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Abstract— In this work, the differential calculus was used to 

obtain some classes of ordinary differential equations (ODE) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the exponentiated Frĕchet 

distribution. The stated necessary conditions required for the 

existence of the ODEs are consistent with the various 

parameters that defined the distribution. Solutions of these 

ODEs by using numerous available methods are a new ways of 

understanding the nature of the probability functions that 

characterize the distribution. The method can be extended to 

other probability distributions and can serve an alternative to 

approximation.      

      

Index Terms— Exponentiated, Fréchet distribution, hazard 

function, calculus, differentiation. 

I. INTRODUCTION 

ADARAJAH and Kotz [1] proposed the distribution as 

an improved model over the parent Fréchet 

distribution. The distribution is a sub model of 

exponentiated Gumbel type-2 Distribution proposed by [2]. 

The distribution has been applied as a regression model in 

modeling positive responses [3].                                                                                                                                      

Other exponentiated class of distributions include: 

exponentiated Weibull [4-6], exponentiated exponential [7], 

exponentiated generalized inverted exponential distribution 

[8], exponentiated generalized inverse Gaussian distribution 

[9], exponentiated inverted Weibull distribution [10-11], 

gamma-exponentiated exponential distribution [12], 

exponentiated gamma distribution [13], exponentiated 

Gumbel distribution [14], exponentiated uniform 

distribution [15], beta exponentiated Weibull distribution 

[16], exponentiated log-logistic distribution [17], 

exponentiated Kumaraswamy distribution [18], 

exponentiated modified Weibull extension distribution [19] 

and exponentiated Pareto distribution [20].       

   The aim of this research is to develop ordinary differential 

equations (ODE) for the probability density function (PDF), 
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Quantile function (QF), survival function (SF), inverse 

survival function (ISF), hazard function (HF) and reversed 

hazard function (RHF) of exponentiated Frĕchet distribution 

by the use of differential calculus. Calculus is a very key 

tool in the determination of mode of a given probability 

distribution and in estimation of parameters of probability 

distributions, amongst other uses. The research is an 

extension of the ODE to other probability functions other 

than the PDF. Similar works done where the PDF of 

probability distributions was expressed as ODE whose 

solution is the PDF are available. They include:  Laplace 

distribution [21], beta distribution [22], raised cosine 

distribution [23], Lomax distribution [24], beta prime 

distribution or inverted beta distribution [25]. 

                  

II. PROBABILITY DENSITY FUNCTION 

   The probability density function of the exponentiated 

Frȇchet distribution is given as;         
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To obtain the first order ordinary differential equation for 

the probability density function of the exponentiated Frȇchet 

distribution, differentiate equation (1), to obtain;    
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The condition necessary for the existence of equation is 
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Another process of differentiation is carried out on equation 

(3) to obtain;              
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The condition necessary for the existence of equation is 

, , , 0.x                                                                               

The following equations obtained from equation (3) are 

needed to simplify equation (4); 
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Substitute equations (5), (8), (10) and (12) into equation (4);
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The condition necessary for the existence of equation is 
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A case was considered, that is when 1     , 

equation (13) becomes;   
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Simplify equation (16) to obtain                 
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III. QUANTILE FUNCTION 

 The Quantile function of the exponentiated Frȇchet 

distribution is given as;  
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To obtain the first order ordinary differential equation for 

the Quantile function of the exponentiated Frȇchet 

distribution, differentiate equation (18), to obtain;   
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The condition necessary for the existence of equation is 
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Equation (19) can be simplified as;                     
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Substitute equation (18) into equation (20) to obtain; 
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Equation (18) is simplified to obtain;         
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Substitute equation (23) into equation (21);       
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 1. 

Table 1: Classes of differential equations obtained for the 

quantile function of exponentiated Frȇchet distribution for 

different parameters.                  
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IV. SURVIVAL FUNCTION 

 The survival function of the exponentiated Frȇchet 

distribution is given as;      
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To obtain the first order ordinary differential equation for 

the survival function of the exponentiated Frȇchet 

distribution, differentiate equation (25), to obtain;    
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Equation (25) can be simplified as;         
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 2.         

  

 

Table 2: Classes of differential equations obtained for the 

survival function of exponentiated Frȇchet distribution for 

different parameters.                 

         Ordinary differential equation 

1 1 1 2 ( ) ( ) 1 0t S t S t      

1 1 2 2 ( ) 2 ( ) 2 0t S t S t     

1 2 1 3 ( ) 2 ( ) 2 0t S t S t     

1 2 2 3 ( ) 8 ( ) 8 0t S t S t     

        

V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the exponentiated Frȇchet 

distribution is given as;       
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To obtain the first order ordinary differential equation for 

the inverse survival function of the exponentiated Frȇchet 

distribution, differentiate equation (32), to obtain;    
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The condition necessary for the existence of equation is 

, , 0,0 1.p                                                        

Equation (33) can be simplified as;                     

 

1 1 1

1 1

[ln(1 )]
( )

(1 )(ln(1 ))

p p
Q p

p p p

  

 








  

 

             (34) 

Substitute equation (32) into equation (34) to obtain;   
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(35) Equation (32) is simplified to obtain;         
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Substitute equation (37) into equation (35);       
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 3.   

 

 

Table 3: Classes of differential equations obtained for the 

inverse survival function of exponentiated Frȇchet 

distribution for different parameters.          

  

         Ordinary Differential Equation 

1 1 1 2(1 ) ( ) ( ) 0p Q p Q p     

1 1 2 22(1 ) ( ) ( ) 0p Q p Q p    

1 2 1 32(1 ) ( ) ( ) 0p Q p Q p    

1 2 2 38(1 ) ( ) ( ) 0p Q p Q p    

    

VI.  HAZARD FUNCTION 

 The hazard function of the exponentiated Frȇchet 

distribution is given as;   
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To obtain the first order ordinary differential equation for 

the hazard function of the exponentiated Frȇchet 

distribution, differentiate equation (40), to obtain;
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The condition necessary for the existence of equation is 

, , , 0.t                                                                
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The ordinary differential equations can be obtained for the 

given values of the parameters. Some of the cases of the 

given parameters are given in Table 4. 
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Table 4: Classes of differential equations obtained for the 

hazard function of exponentiated Frȇchet distribution for 

different parameters.                 

         Ordinary Differential Equation 

1 1 1 2 2 2( ) (2 1) ( ) ( ) 0t h t t h t t h t       

1 1 2 2 2 2( ) (2 2) ( ) ( ) 0t h t t h t t h t      

1 2 1 3 2 3 2( ) (3 2) ( ) ( ) 0t h t t h t t h t      

1 2 2 3 2 3 2( ) (3 8) ( ) ( ) 0t h t t h t t h t      

2 1 1 2 2 22 ( ) (4 2) ( ) ( ) 0t h t t h t t h t      

2 1 2 2 2 22 ( ) (4 4) ( ) ( ) 0t h t t h t t h t      

2 2 1 3 2 3 22 ( ) (6 4) ( ) ( ) 0t h t t h t t h t      

2 2 2 3 2 3 22 ( ) (6 16) ( ) ( ) 0t h t t h t t h t      

 

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the exponentiated Frȇchet 

distribution is given as;       

 
( 1)( )j t t                                         (44) 

To obtain the first order ordinary differential equation for 

the reversed hazard function of the exponentiated Frȇchet 

distribution, differentiate equation (44), to obtain;    
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The condition necessary for the existence of equation is 

, , , 0.t                                                                           

The first order ordinary differential equation for the 

reversed hazard function of the exponentiated Frȇchet 

distribution is given by;            

 ( ) ( 1) ( ) 0tj t j t                                       (46)

 (1)j                                               (47)

     

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [26-40]. Also comparison with two or more 

solution methods is useful in understanding the link between 

ODEs and the probability distributions.         

 

VIII. CONCLUDING REMARKS 

 In this work, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

exponentiated Frȇchet  distributions. Interestingly, the case 

of RHF yielded simple ODE compared with the other 

probability and reliability functions. In all, the parameters 

that define the distribution determine the nature of the 

respective ODEs and the range determines the existence of 

the ODEs.  
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