
 

 

Abstract— In this paper, the differential calculus was used to 

obtain some classes of ordinary differential equations (ODE) 

for the probability density function, quantile function, survival 

function, inverse survival function, hazard function and 

reversed hazard function of the exponentiated generalized 

exponential distribution. The stated necessary conditions 

required for the existence of the ODEs are consistent with the 

various parameters that defined the distribution. Solutions of 

these ODEs by using numerous available methods are new 

ways of understanding the nature of the probability functions 

that characterize the distribution. The method can be extended 

to other probability distributions and can serve an alternative 

to approximation.           

      

Index Terms— Exponentiated, exponential distribution, 

reversed hazard function, calculus, differentiation.  

 

I. INTRODUCTION 

HIS distribution was proposed by Oguntunde et al. [1] 

as a three parameter model that can be used as one of 

the generalizations of the exponential distribution. The 

proposed model has also the generalized exponential and 

exponentiated exponential distribution as its submodels. The 

distribution belongs to the exponentiated class of 

distributions which has seen a lot of research activities.  

Details on the general class of exponentiated distributions 

can be seen in [2-6].                    

  In particular, some exponentiated distributions are 

available in scientific literature such as: exponentiated 

Gumbel type-2 distribution [7], exponentiated Weibull 

distribution [8-10], exponentiated generalized inverted 

exponential distribution [11], exponentiated generalized 

inverse Gaussian distribution [12], exponentiated 

generalized inverse Weibull distribution [13-14], gamma-

exponentiated exponential distribution [15], exponentiated 

Gompertz distribution [16-17], beta Exponentiated 
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Mukherjii-Islam Distribution [18], transmuted 

exponentiated Pareto-i distribution [19], gamma 

exponentiated exponential–Weibull distribution [20], 

exponentiated gamma distribution [21], exponentiated 

Gumbel distribution [22], exponentiated uniform 

distribution [23] and beta exponentiated Weibull 

distribution [24-25]. Others are: exponentiated log-logistic 

distribution [26], McDonald exponentiated gamma 

distribution [27], exponentiated Generalized Weibull 

Distribution [28], beta exponentiated gamma distribution 

[29], exponentiated gamma distribution [30], exponentiated 

Pareto distribution [31], exponentiated Kumaraswamy 

distribution [32], exponentiated modified Weibull extension 

distribution [33], exponentiated Weibull-Pareto distribution 

[34], exponentiated lognormal distribution [35], 

exponentiated Perks distribution [36]  and Kumaraswamy-

transmuted exponentiated modified Weibull distribution 

[37]. Also available are: exponentiated power Lindley–

Poisson distribution [38], exponentiated Chen distribution 

[39], exponentiated reduced Kies distribution [40], 

exponentiated inverse Weibull geometric distribution [41], 

exponentiated geometric distribution [42-43] , exponentiated 

Weibull geometric distribution [44], exponentiated 

transmuted Weibull geometric distribution [45], 

exponentiated half logistic distribution [46], transmuted 

exponentiated Gumbel distribution [47], exponentiated 

Kumaraswamy-power function distribution [48], 

exponentiated-log-logistic geometric distribution [49], 

bivariate exponentaited generalized Weibull-Gompertz 

distribution [50] and so on.              

 The aim of this research is to develop ordinary 

differential equations (ODE) for the probability density 

function (PDF), Quantile function (QF), survival function 

(SF), inverse survival function (ISF), hazard function (HF) 

and reversed hazard function (RHF) of exponentiated 

generalized exponential distribution by the use of 

differential calculus. Calculus is a very key tool in the 

determination of mode of a given probability distribution 

and in estimation of parameters of probability distributions, 

amongst other uses. The research is an extension of the 

ODE to other probability functions other than the PDF. 

Similar works done where the PDF of probability 

distributions was expressed as ODE whose solution is the 

PDF are available. They include:  Laplace distribution [51], 

beta distribution [52], raised cosine distribution [53], Lomax 
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distribution [54], beta prime distribution or inverted beta 

distribution [55].                        

II. PROBABILITY DENSITY FUNCTION 

The probability density function of the exponentiated 

generalized exponential distribution is given as;     

   
1( ) e [(1 e ) ]x xf x                    

(1) To obtain the first order ordinary differential equation 

for the probability density function of the exponentiated 

generalized exponential distribution, differentiate equation 

(1), to obtain;  
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The condition necessary for the existence of the equation is 

, , , 0.x                                                  
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Differentiate equation (4) to obtain;                   
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The condition necessary for the existence of the equation is 

, , , 0.x                                                                                 

The following equations obtained from equation (4) are 

needed to simplify equation (5);  
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Substitute equations (6), (9) and (10) into equation (5);    
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The condition necessary for the existence of the equation is 

, , 0, 1.x                                                              

The ordinary differential equations can be obtained for the 

particular values of the parameters. 

          

III.  QUANTILE FUNCTION 

  The Quantile function of the exponentiated generalized 

exponential distribution is given as;       

 1

1 1
( ) ln

1

Q p

p 


 
 


 
  

                      (12) 

To obtain the first order ordinary differential equation for 

the Quantile function of the exponentiated generalized 

exponential distribution, differentiate equation (12), to 

obtain;           
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The condition necessary for the existence of the equation is 

, , 0,0 1.p                                                  
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The ordinary differential equations can be obtained for 

given values of the parameters. Some cases are considered 

in shown in Table 1.  

 

Table 1: Classes of differential equations obtained for the 

quantile function of exponentiated generalized exponential 

distribution for different parameters.          

         Ordinary differential equation 

1 1 1 (1 ) ( ) 1 0p Q p     

1 1 2 2(1 ) ( ) 1 0p Q p    

1 2 1 2(1 ) ( ) 1 0p Q p    

1 2 2 4(1 ) ( ) 1 0p Q p    

2 1 1 2( ) ( ) 1 0p p Q p    

2 1 2 4( ) ( ) 1 0p p Q p    

2 2 1 4( ) ( ) 1 0p p Q p    

2 2 2 8( ) ( ) 1 0p p Q p    
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IV. SURVIVAL FUNCTION 

  The survival function of the exponentiated generalized 

exponential distribution is given as;       

 ( ) 1 [1 e ]xS t                               (15) 

To obtain the first order ordinary differential equation for 

the survival function of the exponentiated generalized 

exponential distribution, differentiate equation (15), to 

obtain;            

 
1( ) e [1 e ]x xS t                    (16) 

The condition necessary for the existence of the equation is 

, , , 0.t                                                                                       

Equation (16) can be written as;         

 [1 e ] 1 ( )x S t                              (17) 

Substitute equation (17) into equation (16) to obtain;         
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(18) From equation (17),           
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Substitute equations (19) and (20) into equation (18);                           
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 (1) 1 [1 e ]S                                   (24) 

The ordinary differential equations can be obtained for the 

different values of the parameters.                                   

When 1,   equations (23) and (24) become;               

 ( ) ( ) 0S t S t                                                    (25)

 (1) eS                                                (26) 

When 2,   equations (23) and (24) become;              

 ( 1 ( )) ( ) 2 (1 1 ( )) 0S t S t S t          (27)

 
2(1) 1 [1 e ]S                                  (28)

       

V. INVERSE SURVIVAL FUNCTION 

The inverse survival function of the exponentiated 

generalized exponential distribution is given as;     

  1
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(29) To obtain the first order ordinary differential equation 

for the inverse survival function of the exponentiated 

generalized exponential distribution, differentiate equation 

(29), to obtain;         
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The condition necessary for the existence of the equation is 

, , 0,0 1p      .                                       
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            (31) 

The ordinary differential equations can be obtained for 

given values of the parameters. Some cases are considered 

and shown in Table 2. 

 

Table 2: Classes of differential equations obtained for the 

inverse survival function of exponentiated generalized 

exponential distribution for different parameters 

         Ordinary differential equation 

1 1 1 ( ) 1 0pQ p     

1 1 2 2 ( ) 1 0pQ p    

1 2 1 2 ( ) 1 0pQ p    

1 2 2 4 ( ) 1 0pQ p    

2 1 1 2 (1 1 ) ( ) 1 0p p Q p     

2 1 2 4 (1 1 ) ( ) 1 0p p Q p     

2 2 1 4 (1 1 ) ( ) 1 0p p Q p     

2 2 2 8 (1 1 ) ( ) 1 0p p Q p     

 

The complexity of the ODE increases as the value of the 

parameters changes.  

 

VI. HAZARD FUNCTION 

The hazard function of the exponentiated generalized 

exponential distribution is given as;        
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To obtain the first order ordinary differential equation for 

the hazard function of the exponentiated generalized 

exponential distribution, differentiate equation (32), to 

obtain;                   
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The condition necessary for the existence of the equation is 

, , , 0.t                                                                   
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Differentiate equation (35) to obtain;            
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The condition necessary for the existence of the equation is 

, , , 0.t                                                                      

The following equations obtained from equation (35) are 

needed to simplify equation (36); 
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Substitute equations (37), (40) and (41) into equation (36); 
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The condition necessary for the existence of the equation is 

, , 0, 1.t                                                                         

The ordinary differential equations can be obtained for the 

particular values of the parameters. 

                                                             

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the exponentiated 

generalized exponential distribution is given as;     
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(43) To obtain the first order ordinary differential equation 

for the reversed hazard function of the exponentiated 

generalized exponential distribution, differentiate equation 

(43), to obtain;  
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The condition necessary for the existence of the equation is 

, , , 0.t                                                          
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Differentiate equation (45);          
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The condition necessary for the existence of the equation is 

, , , 0.t                                                                                 

The following equations obtained from equation (45) are 

needed to simplify equation (46); 
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Substitute equations (47), (50) and (51) into equation (46);   
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The ordinary differential equations can be obtained for the 

particular values of the parameters.                         

                        

The ODEs of all the probability functions considered can be 

obtained for the particular values of the distribution. Several 

analytic, semi-analytic and numerical methods can be 

applied to obtain the solutions of the respective differential 

equations [56-69], especially for the cases of the quantile 

and inverse survival functions. Also comparison with two or 

more solution methods is useful in understanding the link 

between ODEs and the probability distributions.      
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VIII. CONCLUDING REMARKS 

 In this paper, differentiation was used to obtain some 

classes of ordinary differential equations for the probability 

density function (PDF), quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of the 

exponentiated generalized exponential  distribution. In all, 

the parameters that define the distribution determine the 

nature of the respective ODEs and the range determines the 

existence of the ODEs. Furthermore, the complexity of the 

ODEs depends greatly on the values of the parameters.   
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