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Abstract— In this paper, the differential calculus (product 

rule) was used to obtain some classes of ordinary differential 

equations (ODE) for the probability density function, quantile 

function, survival function, inverse survival function, hazard 

function and reversed hazard function of the half-Cauchy and 

power Cauchy distributions. The stated necessary conditions 

required for the existence of the ODEs are consistent with the 

various parameters that defined the distributions. Solutions of 

these ODEs by using numerous available methods are new 

ways of understanding the nature of the probability functions 

that characterize the distributions. The method can be 

extended to other probability distributions and can serve an 

alternative to approximation especially the cases of the 

quantile and inverse survival functions.    

             

Index Terms— Power Cauchy, half-Cauchy, product rule, 

differentiation, survival function. 

I. INTRODUCTION 

ALF-CAUCHY distribution is obtained by restricting 

the domain of the standard Cauchy distribution to only 

positive values or observations. Polson and Scott [1] argued 

for the replacement of inverse-gamma distribution with this 

distribution in Bayesian hierarchical models while Shaw [2] 

suggested that the distribution can be used in lieu of the 

exponential distribution in prediction and modeling. The 

distribution, according to [3], is one of few distributions 

related to the ratio of two folded normal distributions. The 

distribution is also related to the folded t distribution as 

proved by [4]. Half-Cauchy distribution is one of 

distributions that are self-decomposable [5] and infinitely 

divisible [6]. Details on the distribution can be found in [7]. 

Some modifications or proposed improved models of the 

distribution includes: Kumaraswamy half-Cauchy 

distribution [8], beta half-Cauchy distribution [9] and 

generalized odd half-Cauchy family of distributions [10]. 

Paradis et al. [11] applied the distribution in ecological 

modeling,                                   

In an attempt to find a suitable distribution that 

effectively fits medical survival data, Power Cauchy 
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Distribution was proposed by [12]. The distribution is a 

submodel of transformed beta family earlier proposed by 

[13]. Tahir et al. [14] proposed Poisson power Cauchy as an 

improved model over the power Cauchy distribution.  

   The aim of this paper is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 

Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of half-Cauchy and power Cauchy 

distributions by the use of differential calculus. Calculus is a 

very key tool in the determination of mode of a given 

probability distribution and in estimation of parameters of 

probability distributions, amongst other uses. The research 

is an extension of the ODE to other probability functions 

other than the PDF. Similar works done where the PDF of 

probability distributions was expressed as ODE whose 

solution is the PDF are available. They include: Laplace 

distribution [15], beta distribution [16], raised cosine 

distribution [17], Lomax distribution [18], beta prime 

distribution or inverted beta distribution [19].                                                                                                                                                                                                         

I. HALF-CAUCHY DISTRIBUTION      

 PROBABILITY DENSITY FUNCTION 

 The probability density function of the half-Cauchy 

distribution is given by;          
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To obtain the first order ordinary differential equation for 

the probability density function of the half-Cauchy 

distribution, differentiate equation (1);          
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The condition necessary for the existence of equation is 

, 0.x                                                                                 

Simplify;                       
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Substitute equation (1) into equation (3);         
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The first order ordinary differential for the probability 

density function of the half-Cauchy distribution is given as; 

 
2 2( ) ( ) 2 ( ) 0x f x xf x                          (5)
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QUANTILE FUNCTION 

 The Quantile function of the half-Cauchy distribution is 

given by;            

 ( ) tan
2
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                             (7) 

To obtain the first order ordinary differential equation for 

the Quantile function of the half-Cauchy distribution, 

differentiate equation (7);          
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The condition necessary for the existence of equation is 

0,0 1.p                                                                                    

Applying the trigonometric identity which is;      
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(10) Equation (7) can be written as;                      
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(11) Substitute equation (11) into equation (10);      
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(13) The first order ordinary differential for the Quantile 

function of the half-Cauchy distribution is given as;    

     
2 22 ( ) ( ( ) ) 0Q p Q p            

   (14)         (0.1) 0.1584Q                             

(15) 

SURVIVAL FUNCTION 

 The survival function of the half-Cauchy distribution is 

given by;          
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To obtain the first order ordinary differential equation for 

the survival function of the half-Cauchy distribution, 

differentiate equation (16);           
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The condition necessary for the existence of equation is 

, 0.x                                                         
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The first order ordinary differential for the survival function 

of the half-Cauchy distribution is given as;       
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INVERSE SURVIVAL FUNCTION 

The inverse survival function of the  half-Cauchy 

distribution is given by;         
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To obtain the first order ordinary differential equation for 

the inverse survival function of the half-Cauchy distribution, 

differentiate equation (21);          
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The condition necessary for the existence of equation is 

0,0 1.p                                                                           

Applying the same technique as obtained from the Quantile 

function, to obtain that;  
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The first order ordinary differential for the inverse survival 

function of the half-Cauchy distribution is given as;    

 
2 22 ( ) ( ( ) ) 0Q p Q p                (25)

 (0.1) 6.31375Q                             (26) 

HAZARD FUNCTION 

The hazard function of the half-Cauchy distribution is given 

by;     
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      (27) 

To obtain the first order ordinary differential equation for 

the hazard function of the half-Cauchy distribution, 

differentiate equation (27);          
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The condition necessary for the existence of equation is 

, 0.t                                                                 
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The first order ordinary differential for the hazard function 

of the half-Cauchy distribution is given as;       
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(32)    

REVERSED HAZARD FUNCTION 

The reversed hazard function of the half-Cauchy 

distribution is given by;       
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To obtain the first order ordinary differential equation for 

the probability density function of the half-Cauchy 

distribution, differentiate equation (33);        
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The condition necessary for the existence of equation is 

, 0.t                                                             
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The first order ordinary differential for the reversed hazard 

function of the half-Cauchy distribution is given as;    
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II. POWER CAUCHY DISTRIBUTION 

PROBABILITY DENSITY FUNCTION 

The probability density function of the power Cauchy 

distribution is given by;          
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To obtain the first order ordinary differential equation for 

the probability density function of the power Cauchy 

distribution, differentiate equation (39);         
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The condition necessary for the existence of equation is 

, , 0.x                                                    
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Simply to obtain the first order ordinary differential 

equation which is dependent on the powers of the 

parameters that defined the probability density function.  
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Some cases are considered;                                                                                                                    

When 1,   equation (43) becomes;           
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When 2,   equation (43) becomes;           
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When 3,   equation (43) becomes;           

 
3 3 4 2( ) 2 ( ) ( ) 0xf x f x x f x             (47) 
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The Quantile function of the  power Cauchy distribution is 

given by;         
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To obtain the first order ordinary differential equation for 

the Quantile function of the power Cauchy distribution, 

differentiate equation (48);          
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Substitute equation (48) into equation (50);             

 

2sec ( )
2 2

( )

tan
2

p
Q p

Q p
p

 




 
 
  
 
 
 

                       (51) 

Equation (48) can be written as;                       
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Substitute equation (52) into equation (51);             
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Applying the trigonometric identity which is;      
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2 2

p p    
    

   
                 

(55) Square the both sides of equation (52)                   

    

2

2( )
tan

2

Q p p






   
   

   
               

(56) Substitute equation (56) into equation (55), to obtain;   

   

2

2 ( )
sec 1

2

p Q p






   
    

   
              

(57) Substitute equation (57) into equation (54);     

   

2

1( )
1 ( )

( )
2

Q p
Q p

Q p



 





  

                

(58) 
 2 2 1( ) ( )

( )
2

Q p Q p
Q p

  



 




             

(59) 
 1 2 1( ) ( )

( )
2

Q p Q p
Q p

  



 



 
             

(60)  1 2 12 ( ) ( ) ( ) 0Q p Q p Q p              

(61) Some cases are considered;                                                                                                                    

When 1,   equation (61) becomes;           

  2 22 ( ) ( ) 0Q p Q p                         (62) 

When 2,   equation (62) becomes;           

  2 4 44 ( ) ( ) ( ) 0Q p Q p Q p             (63)  

   SURVIVAL FUNCTION 

The survival function of the power Cauchy distribution is 

given by;           

 
12

( ) 1 tan
t

S t



 

  
   

 
                   (64) 

To obtain the first order ordinary differential equation for 

the survival function of the power Cauchy distribution, 

differentiate equation (64);           

 

1

2

2

( )

1

t

S t
t







 





 
 
   

  
  
   

                       (65) 

The condition necessary for the existence of equation is 

, , 0.t                                                             

Simplify;                       
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2 1
2

1 ( )
t t

S t

 


  

    
           

            (66)

  
1

2 2 2
( )

t
t S t

 
  






                   (67)

  2 2 1( ) 2 0t S t t                 (68) 

The first order ordinary differential equations can be 

obtained for the particular values of the parameters. Some 

cases are considered and shown in Table 1.  

 

Table 1: Classes of differential equations obtained for the 

survival function of the power Cauchy distribution for 

different parameters.                

               

         ordinary differential equations 

1 1 1 2(1 ) ( ) 2 0t S t     

1 1 2 2(1 ) ( ) 1 0t S t    

1 2 1 2(4 ) ( ) 4 0t S t    

1 2 2 2(4 ) ( ) 2 0t S t    

2 1 1 4(1 ) ( ) 4 0t S t t    

2 1 2 4(1 ) ( ) 2 0t S t t    

2 2 1 4(16 ) ( ) 16 0t S t t    

2 2 2 4(16 ) ( ) 8 0t S t t    

 

INVERSE SURVIVAL FUNCTION 

 The inverse survival function of the power Cauchy 

distribution is given by;        

 

1

(1 )
( ) tan

2

p
Q p



   

   
  

              (69) 

To obtain the first order ordinary differential equation for 

the inverse survival function of the power Cauchy 

distribution, differentiate equation (69);        

 

1
1

2

(1 )
( ) tan

2

(1 )
sec

2 2

p
Q p

p

 



 



   
    

  

   
   

  

               (70) 

The condition necessary for the existence of equation is 

, 0,0 1.p                                              

1

2(1 ) (1 )
tan sec

2 2 2
( )

(1 )
tan

2

p p

Q p
p

   





      
    
      

 
 
 

  

                                                                                 (71)  

Substitute equation (69) into equation (71);             

 

2 (1 )
sec ( )

2 2
( )

(1 )
tan

2

p
Q p

Q p
p

 




 
 
   

 
 
 

           (72) 

Repeating the same simplification done for the Quantile 

function;          

 
 2 2 1( ) ( )

( )
2

Q p Q p
Q p

  



 




          (73)

  1 2 12 ( ) ( ) ( ) 0Q p Q p Q p              (74) 

The first order ordinary differential equations can be 

obtained for the particular values of the parameters. Some 

cases are considered and shown in Table 2. 

 

Table 2: Classes of differential equations obtained for the 

inverse survival function of the power Cauchy distribution 

for different parameters 

 

         ordinary differential equations 

1 1 1 22 ( ) ( ) 1 0Q p Q p      

1 1 2 2( ) ( ) 1 0Q p Q p     

1 2 1 24 ( ) ( ) 4 0Q p Q p     

1 2 2 22 ( ) ( ) 4 0Q p Q p     

2 1 1 44 ( ) ( ) ( ) 1 0Q p Q p Q p     

2 1 2 42 ( ) ( ) ( ) 1 0Q p Q p Q p     

2 2 1 416 ( ) ( ) ( ) 16 0Q p Q p Q p     

2 2 2 48 ( ) ( ) ( ) 16 0Q p Q p Q p     

 

HAZARD FUNCTION 

The hazard function of the  power Cauchy distribution is 

given by;   

1

2

1

2

( )
2

1 1 tan

t

h t
t t



 



 

  





 
 
 

      
       
         

 

     (75) To obtain the first order ordinary differential 

equation for the hazard function of the power Cauchy 

distribution, differentiate equation (75);      

 

2
2 1 2

2

1 1
2

21 1

( ) ( )

1

t tt

h t h t
t t

 

 


   

 






 

                      
    
         
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2
1

1

1
2

1

2 2
1 tan

( )

2
1 1 tan

t t

h t

t t

 

 



   

  










    
    

     
      
       
         

         

                                                                  (76)

 

2 1

2

1

1
2

1

2

1

1

( ) ( )
2

2
1 1 tan

t

t t

h t h t
t

t t







 



  





 

  









  
     
   

   
     

   
  
    

       
        
           

  

                                                                                       (77) 

The condition necessary for the existence of equation is 

, , 0.t                                                          

 

2 1

2

2

1
( ) ( ) ( )

1

t

h t h t h t
t t







  



 
  
       

   
       

         (78)         

 

2 1

2 2

1 2
( ) ( ) ( )

t
h t h t h t

t t



 

 



 
    

 
                (79) 

The first order ordinary differential equations can be 

obtained for the particular values of the parameters. Some 

cases are considered.                                              

When 1,   equation (79) becomes;           

 
2 2

2
( ) ( ) ( )

t
h t h t h t

t

 
   

 
                                (80)

 
2 2 2 2 2( ) ( ) ( ) ( ) 2 ( ) 0t h t t h t th t              (81) 

When 2,   equation (79) becomes;           

 

3

4 4

1 4
( ) ( ) ( )

t
h t h t h t

t t

 
    

 
                            (82)

 

4 4 4 4 4 4 2( ) ( ) (3 ) ( ) ( ) ( ) 0t th t t h t t th t                                                                                                

(83)  

REVERSED HAZARD FUNCTION 

The reversed hazard function of the power Cauchy 

distribution is given by;       

 

1

2

1

2

( )
2

1 tan

t

j t
t t



 



 

  





 
 
 

      
      
         

                (84) 

To obtain the first order ordinary differential equation for 

the reversed hazard function of the power Cauchy 

distribution, differentiate equation (84);       

 
2

2 1 2
2

1 1
2

2
1

1

1
2

1

21 1

1

( )

2 2
tan

2
1 tan

t tt

t t

j t

t t

t t

 

 

 

 


   

 



   

  






 










                      
     
           

   
     
     

      


                       

( )j t













                                                                               (85)

        

2 1

2

1

1
2

1

2

1

1

( ) ( )
2

2
1 tan

t

t t

j t j t
t

t t







 



  





 

  









  
     
   

   
     

   
  
    

       
       
           

 (86)         

The condition necessary for the existence of equation is 

, , 0.t                                                          

 

2 1

2

2

1
( ) ( ) ( )

1

t

j t j t j t
t t







  



 
  
       

   
       

        (87)

 

2 1

2 2

1 2
( ) ( ) ( )

t
j t j t j t

t t



 

 



 
    

 
                (88) 

The first order ordinary differential equations can be 

obtained for the particular values of the parameters. Some 

cases are considered.                                                      

When 1,   equation (88) becomes;           

 
2 2

2
( ) ( ) ( )

t
j t j t j t

t

 
    

 
                            (89)

                    
2 2 2 2 2( ) ( ) ( ) ( ) 2 ( ) 0t j t t j t tj t                  (90) 
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When 2,   equation (88) becomes;           

 

3

4 4

1 4
( ) ( ) ( )

t
j t j t j t

t t

 
    

 
                            (91)

 

4 4 4 4 4 4 2( ) ( ) (3 ) ( ) ( ) ( ) 0t tj t t j t t tj t       
 

 
                                                                                    (92) 

The ordinary differential equations can be obtained for the 

particular values of the parameters or higher orders.               

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [20-33]. Also comparison with two or more 

solution methods is useful in understanding the link between 

ODEs and the probability distributions. 

III. CONCLUDING REMARKS 

 In this paper, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

half-Cauchy and power Cauchy distributions. The work was 

simplified by the application of simple algebraic procedures. 

In all, the parameters that define the distribution determine 

the nature of the respective ODEs and the range determines 

the existence of the ODEs. The varying degrees of the 

effects of the parameters in the construction of the ODEs are 

subject of further research.     
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