutions converge to the closed (exact) solution. 

Furthermore, power series method was used to obtain the 

solutions for other degrees of freedom and series expansion 

was obtained for large degrees of freedom.   

      

Index Terms— Chi-square, quantile function, differential 

equation, shape parameter, Adomian decomposition method, 

differential transform method.          

I. INTRODUCTION 

HE search for analytic expression of quantile functions 

has been a subject of intense research due to the 

importance of quantile functions. Several approximations 

are available in literature which can be categorized into 

four, namely: functional approximations, series expansions, 

numerical algorithms and closed form written in terms of a 

quantile function of another probability distribution which 

can also be refer to quantile normalization. In general, the 

notion of approximation of the quantile functions have been 

discussed extensively by [1-6] 

The quantile function of the Chi-square is very important 

in statistical estimation [ 7-8]. Moreover the aim of the 

paper is to apply the use of quantile mechanics approach 

proposed by [9] to obtain a nonlinear second order ordinary 

differential equation which can be termed as “Chi-square 

Quantile Differential Equation (CQDE)” using a 

transformation of the probability density function (PDF) of 

the Chi-square distribution. This is a step towards the  
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quantile approximation of the distribution. This is because 

distributions with shape parameters require two steps 

towards effective quantile approximation [10]. Chi-square is 

an example of such distribution.                                         

 The solution of CQDE is the major contribution of the 

paper. This was done by the use of the power series, ADM 

and DTM for the case where the degrees of freedom is equal 

to two. This is to validate the methods for other cases and to 

create room for result comparison since the quantile 

function of the Chi-square distribution has closed form 

representation at that instance. The power series was used to 

obtain solutions for the other degrees of freedom.         

    The quantile mechanics as mentioned earlier is 

series expansion method of quantile approximation and has 

been applied for normal distribution [9], beta distribution 

[9], gamma [11], hyperbolic [12], exponential [13] and 

student’s t [14]. 

II. FORMULATION 

 The probability density function of the chi-square 

distribution and the cumulative distribution function are 

given by;       
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where (.,.)  incomplete gamma function and 

(.,.)P  regularized gamma function. 

The quantile mechanics (QM) approach was used to obtain 

the second order nonlinear differential equation. QM is 

applied to distributions whose CDF is monotone increasing 

and absolutely continuous. Chi-square distribution is one of 

such distributions. That is;       

 
1( ) ( )Q p F p                                          (3)    

Where the function 
1( )F p

is the compositional inverse of 

the CDF. Suppose the PDF f(x) is known and the 

differentiation exists. The first order quantile equation is 

obtained from the differentiation of equation (3) to obtain; 
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Since the probability density function is the derivative of the 

cumulative distribution function. The solution to equation 
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(4) is often cumbersome as noted by Ulrich and Watson 

[15]. This is due to the nonlinearity of terms introduced by 

the density function f. Some algebraic operations are 

required to find the solution of equation (4).       

 Moreover, equation (4) can be written as;  

 ( ( )) ( ) 1f Q p Q p                                                  (5) 

Applying the traditional product rule of differentiation to 

obtain;         

 
2( ) ( ( ))( ( ))Q p V Q p Q p                                      (6) 

Where the nonlinear term;          

 ( ) (ln ( ))
d

V x f x
dx

                                              (7) 

These were the results of [9].                                                                                                     

It can be deduced that the further differentiation enables 

researchers to apply some known techniques to finding the 

solution of equation (6).            

The reciprocal of the probability density function of the chi-

square distribution is transformed as a function of the 

quantile function.         
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Differentiate again to obtain;           
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Factorization is carried out;          
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The second order nonlinear ordinary differential equations 

is given as;     

 

22

2

( ) 1 2 ( )

2 2 ( )

d Q p k dQ p

dp Q p dp

  
   
  

                    (12)

  With the boundary conditions;     (0) 0,  (0) 1Q Q  .     

           

III. POWER SERIES SOLUTION 

The cumulative distribution function and its inverse 

(quantile function) of the chi- square distribution do not 

have closed form. However, an analytical formula is 

available for the cumulative distribution function of the Chi-

square distribution when the degrees of freedom k = 2.  

The formula is given as;       

 2( ) 2(1 e )
x

F x


                                 (13) 

The quantile function Q(p) can be obtained as;      
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Taking logarithm;           
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The quantile function is given by;          
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The exact solution (equation (16)) is compared with the 

approximate solution (equation (12), to compare the 

convergence of the approximate solution to the exact. This 

is to create an avenue for comparison between the exact and 

approximate values and consequently examine the validity 

of the quantile mechanics.                                                                                                      

When k = 2, equation (12) becomes;         
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Alternatively, the PDF of the chi-square distribution at k = 2 

can be used. The PDF is given as;     
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Applying the Quantile Mechanics approach to obtain;   
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Equation (21) is the same with equation (17).      

  

The general power series solution of equations (12) or (16) 

is given by;   

 

2 3 4

0 1 2 3 4

5 6

5 6

0

( )

        ... n

n

n

Q p c c p c p c p c p

c p c p c p




    

   
                 (22)   

Differentiate equation (22);            
2 3

1 2 3 4

4 5 1

5 6

1

( ) 2 3 4

         5 6 ... n

n

n

Q p c c p c p c p

c p c p nc p






    

   
               (23)                                    

Differentiate equation (23);         
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Substitute equations (24) and (23) into (22) and collect like 
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terms.    
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The coefficients are substituted into equation (22) to obtain 

the power series solution.                                                           

The power series solution of equation (17) or (21) is given 

by;   
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This is the approximate solution of equation (16), 

 

IV. NUMERICAL RESULTS 

 Adomian Decomposition Methods (ADM) and Differential 

Transform Methods (DTM) are used to confirm the results 

of the power series. This is achieved by using the methods 

to solve equation (12) and compare with the exact value that 

is equation (11). The methods are semi-analytic in nature 

and have been applied extensively in numerical analysis, 

computational fluid mechanics, rigid bodies’ analysis, 

elasticity, mathematical finance, risk analysis and so on. 

Details on the theories, modifications and applications of 

ADM and DTM can be found in [16], [17], [18], [19], [20], 

[21], [22], [23], [24].                                                                 

 

Adomian Decomposition Method 

 Writing equation (21) in the integral form gives;     
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By ADM, the infinite series solution is of the form;    
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Now using (27) in (21), we have;           
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In view of (29), the zeroth order term can be written as;  
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(30)         while other terms can be determined using the 

recurrence relations     
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The nonlinear terms in equation (31) can be represented as    
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and the Adomian polynomials are computed as follows: 
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Substituting equation (32) in equation (31) yields        
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Solving equations (30) and (34) yields the solution equation 

(21). 

The series solution of equation (21) using the ADM is;   
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Differential Transform Method                                                               

To solve the initial value problems by DTM we first 

transform equations (21) as; 
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and the initial condition as              

 (0) 0, (1) 1U U                                             (37)                                                                                                                                                                                                                                                                                                                       

Using equation (37) in (36) and resolving the change of 

variables give the solution of equation (21)                                                                                                                                                                                 

The series solution of equation (21) using the DTM is;   
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    (38)         

                                                             

The three methods converge favorably to the exact value as 

shown in Table 1. That is the series solutions of equations 

(21), (35) and (38). 

V. EXTENSION TO DIFFERENT DEGREES OF FREEDOM 

 The power series method was used to obtain the series 

solutions of equation (12) for the different degrees of 

freedom up to 20. No comparison was made because of the 

absence of the closed form of the CDF and QF. The result 

of the degrees of freedom equals to two is included. The 

coefficients of the series are shown in Table 2.  
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The equations formed a series which can be used to predict 

p for any given degree of freedom k.      
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4( 1)

Q p p p k
k

  


                      (39) 

For very large k,                  

 ( )Q p p                                         (40) 

       

                   

VI. CONCLUDING REMARKS 

In this paper, the power series method, ADM and DTM was 

used to obtain the approximate solutions of the Chi-square 

quantile differential equations at degrees of freedom equals 

to two. Chi-square distribution has closed form 

representation of both CDF and QF at that instance. The 

approximate solutions converge to the exact solution. The 

procedure serves as a validation mode for other degrees of 

freedom. The series solutions for up to degrees of freedom 

equal to 20 and for large cases were included. The methods 

used are efficient in handing nonlinear ODE and is 

recommended for solving quantile differential equations of 

probability distributions and most importantly quantile 

differential equations.   
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Table 1: Numerical results of power series, ADM and DTM 

 

p EXACT Power series ERROR ADM ERROR DTM ERROR 

0.05 0.050635616 0.050635616 9.08995E-16 0.05063562 3.87319E-09 0.050635616 4.16334E-17 

0.10 0.102586589 0.102586589 4.54567E-13 0.102586712 1.22847E-07 0.102586589 8.32667E-17 

0.15 0.155923083 0.155923083 1.78941E-11 0.155924007 9.24203E-07 0.155923083 8.32667E-17 

0.20 0.210721031 0.210721031 2.44224E-10 0.210724888 3.8563E-06 0.210721031 5.55112E-17 

0.25 0.267062785 0.267062783 1.86586E-09 0.267074431 1.16453E-05 0.267062785 1.11022E-16 

0.30 0.325037859 0.325037849 9.87864E-09 0.325066511 2.86521E-05 0.325037859 5.55112E-17 

0.35 0.384743785 0.384743745 4.06171E-08 0.384804964 6.11791E-05 0.384743785 1.66533E-16 

0.40 0.446287103 0.446286964 1.38819E-07 0.446404815 0.000117713 0.446287103 1.66533E-16 

0.45 0.509784499 0.509784087 4.12071E-07 0.509993582 0.000209082 0.509784499 1.11022E-16 

0.50 0.575364145 0.57536305 1.09472E-06 0.575712658 0.000348513 0.575364145 1.77636E-15 

0.55 0.643167248 0.643164589 2.65907E-06 0.643718787 0.000551539 0.643167248 1.54321E-14 

0.60 0.713349888 0.713343888 5.99966E-06 0.714185623 0.000835735 0.713349888 1.15241E-13 

0.65 0.786085176 0.786072449 1.27268E-05 0.787305392 0.001220216 0.786085176 7.4929E-13 

0.70 0.861565832 0.861540212 2.56202E-05 0.863290668 0.001724835 0.861565832 4.27069E-12 

0.75 0.940007258 0.939957947 4.93115E-05 0.942376246 0.002368987 0.940007258 2.16595E-11 

0.80 1.021651248 1.021559954 9.12932E-05 1.02482115 0.003169903 1.021651247 9.9291E-11 

0.85 1.106770476 1.106607093 0.000163383 1.110910758 0.004140281 1.106770476 4.16627E-10 

0.90 1.195674002 1.195390177 0.000283824 1.200959055 0.005285053 1.195674 1.61689E-09 

0.95 1.288714033 1.288233762 0.00048027 1.295311034 0.006597001 1.288714027 5.85495E-09 
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Table 2: Coefficients of the power series solution for different degrees of freedom   

 

k   1c
  2c

 3c
 4c

 5c
 6c

 7c
 

1 1 1 5

6   

7

48  

871

1440  

7131

23040  

46977941

4838400  
2 1 1

4  

1

12  

1

32  

1

80  

1

192  

1

448  
3 1 1

8  

1

36  

109

576  

3167

230400  

165701

16588800  

3316213

1219276800


 
4 1 1

12  

1

72  

1301

8640  

2647

259200  

413599

261273600


 

484086437

87787929600


 
5 1 1

16  

1

120  

481

3840  

23

3000  

54733

36864000


 

254245339

46448640000


 
6 1 1

20  

1

180  

5407

50400  

239

40320  

12683

13608000  

1332597397

266716800000


 
7 1 1

24  

1

252  

1135

12096  

35857

7620480  

5735

9144576  

516617447

118294235136


 
8 1 1

28  

1

336  

523

18816  

11803

13171200


 

782767

12170188800  

 

9 1 1

32  

1

432  

10373

138240  

18017

5702400  

2854367

8758886400  

 

10 1 1

36  

1

540  

5839

85536  

105263

42768000


 

539797

7506369000  

 

11 1 1

40  

1

660  

3301

52800  

239491

58080000  

12257407

48787200000  

 

12 1 1

44  

1

792  

52285

906048  

830068087

226040855040  

829051693

4068735390720  

 

13 1 1

48  

1

936  

33703

628992  

130147

76658400  

513382873

313992806400  

 

14 1 1

52  

1

1092  

28397

567840  

237119

158995200  

5262391

52706908800  

 

15 1 1

56  

1

1260  

827

17640  

60419

52479000


 

3006253

158696496000  

 

16 1 1

60  

1

1440  

129617

2937600  

248951

211507200  

16702817

241118208000  

 

17 1 1

64  

1

1632  

8705

208896  

29683

28113920  

15186127

259097886720  

 

18 1 1

68  

1

1836  

187291

4744224  

339179

355816800  

12716789

254053195200  

 

19 1 1

72  

1

2052  

55409

1477440  

2544787

2947492800  

95609147

1600741232640  

 

20 1 1

76  

1

2280  

86647

2425920  

1049101

1334256000  

261139993

6996838464000  
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