
FORMALISING NON-FUNCTIONAL REQUIREMENTS EMBEDDED IN

USER REQUIREMENTS NOTATION (URN) MODELS

by

CYRILLE DONGMO

submitted in accordance with the requirements

for the degree of

Doctor of Philosophy

in the subject

Computer Science

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF J.A VAN DER POLL

15 November 2016

List of acronyms

CNF-action Complementary Non-Functional action

CSM Core Scenario Model

CZT Community of Z Tools

EPS Encapsulated Postscript

FOPL First Order Predicate Logic

GORE Goal-Oriented Requirements Engineering

GRL Goal-Oriented Requirements Language

MIF Maker Interchange Format

MSC Message Sequence Charts

NF-action Non-Functional action

NFRs Non-Functional Requirements

OZ Object-Z

PRG Programming Research Group

ProcessNFL Process-oriented language for describing Non-Functional

properties QoS Quality of Service

SDS Software Development System

SE Software Engineering

SIG Softgoals Interdependency Graphs

SLR Systematic Literature Review

SRS Software (or System) Requirements Specification

UCM Use Case Map

UML Unified Modelling Language

UML-S Unified Modelling Language for Services

URN User Requirements Notation

XML Extensible Mark-up Language

XSD XML Schema Definition

ZF Zermelo-Fraenkel

ii

Abstract

The growing need for computer software in different sectors of activity, (health, agricul-

ture, industries, education, aeronautic, science and telecommunication) together with the

increasing reliance of the society as a whole on information technology, is placing a heavy

and fast growing demand on complex and high quality software systems. In this regard, the

anticipation has been on non-functional requirements (NFRs) engineering and formal meth-

ods. Despite their common objective, these techniques have in most cases evolved separately.

NFRs engineering proceeds firstly, by deriving measures to evaluate the quality of the con-

structed software (product-oriented approach), and secondarily by improving the engineering

process (process-oriented approach). With the ability to combine the analysis of both func-

tional and non-functional requirements, Goal-Oriented Requirements Engineering (GORE)

approaches have become de facto leading requirements engineering methods. They propose

through refinement/operationalisation, means to satisfy NFRs encoded in softgoals at an

early phase of software development. On the other side, formal methods have kept, so far,

their promise to eliminate errors in software artefacts to produce high quality software prod-

ucts and are therefore particularly solicited for safety and mission critical systems for which

a single error may cause great loss including human life.

This thesis introduces the concept of Complementary Non-functional action (CNF-action)

to extend the analysis and development of NFRs beyond the traditional goals/softgoals

analysis, based on refinement/operationalisation, and to propagate the influence of NFRs

to other software construction phases. Mechanisms are also developed to integrate the for-

mal technique Z/Object-Z into the standardised User Requirements Notation (URN) to

formalise GRL models describing functional and non-functional requirements, to propagate

CNF-actions of the formalised NFRs to UCMs maps, to facilitate URN construction process

and the quality of URN models.

Keywords: Semi-formal specification techniques, URN, GRL, UCMs, Goal model, NFR,

CNF-actions, Formal Methods, Z, Object-Z, Specification Validation, Enterprise organogram,

Specification animation, Z/Eves, Four-way framework.

iii

iv

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Current trends in combining semi-formal and formal techniques 3

1.3 Problem statement and purpose of the study 5

1.3.1 Research questions . 6

1.3.2 Value of the research . 7

1.4 Research objectives . 7

1.5 Delineations, limitations and assumptions 8

1.5.1 The scope . 8

1.5.2 Delineations and limitations . 9

1.5.3 Assumptions . 9

1.6 Contributions . 10

1.7 Thesis layout . 11

1.7.1 List of chapters . 11

1.7.2 Relationships among the chapters . 12

2 Literature review 15

2.1 The User Requirements Notation (URN) . 15

2.1.1 Brief description of URN . 15

2.1.2 The URN metamodel . 16

2.1.3 The URN construction process . 17

2.1.4 The URN tool support: UCMNav and jUCMNav 17

2.1.5 Current approach to formalise URN models 18

2.2 The GRL notation . 19

2.2.1 The GRL representation . 19

2.2.2 The GRL concepts and notational elements 19

2.2.3 The GRL model evaluation . 23

2.3 Use Case Maps (UCMs) . 24

2.3.1 The UCM model representation . 24

v

2.3.2 The UCM concepts and notational elements 25

2.3.3 UCM abstract components . 25

2.3.4 Basic path notation . 26

2.3.5 Path connectors . 27

2.3.6 Stubbing techniques . 28

2.3.7 Timeout-recovery mechanism . 29

2.3.8 Extending the original UCM notation 31

2.4 The Z notation . 31

2.4.1 Basic types and global sets . 32

2.4.2 Z schemas . 33

2.5 The Object-Z notation . 36

2.5.1 Operation schema . 37

2.5.2 Inheritance . 39

2.5.3 Polymorphism . 40

2.5.4 Tool support for Z and Object-Z . 40

2.6 Non-functional requirements specification . 40

2.6.1 The research objectives and questions 40

2.6.2 Review approach . 41

2.6.3 The search process . 41

2.6.4 The selection process . 42

2.6.5 Findings . 44

2.6.6 Product-oriented NFRs analysis . 45

2.6.7 Process-oriented NFRs analysis . 45

2.7 Chapter conclusion . 45

3 Research design and methodology 47

3.1 Design techniques . 47

3.1.1 Literature review . 47

3.1.2 Framework and algorithms . 48

3.1.3 Case study . 48

3.1.4 Models . 49

3.1.5 Synthesis of scholarship . 49

3.1.6 Arguments based on content analysis 49

3.2 Overall research process . 50

3.2.1 Method 1: Scope definition and requirement elicitation 51

3.2.2 Method 2: URN construction process 51

3.2.3 Method 3: GRL formalisation and validation of the formal specification 51

vi

3.2.4 Method 4: Analysis of the formalisation process and the formal spec-

ification . 52

3.3 Chapter conclusion . 52

4 Formalising GRL models with Z/Object-Z 53

4.1 Relationship between GRL and UCM . 53

4.1.1 URN construction process . 53

4.1.2 Important observations: UCM as a GRL refinement 56

4.1.3 Conceptual gap between GRL and UCM 59

4.2 The influence of Non-Functional Requirements in software development . . . 60

4.2.1 Software Development System (SDS) 60

4.2.2 Non-Functional actions: NF-actions 61

4.2.3 Complementary Non-Functional actions: CNF-action 62

4.2.4 A non-functional requirement’s domain 65

4.3 An Object-Z specification of URN model elements: Focusing on NFRs in GRL 66

4.3.1 GRL Model elements: list of sub-classes 67

4.3.2 Basic formalisation approach: a top-down approach 68

4.3.3 Formalising GRLModelElement metaclass 70

4.3.4 The Object-Z specification of the subclasses of GRLModelElement:

LinkableElement and ElementLink 70

4.3.5 The specification of the sub classes of GRLLinkableElements 71

4.3.6 Formalising the subclasses of ContainableElements: IntentionalEle-

ment and Indicators . 72

4.3.7 Formalising GRL Links . 75

4.4 Framework for a formal specification of an input GRL model 77

4.4.1 GRL model traversal mechanism . 78

4.4.2 Formalisation approach . 79

4.4.3 Creating an Object-Z specification for an input GRL model 81

4.4.4 Updating the specification in the light of element links 84

4.4.5 Finalising the specification . 88

4.5 Chapter conclusion . 88

5 Case study 91

5.1 Problem description . 91

5.2 Problem analysis and scope definition . 92

5.2.1 The organogram approach to problem analysis and scope definition . 93

5.2.2 Modeling the organogram as a graph 97

5.2.3 The scope definition . 100

vii

5.2.4 Problem analysis . 102

5.3 The GRL modeling . 103

5.3.1 Solving the problem . 103

5.3.2 Actors identification . 104

5.3.3 The GRL model for the Case study 105

5.3.4 The GRL model description . 105

5.4 Formalising the GRL model of the case study 107

5.4.1 GRL transformation templates . 107

5.4.2 GRL elements identification . 107

5.4.3 Planning the specification . 109

5.4.4 Formalising the identified actors . 111

5.4.5 Formalising the tasks: AccessOwnApp and SubmitOnline 115

5.4.6 Formalising the identified resources 117

5.4.7 Formalising the system class: ClsGrlCaseStudy 118

5.4.8 Updating the specification in the light of links 120

5.4.9 Finalising the specification . 120

5.5 Chapter conclusion . 121

6 Validation of the case study specification 123

6.1 Specification validation . 123

6.2 An approach to animate a Z/Object-Z specification with Prolog 125

6.2.1 Guidelines for animating an Object-Z specification in Prolog 126

6.3 Overview of the validation approach: 4-way framework for specification vali-

dation . 127

6.4 Planning the validation for one iteration . 128

6.4.1 (Internal) consistency . 130

6.4.2 Traceability . 130

6.4.3 Correctness . 131

6.4.4 Completeness . 132

6.4.5 Applicability . 133

6.4.6 Feasibility . 134

6.5 Planning the animation . 135

6.5.1 Objectives of the animation/prototype 135

6.5.2 Functionalities of the animation/prototype 136

6.5.3 Executable of the animation/prototype 136

6.6 The rightward validation phase . 147

6.6.1 Type checking the Z/Object-Z specification of the case study 147

viii

6.6.2 The review of the specification . 150

6.7 Upward validation phase . 152

6.7.1 Requirements traceability . 152

6.7.2 Establishing the correctness of the Object-Z specification 155

6.8 The leftward validation phase . 166

6.8.1 Establishing the completeness of the specification 166

6.8.2 The applicability of the specification 167

6.9 The downward validation phase . 172

6.9.1 The operational feasibility analysis 172

6.10 Chapter conclusion . 184

7 Analysis and Generalisation 187

7.1 URN construction process . 187

7.1.1 Discussion about UCM refining GRL 187

7.1.2 Discussion about improving the relationship between UCM and GRL 189

7.2 Complementary Non-Functional Action: CNF-action 189

7.2.1 The essence of CNF-action . 189

7.2.2 Further efforts needed . 190

7.3 Contributions related to the GRL formalisation approach 190

7.3.1 The basic GRL modeling approach 190

7.3.2 The basic formalisation strategy . 191

7.3.3 Future efforts needed . 193

7.4 Contributions associated to Object-Z specification 193

7.4.1 Templates: approach to formalise GRL model elements 194

7.4.2 Framework to formalise an input GRL model 195

7.5 Contributions associated to the case study 196

7.5.1 Suggested strategy for requirements analysis 196

7.5.2 Suggested algorithms for graph manipulation 196

7.5.3 Applying the framework to the GRL model of the case study 197

7.5.4 Areas that require some improvements 200

7.6 Contributions associated to the Validation 200

7.6.1 Animating an Object-Z specification with Prolog 200

7.6.2 Application of the four-way framework for validating a specification . 201

7.6.3 Automated proofs . 202

7.6.4 Qualities of the formal specification 203

7.6.5 Qualities of the formalisation process 205

7.7 Chapter conclusion . 207

ix

8 Summary of main findings, conclusion and future work 209

8.1 Main findings . 209

8.2 Concluding notes . 214

8.2.1 The process from GRL to Object-Z 215

8.2.2 The Object-Z specification . 216

8.2.3 From Object-Z to UCM . 216

8.3 Future work . 217

8.3.1 Generalisation of concepts . 217

8.3.2 Implementation . 218

A Additional results from the systematic literature review 221

B Additional items for case study developed in Chapter 5 223

B.0.1 Business objectives . 223

B.0.2 Vertical relationships . 225

B.0.3 Horizontal relationships . 226

B.0.4 The Prolog code for the case study 228

B.0.5 Execution . 243

B.0.6 Problem analysis . 246

B.0.7 Reduced pNode . 247

C The Object-Z specification of the case study 249

C.0.1 Actors’ classes: ClsApplicant , ClsMotivator , ClsAdministrator , ClsServer 249

C.0.2 The OZ specification of the resources 254

C.0.3 The OZ specification of Tasks and ressources linked to applicant . . 256

C.0.4 The OZ specification of Tasks and ressources linked to Motivator . . 258

C.0.5 The OZ specification of Tasks and ressources linked to Administration 260

C.0.6 The OZ specification of Tasks and ressources linked to Server 261

C.0.7 Formalising the system class: ClsGrlCaseStudy 263

D Prolog implementation of the Object-Z specification 265

D.0.1 Implementing schema type() using object’references 267

D.0.2 Upward validation . 277

Bibliography 289

Index 311

x

List of Tables

2.1 List of selected databases . 42

4.1 Traceability between UCM and GRL . 58

4.2 GRL Model Elements subclasses . 67

4.3 List of GRLLinkableElement subclasses . 67

4.4 List of element links . 68

4.5 Summary of transformation per element type 82

5.3 Generated goal/requirements scope . 101

5.4 Intentional elements of the input GRL model 108

5.5 Link elements in the GRL model for the case study 109

5.6 List of Object-Z Elements to be Created . 110

5.7 Summary of Object-Z elements to be created 111

6.1 Planning the validation of the Object-Z specification 129

6.2 List of Prolog clauses associated to Object-Z class schemas states 138

6.3 List of Prolog clauses associated to Object-Z class schemas states 143

6.4 List of states’ schemas’ clauses using OZ objects’ references 145

6.5 List of Object-Z components to be animated 147

6.6 Mapping between OZ and CZT commands 148

6.7 Tracing Object-Z elements from GRL Conceptual model 153

6.8 Tracing Object-Z elements from GRL concrete model 154

6.9 Data for the two softgoals of the actor applicant 163

6.10 Mapping GRL components to UCM model elements 173

6.11 Mapping Object-Z components to UCM model elements 176

B.1 Business objectives . 225

B.2 Vertical relationships among business objectives 226

B.3 Horizontal relationships among business objectives 228

B.4 Analysing the initial problems . 247

xi

xii

List of Figures

1.1 Direct transformation strategy . 4

1.2 Relationships among chapters and main tasks/outputs 13

2.1 URN conceptual model [1] . 16

2.2 Example of a GRL model [24] . 20

2.3 GRL actor notation . 20

2.4 Basic GRL notational elements . 21

2.5 List of GRL links . 22

2.6 GRL contribution types . 22

2.7 GRL qualitative labels . 23

2.8 An example of a UCM diagram adapted from [60] 24

2.9 Abstract components . 26

2.10 Basic UCM path notation . 27

2.11 Path connectors . 28

2.12 An example of a static and a dynamic stub 29

2.13 Timers . 30

2.14 Selection of relevant publications . 43

2.15 Number of publications per specification technique 43

3.1 Research process . 50

4.1 URN model construction process [110] . 54

4.2 Causal relationship between GRL and UCM 57

4.3 Illustrating a software development system 61

4.4 Systematic process to Non-Functional Requirements [99] 62

4.5 Representing NF-actions in ProcessNFL [156] 64

4.6 GRL elements to be formalised [1] . 69

4.7 Illustrative GRL model . 78

5.1 College organogram . 95

5.2 Goal model for programmes administration and online application 106

xiii

6.1 Four-way framework for validating a specification (see [61]) 128

6.2 Prototyping process ([169], P.411) . 136

6.3 Prolog structure of clauses implementing state schemas 139

6.4 Hierarchical structure of Object-Z spec of GRL conceptual elements (Fig.4.6,

p.69) . 142

6.5 Type checking the specification with CZT 147

6.6 Prolog structure of clauses implementing operation schemas 160

6.7 UCM specification of the GRL actor applicant 178

6.8 UCM specification of the GRL actor applicant 179

6.9 UCM specification of the class schema Clsapplicant 180

6.10 UCM specification of the class ClsApplicant and processes 181

6.11 UCM specification for ClsApplicant, ClsAccessOwnApp, ClsSubmitAppOn-

line, ClsInternet . 181

6.12 UCMmodel for ClsApplicant, ClsAccessOwnApp, ClsSubmitAppOnline, ClsIn-

ternet . 182

6.13 Optimised UCM model for ClsApplicant, ClsAccessOwnApp, ClsSubmitAp-

pOnline, ClsInternet . 184

7.1 Illustrating the basic GRL modeling approach 191

7.2 Illustrating the basic GRL formalisation approach 192

7.3 Summary of the complete validation process 202

8.1 An approach to integrate Object-Z into URN process 215

A.1 List of the selected publications . 221

A.2 List of publications per specification technique 222

xiv

List of publications

Published articles

1. Exploiting Enterprise Organograms to facilitate goal/requirements elicitation. First

published as conference paper in [63] and later selected and republished as journal

article in [66].

2. An application of a four-way framework for validating a specification: Animating an

Object-Z specification using Prolog. First published as conference paper in [62] and

later selected and republished as journal article in [65].

Publications vs contributions

The two published papers represent about 33% of the total number of envisaged contributions

(see Section 1.6, p. 10) and about 25% of the effective contributions presented in Chapters

7 and 8. Most of the contributive ideas were already fully developed during the course of this

research and are therefore, awaiting to be transformed into publishable conference papers or

journal articles. Such publications are planned to follow this thesis.

xv

xvi

Acknowledgements

In the first place, I honor and humble myself to the Heavenly Father, without Whom I might

have never existed.

I would like to express my deepest recognition to the people closest to me. To my fam-

ily; the greatest gift from heaven, especially to my parents and dearest wife Solange, thank

you for your love, support, and understanding. Thank you to all my kids (Lemek, Loriane,

Cyrus and Joshua) who have always been there to remind me that I have no chance to give

up because they are watching and copying. Thank you to all my brothers and sisters.

I extend my sincere gratitude to my supervisor, Professor John Andrew Van der Poll, whose

advice and guidance justify the achievements of this thesis. Without his help, it would have

been hard to bring this work to its present state.

Thank you to Professor Amyot (from the School of Information Technology and Engineering

at the University of Ottawa, Canada) and his team for making most of the publications on

URN available on their website and for providing the jUCMNav tool for constructing and

analysing UCMs and GRL models. Without these, it would have been very hard to draw all

the goal models and UCMs diagrams in this thesis.

Cyrille Dongmo

November 2016

xvii

xviii

Dedication

This thesis is dedicated to the memory of my father, Albert Dongmo (1924-1998), to the

memory of my grandfather, Mo’oh Diffo Takem and grand-mother Julienne Jumeta and to

the memory of my very dear friend and elder sister, Rachelle Dongmo (1967 - July 2011).

xix

xx

Chapter 1

Introduction

1.1 Background and motivation

There has been a common acceptance of the promises of formal methods1 to bring more

precision into the conceptualisation of software systems, eliminate errors, ambiguous state-

ments and inconsistencies at an early stage of the software development process, and hence,

produce quality products [142]. However, these methods have not been widely accepted in

industry. For a long period, intensive research has investigated the phenomenon and a num-

ber of reasons have been formulated to justify why formal methods have not yet been fully

accepted. Amongst others, a steep learning curve, attributed to the limited mathematical

skills of software engineers and practitioners has been suggested. Formal methods are said

to be hard to develop and assess, and the lack of a comprehensive construction process with

appropriate guidelines is cited amongst formal method issues that ought to be addressed

(van Lamsweerde [179]). It is also recognised that it is hard to integrate such methods into

the existing software development processes and make them operational (Abrial [4]).

Among advocates of formal methods, there are those who believe in the potential of these

methods to wholly cover the software production cycle. Arguably, therefore these methods

ought to cover the following software development phases:

• The Requirements analysis and specification phase, which are the essential parts of

Software Requirements Engineering.

• The design phase, related to the discipline of Software Design and Architecture.

1The term formal methods denotes, in a broad sense, mathematical techniques for developing computer-

based software and hardware systems. They provide a means to formalise system requirements in a way

that mathematical proofs can be used to validate them, as well as, further refined models.

1

• The implementation and maintenance phases, during which the final software product

is produced and rendered operational.

The requirements engineering phase is known to be a hard part, the most critical and risky

stage in the process of software development (see Brooks [33], van Lamsweerde [180], Zowghi

and Coulin [200]) and therefore, one of the most important research focus areas. Many of

the benefits of formal methods are attributed to their ability to anticipate the detection of

potential problems in requirements at an early phase of the software process. Research in

formal methods, mainly focused on this phase, resulted in developing requirements nota-

tion approaches and techniques, as well as associated tools, to formally specify and validate

user requirements. Subsequent development phases performed by means of refinement tech-

niques, are intended to progressively transform the abstract formal system specification into

operational software entities (see, for example Derrick and Boiten [57]).

Event-B is a typical example of a successful model-based formal approach that provides

for a mechanism to formally specify, and progressively refine software system requirements

(Butler [41]). A remarkable strength of this method is the availability of tools, such as the

Rodin toolset (Abrial et al. [5]), to create abstract models for software system requirements,

to gradually refine them into more concrete models, and to ensure, by means of automated

proofs, consistency between consecutive refined models. The need for a similar toolset or

integrated environment for many other formal methods is now high on the agenda. However,

as observed by (Ponsard and Dieul [147]), a major weakness of these methods is the gap

between textual or semi-formal requirements and formal models.

Some literature suggests the integration of formal techniques into existing software devel-

opment processes (e.g., [169], pp. 219-222) and recommends the use of these methods in

conjunction with existing ones [31]: “Thou shalt not abandon thy traditional development

methods”. A possible reason for such a recommendation is that stakeholders (other than the

technical team) do not generally understand mathematical notations, hence are less involved

in the process of formal specification. Techniques more comprehensible by customers are,

therefore, needed at the initial phase of requirements engineering. The integration of for-

mal techniques into the existing software development processes has been achieved mainly

by combining semi-formal and formal software specification techniques (see, for example

Cabral and Sampaio [42], Ponsard and Dieul [147], Wieringa and Dubois [191]). Two main

categories of formal specification techniques are:

• Property-oriented: system properties are presented in a declarative way with Alge-

braic (based on equational axioms), or Axiomatic (based on first-order predicate logic)

expressions to describe the data and operations of the system.

2

• Model-oriented: an abstract model of a system is built, where the static properties

of the system are created, as states, by means of set theory and the operations on

those states are constructed by means of first-order predicate logic. Two examples are:

Vienna Development Method (VDM [75]) and the Z Notation [130, 170], which are

traditionally among the successful techniques.

Property-oriented and model-oriented software specification techniques share in common the

fact that they are all based on mathematics, use first-order predicate logic to describe the

dynamic behavior of systems and therefore, relate static properties to each other. This ob-

servation indicates that research results based on one category may be generalised/extended

to another.

1.2 Current trends in combining semi-formal and for-

mal techniques

As mentioned earlier, the literature emphasises the need to integrate formal techniques into

existing software development processes. Referring to formal methods, Abrial [4, page 766]

believes that “People are quite reluctant to use such methods mostly because it necessitates

to modify the development process in a significant fashion. As it is well known, such devel-

opment processes are hard to develop”. In [169], Sommerville suggests introducing formal

methods between the specification and the validation phases of the software development

process. Such integration into existing software processes therefore combines semi-formal

models with formal ones. Abderrahman et al [3] recognised that the challenge is to de-

fine suitable mechanisms to translate semi-formal models into formal ones. Examples are:

coupling UML and B [168] that resulted in U2B method, coupling UML and TROLL [80]

that resulted in UML-TROLL, coupling UCMs and State Machines [29] that resulted in

a new method called UCM-ROOM, and translating UML/Fusion into Object-Z proposed

by Bittner and Kammuller [26]. Another case is the integration of UML-B and Object-Z

[138], that combines one semi-formal model (UML) and two formal ones: B and Object-Z.

Figure 1.1 is proposed to illustrate a generic strategy often followed to generate a formal

specification from a semi-formal model. This will be referred to as the “direct transformation

method”, which can be summarised as follows:

1. Concepts in a semi-formal model and the target formal notation are identified, analysed

and compared.

2. Based on the above concept analysis, a transformation mechanism is derived. For

3

Semi-formal Formal specsTransformation

Environment:

Editor + tools

? ?

?

Implementation

Export

Figure 1.1: Direct transformation strategy

example in the form of guidelines, frameworks, algorithms or heuristics.

3. The transformation mechanism is implemented and (sometimes) integrated into the

existing environment of the semi-formal technique. For example, a menu such as

Export is added to export a semi-formal model into a formal specification document

[167].

The lines or arrows in the figure with question marks, indicate those aspects of the exist-

ing transformation strategy that still need research attention. The formalisation process is

generally interested in the readily constructed semi-formal model, with little concern as to

the construction process of such a model. In that case, the value of formalism is, arguably,

restricted, since the quality of the formal specification is relative to the input semi-formal

model, and not necessarily to the initial user requirements.

Another issue that needs to be investigated is, for instance, the exploitation, during the

transformation process, of the mathematical precision of formal techniques to enhance the

initial semi-formal model. Performing such an improvement would render the transforma-

tion process interactive and hence, allows for the semi-formal model to act as a graphical

interface for the formal techniques.

The last aspect to concentrate on concerns the design and implementation phases. In general,

after the formalisation of the semi-formal model, it may be interesting to investigate what

design/implementation approach is appropriate to continue with. Should one continue with

the traditional design/implementation methods, or follow one of the known formal methods

refinement techniques (e.g., Derrick and Boiten [57])?

4

1.3 Problem statement and purpose of the study

This research investigates the means to provide a comprehensive formal specification con-

struction mechanism using semi-formal methods. For the semi-formal technique, it considers

the standardised User Requirements Notation (URN) [1], which encompasses the modelling

of functional, as well as, non-functional requirements. On the side of formal methods, the

model-based formal notation Z/Object-Z2 [45, 185] is considered. This work focuses on

Object-Z but uses the notation Z/Object-Z very often to remind the reader about the tidy

relationship between the two notations and also to justify the frequent use of Z properties

when needed.

The choice of a model-based approach for the formal technique was motivated by a number

of factors amongst which the followings were most appealing:

• a systematic literature review conducted by Amyot and Mussbacher [14] revealed that

the authors’ previous work suggesting the use of UCM as an intermediate step to

produce a Z/Object-Z specification was (at that time) the first attempt to formalise

the part of URN that describes functional requirements. Thus, the need to extend

the work to cover GRL models emerged, although more challenging because GRL

explicitly includes mechanisms to specify goals describing quality and non-functional

requirements whereas, the formal technique does not.

• since URN is model-based, the structural similitude with the formal technique has the

advantage that the analysis, for example, of the relationships between the elements of

both: URN models and those of the chosen model-based formal technique (Z/Object-Z)

can be facilitated by the knowledge of their commonalities.

• since formal methods, in general, share in common the use of mathematical expressions

to describe properties of the system, a successful formalisation with a model-based ap-

proach would provide for insight or building blocks for other type of formal techniques.

• another important reason to work with model-based formal techniques is their ex-

plicit recommendation in software requirements engineering (van Lamsweerde [180]).

Z/Object-Z being one of the traditionally successful formal specification techniques,

we believe its choice to be adequate for this work.

This work therefore, aims to address the complex problem of integrating formal methods into

the existing traditional software specification process through the coupling of URN, Z and

2Object-Z is an Object-Oriented extension of Z.

5

Object-Z. The purpose being, for example, to exploit the flexibility of the semi-formal tech-

nique (because of its graphical nature, which is inherently more human-oriented) to facilitate

the building of the formal specifications, and when possible, use the mathematical precision

of the formal technique to improve on the initial semi-formal model. This research could

therefore result in facilitating the use of formal specification techniques and consequently

encourage greater use of formal methods in industry.

A URN model of a system comprises of two complementary sub-models: a UCM model

to describe functional requirements, and a GRL model, which incorporates goals that need

to be achieved by the functional requirements, as well as goals describing non-functional

requirements. As part of the same project, earlier work by the researchers [61] was con-

ducted to establish the formalisation of UCMs with Z and Object-Z and demonstrated the

usefulness of UCMs in the process of constructing Z and Object-Z specifications. The cur-

rent work therefore, focuses mainly on the GRL modeling technique. The case of the GRL

model brings in more complexity because, neither standard Z nor Object-Z, naturally, inte-

grates any mechanism for non-functional requirements. Furthermore, an initial GRL model

encompasses both goals describing functional and non-functional requirements.

Some of the research questions used to guide the authors through this research work are

presented next.

1.3.1 Research questions

The following research questions (RQs) are formulated to address the main problem stated

above. The purpose being to investigate two issues: Firstly, how to integrate formal meth-

ods into the existing software specification process by coupling such methods to semi-formal

techniques. Secondly, to investigate to what extent the flexibility of semi-formal software

specification techniques can help to alleviate the complexity of formal ones and hence, facil-

itate their practical use.

RQ 1: What lightweight (enterprise) model could there be to facilitate the process of goals

and/or requirements elicitation at an initial phase of requirements elicitation and

analysis? Such a model would naturally constitute a starting point for the construc-

tion of the system.

RQ 2: To what extent could a URN model construction process take advantage of any

lightweight model that would result from the research question RQ 1?

RQ 3: To what extent are goals describing non-functional requirements formalisable?

6

(a) To what extent can a GRLmodel, describing both functional and non-functional

requirements, serve as input to a formal specification techniques, case of Z/Object-

Z?

(b) To what extent is it possible to formalise a goal model describing both functional

and non-functional requirements in Z and Object-Z?

RQ 4: What would the impact of a semi-formal modelling technique/method for non-

functional requirements be on the process of constructing a formal specification?

The impact of GRL on a Z/Object-Z specification process will be considered in this

work; especially when a GRL model is used as input to Z/Object-Z.

RQ 5: To what extent can a formal specification of a GRL model help to improve on the

process and quality of URN models?

Although the full value of a research project like the present one might not be completely

realised at this stage, the next section presents its most valuable significance.

1.3.2 Value of the research

The User Requirements Notation (URN) is a flexible technique used to capture, analyse

and structure functional and non-functional requirements at an early stage of a software

system development cycle. It provides for a rich requirements manipulation environment,

where GRL and UCM models are constructed flexibly. The chief advantage of this work is to

investigate the possibilities to exploit the facilities of such a technique to build an interactive

and iterative environment for URN and Z/Object-Z specifications, where URN is used as an

interface to facilitate their use in industry.

1.4 Research objectives

As mentioned earlier, the main purpose is to provide a comprehensive mechanism for the

building of Object-Z specifications, where the URN notation is used at an early stage of the

specification process to capture and structure the project statement. Research objectives

are therefore to:

RObj 1: Investigate existing enterprise models/architectures to determine a synthetic model

or approach that may facilitate a preliminary identification of appropriate infor-

mation sources pertaining to scope definition and user requirements at an early

phase of goals/requirements elicitation.

7

RObj 2: Determine/derive from the existing processes, a suitable URN modelling mecha-

nism that may take advantage of the above-mentioned model or approach and set

the foundation for the formalisation and validation of further design models.

RObj 3: Analyse the impact of non-functional requirements on the software development

process and resulting products to determine/derive means to formally specify those

requirements together with functional requirements embedded in GRL models.

RObj 4: Demonstrate that a GRL model with goals describing functional requirements

as well as quality and non-functional requirements of a system can indeed be

formalised by providing a formalisation mechanism.

RObj 5: Establish the usefulness of the proposed GRL formalisation mechanism by apply-

ing it to a reasonable size case study to produce a formal specification of the GRL

model of the case study.

RObj 6: Establish the impact of using URN in the process of generating Z/Object-Z speci-

fications of non-functional requirements. This would be by investigating the pres-

ence or absence in the formal specification of the GRL model of the case study, of

commonly accepted or selected qualities of a good formal specification.

Some delineations and limitations are presented next.

1.5 Delineations, limitations and assumptions

The following are to be considered.

1.5.1 The scope

As mentioned in the previous sections, this research is about coupling semi-formal and

formal requirements analysis, modelling and specification techniques. The case of URN, Z

and Object-Z are considered. However, since in previous work, part of the same project, was

performed on the coupling of UCM (describing functional requirements), Z, and Object-Z,

this research is mainly about the formalisation of (GRL) models, describing functional and

non-functional requirements with Object-Z. The scope of the research includes therefore,

the:

• Construction process of semi-formal models of URN, focused on GRL. This is worth

considering due to the importance the process may have on the constructed model.

8

• Development of strategies to transform URN models into Z/Object-Z specifications;

and if possible, extend the strategies to include other techniques.

• Enhancement of URN models by the formal techniques.

• Generalisation of the results to other semi-formal and/or formal techniques will also be

investigated. This is especially about extending the proposed formalisation mechanism

to other semi-formal and formal techniques.

1.5.2 Delineations and limitations

Due to time and resources constraints, further development beyond the formal specification

of any of the two URN models are beyond the scope of this research work. However, the

formal specifications that are created are validated to ensure that they are left in good stan-

dards and can therefore be used effectively in subsequent software development phases.

Since the purpose of the study is to investigate the ability to formalise URN models, GRL

elements pertaining to the evaluation of the models which are normally useful during the

model construction and analysis, are not considered for the formalisation. The formalisation

of those elements and the evaluation process may constitute a good (MSc) research topic on

its own.

The formalisation of functional requirements, described in UCMs, was performed in an

earlier work [60]. Since the Z/Object-Z specifications of UCMs models hence, developed

were fully analysed and discussed, whenever they are needed in the current work, they will

be used without further validation.

1.5.3 Assumptions

As far as the researchers are aware, based on a systematic literature review on URN [14],

this research is the first to embark on combining URN, Z and Object-Z. Thus, from the

beginning, it assumes a twofold intermediate processes, during the transformation of a URN

model into Z/Object-Z specifications. The first process is to convert UCM diagrams describ-

ing functional requirements, into Z and Object-Z [60]. The second process is to formalise

GRL diagrams, describing non-functional with Z and Object-Z. The main idea is that, by

performing the above two transformations separately, the final Z/Object-Z specification of

the initial URN model may be obtained by combining the two Object-Z specifications re-

sulting from the two intermediate transformations.

9

1.6 Contributions

The potential contribution is to address the traditional problem of the industrial use of

formal specification methods and techniques and improve on the quality of the semi-formal

processes and models. It aims to exploit the flexibility (and usability) of URN, to address

the integration of such methods into existing software development processes, as well as their

ease of use, especially in the case of the Z and Object-Z specification techniques. Some of

the major contributions of this research are presented next.

1. A proposed lightweight (enterprise) model to facilitate scope definition as well as

goals/requirements elicitation and analysis.

2. A proposed goal elicitation process (that may take advantage of the above lightweight

model), suitable to generate appropriate URN models, for a given set of stakeholder

goals and user requirements.

3. An approach to model and propagate the influence of NFRs beyond the initial elicita-

tion and analysis phase with the proposed concept of Complementary Non-functional

actions (CNF-actions).

4. A framework to transform a URN model into an Object-Z specification.

5. A comprehensive construction mechanism for Z/Object-Z, where URN is used at the

interface level, to facilitate user requirements elicitation and analysis.

6. An evaluation of the impact of using URN on the quality of a Z/Object-Z specification

obtained by formalising a URN model.

7. A systematic literature search to determine the current state of research in NFRs

specification, in general, and their formalisation in particular.

To contextualise the importance of the above contributions, further discussion and elabo-

ration of each or a group of these were performed during the research process, in the form

of peer-reviewed conference papers or accredited journal articles. Those that were finalised

and published are listed on page xv.

The next section presents the list of chapters.

10

1.7 Thesis layout

1.7.1 List of chapters

Chapter 1 presents the background to the study which is the basic for the motivation.

It also includes an overview of the existing approach to combining semi-formal and formal

software techniques. The problem statement comprising the research questions and the

significance of the work are also included, as well as the objectives, the delineations and

limitations, the scope of the research and the thesis layout.

Chapter 2 covers the literature on the User Requirements Notation, namely, URN, the

Z notation and its object-oriented version Object-Z. A systematic literature review on

non-functional requirements specification and formalisation is also presented.

Chapter 3 discusses the research design and methodology; the approach adopted in this

research work to address the research problem, as well as the chosen methods are presented

and justified.

Chapter 4 presents an analysis of the URN construction and the impact of non-functional

requirements on the software development process, as well as on the final software product.

An approach to formalise conceptual elements of GRL is proposed, including elements

describing quality and non-functional requirements. A framework proposed to formalise

an input GRL model with Z/Object-Z is also discussed.

Chapter 5 investigates the applicability of the formalisation mechanisms developed in

Chapter 4 by applying them to a reasonable size case study. An approach suggesting the

use of enterprise organograms to facilitate the goal elicitation process [63] is first discussed

followed by the GRL modeling of the case study and its formalisation.

Chapter 6 discusses the validation of the Object-Z specification of the case study. An

approach proposed to animate an Object-Z specification with Prolog [62] is first presented

followed by the overall planning of the validation based on the four-way framework for

validating a software specification [61]. The properties against which the specification is

to be validated are defined and the validation discussed in details thereafter.

Chapter 7 explores the previous chapters to identify and analyse each contribution. The

possibilities to generalise those contributions are discussed as well.

Chapter 8 summarises the main findings, presents the conclusion of the research work

and discusses the future research work.

11

1.7.2 Relationships among the chapters

The tasks and possible outputs presented in each chapter, as well as relationships between

the chapters are depicted in Figure 1.2.

12

Chapters Tasks / Intermediate Outputs
Final

Outputs

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Presents background, problem statement, objectives, research

questions, research significance, assumptions

Literature review on Z/Object-Z, URN, overview of

quality and non-functional requirements analysis

Research design and methodology

Conceptual gap

between GRL and

UCM

Suggested approach

to quality /NFRs

analysis
Study the NFRs

analysis in software

process

Analysis of GRL

conceptual model

Propose Framework

to formalize input

GRL models

OZ spec of GRL

conceptual Elts

(templates)

Analysis of URN

construction process

Case study

description

Analysis of diversity

of info sources for

scope definition
Organogram

approach to scoping

Construct GRL

model for case study

GRL model

Formalise

GRL model

Chapter 4<Templates, CNF-actions, Framework>

GRL-OZ

specification

Oz animation with

Prolog

Plan the

validation

GRL-OZ

properties defined

GRL-OZ

validation

Chapter 5<GRL model, GRL-OZ>

<CZT type checker>

<Prolog> <Z/Eves>

Identify

contributions

Chapter 4<all>, Chapter 5<all>, Chapter 6<all>

Discuss/generalise

each contribution
Contributions

Summary of findings, Conclusion and future work

GRL-OZ

templates

GRL-OZ

Framework

CNF-Actions

Research

Design &
Methodology

Literature

review

GRL-OZ

specification

Organogram

approach

GRL model

Propose an OZ

animation

approach

OZ-Prolog

animation

List of

properties

GRL-OZ

validated

Contributions

Future work

Rubric

Figure 1.2: Relationships among chapters and main tasks/outputs
13

14

Chapter 2

Literature review

The previous chapter elaborated on the motivations and the significance of this research,

as well as the layout of this document. This chapter presents an overview of the URN, Z

and Object-Z. The result of a systematic literature review pertaining to uncover the cur-

rent trends in non-functional requirements specification and formalisation is also presented.

Much of the definitions on URN elements belonging either to GRL or UCM were taken from

(or inspired by) the content of the URN standard document [1]. Since UCM and Z basic

notational elements and their semantics have remained unchanged since our last studies [60],

some parts of the literature from the studies were reproduced, with and/or without modi-

fications, in the sections covering the literature on UCM (see Section 2.3) and Z/Object-Z

(see Sections 2.4 and 2.5) below.

The overview of the User Requirements Notation is first presented.

2.1 The User Requirements Notation (URN)

2.1.1 Brief description of URN

The User Requirements Notation (URN) is a standardised [1] semi-formal, visual, require-

ments notation that enables the elicitation, modelling and specification, as well as the anal-

ysis and validation of user requirements including stakeholder goals (Amyot and Mussbacher

[13, 14]). It comprises two complementary languages: the first is the Goal-oriented Require-

ment Language (GRL) to describe stakeholder goals, including non-functional requirements

(Amyot [10]). The second component of URN is Use Case Maps (UCMs) to describe func-

tional requirements and architecture. URN links are also included to relate GRL elements

to those of UCMs.

15

2.1.2 The URN metamodel

The URN basic structural features in Figure 2.1 describes containers for URN, GRL, and

UCM specifications [1]. The URN meta-model, namely, URNspec is the root element of

Figure 2.1: URN conceptual model [1]

the URN model or specification. The three other important elements of the specification

include:

• GRLspec is the meta-model for GRL specifications which building blocks are GRL

model elements (GRLmodelElement).

• UCMspec is the meta-model or container for UCM specifications. Similarly to GRL

specifications, the building blocks for a UCM specification are instances of the UCM

model elements (UCMmodelElement).

• URNlink is a meta-model or a container for all relationships between URN model

elements, especially GRL and UCM model elements. Instances of URN link elements

are links connecting URN model elements from one to another.

The basic URN construction approach is presented next.

16

2.1.3 The URN construction process

As supported by Liu and Yu [110], the basic URN construction methodology relies on a top-

down decomposition strategy. The purpose being, for instance, to justify, in a hierarchical

structure, the functional and non-functional requirements of a software system. Generally,

the higher-level objectives are progressively refined into more fine-grained conceptual ele-

ments to form a graph that constitutes a GRL model, which can thereafter be evaluated

to establish the level of satisfaction of the initial objectives. Three algorithms have been

proposed and implemented for the GRL model evaluation (see Amyot et al. [16]). However,

one may use any other appropriate evaluation strategy to identify and analyse the elements

of the model.

In the same vein, with UCM, initial requirements in the form of use cases or scenarios,

as well as functional requirements from a GRL model are represented with UCM graphical

symbols to form the initial UCM model. Depending on the expected level of detail, the initial

UCM specification is progressively decomposed/refined until a satisfactory level is obtained.

Goal-Oriented Requirements Engineering techniques are increasingly becoming successful

in the software development industry. These techniques provide, amongst others, the means

to analyse business objectives (and stakeholder goals), and the traceability of links from high-

level strategic objectives to low-level system requirements, as well as support for requirements

elaboration, verification/validation, conflict management, negotiation, explanation and evo-

lution as typified by Sen and Hemachandran [162].

URN model specification and evaluation are fully supported by existing tools which are

presented next.

2.1.4 The URN tool support: UCMNav and jUCMNav

The UCM Navigator (UCMNav) (Miga [124]) is the oldest tool designed and implemented

for UCM; the tool is now obsolete. The more recent and the one which is currently and

massively used is jUCMNav (Mussbacher and Amyot [135], Roy et al. [159]).

UCMNav is a graphical software system that helps to create UCMs diagrams. This tool

supports most of the features defined in the UCM reference manual (Buhr and Casselman

[37]). It maintains binding between plug-ins and stubs, responsibilities to components, sub-

components to components etc. It allows users to visit and edit the plug-ins related to stubs

at all levels. It loads, exports and imports UCM as XML files. It can also export a UCM di-

17

agram to formats such as Encapsulated Postscript (EPS), Maker Interchange Format (MIF),

and Computer Graphics Meta-file (CGM). As reported by Jason [96], the main drawback of

this tool is that it is hard to install and maintain.

The jUCMNav tool is a user-friendly graphical editor under the Java-based open-source

Eclipse platform. As an improved version of UCMNav, it provides more functionality in-

cluding a support for Goal-oriented Requirement Language(GRL). Its export-import possi-

bilities are various, and include the generation from an input URN specification (including

GRL and/or UCM models) of different types of files such as XML files, MSC (Message Se-

quence Charts) files, and the CSM (Core Scenario Model) files.

One of the strength of jUCMNav is the ability to serve as an integrated environment for

UCM and GRL models. The tool provides for a visual link between the two models and

implements strategies for evaluating GRL models and mechanisms for UCM path traversal

(see Amyot et al. [17], Mussbacher et al. [133]).

2.1.5 Current approach to formalise URN models

To gain advantage from the precision of formal techniques (while preserving the flexibility of

semi-formal notations), various research works focused on combining semi-formal and formal

techniques have been carried out (e.g., Abderrahman et al. [3], Dongmo [60]). However, as

far as the authors of this work are aware and based on a comprehensive literature survey

on URN conducted by Amyot and Mussbacher [14], this study is the first to attempt the

formalisation of GRL with Z/Object-Z. With regards to UCMs, noticeable efforts have been

done in the same direction.

Heuristics were proposed by van der Poll et al. [178] to combine UCMs and formal methods

purposing to represent and check the validity of scenarios as user requirements. The idea

of translating UCMs to communicating state machines was also put forth by Bordeleau and

Buhr [29] followed, for example by similar techniques developed to derive message sequence

charts (MSC) from UCMs by Miga et al. [125]. To gain more benefits from the validation

and testing power of the formal notation LOTOS, an approach was developed by Amyot

et al. [18] to translate UCM scenarios into high-level LOTOS specifications. In the same

vein, Mokhati and Menassel [129] proposed the formalisation of UCMs in Maude.

During the initial phase of this research work consisting to couple URN, Z and Object-Z, an

approach to transform a UCM into Z then, Object-Z was proposed, as well as a framework to

18

evaluate the impact of UCM on the final Object-Z specification [60]. Such a transformation

benefits from the advantage that UCM, Z, and Object-Z collectively address the functional

requirements of a system. The present research further advances this idea by coupling GRL

and Z/Object-Z to address both functional and non-functional system requirements at an

earlier stage of requirements analysis. Z/Object-Z focuses on functional requirements, and

does not naturally incorporate mechanisms for NFRs.

An overview of the GRL notation is presented next.

2.2 The GRL notation

2.2.1 The GRL representation

As part of the User Requirements Notation, and to our knowledge, GRL is the first stan-

dard goal-oriented requirements language [1]. It is a visual modelling notation that aims

to address the “Why” of a system at the requirements level, using concepts such as actors,

goals, softgoals, tasks, beliefs and resources to conceptualise requirements artifacts and the

relationships between those artifacts (URN[1], Roy et al. [159], Yu and Liu [198]). Like-

wise its counterpart UCM, the GRL notation uses graphical symbols to model conceptual

elements, their decomposition and relationships. Figure 2.2 shows an example of a GRL

model pertaining to reason about the requirements for patient safety. Two stakeholders

are represented: the first is the government who intends to reduce government costs and

force health acts. The second is the hospital that intends to improve patient safety and by

doing so would consequently contribute positively to improve patient care, satisfy legal re-

quirements, decrease patient care costs and lawsuits, and also to achieve a competitive edge

and recognition of excellence. By decreasing lawsuits and patient care costs would positively

contribute to decrease the overall costs and hence satisfying the government goal.

The list of notational elements used to construct a GRL model are presented and discussed

next.

2.2.2 The GRL concepts and notational elements

The three main categories of concepts in GRL include: actors, intentional elements, and

links. A specific graphical element is used to represent each concept.

19

Figure 2.2: Example of a GRL model [24]

GRL Actors

Figure 2.3 shows the graphical representation of an actor. An actor’s definition is a concept

Figure 2.3: GRL actor notation

used to specify active entities that have intentions and the ability to carry out actions to

achieve its goals or satisfy its softgoals. An actor may therefore contain intentional elements

but, never other actors. In a GRL graph, an actor generally represents a stakeholder or a

(component of a) system. As represented in Figure 2.3, its graphical representation can be

with boundary or collapsed.

GRL intentional elements

Intentional elements are those addressing the why of the system. The graphical symbols

used in GRL to model this category of concepts are depicted in Figure 2.4.

20

Figure 2.4: Basic GRL notational elements

A (hard) goal is the GRL concept for a condition or state of affairs in the world that

the stakeholders would like to achieve. A goal represents either a business goal or system’s

goal for which alternative solutions can be derived and evaluated. Goals are graphically

represented as rounded rectangles with the goal’s name inside.

A softgoal is a goal for which there is no clear, objective measure of satisfaction. Unlike

(hard) goals, softgoals are generally related to quality and non-functional requirements. The

graphical symbol used to represent a softgoal is an irregular curvilinear shape with the

softgoal’s name inside.

A task specifies a generic activity that is generally derived by decomposition/refinement

of other intentional elements to achieve goals or operationalise softgoals. In GRL graphical

representation, tasks are represented as a hexagon with the task name inside.

A resource represents an entity, physical or informational, needed to perform a task,

achieve a goal or satisfy a softgoal. The availability of the resource is the most important

property that is required. In a GRL model, a resource is graphically represented as a

rectangle with the resource’s name inside.

A belief is used to represent design rationale. Beliefs make it possible for domain char-

acteristics to be considered and properly reflected in the decision-making process, hence

facilitating later review, justification and change of the system, as well as enhancing trace-

ability.

GRL links

As illustrated in Figure 2.5, five different types of links are used in a GRL goal graph to

specify the connections between the intentional elements that optionally reside within an

actor boundary.

A contribution /correlation link specifies the level of impact the satisfaction of a source

intentional element has on the satisfaction of the destination intentional element. The impact

of a contribution link can be either qualitative or quantitative. Unlike the contribution link,

21

Figure 2.5: List of GRL links

a correlation emphasizes side effects between intentional elements in different categories or

actor definitions. The symbols used to annotate each type of a contribution are depicted in

Figure 2.6. The impact of a source intentional element on the satisfaction of a destination

Figure 2.6: GRL contribution types

intentional element is said to be of type Make, if the contribution is positive and sufficient,

Help if the contribution is positive but not sufficient, SomePositive if the contribution is

positive but the extent of the contribution unknown. The type is Unknown if there is some

contribution but the extent of the degree of the contribution is unknown, SomeNegative

when the contribution is negative but the extent of the contribution is unknown. The type is

Break when the contribution is negative and sufficient whereas, it is Hurt if the contribution

is negative but not sufficient.

A dependency link specifies a mechanism to reason about the way actors depend on

each other to achieve their goals. In a dependency relationship between two actors, an actor

definition, namely, depender depends on a destination actor definition, said dependee for an

intentional element.

A decomposition link provides the ability to define what source intentional elements

need to be satisfied or available in order for a target intentional element to be satisfied.

There are three types of decompositions:

• AND decomposition: the satisfaction of each of the sub-intentional1 element is neces-

sary to achieve the target.

• XOR decomposition: the satisfaction of one and only one of the sub-intentional ele-

ments is necessary to achieve the target.

1Sub-intentional element refers to a goal, softgoal, task or resource that decomposes a source intentional

element

22

• IOR decomposition: the satisfaction of one of the sub-intentional elements is sufficient

to achieve the target, but many sub-intentional elements can be satisfied.

The concept therefore enables the hierarchical decomposition (AND) of a target intentional

element by a source element, as well as the description of alternative means (XOR or IOR)

of satisfying a target intentional element.

Means-end are links for tasks that achieve goals for which they are alternative solutions.

2.2.3 The GRL model evaluation

A GRL evaluation is one of the most important and automated GRL model analysis processes

implemented in jUCMNav [17] to assess how well goals are achieved. The process requires at

the inial phase a strategy, which defines initial satisfaction values (qualitative or quantitative)

for some intentional elements in the input goal model. The (jUCMNav) software thereafter,

executes various evaluation algorithms to propagate the strategy to other elements of the

model, including actors.

GRL satisfaction levels

Figure 2.7 shows some qualitative labels that may result from the evaluation. Each label

Figure 2.7: GRL qualitative labels

indicates a level of satisfaction of an intentional element or actor definition. An intentional

element is marked with the symbol Denied when it is sufficiently dissatisfied, WeaklyDenied

when it is partially dissatisfied, WeaklySatisfied when it is partially satisfied, Satisfied

when it is sufficiently satisfied, Conflict when there are strong arguments both in favour

and against its satisfaction, Unknown if the satisfaction level is not known, and None when

the element is neither satisfied nor dissatisfied.

GRL model evaluation makes it possible to flexibly test the impact of different strategies

(alternative design decisions) on the entire model during the model analysis.

23

2.3 Use Case Maps (UCMs)

UCM is a scenario-based, semi-formal requirements notation technique, originally developed

by Buhr and his team (Buhr [34], Buhr and Casselman [37]), to bridge the gap between re-

quirements and design. The notation is strengthened by the use of simple graphical elements

to describe, in a map-like diagram, service functionalities superimposed on the organisational

structure of complex and distributed systems (Amyot et al. [18]).

2.3.1 The UCM model representation

A UCM model presents a holistic view of the system under construction without commit-

ment to details. Use Case Maps accept as inputs user requirements, either expressed in

natural language, or transformed into Use Cases as indicated by Amyot [9]. A Use Case may

be described as a set of scenarios, which are sequences of actions performed by the system

to yield an observable result to its environment (see Booch et al. [28]). An example of a

UCM diagram is presented in Figure 2.8. The map specifies a system to handle the return

Figure 2.8: An example of a UCM diagram adapted from [60]

of items previously purchased by the customer. The component, named Helper models

any company where a customer may return a purchased item. The component Provider

models the company that provided the returned item and the Network specifies the means

of communication between the helper and the provider companies. The process is triggered

whenever a customer wants to return a purchased item at the helper. The helper contacts

the provider via the network to check the invoice and customer’s information then keeps

the item temporary pending the time to forward it to the provider when the transaction is

accepted by the provider.

24

Owing to its flexibility, and the ability to convey different types of information on a sin-

gle map-like diagram, the UCM notation is applicable (and adaptable) for various purposes,

in different domains. Examples include: Object-orientated software design (Buhr [35], Buhr

and Casselman [37]), telecommunication networks (Amyot and Andrade [12]), multi-agents

software development (Abdelaziz et al. [2], Buhr et al. [38, 39]), Aspect-oriented software

development (Mussbacher [134], Mussbacher et al. [136]), Web applications (Kaewkasi and

Rivepiboon [100], Liu and Yu [110]), as well as system testing and validation (Amyot et al.

[15, 18], Amyot, Daniel and Roy, Jean-François and Weiss, Michael [19]).

2.3.2 The UCM concepts and notational elements

The main concepts in a UCM are: abstract components (to represent the architecture of

the system), paths (to represent scenarios), path connectors (to represents scenarios interac-

tions) and path elements including stubs to defer detail of a sub-system to a sub-map called

plug-in, waiting places and timers that may be encountered along a path to indicate the

place where the progression of a scenario idles until an external event occurs [9].

Abstract components are concepts used to represent the architectural aspect of the sys-

tem. The five types of UCMs components include: team component, process, object, agent

and actor. Path (path segment) and path elements are critical design elements used in UCM

to specify scenarios and alternatives as well as scenario execution whereas, path connectors

are important artifacts necessary in UCM to represent scenarios’interactions.

Each of the UCM concepts is discussed next starting with abstract components.

2.3.3 UCM abstract components

An abstract component may be viewed as a self-contained operational unit with internal state

and links that enable the component to interact with others. Each component is responsible

for performing responsibility points located in it and chained with path segments. Different

types of components are provided by the UCM notation: Team, Process, Object, Agent and

Actor (see Figure 2.9).

Team

A Team component is a generic component allowed to contain any other component type

including other teams. In a UCM model, a team component is graphically represented by a

labelled rectangle.

25

Figure 2.9: Abstract components

Process

A Process is an autonomous, active component, that may operate concurrently with other

processes. A process may contain passive components, those that do not have control over

the responsibilities that they perform, such as Objects. It is represented graphically by a

parallelogram.

Object

An Object is a passive component, that supports data or procedural abstraction through

an interface. Objects perform their own responsibilities but do not have ultimate control of

when they are activated.

Agent

An Agent is an autonomous component, which acts on behalf of other components. As

shown in Figure 2.9, an agent component is graphically represented by a rectangle with a

thick border labelled at the top left corner.

Actor

An Actor is an external component that describes an entity, either human or artificial, that

interacts with the system. In a UCM map, an actor is graphically represented as a rectangle

with a stickman icon in its top-left corner.

2.3.4 Basic path notation

A UCM path is a wiggle line to model the execution route for one or more scenarios, as

well as alternative scenarios. A UCM Path may be composed of more than one segment,

interconnected by means of path connectors. A path element is placed along the path to

describe a specific aspect of the system. Figure 2.10 shows an example of basic path notation.

It comprises: a Start Point, a Path Segment, a Responsibility Point, and an End Point.

26

Figure 2.10: Basic UCM path notation

Start point

A start-point specifies the triggering events, necessary, to start the execution of a scenario

optionally a precondition. In a UCM model, a start-point is graphically represented by a

filled circle labelled with the title / name of the start-point. The execution of a path begins

when some triggering events occur with the precondition enabled.

Responsibility

A responsibility point is a UCM concept to specify a generic processing that is to be per-

formed, which can be for example, an operation, a task, an action, a function and so forth. In

a UCM model, a Responsibility Point is graphically represented by a cross on the execution

path labelled with the title/name of the responsibility point.

End Point

An end-point models a set of resulting events and an optional post-condition that terminates

the execution of a scenario along the path that represents it. The symbol used to represent

the concept in a UCM specification is a perpendicular bar labelled with the title/name of

the end-point.

Path Segment

A UCM path segment is represented graphically by a continuous line with any possible and

unambiguous shape. It may sometimes be useful to indicate the direction of a path segment

(e.g., with arrow), but in general it is not necessary. A path segment is used to express an

ordered sequence of UCM elements that require to be executed.

Use Case Maps provide the concept of path connectors to describe alternative use cases,

and parallel executions of scenarios.

2.3.5 Path connectors

A UCM path is the execution route of one or more scenarios, and may be composed of

a number of path segments, interconnected by means of path connectors to achieve path

coupling, and express interactions between scenarios. Amongst others, path connectors are:

OR-forks, OR-joins, AND-forks, and AND-join (see Figure 2.11).

27

OR-fork OR-join AND-fork AND-join

Figure 2.11: Path connectors

OR-fork

An OR-fork splits a path segment into two or more branches. Alternative path segments

may be guarded by conditions, depicted inside square brackets.

OR-join

An OR-join is a place on a UCM diagram where two or more path segments merge into

a single one. The merging of the path segments does not require any synchronisation or

interaction between the incoming paths.

AND-fork

An AND-fork is represented graphically by a vertical ticked bar that splits an incoming path

segment into two or more parallel paths. This connector helps to represent the concurrent

progression of scenarios along path segments.

AND-join

An AND-join connector collapses two or more parallel paths into a single one. It is repre-

sented graphically by a vertical bar.

The AND-fork/join elements provide a strong form of representing inter-scenario synchroni-

sation in which scenarios along different paths are mutually synchronised. The OR-fork/join

UCM concept allows for multiple scenarios to progress along a single path segment and be

separated independently only where necessary.

Two types of path elements called stubs are discussed next.

2.3.6 Stubbing techniques

A UCM provides for the concept of stubs to help sub-divide complex maps into sub-maps.

A stub is a mechanism for (paths) abstraction that represents on a UCM diagram, a place

where a sub-map is needed, but for which details are referred to elsewhere. It saves as maps

28

connectors that help to link the execution of a scenario from a map containing the stub

(called root-map) to a sub-map called a “plug-in”. The two types of stubs are: static-stubs,

and dynamic-stubs (see Figure 2.12).

Plug-in1 Plug-in2 Plug-in3
S1 E1

Figure 2.12: An example of a static and a dynamic stub

Static-stub

When only a single sub-map is needed, a static-stub is used. The binding of the plug-in

to the root-map is made as follows: the input path segment(s) entering the stub (generally

noted INX , where X stands for a referencing number) is (are) associated to the Start point(s)

of the plug-in, and the End point(s) of the plug-in is (are) associated to the output path

segment(s), leaving the stub (generally noted by OUTX as in Figure 2.12). This association

is called a Binding Relationship. In the case of the static-stub in Figure 2.12, it is indicated

by:{〈IN 1, S1〉, 〈OUT1,E1〉} (Amyot [11]).

Dynamic-stub

A dynamic-stub is used where more than one alternative sub-diagram is needed, for which

the binding to a specific diagram is determined during the execution of the scenario being

modelled. A selection policy to determine the plug-in to execute is, therefore defined.

Other key notation elements are: Failure-point, Waiting-place and Timer. These are pre-

sented next, through the Timeout-recovery mechanism that is provided - by UCM - to model

the enhancing of network failures in a network communication.

2.3.7 Timeout-recovery mechanism

Figure 2.13 shows the graphical representation of the three UCM elements: Failure-point,

Waiting-place and Timer; it also includes a model for a Timeout-recovery mechanism. In

each of the three components in the figure, the path from start-point S1 to the end-point

E1, is called the main path. It is the path on which a scenario progresses to reach the

29

Timeout-recovery
mechanism

Failure point Triggering paths

Timeout path

Figure 2.13: Timers

waiting-place or timer. The triggering paths are also indicated. Those are paths along

which triggering events occur, to cause a waiting scenario to continue progressing along the

main path.

Failure-point

A failure-point indicates a place along a path where the progression of a scenario may stop

leaving the system in an incomplete state, possibly jeopardising other paths in execution.

For example, a network communication may fail, causing a sent message not to reach its

destination or an acknowledgement not to reach the sender.

Waiting-place

A waiting-place indicates a place where a scenario progressing along a main path, may need

to pause waiting for an event to occur along the triggering path, before it continues. The

triggering path may terminate at the waiting-place or touch it tangentially, and continues.

Identifying a path as a main path, or triggering path, is relative, since the same path may

play both roles depending on the scenario under consideration.

Timer

A Timer, also known as a timed waiting-place, is just a variation of a waiting-place that

uses a time clock to control the occurrence of the triggering event. The timeout path on the

diagram in Figure 2.13 is used to model the situation when the waiting time expires before

the occurrence of the triggering event.

With the Timeout-Recovery mechanism in Figure 2.13, a message is sent via the network

component and concurrently, the Timer is set up to wait for an acknowledgment that may be

sent back via the network. If the acknowledgment is not received before timeout, then net-

work communication failure is assumed, and the responsibility point labeled Handle failure

is performed. Otherwise, the execution continues to the end-point E1.

30

UCM Layering

As advocated by Buhr [36], layering enables a large scale system to be represented by a

hierarchy of layers that are described independently, without explicit reference to each other.

The concept is that lower layers provide infrastructure for higher ones. It provides a way of

describing large scale systems with many levels of infrastructure without becoming bogged

down in details of how infrastructure is used.

2.3.8 Extending the original UCM notation

As mentioned earlier, a UCM aims to bridge the gap between user requirements and detailed

design (Buhr [34, 35], Buhr and Casselman [37]). Its core notation does not completely cover

the notational needs in some specific application domains. Some extensions have been pro-

posed, either to the basic features of a UCM, or to its applicability. Some notational elements

and concepts were added to the basic UCM features to support the agent systems (Amyot

[9]). As reported by van der Poll et al. [178], UCM support for designing user interfaces is

still acknowledged to be insufficient. In this regard, an extension of the basic UCM, that

reinforces the exchange of messages between users and the system aimed at allowing the

notation to adequately support the user interfaces and usability requirements analysis and

modeling was suggested. For a similar reason, a number of heuristics were proposed to

facilitate the validation of the three important properties: consistency, completeness and

precision.

The following section presents an overview of the Z specification language.

2.4 The Z notation

Z (pronounced ’zed’) is a formal specification notation based on the First Order Predicate

Logic (FOPL), and a strongly-typed fragment of Zermelo-Fraenkel (ZF) set theory (Bowen

[30], Lightfoot [109], Mole [130], O’Regan [142, 142], Spivey [170]). The notation was initiated

by Jean-Raymond Abrial in France, and developed at the Programming Research Group

(PRG) of Oxford University, in England, since the late 1970s. The main construct in Z is a

schema which is built upon basic types and global variables. Z employs schemas to specify

the static and dynamic behaviour of systems (Spivey [170]). The generic form of a Z schema

is given below.

31

SchemaName [ListParameters]
[declaration − part]

[predicate − part]

The schema’s name is given by SchemaName, and a list of parameters to be used within the

schema may be specified. The declaration – part includes a list of typed variables, called

components. Composed types are normally defined from a list of basic types identified

during the construction of a specification. The predicate – part specifies constraints among

components in the declaration, e.g., the state invariant.

2.4.1 Basic types and global sets

The concept of a basic type (also called a given type), is provided in Z, to specify the set

of elementary objects, for which details are left unspecified. The list of basic types, for a

specification, is enclosed inside square brackets and separated by commas. For example:

[Customer ,Book ,Account]

defines a list of basic types in Z, for which for example, Customer specifies the set of all

possible customers. Detail information about customers, books and accounts are deferred to

the design phase. A basic type may be used anywhere in the specification after its definition

(see Bowen [30]).

Similar to basic types, a global variable may be used anywhere in the specification after

its definition. The axiomatic definition of a global variable is presented as follows:

declaration part

predicate part

For example:

max : N

max ≤ 50

The concept of Free types is also used to list, for a type, the identifiers of its element. The

general form is:

freetype ::= element1 | element2 | ... | element
n

For example, Response ::= yes | no
The central concept in Z is the Schema introduced next.

32

2.4.2 Z schemas

The abbreviated notation of the above schema is:

SchemaName == [declaration part | predicate part]

Two types of schemas are encountered: “state schemas”, to describe the static behaviour

of a system, and “operation schemas” to describe the dynamic behaviour. For illustration

purpose, the Airport example below from Lightfoot [109] is considered:

The air-traffic control of an airport keeps a record of the planes waiting to land and the

assignment of planes to gates on the ground.

State schema

In Z, an abstract state, also called a state schema, specifies the static behaviour of a system.

For example, with the airport example above, assume the given types:

[Plane,Gate]

Where Plane denotes the set of all possible, uniquely identified planes, and Gate the set of

all gates at the airport. The state schema is:

Airport
waiting : PPlane
assignment : Gate 7 Plane

waiting ∩ (ran assignment) = ∅

The component waiting maintains a list of planes waiting to be assigned to a gate, and

assignment maps each gate to one, and only one, plane. The predicate part indicates that

only planes that have not yet been assigned a gate, are kept in the waiting list. An important

aspect of a system state is its inherent variability in time, e.g., when a new plane is assigned

a gate, the value of each of the two components waiting and assignment changes and hence,

the state of Airport . Z provides an operation called “schema decoration” to describe the

change of system states.

Schema decoration

A schema S is decorated by adding a prime to its name (S ′). The effect of decorating S ,

is that all the variables in the declaration and predicate part of S , are also decorated (see

Potter et al. [150]). Since an operation performed on a state schema may change the state

of the system, an important aspect of schema decoration is to facilitate the specification

33

state change within the operation schema. The state before and after the operation, are

both included in the declaration of an operation schema, and related in the predicate part,

to show, for example, how state variables are changed by the operation.

Schema as a type

To define composite (complex) structures, Z allows a schema to be used as a type (Jacky

[95], Van der Poll [176]). Such a type is similar to a record type in conventional programming

languages such as Pascal. An instance of a schema type is called a binding. Z provides the

unary operator θ to reference each binding. For example, an instance of the schema Airport

is:

〈waiting ⇒ ∅, assignment⇒ ∅〉

For each abstract state space, a realisable initial state is required.

Initialising the state space

It may be assumed that initially, the list of planes in the waiting list is empty and the list

of gates assigned to planes is also empty. Therefore the state of the Airport is initially

represented as:

InitAirport
Airport ′

waiting ′ = ∅ ∧ assignment ′ = ∅

Although it is relatively easy to observe that this state is realisable, in general, it is recom-

mended to establish that the initial state is realisable. To this end, the initialisation theorem

is used:

⊢ Airport ′ • InitAirport

This implies the need to demonstrate that there exists a state Airport ′ of the state space

Airport , for which the components waiting = ∅ and assignment = ∅.

Partial operation

To illustrate the concept of an operation in Z, consider the following schema that assigns a

gate to a plane.

34

assignGate
∆Airport
plane? : Plane
gate? : Gate

plane? ∈ waiting
assignment ′ = assignment ∪ {gate? 7→ plane?)}
waiting ′ = waiting \ {plane?}

The delta (∆) symbol is used to indicate the state schema that the operation changes. The

question mark (?) that follows the two variables plane? and gate? indicates that those are

input variables. An exclamation mark (!) is used to denote an output.

The logical expression plane? ∈ waiting in the predicate part, constraints the input plane

to be taken only from the waiting list. This defines the condition under which the opera-

tion becomes applicable, i.e the precondition. The precondition of each operation may be

calculated (Woodcock [193]) to determine the circumstances under which an operation is

applicable. For example, if the input plane is not in the waiting list, an error is generated

and further operations are needed to handle the error. Hence, assignGate is said to be a

partial operation, since further operations may be needed to specify error conditions.

Error condition

As mentioned in the previous section, if a plane used as input in the operation assignGate is

not in the waiting list, an error occurs and the following operation is specified for the error

case.

unknownPlane
ΞAirport
plane? : Plane
resp! : Response

plane? 6∈ waiting
resp! = PLANE UNKNOWN

The symbol Ξ is used to indicate that the operation operates on Airport but, does not change

its state.

Total operation

In Z, a complete version of the operation that maps each plane to a specific gate may be

formed by combining the operation under normal circumstances, and those to handle errors.

totalAssignment =̂ assignGate ∨ unknownPlane

35

The definition of the operation totalAssignment is a predicate schema expression that uses

the Z disjunction operator ∨, to combine two operations. The semantics of this operation is

the following: The declaration part of the composed operation, is obtained by merging the

declarations of each of the individual operations. The predicates of the individual schemas

are disjoined. More schema operators are available to facilitate the construction of predicate

schema expressions.

Schema calculus

Amongst others, the following operators are provided in Z: schema inclusion, schema con-

junction (∧), schema negation (¬) and sequential composition (o9), (see Potter et al. [150]).

(a) Schema inclusion: This operator allows the name of a schema S1, describing an

abstract state space to be included in the declaration part of another state space schema

S2. The declarations of S1 are included in those of S2, and the predicate of S1 is

appended (ored) to that of S2.

(b) Schema negation (¬): The negation of a schema S , is a schema denoted by ¬ S . It

has the same declarations as S , and its predicate, is the negation of the predicate of S .

(c) Schema conjunction (∧): Let R and S be two schemas, and P = R ∧ S . P is a

schema obtained as follows: the declarations of R and S are merged to form that of P

and their predicates are conjoined (anded) to form that of P .

(d) Schema composition (o9): Consider an operation C , defined as: C = A o

9 B where A

and B are two operation schemas. The semantics of C is the following: if the operation

A can change the state of the system from S to S1, and B from S1 to S2, then C is

an operation that changes the state of the system from S to S2.

Some limitations of Z due to schema calculus and the use of schemas as types were analysed

by Van der Poll [176]. However, the major disadvantage of using Z for large systems is its

inherent lack of object-oriented structures, making it hard to group and manage a rapidly

increasing number of schema structures. To this end, the notation was extended to Object-Z

to accommodate object-orientation (Carrington and Smith [45], Smith [164]). An overview

of Object-Z is presented next.

2.5 The Object-Z notation

Object-Z [151, 163, 165, 185] is a super-set of Z that employs the concept of a class schema

to encapsulate traditional Z schemas [173]. The generic structure of an Object-Z class is

given next.

36

ClassName [generic parameters]
[visibility]
[inherited classes]
[local definitions]
[state schema]
[initial state schema]
[operations]

The generic parameters list is optional (as well as each component within the class). The

visibility list denoted by ↾, restricts access to some components and operations of the class.

Similarly, the list of inherited classes is optional. Type and constant definitions may be

specified. A class schema may include only one state schema. The components in the state

schema may be initialised to some realisable values. Unlike in Z, operations and the state

schemas are described within the class. The order in which those components appear is

prescriptive.

Z operators are used, within a class, to combine operation schemas for specifying complex

activities. Class-level operations are also allowed, for example, to construct complex classes,

or to create references to components within a subclass. As mentioned by Taylor et al. [174],

Object-Z (see Duke and Rose [68], Duke et al. [69], Smith [163]) is one of the most developed

of several Z-like Object-Oriented specification languages. It employs the concept of a class

schema to encapsulate Z schemas. A class schema may include only one state schema, which

is very similar to Z state schemas, and does not carry a name. The components in the state

schema may be initialised to some realisable values. The only initial state is named INIT .

It includes only instances of the components declared in the state schema. Operations are

described in the same vein as in Z, with some differences as indicated next.

2.5.1 Operation schema

The concept of an operation in Object-Z is similar to that of Z. The only difference is that

an operation in Object-Z operates on a single state schema. The Delta (∆) operator lists

specific components changed by the operation, whereas the Xi (Ξ) operator is simply dis-

carded in Object-Z. The concepts of partial, total operations and error handling, are not

provided since an operation in Object-Z becomes applicable only when the precondition of

the operation is satisfied. Most of the Z schema calculus operators (e.g., ∨, ∧, o

9, etc.), are

also used in Object-Z. However, the semantics of some of them vary slightly in the context

of a class schema. Additional schema operators are also provided. Two examples are: the

nondeterministic choice ([]) and scope enrichment operators (•) (see Duke and Rose

[68], Smith [163]).

37

An example of a class schema to specify the airport example from Section 2.4 is given

next. The two components (waiting and assignment) and the operation totalAssignment are

made accessible from the system environment.

ClsAirport

↾(waiting , assignment , totalAssignment)

[Plane,Gate,Response]

waiting : PPlane
assignment : Gate 7 Plane

waiting ∩ (ran assignment) = ∅

INIT
waiting = ∅ ∧ assignment = ∅

assignGate
∆(waiting , assignment)

only the parameters of the Delta operator has changed

unknownPlane

only the Xi operator is removed

totalAssignment =̂
[plane? : Plane, gate? : Gate] •

assignGate
[]
unknownPlane

The choice operator ([]) is used in the definition of the operation totalAssignemt , allowing

the system to choose one of the two alternative operations assignGate and unknownPlane

without user intervention. The variables in square brackets are those for which input values

are expected from the system environment. The operator • is used to promote2, when

necessary, operations through the selected objects (in square brackets). This operator has

the advantage of providing a way to inherit operations from objects of other classes. The

concept of inheritance, discussed below, may be introduced in the definition of a class in

different ways.

2promotion allows for the reuse of an operation to specify another one

38

2.5.2 Inheritance

The concept of inheritance allows for the reuse of features of an inherited class (the su-

perclass) when creating a new class schema (the subclass). As mentioned earlier, Object-Z

provides different specification constructs to define the inheritance mechanism, e.g., through

class inclusion, by using a class as a type or promoting an operation.

(a) Class inclusion

The name of the inherited class is listed in the declaration of the inheriting class. In

that case, the type and constants of both classes are merged as well as their schemas.

But, state schemas as well as those that share the same name are joined. The visibility

list is not inherited.

(b) Class schema as a type

Consider the following declaration allowed in Object-Z where ClsAirport is the class

defined earlier:

orTambo : ClsAirport

This definition specifies the variable orTambo as an identifier of an object of the class

ClsAirport . Object identity is modelled in Object-Z by associating with each class name

a countable infinite set of values (Smith [163]). Through the variable orTambo and the

dot (.) notation, the features of the class ClsAirport become accessible to the class in

which it is declared. For example, an operation may change the state of the referenced

object as follows: orTambo.waiting ′ = orTambo.waiting ∪{plane1}, where plane1 is of

type Plane.

(c) Operation promotion

The scope enrichment operator (•), the dot and the possibility to use a class as a type

in Object-Z provide meaningful ways to specify the reuse of operations. Consider for

example the following operation:

newAssign =̂ [orT? : ClsAirport | orT?.waiting 6= ∅] • orT?.totalAssignment

The operation newAssign in a class, is defined by promoting the operation totalAssignment

of an object of the class ClsAirport referenced by orT .

The concept of polymorphism is briefly discussed in the following section.

39

2.5.3 Polymorphism

In Object-orientation, the concept of polymorphism defines a mechanism which allows a

variable to be declared, whose value can be an object from any of a given collection of

classes. In Object-Z, polymorphism is introduced with the unary class operator denoted by

the symbol ↓, e.g., the declaration

orTambo : ↓ClsAirport

specifies an object of the class ClsAirport or any other class derived from it by inheritance.

2.5.4 Tool support for Z and Object-Z

An important advantage of using Z is the availability of tool support, allowing for the possi-

bility to reason about the properties of the specification (Van der Poll [176]). Z tools include

amongst others the following: CadiZ (Toyn and Mcdermid [175]) for formal reasoning, and

Fuzz Mike Spivey’s type checker for Z. The Community of Z Tools (CZT)(Malik and Utting

[117]) are used for type-checking and animating Z. Unlike Z, the tools associated to Object-Z

are still limited and many of them operate specifically under Linux. Examples are: the Latex

macro OZ.sty (Allen [7]) for editing Z and Object-Z specifications. The Wizard (Johnston

[98]) and the Object-Z version of the Community of Z Tools (CZT) (Malik and Utting [117])

for type checking. It has been proposed to encode Object-Z into existing theorem provers

(e.g., Smith et al. [166]). A methodology to animate Object-Z specifications using a Z an-

imator (McComb and Smith [119]) and for model-checking Object-Z using Abstract State

Machine (ASM) (Winter and Duke [192]) have also been suggested.

2.6 Non-functional requirements specification

We have investigated the literature seeking to discover the current non-functional require-

ments modeling/specification approaches. A systematic literature review (SLR) process for

software engineering, firstly adapted by Kitchenham [105] and later refined by Pickering

and Byrne [146], was used to systematically search the literature hoping to identify existing

NFRs formal specification approaches.

2.6.1 The research objectives and questions

The main objective of this literature search is to extract from the body of knowledge, ex-

isting approach(es) to formally describe non-functional requirements. The focus on formal

techniques is due to the intended purpose of this work to contribute in the area of formal

methods. From the above objectives, three questions are formulated:

40

RevQ1 - to what extent have non-functional requirements been informally specified using

natural languages or semi-formal languages?

RevQ2 - are there formal specification approaches for non-functional requirements?

RevQ3 - are there existing processes to formalise natural language description or semi-

formal specifications of non-functional requirements?

The two main keywords derived (from the review questions) to help build queries to retrieve

relevant papers from the selected sources (in Table 2.1) are: Non-functional requirements

and Specification. From these two terms, a simple search string was formed:

"non-functional requirement* specification"

The above string was adopted as the search string since the result of a pilot search with

the string included publications with the various alternative terms clearly related to the

research questions: Non-functional requirements, NFR, non-functional properties,

non-behavioral requirements,quality attributes / properties, constraints, goal

requirements, Formal specification, Onthology, and architectural design. The re-

view method is first presented next.

2.6.2 Review approach

This review was conducted as a secondary study to assess NFRs specification approaches.

As mentioned above, a systematic literature review process was used.

2.6.3 The search process

Firstly, we performed an automated search of five selected computer science and software

engineering databases, and secondly, used the Google scholar database as a means to ensure

the comprehensiveness of the first search. The list of databases chosen are presented in Table

2.1. The databases were chosen amongst those mainly encountered in systematic literature

reviews in software engineering and information systems.

List of selected databases

No. Database Web address

1- ACM Digital Library http://portal.acm.org/

2- IEEE Xplorer http://www.ieee.org/web/publications/xplore/

3- Springer-Link http://www.springerlink.com/

4- ScienceDirect - Elsevier http://www.elsevier.com

5- Scopus www.scopus.com

41

List of selected databases

No. Database Web address

Table 2.1: List of selected databases

The manual search also served to validate the systematic approach since most of the jour-

nal and proceedings investigated were already included in previously searched searched

databases.

Searching the databases

One of the two strings is used to search a selected database and the result is saved. Then

other searches, of the same database, are performed by means of alternatives strings formed

using the keywords. The results of these other searches are visually scrutinized to ensure

that the relevant papers are included in the study. The filtering of search results was mainly

based on the publication date and the focus area. Papers published between the year 2000

and 2015 were considered. Depending on the options available on the selected databases,

research areas such as for instance, Computer Science, Software Engineering, and/or some

of the above keywords were selected to refine the result.

2.6.4 The selection process

Our inclusion and exclusion criteria were derived from the above three review questions, fol-

lowing the approach proposed by Meline [121] and guidelines by Kitchenham [105]. The

focus was on any publication in English modeling or specifying non-functional require-

ments. The hope was to find among the proposed models/specifications those formalis-

ing NFRs, especially non-functional requirements described with goal models. The process

is summarised in Figure 2.14. Due to the diversities of methods found in the selected

publications, we proceeded with their classification into five categories firstly to isolate

goal-based models and also to make other techniques, as well as their diversity more ap-

parent. The five modeling categories illustrated in Figure 2.15, with the number of pa-

pers in parentheses are: goal-based (14), UML (11), XML (5), Ontology (5) and oth-

ers (14). The targeted goal-based approaches included Goal-Oriented Requirements En-

gineering (GORE) methods [6, 13, 32, 47, 81, 131, 132], methods integrating goals into

other models[49, 113, 114, 171], and models focused or derived from softgoals (tree) in-

terdependency graph (SIG)[53, 118, 187]. Goal-based approaches were prioritised over

any other one. If an article uses, for example, UML (profile) to describe a goal-based

technique which is thereafter used to specify NFRs, the article will be classified as goal-

based. Articles that exploited the flexibility of UML profile to specify NFRs or those ex-

42

Figure 2.14: Selection of relevant publications

Figure 2.15: Number of publications per specification technique

43

tending some aspect of UML to integrate or describe NFRs where considered UML-based

([23, 48, 51, 54, 70, 103, 127, 140, 172, 184, 199]). Some papers attempted to specify

NFRs directly in XML ([46, 74, 83, 148, 196]) whereas others proposed Ontology for the

NFRs ([59, 84, 102, 108, 161]). The rest of the selected papers were classified as Others

([52, 58, 72, 73, 79, 86, 88, 93, 112, 115, 155, 156, 158, 197]). The list of publications per

year is presented in Figure A.1, as well as the repartition of categories per year in Figure A.2.

The result of the study is discussed next.

2.6.5 Findings

From this review, it appears that apart from the few publications that propose the ontology

for NFRs, the formalisation of NFRs is still limited with the main purpose to validate a spe-

cific NFRs model generally expressed in one of the categories presented above: goal-based,

UML, XML or others (e.g., Cortesi and Logozzo [52], Hamid and Percebois [86]). Although

a large number of publications on NFRs specification clearly indicate the need to integrate

NFRs models into the functional ones (Liu et al. [113]), generic modeling approaches or

frameworks to develop formal models for NFRs that may serve as inputs to further software

development stages are still, in our opinion, an open research area. On this, the study failed

to uncover any common NFRs formalisation approach/framework/guidelines that may be

adopted to formalise goal models describing NFRs.

Next are the three types of NFRs formalisation encountered in the literature.

Direct NFRs formalisation: researchers propose mathematical expressions to describe a

selected sub-set of NFRs sometime, initially represented with some sort of graph or diagrams

such as UML diagrams.

NFRs ontology: the emphasis is on creating mathematical models relating NFRs to sys-

tem domain or other software artifacts (Dobson et al. [59], Guizzardi et al. [84], Kassab et al.

[102]). In some cases, the ontology is created for a specific goal-based model (e.g., Sancho

et al. [161]).

Formalisation of GORE models: a large number of publications also pointed us to

Goal-oriented requirements methods as the way forwards for NFRs analysis from NFRs

framework. The development of NFRs beyond GORE methods is still largely open for re-

search.

44

Research in NFRs is generally either process-oriented (Mylopoulos et al. [137]) or product-

oriented. These two complementary research orientations are discussed in the following

sections.

2.6.6 Product-oriented NFRs analysis

With this approach, the focus is on the software system as the product of software devel-

opment and the challenge is twofold: firstly to define the qualities expected from the final

product or NFRs that the product should meet; and secondarily, to evaluate the final soft-

ware system to ensure that it embodies the stated qualities or meets the initial NFRs. This

implies deriving means or various quantitative/qualitative models, as well as appropriate

metrics to evaluate the software system when it becomes usable (e.g., Vieira et al. [182]).

Product-oriented NFRs analysis techniques are in fact complementary to the process-oriented

approach introduced next.

2.6.7 Process-oriented NFRs analysis

The underlying philosophy of this approach is that the quality of process guarantees the

quality of product such as based on the natural principle of “Garbage thru garbage out”, to

avoid having garbage thru, one should get the right process. The goal of the process-oriented

analysis is to make NFRs development an integral part of software process whereby they

can help to make appropriate design decisions at different stages (Lapouchnian [106]). The

challenge is therefore to derive means/techniques/methods to identify, model and manage

NFRs.

2.7 Chapter conclusion

This chapter has presented an overview of the URN and Z/Object-Z specification notations

used in this work. A systematic literature review on NFRs specification was also conducted

to investigate the extent to which formal specification techniques has so far been applied to

GORE methods for the analysis of non-functional requirements represented as softgoals. The

URN conceptual/metamodel, construction process and tool supports were discussed. The

main concepts and notational elements used in each of the two main parts of URN to con-

struct GRL models and UCM specifications were presented. Owing to the tidy relationship

between Object-Z and its parent notation Z, both formal notations were presented to make

it possible to use Z concepts and properties whenever needed in any discussion regarding

Object-Z or part of it.

45

The study targeting the current state of the formal specification of NFRs is one of the

best part of this chapter through which the researcher(s) have gained a better understand-

ing of the practical benefits of conducting the systematic literature review.

The next chapter discusses the research design and methodology adopted in this work.

46

Chapter 3

Research design and methodology

Chapter 2 presented the essential aspects of the three notations used in this work: URN

(UCM and GRL), Z and Object-Z. A systematic literature review was also conducted to

determine the current state of NFRs specification and formalisation. This chapter focuses

on the overall design approach adopted to address the research problem stated earlier in

Chapter 1. Various design techniques were combined to qualitatively examine each research

question in particular and thence the problem as a whole.

The approach and techniques used in this work are first presented.

3.1 Design techniques

A variety of research techniques were combined in this work to address the research prob-

lem(Hofstee [92], Johann [97], Olivier [141]). These are: literature reviews; models; synthesis

of scholarship; case study; arguments based on content analysis and comparative analysis;

and algorithms. The general use of each of these techniques is discussed next, while their

specific integration into the research process is detailed in Section 3.2.

3.1.1 Literature review

A threefold literature study was conducted in this research work. Firstly to study in de-

tail the URN notation, the standardised semi-formal requirement elicitation, modeling and

analysis technique that includes two complementary modeling methods: UCM to address

functional requirements and GRL, a GORE method, to address both functional and non-

functional requirements. The main objective in studying these notation languages was to

acquire an insightful understanding of the methods, the conceptual and notational elements

they used to model requirements, as well as their applicability and ability to be extended

47

or to be coupled with other methods. Since URN is fundamentally a requirements notation

language, a detail understanding of its construction process was also important to investigate

the source of requirements and/or goals which are (raw) inputs to URN and therefore stimu-

late thinking about an approach or a model to facilitate the extraction of those requirements

from their respective sources within an enterprise and/or to contribute to the system’s scope

definition.

Secondarily a literature study was conducted on Z and Object-Z, in relation to formal specifi-

cation techniques. The primary aim was to gain an insightful understanding of the methods,

concepts and notational elements used in Object-Z; which are required to anticipate thinking

about possible relationships between the formal notation Z/Object-Z and semi-formal URN

that constituted the starting point for the coupling of both methods.

Thirdly a systematic literature study was conducted to investigate the literature to un-

cover the current state of non-functional requirements specification and modeling and more

precisely the formalisation of non-functional requirements embedded in goal models. Study

which was required to validate the motivation of this work and hence contributing to its

worthiness.

3.1.2 Framework and algorithms

As typified by Ramesh et al. [153], the “formulative” research approach, including: formulative-

framework, guidelines/standards, model, process, method, algorithm, classification/taxonomy

and formulative-concept, is the dominant (represented 79.15% of) research approach used in

Computer Science. Although the research conducted by Ramesh et al is about two decades

old, the result may not be obsolete because the need for new frameworks and algorithms to

address the present and future challenges in Computer Science and Information Systems is

still high as it is the case in this research work where a framework to formalise GRL models

with Z/Object-Z specifications was developed. From the framework, two algorithms were

derived to describe specific formalisation aspects. In the same vein, three algorithms were

constructed for the synthetic model to facilitate scope definition and goal/requireements

elicitation.

3.1.3 Case study

Two case studies were used in this work: the first and the smaller one, not presented in this

document, was used to illustrate the (synthetic) model resulting from the work in step 1

(see fig.3.1), was presented in (Dongmo and Van der Poll [66]). The second and larger case

48

study, presented in Chapter 5, purposed to illustrate and validate the main ideas proposed

in this work and developed either as model, framework or algorithms. The case study was

thus used to illustrate the process of elicitation and modelling of user requirements from

scratch, including the illustration of the applicability of the proposed synthetic enterprise

model and investigating its suitability to guide the design of software systems. It was equally

exploited to validate the framework proposed to generate Z/Object-Z specifications from a

GRL model, as well as to evaluate the impact of using URN in the process of producing

Z/Object-Z specifications, on the quality of the final specifications.

3.1.4 Models

As advocated by Olivier [141], models are essential for their simplicity, comprehensiveness,

generality, exactness and clarity. A synthetic model was built to assist with system’s scope

definition and facilitate the identification of potential sources of goals/requirements within

an enterprise. A GRL model for the case study and an Object-Z model/specification for the

GRL model were constructed to illustrate the applicability of the synthetic model and to

validate proposed GRL formalisation framework.

3.1.5 Synthesis of scholarship

A conceptual analysis of the exiting enterprise models were performed aiming at building a

synthetic model to guide the design of software systems. A similar analysis was conducted

on existing goal elicitation processes to select or build a suitable approach to construct URN

models, more specifically, GRL models. Lastly, a synthetic analysis on the existing processes

for transforming semi-formal software system models into formal ones, was conducted, pur-

posing to facilitate the construction of a framework to generate a Z/Object-Z specification,

from a GRL model, describing both functional and non-functional requirements.

3.1.6 Arguments based on content analysis

These were used to demonstrate different facts and findings based on two types of analyses:

content analysis and comparative analysis.

• Content analysis involves the study of existing models as presented in the literature,

as well as the analysis of findings through case studies.

• Comparative analysis is helpful, for example, for synthetic analysis.

The next section describes the methodology wherein the above research tools are combined

to address the research problem in this thesis.

49

3.2 Overall research process

A four steps research strategy was adopted in this work to address the research problem.

At each step, one or more design techniques presented above were carefully combined to

investigate each of the five research questions discussed in Chapter 1. The solution to the

research problem was derived by synthesising the solutions to the five sub-questions which

are inherently complementary because each question raises issue(s) about a specific stage

in requirements/goals modeling process from scope definition and elicitation, modeling and

analysis to the formalisation of the constructed goal models. The process depicted in Figure

Figure 3.1: Research process

3.1 inductively or analogically (see Johann [97], pp. 176-177, for inductive model-building),

suggests a comprehensive software requirements specification process, using Z/Object-Z to

bridge the gap between GRL and UCM as an intermediate step, to build a more refined

Z/Object-Z specification; which unlike ordinary Z/Object-Z models, integrates both func-

tional and non-functional requirements.

The process is divided into four different steps addressing each, a specific research ques-

tion for which a method was derived. Method1 purposes to investigate the first research

question (RQ 1), Method 2 the second question (RQ 2), Method3, the third and fourth

questions (RQ 3 and RQ 4), and Method 4, the last question (RQ 5). Each of these methods

is discussed in detail next.

50

3.2.1 Method 1: Scope definition and requirement elicitation

This method addresses the first research question (RQ 1) with the purpose to determine/build

a synthetic enterprise model to guide the construction and validation of a software system for

the enterprise. The main design tool is the literature review conducted on existing enterprise

models. Seconded by a theoretical analysis to determine a simpler model that included only

information needed to guide the modelling, design, and validation of software systems for the

enterprise, and a case study used to illustrate such a model (see Dongmo and Van der Poll

[66] and Chapter 5). Finally, based on the case study, the quality and the appropriateness

of the model was evaluated by means of arguments.

3.2.2 Method 2: URN construction process

This method addresses the second research question (RQ 2) related to user requirements

elicitation and modelling with URN. The main design tool is the review of the literature

conducted on existing GORE methods in general and particularly on URN and its two

components:GRL and UCM. A synthetic analysis of the existing goal elicitation techniques

was necessary to help determine or select among the existing ones an appropriate elicitation

process. The process was applied to the case study (presented in Chapter 5) to generate

a URN model based on the synthetic enterprise model/architecture from Method 1. Then,

based on the case study, further discussions about the quality and the applicability of the

proposed URN process is conducted to make room for improvement.

3.2.3 Method 3: GRL formalisation and validation of the formal

specification

This method is, arguably, the most important. The method was used to investigate the main

research questions of this work (RQ 3 and 4). The aim is to build a framework to transform a

GRL model, describing non-functional requirements, into Object-Z, and evaluate the impact

of the initial model on the resulting Object-Z specifications. The main design tool includes

the formulation of a framework and algorithms guided by a literature survey conducted on

Z, Object-Z, to determine and study the existing transformation schemes of semi-formal

models into Z and Object-Z, and a systematic literature review on existing specification and

formalisation approaches of non-functional requirements focusing on goal models including

GRL models.

A synthesis of existing approaches for non-functional requirements specification/formalisation

was done to inspire and/or guide the development of a framework to formalise GRL mod-

51

els. The framework was refined into algorithms to describe the formalisation process of the

individual components of the input GRL model. The case study, animation, mathematical

proof and argumentation were utilised to validate the framework and algorithms, as well as

the qualities of the formal model obtained by applying the framework to the case study.

3.2.4 Method 4: Analysis of the formalisation process and the

formal specification

This method purposes to investigates the impact of the formal specification of GRL models

on the quality of URN models, specifically on UCMs (RQ 5). The method fully relies

on arguments based on the analysis of the formalisation process and the validation of the

resulting formal model, as well as an example used to illustrate the construction of a UCM

map from a formal specification of the GRL model of the case study.

3.3 Chapter conclusion

This chapter has presented the fourfold research approach used in this work to investigate

the research problem. At each of the four steps, a method combing two or more of the chosen

design techniques is used to address one of the five sub-questions (or sub-problems) derived

from the main problem. The design techniques include: literature reviews, framework and

algorithms, case studies, models, synthesis of scholarship and arguments.

The following chapter focuses on the analysis of the URN construction, NFRs, as well as the

formalisation of GRL models.

52

Chapter 4

Formalising GRL models with

Z/Object-Z

In the previous chapters an overall research design including four methods adopted to address

each research question was discussed. In particular, Method3 aimed to develop a framework

to formalise GRL models and validate the resulting formal specification. This chapter focuses

on this method. It proposes an Object-Z specification of a GRL model focusing on goals

describing non-functional requirements. Before identifying GRL elements that need to be

formalised, an analysis of the relationship between the GRL and UCM is first presented.

4.1 Relationship between GRL and UCM

Initially, our perception of GRL and UCM was that they were two complementary approaches

used at the same abstraction level to elicit, analyse and model user requirements. However,

it also appears that the UCM notation is in fact a refinement of a GRL specification. This

aspect is further investigated, in the following sections, by analysing the intertwined con-

struction process of the two techniques.

4.1.1 URN construction process

Figure 4.1 depicts the iterative construction process for URN proposed by Liu and Yu [110].

During the process, GRL and UCM are interactively and iteratively constructed.

The URN input

Initially, information such as: the problem description, Business objectives, Use case scenar-

ios and any other stakeholder intention or useful information are necessarily to ignite the

53

4

Add New Scenarios or update existing in

UCM model

Elaboration of Non-

Functional Requirements

(softgoals) in GRL model

Softgoal Refinement in

GRL model

Softgoal
Operationalization in

GRL model

Intentional Elaboration of

Functional requirements

(goals) in GRL model

Goal Operationalization

in GRL model

Goal Decomposition in

GRL model

Elaboration of Scenario

in UCM model

Draw use case path with

responsibilities in UCM model

Refine UCM model by Factoring,

Stubbing and Layering

Problem descriptions,

Business objectives,

Use cases …

New architectural

design decisions

(tasks in GRL) are
made?

Map “Feasible” Design
Decisions into Scenarios

in UCM model

Yes

No

No

Architectural designDesign rationales

New Requirements

are discovered?

Yes
No

Binding Responsibility with

Components in UCM model

No More Factoring,

Stubbing, Layering?

Yes

No

Add New Requirements into GRL

model (FRs and NFRs)

Add new goals (softgoals)

into GRL model

Yes

All goals & softgoals

are sufficiently refined?

Figure 4.1: URN model construction process [110]

54

modelling process. However, since URN is a requirements elicitation technique, in practice,

more input data are discovered during the development phase.

GRL construction

Any entity with intentions (e.g., stakeholder), also known as a role-player, is likely to be

modeled as an “Actor” in GRL. GRL modeling distinguishes two complementary aspects of

business objectives or stakeholders intentions: goals describing non-functional requirements

(softgoals) and goals describing functional requirements, namely (hard) goals. Those two

types of goals are iteratively developed separately but, interactively.

1. Developing softgoals

Each softgoal is iteratively refined and operationalized until some concrete design de-

cisions can be made.

Definition 4.1.1. A softgoal refinement consists in uncovering (hard or soft) sub-

goals that alternatively or additionally contribute to satisfice the initial softgoal. This

is traditionally known as AND/OR decomposition; which is modeled in GRL with

decomposition links (URN[1]).

Definition 4.1.2. A softgoal and/or goal operationalisation is a process that consists

to discover operational means and/or resources necessary to satisfice the softgoal or to

achieve the goal. Operational means to satisfice a softgoal or to achieve a goal include:

Tasks, Resources, and Beliefs (URN[1]).

2. Developing (hard) goals

As in the case of softgoals, each goal is decomposed and operationalized until some

concrete design decisions are obtained.

3. Connection points between softgoals and (hard) goals

At any point during the refinement of a softgoal, (hard) goals may be introduced

causing the move from softgoal to (hard) goal analysis.

From GRL to UCM construction

From Figure 4.1, the shift to UCM construction occurs whenever new architectural design

decisions are made. That is after softgoals refinement/goals decomposition and operational-

isation are performed. For softgoals (especially), this includes the important phase of eval-

uation that establishes the degree of achievement of each participant goal based on some

initial strategies [1].

55

UCM construction

UCM modeling is an iterative process whereby scenarios’ paths (with responsibility points,

connections points, etc.) are constructed and bound to components. With complex systems,

the final UCM model is refined. Important phases in this process are:

1. UCM input: Inputs to UCM are functional requirements expressed as: scenarios, use

cases, operations, etc.

2. Drawing UCM paths and path elements: New input scenarios or use cases generally

lead to the creation of new paths or paths segment whereas, inputs like operations may

lead to the update of existing paths (e.g., add new responsibilities points to a path

segment).

3. Drawing UCM components: Components are shapes used to represent architectural

artifacts such as: processes, systems and sub-systems, etc.

4. Binding paths elements to components: The ability to bind paths/path segments

and path elements to components render UCM construction flexible so that one may,

invariably, start by working on scenarios or architectural design of the system and bind

them only when one is satisfied with one or another.

5. Refining the UCM model: Techniques such as stubbing and layering are provided in

UCM to refine and organise the model until the desired level of detail is obtained.

From UCM to GRL construction

The shift to GRL construction occurs whenever new requirements are discovered during

the UCM modeling (fig. 4.1). Updating GRL when a new requirement is discovered, is

important to avoid modeling requirements that do not contribute to satisfy or achieve any

goal or softgoal in GRL hence, introducing inconsistencies between the two models.

URN construction outputs

The URN construction is completed when two consistent models are produced: GRL and

UCM models. The final GRL model is obtained when all goals and softgoals are sufficiently

refined; whereas the final UCM map(s) obtained when the map(s) is (are) sufficiently refined.

4.1.2 Important observations: UCM as a GRL refinement

This section presents some observations on GRL, UCM and URN construction that may

help realise that a UCM model is actually a GRL refinement. Such a causal relationship can

56

help to improve the internal URN process as well as the integration of URN into the existing

software process. Figure 4.2 presents a summarised version of the URN construction process

used for our argumentation. The observations are presented for each of the four major URN

phases: the URN inputs, the GRL specification (including an initial UCM sketching), the

UCM detailed specification, and the URN outputs: GRL and UCM (final models).

Figure 4.2: Causal relationship between GRL and UCM

Observations on URN inputs

Initially, the bulk of the URN inputs includes business objectives and stakeholders’ goals

that justify the system to be and constitute the main inputs to GRL. As commonly accepted

among researchers and practitioners, a software product is developed and used to support

important business goals that justify all other requirements of the system (see Herrmann

and Paech [91]). The initial URN inputs, may equally include functional requirements in

the form of scenarios, use cases, etc. which are direct inputs to UCM. However, as indicated

earlier (From UCM to GRL), for this second class of inputs to be integrated into the final

UCM model, the GRL specification must be updated to justify them.

Observations on GRL Construction

As shown in Figure 4.1 and in the sub-section titled “From GRL to UCM”, the GRL soft-

goals/goals refinement/decomposition and operationalisation produce operational elements

(actors, tasks, resources, beliefs) that constitute inputs to UCM. The UCM modeling process

transforms those inputs into: architectural artifacts, scenario paths or path segments includ-

ing: responsibility points, path connectors, etc. and prose description wherever necessary.

57

Observations on UCM Construction

1. From our previous observations, justifiable inputs to UCM are sourced from GRL goals’

analysis. Therefore, although an iterative construction of GRL and UCM models is

possible, in practice, the complete development of the UCM model(s) or part of it

depends on the partial or total construction of GRL.

2. UCM elements should therefore be traceable from the GRL model. For example, for

a UCM component or actor,path or path segment, responsibility, etc. it should be

possible to point out a GRL element from which it was generated as illustrated in

Table 4.1.

No. UCM elements GRL elements

1- Components Actors, softgoals

2- Paths, Path elements intentional elements

3- Architectural patterns Softgoals

Table 4.1: Traceability between UCM and GRL

3. It is equally important to note that some specific grouping of UCM elements (struc-

turing) including the binding of paths and paths elements to components ought to

be justified by the need to satisfy some goals or softgoals from GRL. For example,

parallelism may be introduced into a UCM map to achieve performance.

Observations on URN outputs

Although not formally proven, based on the above observations, we believe a UCM model

to be a refinement of its counterpart GRL model. Assuming some of the UCM elements

cannot be linked to any GRL model elements, one may rightfully ask why would a software

engineer model functionalities that do not support business goals or contribute to satisfy

any stakeholder’s goal? In fact, knowing that goals/softgoals decomposition/refinement,

operationalisation and evaluation are entirely performed within GRL, amongst others, the

following two aspects may require more attention: firstly, verify that the operationalisation

of goals, especially softgoals, performed in GRL is sufficient to reasonably achieve them.

Secondary, ensure that UCM sufficiently refines GRL. These two aspects are progressively

addressed in the following sections.

The next section elaborates on the design gap between UCM and GRL.

58

4.1.3 Conceptual gap between GRL and UCM

As discussed in Chapter 2, Section 2.1.2, p.16, the meta-class URNlink meta-model (see Fig-

ure 2.1) is an important concept that introduces the relationship between GRL and UCM

and allow URN modellers to think about the traceability, refinement, composition, etc. be-

tween the elements of GRL and UCM models. To the best of the author’s knowledge, the

implementation of URNlink is still limited to a visual and manual connection between the

model elements of GRL and UCM. As discussed in the previous section, this brings forth the

importance to investigate the extent to which UCM elements can be traced back to GRL

ones.

From URN construction, it appears that each UCM element is linkable to GRL operational

element(s) (principally, tasks, resources, beliefs) that constitute solutions to goals/softgoals.

This is justifiable since GRL operational elements representing functional requirements are

directly specified in UCM; and when a new requirement is discovered in UCM, the GRL

model is updated accordingly. However, it is important to notice that, in some cases, the

influence of non-functional requirements may be more subtle. Few examples to illustrate:

(a) Parallelism may be introduced into a UCM to address performance, a NFR in GRL.

(b) Stubs or layers may be needed in UCM to respond to a security requirement. For

example, to group together those functionalities that require a certain level of security.

(c) Some elements of a UCM may need to be re-arranged in a certain order to facilitate for

example the usability of the system.

These examples show how non-functional requirements in GRL can induce actions (per-

formed on UCM) that do not necessary describe functional requirements represented phys-

ically in the original GRL model. Additionally, UCM elements such as: forks, stubs or

layers used in the above examples, are not (conceptually) different from those created when

specifying functional requirements. Thus, the difficulties to trace them back to the original

non-functional requirement and consequently the difficulty to validate the final UCM model

relatively to GRL. One may also be attempted to question the ability of GORE methods, in

general, to fully operationalise non-functional requirements since it is known that the influ-

ence of such requirements may involve any of the software development phases. Thus, the

need to elaborate on the influence of non-functional requirements in software development

introduced in the next section arises.

59

4.2 The influence of Non-Functional Requirements in

software development

As discussed in Sections 2.6.6 and 2.6.7, p.45, two non-functional requirements analysis ap-

proaches are generally considered: product-oriented and process-oriented (see Mylopoulos

et al. [137]). The product-oriented approach is more interested in finding appropriate met-

rics to evaluate the quality of the constructed software product. The process-oriented seeks

means to make appropriate design decisions based on non-functional requirements.

Since each of the two approaches focuses only on one aspect of software, process-oriented on

the process, and product-oriented on the final product; it is also our belief that none of the

two NFRs analysis approaches is sufficient to efficiently address NFRs analysis as supported

by Mylopoulos et al. [137]. Both approaches are complementary and should therefore be con-

sidered together. To describe our proposed approach to the development of non-functional

requirements, we present next the concept of Software Development System (SDS).

4.2.1 Software Development System (SDS)

With the term software development system (SDS), we abstract the different development

phases of a software system independently of any specific method. The literature generally

presents four fundamental phases for which different authors use different terms to describe

(e.g., Burback [40], Otero [143], Sommerville [169]).

• There are four fundamental phases in most, if not all, software engineering methodolo-

gies. These phases are analysis, design, implementation, and testing (Burback [40]).

• There are four fundamental process activities that are common to all software processes.

These are: Software Specification, Development, Validation, and Evolution (Som-

merville [169]).

• The fundamental software engineering life cycle phases include requirements, design,

construction, test and maintenance (Otero [143]).

Ideally, the SDS system needs not to be methods dependant. However, due to the diversity of

terminology and development phases, to make our proposed idea more visible, the following

phases are adapted:

(1) Requirements : this phase includes goals and requirements analysis, specification and

validation.

60

(2) Design : this is mainly about software specification, modeling [and/or requirements

refinement], architectural design and their validation.

(3) Development : this is all about implementation and deployment.

(4) Maintenance : this phase includes the operational system maintenance and/or evolu-

tion.

These phases are depicted in Figure 4.3; which purpose is to illustrate our approach to the

integration of non-functional requirements in software development. To simplify the figure,

we consider the system at the state where functional and non-functional requirements are

identified. In practice, those requirements result from a preliminary work such as goals

and/or requirements elicitation and analysis. The inputs to the SDS system may therefore

Figure 4.3: Illustrating a software development system

include initial user requirements, stakeholders’ goals, functional requirements or some other

intermediate model depending on various factors such as the development model, the type

of software under construction, as well as the structure and synchronisation of the activities

of the four SDS phases. The output is the operational software system.

Definition 4.2.1. An SDS activity refers to any task performed at an SDS phase with

the purpose to progressively transform the initial SDS inputs (or an intermediary model)

into an operational software. In general, high-level activities are predefined at each phase,

structured and/or synchronized to form a process or a method.

Example 4.2.1. At the requirements phase (Phase 1 in Figure 4.3), predefined activities

include: feasibility study, requirements elicitation and analysis, requirements specification

and requirements validation (Sommerville [169]).

4.2.2 Non-Functional actions: NF-actions

GORE methods generally propose, at an early stage of software development, means to

elicit, analyse, decompose/refine, model and evaluate goals, including goals describing non-

61

functional requirements. Goal refinement is mainly about deriving actions and resources

necessary to achieve them. An evaluation of such a refined goal consists in measuring the

degree of achievement of the goal based on the (estimated/calculated) quantified or qualified

contribution values of derived NF-actions. Figure 4.4 illustrates a systematic process for

NFRs that goes beyond the modeling, decomposition and refining of NFRs and adds steps

for the formalisation followed by a formal validation (Jung and Lee [99]). Figure 4.4 also

Figure 4.4: Systematic process to Non-Functional Requirements [99]

shows that goals, especially those describing NFRs, are generally developed in isolation; that

is, independently of other software development process. Knowing that, beside NF-actions

that refine goals, each non-functional requirement may impose at each (SDS) development

phase, additional actions and constraints on SDS system’s activities, tools and resources,

and define metrics to evaluate the quality of an SDS’s output (the operational system)

expected to have desired qualities (Rosa and Cunha [157]), the analysis of the impact of

NFRs on each SDS phase or activity becomes an important activity. An activity that would

likely consolidate Cai’s idea which emphasises that: non-functional computing should be

developed in parallel with functional computing [43]. It is also our belief that it would be

more interesting to fully integrate the NFRs development into software processes.

4.2.3 Complementary Non-Functional actions: CNF-action

The idea of CNF-actions is founded on the commonly accepted process-oriented’s view that

the quality of the final product depends on the quality of intermediary models. An CNF-

action applies, at each SDS phase, to intermediate models or to the activities of the phase

including for example, the selection and structuring of appropriate techniques/methods,

62

tools and activities purposing to improve the quality of the intermediate models. Thus,

since objects on which CNF-actions are applied vary, depend on one another and may not

be known before the development reaches a certain point, those actions may not be derived at

an early phase when traditional NF-actions are analysed. Examples of such actions include:

• Creating new functional requirements

• Making choice amongst alternatives

• Imposing some constraints on the SDS activities

• Transforming a model from one state to another

• Ordering or restructuring some activities.

Some actions at one stage depend on the precedent actions. For example, the design of par-

allel algorithms may induce the adoption of multicore systems at the implementation phase

to achieve performance.

Creating and performing actions at an SDS development phase aims to help produce in-

termediate models with an improved quality. For example, at the requirement phase, we

may have a requirement model including additional functionalities such as: authentication

and encryption. However, such model do not naturally integrate information on the origin

of their improvement. Thus the need for a mechanism to propagate such information.

CNF-actions Representation/propagation

CNF-actions can be represented in two possible ways: by progressively upgrading the initial

NFRs model with the new action or by creating a new model for CNF-actions.

Upgrading the initial NFRs model: CNF-actions progressively refine non-functional

requirements the same way NF-actions do. They may therefore, be integrated into the initial

NFRs model as further refinement.

Example 4.2.2. With GRL, a number of alternatives may be considered to upgrade the

model with CNF-actions. For example, add one branch from each non-functional require-

ments to represent CNF-actions derived at each SDS development phase. The GRL model

will thus, be progressively updated till the final software product is produced.

The problem with this approach is that, as summarised in Figure 4.4, considering the amount

of work that may have been performed on the initial model before the creation of subsequent

63

CNF-actions, upgrading the model at some stage would cause some activities or processes

to be repeated over and over when SDS phases are being developed. Thus, the need for an

independent model to represent CNF-actions as alternative solution.

Creating a new model is a continuous process that follows the development of the

software until its completion. This process can be perceived as an initial step to a process-

oriented approach to non-functional requirement analysis. The new model can be represented

in different ways; two examples are given next.

Example 4.2.3. The model representation or construction can use the same refinement

method or technique as the one used to refine NFRs with NF-actions. For instance, construct

a GRL model where softgoals are gradually refined with CNF-actions.

Example 4.2.4. CNF-actions may also be directly integrated into SDS intermediate models;

the same modeling technique is thus used to represent the CNF-actions. For instance, an

extra UML class or Object-Z class may be added to a UML model or Object-Z specification

to model CNF-actions.

Considering the variety of methods, techniques and tools that ought to be used when devel-

oping a software product, the need to propagate actions carried-out from one development

stage to another becomes a necessity.

CNF-actions propagation The main reason of this activity is to present to the next

SDS development step or phase, a full report of the decisions made in the previous step

or phase. The benefit of the report is not only for decision making but also for example,

to facilitate traceability, maintain the system consistency and facilitate conflict resolution

amongst NFRs.

Although different methods and techniques may be used to model CNF-actions at differ-

ent levels, for a given project, a common format must be used for the report. Figure 4.5 is

an example of Non-Functional actions in ProcessNFL, proposed by Rosa et al. [156]. This

Figure 4.5: Representing NF-actions in ProcessNFL [156]

64

notation appropriately describes a NF-action but, may need to be adapted to include all the

information required for example, information on SDS development parts affected by CNF-

actions. Thus, the need to first identify all the elements necessary for CNF-action’s report.

The following information must be included: The SDS phase, the NFR, the CNF-action,

and the object(s) affected by the action. The template should therefore be:

< Phase,NFR,CNF − action,Domain, [optional] >

Based on the fact that the class of XML languages are already intensively used in software

engineering (e.g., Fei and Xiaodong [74], Poon et al. [148]), one may also consider these lan-

guages for propagating CNF-actions across different modeling techniques and tools. The fact

that URN itself employs XML to share or export models to other techniques is supportive.

Since CNF-actions are inherently performed on known objects or entities, the next important

aspect to discuss when analysing the influence of a NFR on a system is the CNF-action’s

domain.

4.2.4 A non-functional requirement’s domain

The concept of domain is very generic and may have different meaning in different contexts.

For instance, in mathematics we have function domain, domain name in computer network

and application domain for software.

Example 4.2.5. In Operating System design, the “domain” of protection is composed of

hardware and software objects (see Galvin et al. [77], Ch. 14, pp.613-618).

Since protection is an aspect of the security requirement, which is indeed a non-functional

requirement, this example is closed to the context in which the term domain is used in this

work.

Definition 4.2.2. A non-functional requirement domain includes any sub set of the SDS

system that may be influenced by the non-functional requirement. In other words, any

element of the SDS system on which an NFR-action may be performed to satisfice the NFR

is included in the NFR domain.

To construct a NFR domain, the followings should therefore be considered: SDS development

activities, SDS development methods and techniques, SDS development tools at that phase,

as well as, resources needed, the input or initial requirements or intermediary models from

the previous phase, and development or system environment.

65

• SDS development activities: a non-functional requirement may have twofold influences

on the SDS activities. Firstly, constraint the selection of activities amongst alternatives

and Secondly, constraint an activity to be performed in a certain way or include some

specific functionalities.

• SDS development methods and techniques: Similarly to SDS activities, a NFR may

force the use of specific methods/techniques and place some constraints on how those

techniques will be used.

• Development tools may be influenced by a non-functional requirements. For example,

a highly secured system may not be developed with unsecured tools. If the portability

requirement is to be reinforced, an implementation tool like Java will be appropriate.

• Resources needed: to reinforce a NFR, some specific type of resources may be pre-

ferred. For example, for security purpose, a wired network may be preferred to a

wireless one.

• Functional requirements and/or Intermediate models from the previous phases are

likely to be influenced by NFRs and are therefore part of NFRs domains.

• Development (and/or the System) environment includes, for example, operating sys-

tems, other software, specialized inputs/output devices such as sensors. Non-functional

requirements may constrain the choice of operating systems and the hardware.

Due to the variety of entities that may be part of a domain as listed above, for the sake

of commodity and to facilitate operations on domains, we use the concept of “object” to

abstract each domain element. Specific attributes and properties of an individual element

are fully exploited when the element is considered in isolation.

4.3 An Object-Z specification of URN model elements:

Focusing on NFRs in GRL

UCM provides for concepts to efficiently refine and model operational requirements that sat-

isfy goals defined in GRL. Softgoals describing NFRs in a GRL model define requirements

that may constrain software architectural design in UCM, especially, the creation and struc-

turing of UCM components. A mechanism was proposed by Dongmo and van der Poll [64] to

formalise UCM diagrams with Z and Object-Z. Since part of a GRL model, describing Goals,

Tasks, Resources and Beliefs, can be directly refined into UCM, this work focuses on the

formalisation of softgoals, their influence on the construction of UCM and their propagation.

66

4.3.1 GRL Model elements: list of sub-classes

Table 4.2 presents the list of subclasses of the superclass of GRL model elements. The table

indicates subclasses that are to be formalised and those that will not.

No. GRL elements Type Included?

1- StrategiesGroup Class No

2- EvaluationStrategy Class No

3- ContributionContext Class No

4- ContributionContextGroup Class No

5- IndicatorConversion Class No

6- GRLLinkableElement Meta-class Yes

7- ElementLink Meta-class Yes

Table 4.2: GRL Model Elements subclasses

The first five classes define GRL elements used to evaluate the level of satisfaction of de-

composed/refined goals. Since goals evaluation is part of GRL construction process, these

classes are not considered for the formalisation. This work is concerned with the already

constructed GRL model or model elements. Other aspects of the model, such as the evalu-

ation, may be considered for formalisation later to bring more details into the construction

process. GRLLinkableElement and ElementLink are therefore, the two meta-classes that

will be further explored. GRLLinkableElement is an abstraction of the class of actors and

intentional elements; whereas ElementLink objects are used to relate GRLLinkableElement

from one to another. Table 4.3 recapitulates those Linkable elements that are considered for

formalisation.

No. GRL Linkable elements Included?

1- Actor Yes

2- Intentional elements

- Belief Yes

- Resource Yes

- Task Yes

- Goal Yes

- Softgoal Yes

Table 4.3: List of GRLLinkableElement subclasses

The class ElementLink is composed of: Depency, Decomposition, and Contribution shown

in Table 4.4. All the objects of theses classes are to be formalised but, not necessary to be

67

refined.

No. Element Links Included?

1- Dependency Yes

2- Decomposition Yes

- AND

- XOR

- IOR

3- Contribution Yes

- Make

- Help

- SomePositive

- Unknown

- SomeNegative

- Hurt

- Break

Table 4.4: List of element links

4.3.2 Basic formalisation approach: a top-down approach

GRL, UCM, and URNLink model elements are subclasses of the URN model element class

[1]. They therefore, inherit the attributes and characteristics of their superclass

URNModelElement. Two important inherited attributes are: unique identifier (id) of the

model element and its name. Another inherited characteristic is the named value called

Metadata. As shown in Figure 4.6, GRL elements are hierarchically constructed from the

superclass GRLModelElement as subclasses that inherits the properties of the superclass.

Thus, the choice of a top-down approach as the main formalisation strategy: superclasses

are first formalised followed by subclasses. This is important as this work tries to keep the

structure of the original GRL model as much as possible.

The identification and analysis of GRL model elements are based on the GRL metamodel,

a UML stereotype, from the standardised URN reference, namely, ITU-T Z.151 [1] and

presented in Figure 4.6. The three main components of a GRL specification to be specified

include: Actor, GRLContainableElement, and ElementLink. Other components, especially

those related to the evaluation, are outside the scope of this study.

68

Figure 4.6: GRL elements to be formalised [1]

69

4.3.3 Formalising GRLModelElement metaclass

A GRLModelElement is an abstract class and operations on this class are performed trough

its subclasses.

ClsMetadata
↾(name, value)
[Name]

name : Name
value : String

ClsGRLModelElement
↾(id , name,mdata)
[Identifier]

id : Identifier
name : String
mdata : FClsMetaData

INIT
id =⊥ ∧ #mdata = 0

A GRL model element is characterised by: a unique identifier (id), a name, and some meta-

data. Each subclass of such a class inherits those three properties.

4.3.4 The Object-Z specification of the subclasses of GRLMod-

elElement: LinkableElement and ElementLink

ClsLinkableElement
↾(id , name,mdata, importance, impQualitative)

ImportanceType == High | Medium | Low | None
ClsGRLModelElement

importance : ImportanceType
impQualitative : Z

The two sub classes of the GRLLinkableElement metaclass are: Actors and GRLContain-

ableElement classes.

70

4.3.5 The specification of the sub classes of GRLLinkableElements

The Object-Z specification of Actors

An actor represents an entity that has intentions and that carries out actions to achieve its

goals.

ClsActor
↾(id , name,mdata, importance, impQualitative)
ClsLinkableElement

The Object-Z specification of GRLContainableElement

A GRLContainableElement is a GRL model element that can be contained in an actor

definition. It is an abstraction of the commonality of intentional elements and indicators.

ClsGRLContainableElt
↾(id , name,mdata, importance, impQualitative, actor)
ClsLinkableElement

actor : ClsActor

INIT
actor .id = ⊥

Since indicators are not included in the scope of this study, GRLContainableElement and

IntentionalElement are the same. There are five types of intentional elements: Belief, Re-

source, Task, Goal and Softgoal. The first four can be directly refined into functional re-

quirement model with UCM; Whereas softgoal may not since they describe non-functional

requirements.

71

4.3.6 Formalising the subclasses of ContainableElements: Inten-

tionalElement and Indicators

ClsIntentionalElement
↾(id , name,mdata, importance, impQualitative, actor)
ClsContainableElement

(actor 6=⊥∧ ∀ elt : ↓ClsIntentionalElement | elt .actor .id = actor .id
∨

actor =⊥∧ ∀ elt : ↓ClsIntentionalElement | elt .actor =⊥) •
elt .name 6= name

As indicated in Table 4.3, there are five types of intentional elements: Belief, Resource,

Task, Goal and Softgoal. We specify these model elements as subclasses of the abstract class

ClsIntentionalElement. Some of the reasons:

• Permits to consider the particularities of each element

• Facilitate the modeling of elements decomposition/refinement with elementlink; mak-

ing it possible to model the particular type of elements used to refine other elements.

• Improve on the traceability of GRL elements from corresponding UCM by means of

URL links.

• Facilitate further analysis and development of a specific type of Intentional element

such as softgoals without necessary having to address other types.

• Facilitate the maintenance of intentional elements as a whole since it makes it possible

for new types to be easily added to or removed from the model.

• Having an id, makes it easier to link decisions or actions based on a softgoal or non-

functional requirement to that particular intentional element.

The Object-Z specification of the intentional element Belief

As a domain characteristic, a belief is modeled in GRL as a text description useful in decision-

making process. Considering their importance (for example, facilitating later review, justi-

fication and change of the system, and enhancing traceability), and the fact that beliefs are

not explicitly integrated into UCMs, they may be added to a Z/Object-Z specification as a

given type. However, it is preferred to model it as a class schema.

72

ClsBelief
ClsIntentionalElement

description : String

The Object-Z specification of Resource, Task and (hard) Goals

• Resource

As mentioned above, a resource is modeled as an Object-Z class. One particularity of

this intentional element is the availability.

ClsResource
↾(id , name,mdata, importance, impQualitative, actor , available)
ClsIntentionalElement

available : Integer

available ≥ 0

INIT
available = 0

• Task

A task is an abstraction of any action that may be taken to satisfy a goal, softgoal

or a high-level task. A task models one or more system functionalities, including data

structure that may therefore be specified in a UCM model, which Z and Object-Z

formalisation may be derived [64].

ClsTask
↾(id , name,mdata, importance, impQualitative, actor)
ClsIntentionalElement

It would be equally important to keep track of the relationship with the goal, softgoal

or the higher-level task that it satisfies; this aspect will be further developed when

analysing the metaclass ElementLink.

• Goal

Goals (also called hard goals or functional goals) model the system (or business) objec-

tives that can be (functionally) satisfied. In a GRL model, a goal may be decomposed

into tasks, (sub) goals, and/or resources that are needed for its achievement. The only

intentional element that cannot refine a hard goal is a softgoal.

73

ClsGoal
↾(id , name,mdata, importance, impQualitative, actor)
ClsIntentionalElement

Object-Z specification of Softgoals

A softgoal describes a quality or a non-functional requirement. In this work we indifferently

called both non-functional requirements. The formalisation of a softgoal will consider three

aspects: the softgoal itself as an intentional object, its refinement using GRL links, and its

CNF-actions (complementary non-functional actions) at the current stage. The template for

each CNFR-action is:

< Phase,NFR,CNF − action,Domain, [optional] >

where:

- Phase refers to the SDS development phase during which the action is performed. In

this case, it is the Requirement phase and precisely the UCM construction part of URN

construction: Requirement:URN:UCM

- NFR refers to the non-functional requirement for which the action is being defined.

- CNF-action is the complementary NF-action under consideration.

- Domain describes the set of objects on which the action is performed.

- Optional is an optional piece of information that may be added to bring more clarity.

A CNF-action as described above may be formalised in different ways. However, since it

refines a non-functional requirement just as a task or a (hard) goal does, preference is given to

Object-Z class structure to represent it. In the same vein, each of the four components of an

CFN-action is defined as an (empty) class in Object-Z. Basic type can also be used however

the class concept provides for a better concept for further development of the components.

Example 4.3.1. The class of Phases is defined as:

clsPhase

Other components can be defined similarly. The class of complementary non-functional

actions is therefore defined as:

74

ClsComplementaryAction
↾(id , name,mdata, phase, action, domain, option)
ClsIntentionalElement

phase : ClsPhase
action : ClsAction
domain : ClsDomain
option : Description

The class of CNF-actions, ClsComplementaryAction, is defined as a subclass of the class of

intentional elements. This makes the association of CNF-actions with other GRL elements,

especially softgoals, more flexible because it makes it a linkable element and hence, allowing

the designer to link them, if desired, to other linkable elements using element links.

The class of Softgoals is therefore defined as:

ClsSoftGoal
↾(id , name,mdata, importance, impQualitative, actor , cnfactions)
ClsIntentionalElement

cnfactions : PClsComplementaryAction

To keep the model simpler, the component cnfactions is added to capture the set of CNF-

actions associated to the softgoal. The advantage of such a model is the facility to associate

complementary non-functional action with non-functional requirements. For example, it

may be easier to capture those information in a database or knowledge system. However,

using GRL links to connect CNF-actions to softgoals would permit continuous update of the

GRL model during the complete development process with the benefit of applying existing

GRL analysis techniques to CNF-actions as another type of intentional element.

4.3.7 Formalising GRL Links

ElementLink is an important concept used to capture relationships between two GRL linkable

elements: one linkable element is known as link source and the other as link destination.

Three types of links are put forward: Dependency, Decomposition, and Contribution.The

GRL ElementLink model is a subclass of GRLModelElement and thus, inherits properties

from GRLModelElement.

75

ClsElementLink
↾(id , name,mdata, linksrc, linkdest)
ClsGRLModelElement

linksrc : ↓ClsLinkableElement
linkdest : ↓ClsLinkableElement

linksrc.id 6= linkdest .id

An instance of the class ClsElementLink includes the two components linksrc and linkdest

representing,respectively, the source and destination of the link.

Dependency

A dependency link describes how a source actor definition (the depender) depends on a

destination actor definition (the dependee) for an intentional element or indicator (the de-

pendum).

ClsDependency
↾(id , name,mdata, depender , dependee, dependum,why , how)
ClsElementLink
depender =̂ linksrc
dependee =̂ linkdest

dependum : ↓ClsIntentionalElement
why , how : ↓ClsIntentionalElement

{depender , dependee} ∩ ClsBelief = ∅

depender 6∈ ClsActor ∧ dependee 6∈ ClsActor ⇒
depender .actor 6=⊥∨ dependee 6=⊥
depender .actor .id 6= dependee.actor .id

INIT
why =⊥ ∧ how =⊥

Decomposition:

“The process of subdividing a set of goals into logical subgroups so that system requirements

can be more easily understood, defined and specified” Anton [20]. In GRL, it relates the

source intentional elements that need to be satisfied or available to a target intentional

element to be satisfied. Three decomposition types are used: AND, XOR and IOR.

76

ClsDecomposition
↾(id , name,mdata, linksrc, linkdest , type)
ClsElementLink

DecompositionType == AND | IOR | XOR

type : DecompositionType

{linksrc, linkdest} ∩ ClsBelief = ∅

linksrc 6∈ ClsActor ∧ linkdest 6∈ ClsActor

INIT
type = AND

Contribution

A contribution link defines the level of impact that the satisfaction of a source intentional

element or indicator has on the satisfaction of a destination intentional element.

ClsContribution
↾(id , name,mdata, linksrc, linkdest , contribtype, contributionqty , correlation)
ClsElementLink

ContributionType == Make | Help | SomePositive | Unknown
| SomeNegative | Break | Hurt

contribtype : ContributionType
contributionqty : Z
corrolation : B

{linksrc, linkdest} ∩ ClsBelief = ∅

linkdest 6∈ ClsResource ∪ ClsBelief
linkdest 6∈ ClsIndicator
linksrc ∈ ClsIndicator ⇒ correlation = false
−100 ≤ contributionqty ≤ 100

4.4 Framework for a formal specification of an input

GRL model

Two approaches may be considered: interactive transformation and a direct transformation.

Interactive approach: a formal specification is progressively generated when the input

GRL model is constructed.

77

Direct transformation approach: the input is a fully developed GRL model, which is

to be formalised. It is the author’s belief that if this approach is well-designed/modularised,

it can be reused in the design of an interactive approach with little modifications. Thus, the

focus in this work on the direct transformation approach. This keeps the formal specification

of the GRL model in line with the NFRs systematic process illustrated in Figure 4.4. To

perform a direct formal specification of an input GRL model, two important tasks are to be

defined: the GRL model traversal mechanism (how are the model elements identified?) and

the formalisation process (how are identified elements formalised?).

The GRL model in Figure 4.7 is used in the rest of this chapter to illustrate our formalisation

approach. To improve the visibility of their organisation, the management decides to use

Figure 4.7: Illustrative GRL model

public media and produce pamphlets. To produce the pamphlets, the management depends

on the support service to fix their printers.

4.4.1 GRL model traversal mechanism

Figure 4.6 shows that a GRL specification is composed of three sets of elements: a set of

containable elements, a set of actors, and a set of element links. The traversal approach

adopted in this work is based on the idea to first identify those elements that are needed

by other elements. For example, source and destination elements are needed to construct a

link. However, the order in which those elements are formalised must also be considered for

a proper scanning.

Traverse(Actors, grlspec): this module would scan the input GRL specification (grl-

spec) to identify all the actors definitions within the specification.

Example 4.4.1. With the GRL model in Figure 4.7, the output would be:

Actors = {Management , Supportservice}.

78

Traverse(FreeElements, ActorElements, grlspec) : the module scans the input GRL

specification to identify all the intentional elements and/or indicators. The variable FreeEle-

ments contains intentional elements that are not contained in any actor’s definition and

ActorElements includes those contained in actors definition.

Example 4.4.2. With the GRL model in Figure 4.7, the output would be:

FreeElements = {Printer}

ManagementElements = {Improve visibility ,Use media,Produce pamphlets}

SupportServiceElements = {Maintain}

Traverse(Links, grlspec) : the module identifies all the link elements within the input

GRL specification.

Example 4.4.3. With the GRL model in Figure 4.7, the output would be:

Decomposition = {And(Improve visibility ,Use media),And(Improve visibility ,Produce pamphlets)}

Dependency = {(Produce pamphlets ,Printer ,Maintain)}

Contribution/Correlation = {}

The formalisation process maybe integrated directly into these traversal modules however,

it is preferable to separate the two processes. The scanning of an input GRL model may,

for instance, act as a parser to ensure that the model is well-formed and extract the desired

information on target elements and keep in output variables: Actors, FreeElements, Ac-

torElements and Links. Depending on the physical structure of grlspec, these traversal

modules may require simple or complex algorithms to be implemented.

4.4.2 Formalisation approach

Two approaches are used to transform each GRL element into Object-Z:

Instantiation

Goals and softgoals are GRL elements that are (presumably) fully decomposed/refined and

analysed within the GORE method that created them. Hence, they are generally not con-

sidered for further development in software process; instead, the functional requirements,

79

including tasks and resources, that operationalise them are. For this reason, it is proposed

that for each goal or softgoal in a GRL specification, an instance of the Object-Z abstract

class for the softgoals or goals be created to represent the concrete element. In the same vein,

the Object-Z specification of all link elements, as well as beliefs, are obtained by instantiating

their Object-Z abstract class.

Example 4.4.4. Consider the softgoal Improve visibility and the goal Use media from the

GRL model in Figure 4.7. The abstract class for softgoals and goals, also called in this work

templates, developed earlier in Section 4 are, respectively, ClsSoftgoal and ClsGoal . The

Object-Z specification of the two intentional elements are therefore:

improvevisib : ClsSoftgoal
usemedia : ClsGoal

The next formalisation approach is based on the concept of inheritance.

Inheritance

In practice, functional requirements resulting from goals and softgoals analysis are repre-

sented in GRL as task, resources, etc. These elements are candidates for further development

in forthcoming software development phases. For each such element, it is proposed in this

work to create a new Object-Z class that inherits the Object-Z abstract (super) class of the

type of GRL model element under-consideration.

Example 4.4.5. The actor definition management and the resource Printer in Figure 4.7,

are now used to illustrate this approach. The abstract classes for these two elements are,

respectively, ClsActor and ClsResource. As an actor definition, management may have par-

ticular properties that other actors do not encompass. More importantly, actors definitions

are generally analysed and developed in subsequent development phases. For example, in

UCM an actor definition is refined into a UCM component. Thus, the need to keep its

specification abstract.

ClsManagement
↾(department , nfdependers , . . .)
ClsActor

department : String
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .id 6= id

80

In the same vein, a printer as a specific resource may encompass properties that other

resources do not have.

ClsPrinter
↾(type,model , nfobjectives , . . .)
ClsResource

type : String
model : String
nfobjectives : PClsSoftgoal

[Constraints on properties]

4.4.3 Creating an Object-Z specification for an input GRL model

For an input GRL specification, the proposed formalisation process is the following:

Elementary transformation/templates: propose an elementary transformation of each

GRL model element that can be used as template to formalise concrete elements. During

this phase, the order in which the different types of elements are to be formalised is also

determined. For example if the template for a containable element inherits properties from

an actor, then the formalisation of containable elements should follow that of actors.

Object-Z classes proposed in (Section 4.3.6, P. 74) are here used as templates for Object-Z

specification of a GRL model.

Elements identification: Apply the traversal algorithms to the input GRL model to

determine all the elements of the specification and group them according to their types.

GRL specification class: create an Object-Z class, namely ClsGRLSpec, to keep all el-

ements that are not contained in an actor definition and all the links. Major operations

on actors’ classes, element links and other specification components should also be defined

in this class. Otherwise, it should be possible to access and trigger operations defined in

different components of the specification from this class.

81

ClsGrlSpec
↾(freeelts , actorselts , alllinks)

free elts : P ↓ClsIntentionalElement
actors elts : P ↓ClsIntentionalElement
alllinks : P ↓ClsElementLink

∀ elt ∈ free elts • elt .actor =⊥

INIT
free elts = ∅ ∧ actors elts = ∅ ∧ alllinks = ∅

Transformation of each element: Table 4.5 presents for each type of input element,

the type of transformation to be performed on the Object-Z class template.

No. Element (E) OZ Template Formalisation

1 actor ClsActors create a subclass

2 Sofgoal ClsSofGoal instantiate

3 Goal ClsGoal instantiate

4 Task ClsTask create a subclass

5 Resource ClsResource create a subclass

6 Belief ClsBelief instantiate

7 Dependency ClsDependency instantiate

8 Contribution ClsContribution instantiate

9 Decomposition ClsDecomposition instantiate

Table 4.5: Summary of transformation per element type

Formalising actors: includes in each new actor class, the component nfdependers to keep

the set of all softgoals whose achievement depends on the actor. These softgoals will be

used to guide the development of the actor in subsequent phases and hence, stimulate the

creation of complementary non-functional actions.

Formalising Intentional elements: Five types of intentional elements are considered:

1- Belief, goal and softgoal: Create, through the class ClsGRLSpec, an instance of the

element’s template and:

• Add to the component named free elts if the element does not belong to any actor.

• Otherwise, add to the component actors elts .

82

2- Resource and task : create a new Object-Z class as a subclass of the element’s tem-

plate. The new class must include properties/attributes specific to the input elements,

as well as the compulsory component nfobjectives to contain all softgoals that need this

element to be achieved.

The softgoals in nfobjectives aim to guide the development of the resource or task in sub-

sequent phases and therefore, stimulate the creation of complementary non-functional

actions.

Formalising element links: For each element link, create, within the class ClsGRLSpec,

an instance of the element’s template and add the newly created object to the component

alllinks . As indicated in Table 4.5, three types of links are considered:

1- Dependency : each dependency link is an instance of the class ClsDependency .

2- Decomposition : each decomposition link is an instance of the class ClsDecomposition.

The type of the decomposition (AND, IOR, XOR) is indicated in the variable type.

3- Contribution/correlation : a contribution or a correlation is an instance of the class

ClsContribution. The boolean variable correlation is set to true for correlations. The

type of the contribution is indicated in the variable contribtype.

The framework so far developed is summarised with Algorthm 1.

83

4.4.4 Updating the specification in the light of element links

An element link connects two linkable elements say A and B. The Object-Z specification of

A or B results in either a class schema or an instance of a class. The purpose of this phase

is to analyse the impact of such a link on the respective formal specifications of A and B

focusing particularly on propagating information on softgoals to the specifications. Each of

the three types of element links is considered separately.

The influence of a dependency link

A dependency relationship may involved five entities: (depender, why), dependum, (de-

pendee, how). The depender and dependee are actors definition. The why is an intentional

element (or indicator) in the depender that needs the dependum (an intentional element)

for its achievement. The intentional element (how) in the dependee is the means by which

the dependee provides the dependum to the depender.

The influence of this link element is considered when the “why” of the depender is a soft-

goal and the Object-Z specification of the dependum or the “how” of the dependee is a

class schema. In Object-Z, such a class schema provides for means to achieve the softgoal.

Hence, the necessity to include a reference to the Object-Z’s object specifying the softgoal in

it. The class schema describing the “how” is considered only in the absence of the dependum.

If the dependum (or the “how”) is either a softgoal or a goal, then each branch of the

refinement (decomposition) tree of the (soft)goal should be followed downward until the first

intentional element(s) for which the Object-Z specification is a class schema is reached. The

reference to the object specifying the “why” of the depender is added to that/those class

schema(s).

If there is neither a dependum nor a “how” then the object’s reference should be added

to the dependee’s class schema.

The presence of the reference in the class schema is to ensure that further development

of the class will continue to consider the softgoal that ought to be achieved through for

example Complementary Non-Functional actions (CNF-actions).

The influence of a decomposition link

Consider a softgoal A the source of a decomposition link, and B the destination element.

If the Object-Z specification of B is a class schema, then add the reference of the object

84

Algorithm 1: Summary of the transformation process

input : GRLSpec

output: RGE:References to Grl Model Elements, OZS:Object-Z specification

begin

{Create Object-Z templates for each GRL model element}

(see chap. 4, sec.4.3.3, pp.70 - 77)

1 foreach GRL model element do

if Object-Z template does not exist then
Create an Object-Z template for the GRL model element

{apply any GRL traversal algorithm to identify all its elements}

(see chap. 4, sec.4.4.1, pp.78 - 79)

2 Traverse(GRLSpec)

Traverse(Actors,GRLSpec)

Traverse(FreeElements, ActorElements,GRLSpec)

Traverse(Links,GRLSpec)

{Create Object-Z class schemas for Actors, Tasks and Resources}

(see chap. 4, sec.4.4.3, pp. 81 - 88)

3 Formalise the identified actors

foreach actor do

Create a new class schema that inherits actors’ template

Create components and operations that are needed

4 Formalise the identified tasks

foreach task do

Create a new class schema that inherits task’ template

Create components and operations that are required

5 Formalise the identified resources

foreach resource do

Create a new class schema that inherits resources’ template

create components and operations that are required

6 Formalise the system class: GRLSpec
(see chap. 4, sec.4.4.3, pp. 81 - 88)

7 Update the specification in the light of link elements
(see chap. 4, sec.4.4.4, pp. 84 - 88)

8 Finalise the specification
(see chap. 4, sec.4.4.4, p.88)

85

describing A to that class. Otherwise, follow each refinement branch from B until the first

task or resource is reached on each branch and add the reference of the object specifying A

to the class of that task or resource.

The influence of a contribution link

The analysis of the influence of the contribution link on the formal specification of the

source and destination elements involved is very similar to that of the decomposition link.

The basic idea is that if a task or a resource contributes to the achievement of a softgoal

(non-functional requirement), the formal specification of that task or resource must keep

track of the object describing the softgoal. As stated before, the presence of the object’s

reference in the specification of the task or resource is to serve, for example, as a constrain,

a control entity or a guide that stimulates the creation of Complementary Non-Functional

actions (CNF-actions) in subsequent development phases of the specification.

Algorithm 2 summarises the influence of link elements. The expression “refinement branch”

used in this document is defined as follows.

Definition 4.4.1. A refinement branch from an intentional element say A, is a set of (consec-

utive) links, composed essentially of decomposition and contribution links, that progressively

decompose/refine A in a GRL model.

86

Algorithm 2: Update the specification in the light of link elements

input : List of links, OZ specification

output: OZ specification updated

begin

This algorithm summarises the framework in (Chapter 4, Section 4.4.4, pp.84 - 88)

List of links = partitions(Depencies ,Decompositions ,Contributions)

1 Analyse each dependency link in Dependencies

Consider the elements of the link: (depender, Why), What, (dependee, How)

if Why is not a softgoal then Consider first softgoal(s) that refine/decompose to Why

let ozWhy be the Object-Z spec of Why or softgoal that refine/decompose to Why

if What is given then target := What

else if How is given then target:= How

case the Object-Z specification of target is a class schema do
Add refWhy to the class

case target is (soft/hard)goal do

foreach refinement branch from target do
add ozWhy to the class schema specifying the first task or resource on

the branch

otherwise do add ozWhy to the class specifying the dependee

2 Analyse each decomposition link in Decompositions

let A and B be respectively the source and destination of the link

if A is not a softgoal then skip

let ozA be the Object-Z specification of A

if the Object-Z specification of B is a class schema then
Add ozA to the class schema {ozA: Object-Z spec of A}

else

foreach refinement branch from B do
Add ozA to the class schema of the first task or resource on the branch

3 Analyse each contribution link in Contributions

let B be the source and A the destination of the link

if A is not a softgoal then skip

let ozA be the Object-Z specification of A

if the Object-Z specification of B is a class schema then
Add ozA to the class schema {ozA: Object-Z spec of A }

else

foreach refinement branch from B do
Add ozA to the class schema of the first task or resource on the branch

87

The inputs and outputs of the algorithm are:

• Inputs: the list of link elements in the Table 5.5, and the specification. The in-

put links are supposedly partitioned into three sub-lists including: Dependencies ,

Decompositions and Contributions .

1. Dependencies contains the list of all the dependency links in the GRL model.

2. Decompositions contains the list of decompositions.

3. Contributions contains the list of contributions.

• Output: the updated specification.

4.4.5 Finalising the specification

This phase is composed of two important tasks: firstly, to check the entire specification and

create triggers in the class ClsGrlSpec, and secondly, to validate the specification.

1. Perform an overall checkup of the specification and create triggers, where necessary, in

the class ClsGRLSpec for those operations that need to be accessed from outside the

class.

2. The specification validation is a tedious and important activities that will be fully

covered in Chapter 6.

The framework so far developed in this chapter is illustrated in Chapter 5 with a reasonable

size case study.

4.5 Chapter conclusion

This chapter has presented an analysis of the relationship between GRL and UCM and

brought forward some conceptual gap between the two models, that needs to be consoli-

dated in order to improve on URN construction process. An analysis of the influence of

NFRs (softgoals) on software development process was also addressed resulting in a sugges-

tion of the concept of Complementary Non-Functional Actions (CNF-actions). This new

concept provides for the means to extend the development of NFRs beyond the GRL model

hence, making it possible to propagate the influence of a NFR (continue the refinement of a

NFR) throughout the entire software development process. The use of CNF-actions would

also facilitate backward traceability e.g., from UCM to GRL and provides for means to re-

port on the impact of GRL softgoals on further software development phases.

88

More importantly, in line with the systematic NFRs analysis process in Figure 4.4, a mecha-

nism to formalise GRL model elements was presented. A framework to generate an Object-Z

specification from an input GRL model was hence elaborated allowing for reasoning formally

about GRL models.

The case study description and the application of the framework developed in this chap-

ter are presented next.

89

90

Chapter 5

Case study

In the previous chapter, a framework to formalise a GRL model was proposed. The Object-Z

specification of each GRL model element was developed.

The transformation process requires, for each GRL model element (type), the use of an

Object-Z class schema, namely a template, that specifies the element to transform concrete

elements into Object-Z. Such templates were equally developed in Chapter 4. This chapter

first proposes a technique that exploits an enterprise organogram to facilitate software projet

scoping and initial problem analysis at an early phase of software development. Afterward,

a GRL model for the case study is constructed followed by the application of the framework,

developed in the previous chapter, to derive an Object-Z specification from the GRL model

of the case study.

Next is the case study description.

5.1 Problem description

A research department in a higher education institution has a research portfolio that includes

a number of research support programmes for researchers and postgraduate students. A call

for a programme is prepared by a programme administrator/manager and emailed to the

members of the faculties and departments within the institution for a specific period during

which applicants may submit their application forms for evaluation.

To apply, an applicant downloads the application form for the opened programme, com-

pletes the form and submits, together with the other required documents, to his/her in-

stitution/college. Depending on the programme, the applicant sometimes needs to get the

application motivated and signed by the supervisor/promoter and the relevant authorities

91

within the college or the institution before any submission. For the motivation process, the

applicant sometimes needs to carry the hard copy of the application from one office to an-

other.

The current system, that is the application process, the management of research support

programmes, as well as the evaluation process of the applications submitted for each pro-

gramme, presents the following difficulties:

p1: Limited spaces for emails:

Each email account has a limited storage space; the sending/receiving of emails becomes

impossible when the allocated space is saturated.

p2: Lack of consistency between the application forms

Each programme has its own application forms with similar fields duplicated on multiple

forms. Generally, those forms when completed at different times even by the same

person, do not contain the same information.

p3: Drawing statistics on application data sent via emails is very hard

Due to the fact that application data need to be downloaded and kept in folders, the

difficulty to assemble files from different folders, access their contents and draw statistics

arises.

p4: Stressful application process

As briefly describes in the previous section, the process from the downloading of an

application form until the submission of the completed form is very time consuming.

This becomes harder when the applicant must personally go to the different authorities

within the concerned institution to get the application motivated and signed.

p5: The evaluation/motivation process is hard

This problem is mainly due to the difficulty of instantly accessing application data

submitted via emails or by posting the hard copy.

Let Problems = {p1, p2, p3, p4, p5} be the set of problems. It is the author’s belief that

the seriousness of the problems does not necessary imply the need to invest resources into

resolving them before proper analysis is conducted and the scope of the system is well defined.

5.2 Problem analysis and scope definition

Keeping in mind that scope definition is one of the harder challenges in requirements engi-

neering (see for example Michael and Kyo [123], Rajagopal et al. [152], Vijayan and Raju

92

[183]), Goal-Based requirements analysis generally assumes that goals are not, a priori, doc-

umented explicitly. It is, therefore, the responsibility of the requirements engineer to explore

various sources of information available to identify, create and organise goals (e.g., Anton

and Potts [21]). The sources of information to be explored include: stakeholders, policies,

transcripts, workflow diagrams, requirements, mission statements, corporate goals and in-

terview facts. Techniques to perform such exploration have been proposed by Regev and

Wegmann [154]:

• Understanding stakeholders’ problems and negating them.

• Extracting intentional statements from stakeholders: interview transcripts, enterprise

policies, enterprise mission statements, enterprise goals, workflow diagrams, and sce-

narios.

• Asking “How” and “Why” questions about these initially identified goals in order to

move about the goal hierarchy.

• Asking “How else” questions to identify alternative means to achieve goals.

The above guidelines are complemented with heuristics to facilitate the identification of

goals from a given source, and address separately goals per type. However, with the increas-

ing complexities of enterprises and software systems, the scope definition problem remains.

Enterprise modeling/architecting is known to be an appropriate tool for requirements engi-

neering (Kirikova and Bubenko [104]), yet with various models that may be built to represent

the different facets of an enterprise (e.g., functional, informational, resource and organisa-

tional Delen et al. [56]), the establishment of appropriate guidelines/pointers to reference

relevant sources of information (or the specific areas within the enterprise where needed in-

formation can be found) remains challenging.

In this work, we propose the use of an organogram to address the above scope delimita-

tion challenges.

5.2.1 The organogram approach to problem analysis and scope

definition

Guidelines for constructing the organogram

(1) Create an organogram for the company, based on business objectives, if no organogram

is found.

93

(2) Transform the organogram to add, at each level, one decisional component to each

domain (sub-structure) at that level.

(3) Transform the organogram to include, at each level, operational elements to each do-

main or sub-domain. Such operational elements should be characterised mainly by the

service(s) or operations they perform.

(4) At each level in the organogram and for each decisional component, determine the

objectives assigned to such component.

(5) For each operational element, when possible, relate the objectives to other elements

within the same domain (horizontal relationship) and to the operational component in

the immediate higher-level domain (vertical relationship).

Figure 5.1 results from applying the first three steps of the organogram construction guide-

lines. A rectangle represents a domain or a sub-domain of the organisation. An ellipse

inside a rectangle represents a decisional or managerial component/agent whereas, a stan-

dalone ellipse represents an operational component. Since an organogram has a directed

graph structure, graph concepts are considered for the modeling. This has the advantage

that existing graph theory on modeling and graph search may be exploited. The definitions,

presented next and further graph theory that may be utilized in later stages are taken from

Baase and Van Gelder [22].

Definition 5.2.1. A directed graph is a pair G = (V, E) where V is a set whose elements

are called vertices or nodes, and E is a set of ordered pairs of elements of V. Elements of V

are called arcs or directed edges.

Let x 7→ y ∈ E , x is called the tail of the edge or the direct predecessor of y , whereas,

y is called the head of the arc or the direct successor of x .

Definition 5.2.2. A sub-graph of a graph G = (V, E) is a graph G’ = (V’, E’) such that

V ′ ⊆ V and E ′ ⊆ E .

Graph traversal: To reach each vertex and each edge of the graph for their processing,

a traversal strategy was adapted from the two fundamental graph search mechanisms [22]:

breadth-first and depth-first. From a list of sub-objectives of an operational or a decisional

node, the adapted strategy searches the entire organogram and produces the list of nodes

and associated objectives that need to be considered during Goal/Requirements elicitation

phase.

94

Figure 5.1: College organogram

95

Algorithm 3: The main algorithm

input : E, CurV, CurObj, CurHrel, CurVrel

output: CurV’, CurObj’, CurHrel’, CurVrel’

begin
Initialize (CurV, CurObj, CurHrel, CurVrel)

while there are vertex in CurV not colored black do

foreach vertex v ∈ CurV do

if color(v) is white then

{horizontal processing of v}

Call Algorithm 4

color(v)←− grey

else if color(v) is grey then

{vertical processing}

Call Algorithm 5

color(v)←− black

The main algorithm

E is the set of directed edges; CurV contains the currently identified vertices that may be

considered during requirements elicitation. CurObj is the set of objectives so far identified

and CurHrel and CurVrel represents, respectively, the horizontal and vertical relationships

between the currently identified objectives. The initialisation of CurV colors each vertex

white. When a vertex is first visited, the horizontal search is performed and the vertex is

colored grey.

The horizontal processing algorithm

For a given node, the purpose is to identify those objectives of the node that are in a

horizontal relationship with the currently identified objectives.

The vertical processing algorithm

For the input node, the main purpose is to identify direct predecessors and successors of the

node which objectives are in vertical relationship with the objectives of the input node.

96

Algorithm 4: Horizontal search

input : v, CurObj, CurHrel

output: CurObj, CurHrel(updated)

begin

ListObjectives = ranCurObj

foreach Ov ∈ ran({v}⊳ CurObj) do

foreach O ∈ ListObjectives do

if Ov 7→ O ∈ hRel or O 7→ Ov ∈ hRel then

CurObj ←− Ov

CurHrel ←− Ov 7→ O | O 7→ Ov

5.2.2 Modeling the organogram as a graph

Before proceeding with the modeling, the construction of the organogram first needs to

be completed by applying steps 4 and 5 pertaining to assign business objectives to each

operational agent and create both the horizontal and vertical relationships between those

objectives.

1. Modeling nodes: a unique identifier is created for each node.

Example 5.2.1. node identifiers:

NodeId Node description

cd The office of the dean of the college

crdd The office of the director of the research department

2. Linking Objectives to nodes: a business objective, as well as, any important element

within a company can be modeled similarly to nodes. A unique identifier of an objective

is formed by adding to the node’s identifier ’ob’ followed by an order number.

Example 5.2.2. two objectives of, respectively, the deanery and the directorate of

the research department.

97

Algorithm 5: Vertical search

input : v, CurObj, CurV, E, CurVrel

output: CurV, CurObj, CurVrel(updated)

begin

ListObjectives = ran({v}⊳ nodeObj)

{analysing the direct predecessor of v }

if v has direct predecessor w (w 7→ v ∈ E) then

if ∃1Ow 7→ Ov ∈ vRel | Ow : Objective of w , Ov : Objective of v then

w 6∈ CurV ⇒ CurV ←− w

foreach Ow 7→ Ov ∈ vRel do

CurVrel ←− Ow 7→ Ov

CurObj ←− Ow

{where Ow is an objective of w and Ov an objective of v}

{analysing the direct successors of v}

if v has at least one direct successor s(v 7→ s ∈ E) then

foreach direct successor s of v do

if ∃1Ov 7→ Os ∈ vRel | Ov : objective of v and Os : objective of s then

s 6∈ CurV ⇒ CurV ←− s

foreach Ov 7→ Os ∈ vRel do

CurObj ←− Os

CurVrel ←− Ov 7→ Os

98

Identifier Business objective description

cdob1 Develop research and postgraduate supervision capacity within the institution

crddob1 Timeously report on research funding for different programmes

crddob3 Negotiate research funding and scholarships from industries

crddob4 Attract new postgraduate students

An objective is linked to a node by means of a relation between their identifiers:

nodeobj : objectiveId ↔ nodeId .

A complete list of nodes and associated objectives for the case study is presented in

Table B.1 of Appendix B.

3. relationships between objectives: Two relationships between business objectives are

defined, namely, the horizontal and vertical relationships. The horizontal relationship

models the complementarity relationship between the objectives at the same abstrac-

tion level, especially the complementarity between the objectives. The vertical rela-

tionship links a refined objective to its source.

Horizontal relationship - Hrel : Objective → Objective

Vertical relationship - Vrel : Objective → Objective

Example 5.2.3. crddob3 7→ crddob4 ∈ Hrel indicates that objective crddob4 is sup-

ported or complemented by crddob3. In other words, the college efforts to negotiate

research funding and scholarships from industries is meant to attract new postgraduate

students.

cdob1 7→ crddob1 ∈ Vrel also indicates that objective crddob1 was obtained from

cdob1 by refinement.

The complete lists of vertical relationships and horizontal relationships between busi-

ness objectives at each node are presented, respectively, in Table B.2 and B.3 of the

Appendix B.

The idea so far presented on the modeling and exploitation of enterprise organograms by

means of algorithms to address the scope definition challenge in goal/requirements analysis

process, was initially published in the proceedings of the Second International Conference

On Advances in Computing, Communication and Information Technology CCIT-2014 [63],

and later selected and published as a journal article in [66].

99

5.2.3 The scope definition

The graph model of the case study presented in Section 5.2.1 and Appendix B, was specified

in Object-Z and animated with Prolog. The proposed approach to animate an Object-Z spec-

ification with Prolog is fully developed in Chapter 6. The Prolog programme used for the case

study is presented in Appendix B. The programme implements the three algorithms: Algo-

rithm 1, 2 and 3 to scan, in the light of vertical and horizontal relationships, the organogram

in search of candidate domains that maybe included in the scope of goal/requirements anal-

ysis.

Since the problems presented in Section 5.1, are rooted from the support programmes de-

partment, the search also starts at the node crdsp. The initial objectives selected at this

node are:

• crdspob1: Provide maximum support to applicants.

• crdspob2: Increase the number of applicants through advertisement.

Amzi! Prolog (IDE Only)

Licensed to

Free Version

Interpreting project: MyProject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’operationaleltch5.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_op([[crdsp], [crdspob1,crdspob2], [], [], []],main).

...

yes

?-

The un-formatted version of the output generated by the programme Prolog can be consulted
in Section B.0.5, Appendix B in its initial form. The output was re-structured and presented
in Table 5.3. Selected nodes are shown in the first column and the associated objectives in
the last column. The selected nodes and objectives are justified by the vertical and horizontal
relationships contained, respectively, in the second and third columns.

Scope definition (formatted Prolog output)

Node Vertical Relations Horizontal Relations Objectives

crdsp crddob2/crdspob2 crdspob3/crdspob1 crdspob1, crdspob2,

crddob4/crdspob1, crdspob3.

crddob2/crdspob1,

100

Scope definition (formatted Prolog output)

Node Vertical Relations Horizontal Relations Objectives

crdrm crddob4/crdrmob1 crdrmob1

crdd cdob2/crddob2, crddob3/crddob4 crddob1, crddob2,

cdob1/crddob4, crddob4, crddob3

cdob1/crddob1

cfd cdob2/cfdob2, cfdob2/cfdob1 cfdob2, cfdob1

cdob2/cfdob1, cdob6/cfdob2

cdob3/cfdob2, cdob3/cfdob1

csd cdob2/csdob4, cdob2/csdob3 csdob2/csdob1 csdob1, csdob2,

cdob2/csdob1, cdob1/csdob2 csdob4/csdob1 csdob3, csdob4

cdob5/csdob4, cdob4/csdob4

cdob5/csdob2, cdob4/csdob2

cscsed csdob4/cscsedob1 cscsedob1/cscsedob2 cscsedob1

cscd csdob3/cscdob5, cscdob2/cscdob1 cscdob1, cscdob2,

csdob1/cscdob1, cscdob4/cscdob1, cscdob3, cscdob4,

csdob2/cscdob3, cscdob5/cscdob2 cscdob5

csdob2/cscdob2

csad csdob4/csadob3, csadob2/csadob1, csadob1, csadob2

csdob1/csadob1 csadob3/csadob1 csadob3

csas csdob4/csasob4, csdob4/csasob2, csasob1, csasob2

csdob3/csasob3, csdob3/csasob2, csasob3, csasob4

csdob1/csasob1, csdob2/csasob3

cscdce cscdob1/cscdceob2 cscdceob2

cscdt cscdob5/cscdtob2, cscdtob2, cscdtob1

cscdob2/cscdtob1

cscdr cscdob1/cscdrob1, cscdrob1, cscdrob2

cscdob2/cscdrob2,

cscdob4/cscdrob2

cscseel cscsedob1/cscseelob3 cscseelob1/cscseelob3 cscseelob1, cscseelob2

cscsedob1/cscseelob2 cscseelob3

cfrf cfdob2/cfrfob2, cfdob2/cfrfob1, cfrfob1, cfrfob2

cfdob1/cfrfob2,

cfr cfdob2/cfrob1, cfdob1/cfrob1 cfrob1

cd cdob6/cdob3 cdob1, cdob2, cdob3

cdob4, cdob5, cdob6

Table 5.3: Generated goal/requirements scope

A relation crddob2/crdspob2 in the vertical relationship column is a Prolog implementation

of: crddob2 7→ crdspob2 ∈ Vrel .

Example 5.2.4. The objective crdspob3 not selected initially was included by Prolog due

to the horizontal relationship crdspob3/crdspob1 (crdspob3 7→ crdspob1 ∈ Hrel).

101

Let selNodes be the set of selected nodes and objectives in Table 5.3.

selNodes = {
crdsp{ob1, ob2, ob3}, crdrm{ob1}, crdd{ob1, ob2, ob3, ob4}, cfd{ob1, ob2},
csas{ob1, ob2, ob3, ob4}, csd{ob1, ob2, ob3, ob4}, csad{ob1, ob2, ob3},
cscd{ob1, ob2, ob3, ob4, ob5}, cscdr{ob1, ob2}, cscdce{ob2}, cscdt{ob1, ob2},
cscsed{ob1}, cscseel{ob1, ob2, ob3}, cfr{ob1}, cd{ob1, ob2, ob3, ob4, ob5, ob6},
cfrf {ob1, ob2}
}

An element crdrm{ob1} ∈ selNodes indicates that the node crdrm was selected to be included

in the scope, as well as its objective crdrmob1.

5.2.4 Problem analysis

Analysing the initial problems: Problems = {p1, p2, p3, p4, p5}, consists to investigate the

impact of the problem on selNodes with the purpose to eliminate those elements that are

not affected and derive appropriate solutions for those elements that are. For example, one

may ask what influence would p4 (Stressful application process) have on the achievement

of the objective csdob1 (increase research output by at least 5%) at csd node (the school

director’s office). Table B.4 in Appendix B illustrates the result of such an analysis.

Example 5.2.5. At the dean’s office, a possible impact of P4: stressful application process

and P5: A stressful motivation and vetting process may be the following: p4 discourages

researchers (whose time is generally limited) and P5 would equally discourages supervisors

and managers. Such discouragements would therefore, affect negatively the dean’s objective

to create and environment that encourages and foster the culture of research within the

institution (cdob2).

From the result in Table B.4, the problem domain is obtained by eliminating from selNodes

nodes and objectives that are not likely to be affected by the initial problems.

pbDomain = {
crdsp{ob1, ob2, ob3}, crdd{ob1, ob3}, cfd{ob1},
csas{ob1, ob2}, csd{ob1, ob3, ob4}, csad{ob3},
cscd{ob1, ob4}, cscdr{ob1}, cscsed{ob1},
cscseel{ob3}, cfr{ob1}, cd{ob1}, cfrf {ob1, ob2}
}

An interesting aspect of this approach is that, the path representing the propagation of

the influence of a specific problem from the initial component to any other one can be

re-constructed using the vertical and/or the horizontal relationships.

102

5.3 The GRL modeling

pbDomain offers an environment to perform traditional goal/requirements analysis process,

presented earlier in Section 5.2. Each component of pbDomain provides for a location to look

for stakeholders, policies, mission statements and more importantly business objectives as

well as resources and tasks readily available. Detail understanding of the influence of a prob-

lem on one or more components of pbDomain would consequently help to derive appropriate

solutions in terms of: softgoals, goals, resources, tasks, etc. that should thereafter, be inte-

grated into the goal/requirement model in construction. Assuming the following decisions

of the stakeholders:

(1) Resolve the problems due to email space saturation

(2) Facilitate the management of submitted applications

(3) Improve the application and motivation process

(4) Reduce the turnaround time of an application

(5) Ensure consistency between programmes

5.3.1 Solving the problem

The main issue with the limited email size (see Table B.4) is the difficulty to access the

submitted applications that in some cases induces more work and causes delays in achieving

some business objectives. A possible solution is a well-designed structure to keep data such

as database or ontology. Online application forms would equally eliminate the errors due to

the use of multiple forms designed for each program; facilitate the application, the evaluation

and the motivation processes. It may also reduce the effort to manage the submitted ap-

plications and draw statistics. Since the main issues addressed here concerns errors, delays,

time, discouragements of applicants and motivators, the chief qualities of the solution would

therefore be:

• availability, accessibility and security of data,

• bringing the number of errors in submitted applications close to zero,

• being flexible and user friendly,

• optimising the turnaround time for an application,

• realtime availability of statistics and other processed information.

103

The GRL construction process presented in Chapter 4, Section 4.1.1, pp.53 - 56 and Figure

4.1, P.54, is followed to construct the GRL model for the case study. The following im-

portant aspects are considered: actors (role-players) identification, developing softgoals, and

developing hard goals. During softgoals’ development, links are also made to hard goals.

5.3.2 Actors identification

The problem domain pbDomain is scrutinized to identify all the role-players within the

domain. Four actors are therefore identified: applicant, motivator, evaluator, programme

administrator and the database server.

Applicant

An applicant is anyone who applies for a research support programme. These include, aca-

demic staff members, students as well as any other staff member who does research.

The main concern of the applicant is the improvement of the application process. In GRL

construction, the wish to Improve the application process constitutes therefore the main

intent of the applicant which is progressively refined/decomposed.

Motivator/Evaluator

A motivator is mainly a research student’s supervisor or a director. A motivator supports

or motivates a researcher’s application by providing the researcher with a motivation letter

and/or signing the application form. An evaluator is anyone who takes part to a vetting

process. Due to the fact that the same people are generally involved in both, the motiva-

tion and evaluation, in the GRL model under-construction, any of the terms Motivator and

Evaluator invariably refers to both Motivation and Evaluation.

The wish of a motivator is to improve the motivation and evaluation process. In the spec-

ification, the motivator’s intention to improve the motivation and evaluation process, which

represents a softgoal in the GRL terminology is progressively refined.

(Support programme) Administrator

A support programme administrator is someone from the crdsp department in charge of

the management of all support programmes. The programme administrator keeps a list of

research support programmes that are regularly updated. Each programme is managed sep-

arately since the opening and closing periods differ from one programme to another. When

104

a programme is opened, manually completed application forms are submitted directly via

emails to the programme administrator.

As indicated earlier, the management of applications submitted via emails has been the

source of numerous difficulties thus, the wish of the administrator to see those difficulties

resolved. In GRL, the concern of the administrator to resolve email problems is considered

the main softgoal that is progressively refined/decomposed in the GRL model construction

process.

Server

A server is a system that maintains the database and provides access to the data. Thus,

although a server may not have intentions, it nevertheless provides for services that are

needed by other actors and which contribute to the achievement of their objectives. The

server maintains a database composed for example, of data on submitted applications, data

that facilitate the generation of form sections that are assembled to form an online application

form, etc.

5.3.3 The GRL model for the Case study

The model is represented in Figure 5.2.

5.3.4 The GRL model description

An important objective is to improve the application process. This softgoal is decomposed

into flexible application process and reducing the overall application time. Applying and

motivating online are believed to contribute to reduce the application time and render the

process flexible. Complementarily, being able to access own submitted applications for up-

date/consultation would also contribute to render the application process flexible. To per-

form online application, two tasks are required: the first is for the server to generate applica-

tion form’s sections, and the second is for the applicant to complete the application form and

submit the information online. It is important to notice that any online activity depends on

the availability of the Internet connection, including the online application, as well as the

online motivation.

The main concern of the Administrator is to resolve email space limitation(softgoal) and

hence address the difficulties induced on the management of applications submitted via

emails. To achieve this objective, two sub-goals need to be satisfied all together: the first is

to facilitate the management of submitted applications(softgoal) and the second to improve

105

Figure 5.2: Goal model for programmes administration and online application

106

the evaluation/motivation process(softgoal). To achieve the first one, two other goals must

be satisfied: firstly, the administrator must have instant access to programmes(hardgoal)

and Have consistent application forms(hard goal). An instant access to programme data

is accomplished by keeping permanently data on programmes(Task) and applications in the

database. providing the server with appropriate information on forms’ sections(Task) will

help to keep application forms consistent and facilitate their automatic generation by the

server. At the Administrator’s level, the task that consists to generate reports on submitted

applications contribute to Improve the evaluation and motivation process.

5.4 Formalising the GRL model of the case study

We now apply the framework for a formal specification of a GRL model, described in (Chap-

ter 4, Section 4.4, p.77), to the GRL model in Figure 5.2. The transformation process

summarised in (Chapter 4, Section 4.4.3, p.81) is followed to produce, at each step, the

desired outputs.

5.4.1 GRL transformation templates

Templates for each GRL element type were presented in the previous chapter and summarised

in (Table 4.5, P.82). We simply use them here to derive the formal specification of the model

in Figure 5.2. It is important to note that when a template is used during the formalisation,

it becomes part of the specification in construction. For example, defining performance as an

instance of the class of softgoals ClsSoftGoal , makes the class to be part of the specification

in construction.

performance : ClsSoftGoal

5.4.2 GRL elements identification

As proposed in the framework of Chapter 4, a traversal algorithm is used to scan the input

GRL model to determine its elements: actors, elements bound to actors’ definitions, free

elements (not bound to any actor’s definition), and links.

Actors

Traverse(Actors, grlspec): returns the list of all the actors elements in the variable Actors.

This will produce the following list:

Actors = {Applicant ,Motivator ,Administrator , Server}

107

Intentional elements

Traverse(FreeElements, ActorElements, grlspec): returns the list of all model elements that

are not bound to any actor definition in the variable FreeElements. Model elements bound

to actors definition are also returned in the variable ActorElements.

FreeElements = {Internet , Intranet ,Belief 01}
ActorElements = ApplicantElts ∪MotivatorElts ∪ AdministratorElts ∪ ServerElts

The elements of each actor’s definition are presented in Table5.4. Names in the table are
obtained by connecting words composing the original name (in the GRL model) one to
another in the same order they appear in the original name. Some of the words are first
abbreviated.

ActorElements ApplicantElts MotivatorElts AdminElts ServerElts

Softgoals ImprovAppProc ImprovMotivEvalProc ResolvEmailPb

FlexibleProcess CombineMotivEval ImprovEvalMotivTime

FacilAppManagement

Goals ReduceAppTime ColabWithAdmin HaveConsistForms

AppOnline MotivEvalOnline InstantAccesToPgData ColabHRSys

Tasks AccessOwnApp MeetingsToMotivEval GenStatsOnApp GenFormSections

SubmitAppOnline SubmitMotivEvalOnline ProvidInfoGenForms MaintSubmitedApp

ReportOnSubmitedApp KeepPgDataInDb MaintDb4SuppPg

Resources [Intranet] [Intranet] [Intranet]

[Internet] [Internet]

Beliefs GenSecBelief

Table 5.4: Intentional elements of the input GRL model

Links

Traverse(Links, grlspec): returns the list of all the elementlinks in the variable Links.

Links = DecompositionElts ∪ ContributionElts ∪DependencyElts

The elements of each subset of Links are presented in Table5.5 per link type and per actor’s
definition.

Links DecompositionElts ContributionElts

Applicant dc1: And (ImprovAppProc,FlexibeProcess) c1: (AccessOwnApp,FlexibleProcess)

dc2: And(ImprovAppProc, ReduceAppTime) c2: (AppOnline,FlexibleProcess)

c3: (AppOnline,ReduceAppTime)

c4: (SubmitAppOnline, AppOnline)

Motivator dc3: And(ImprovMotivEvalProc, CombineMotivEval) c5: (MeetingsToMotivEval, CombineMotivEval)

dc4: And(ImprovMotivEvalProc,MotivEvalOnline) c6: (submitMotivEvalOnline, MotivEvalOnline)

dc5: And(ImproveMotivEvalProc,ColabWithAdmin) c7: (ReportOnSubmitedApp, ColabWithAdmin)

Administrator dc6: And(ResolvEmailPb, ImprovEvalMotivTime) c8: (InstantAccessToPgData, FacilAppManag)

dc7: And(ResolvEmailPb, FacilAppManagement) c9: (HaveConsistForms, FacilAppManag)

c10: (GenStatsOnApp, ImprovEvalMotivTime)

c11: (KeepPgDataInDb, InstantAccessToPgData)

c12: (ProvidInfoGenForms, HaveConsistForms)

Server c13: (MaintDb4SuppPg, GenFormSections)

c14: (MaintDb4SuppPg, MaintSubmitedApp)

c15: (GenFormSections, AppOnline)

108

Links DecompositionElts ContributionElts

Links DependencyElts

dp1: (Applicant:ApplyOnline,Free:Internet)

dp2: (Motivator:MotivEvalOnline,Free:Internet)

dp3: (Administrator:GenStatsOnApp, Free:Intranet)

dp4: (Administrator:ProvidInfoGenForms, Free:Intranet)

dp5: (Administrator:KeepPgDataInDb,Free:Intranet)

Table 5.5: Link elements in the GRL model for the case study

When an input GRL model has a large number of elements, it is important to structure

those elements to facilitate the specification process and ensure that all the elements are

considered during the process. Such a planning for the case study is presented next.

5.4.3 Planning the specification

Having identified all the GRL elements, from the input model, that are to be formalised, it is
then possible to plan for the list of Object-Z elements that are to be derived and if possible,
structure them, in the order in which they will be created. Table 5.6 is an example of such
a planning for the case study.

order Object-Z Elements GRL Element

No. To be Created Container Template Strategy

1 ClsApplicant ClsActors Applicant Inheritance

1 ClsMotivator ClsActors Motivator Inheritance

1 ClsAdministrator ClsActors Administrator Inheritance

1 ClsServer ClsActors Server Inheritance

4 ozImprovAppProc ClsApplicant ClsSoftGoal ImprovAppProc Instantiate

4 ozFlexibleProcess ClsApplicant ClsSoftGoal FlexibleProcess Instantiate

4 ozImprovMotivEvalProc ClsMotivator ClsSoftGoal ImprovMotivEvalProc Instantiate

4 ozCombineMotivEval ClsMotivator ClsSoftGoal CombineMotivEval Instantiate

4 ozResolvEmailPb ClsAdministrator ClsSoftGoal ResolvEmailPb Instantiate

4 ozImprovEvalMotivTime ClsAdministrator ClsSoftGoal ImprovEvalMotivTime Instantiate

4 ozFacilAppManagement ClsAdministrator ClsSoftGoal FacilAppManagement Instantiate

4 ozReduceAppTime ClsApplicant ClsGoal ReduceAppTime Instantiate

4 ozAppOnline ClsApplicant ClsGoal AppOnline Instantiate

4 ozColabWithAdmin ClsMotivator ClsGoal ColabWithAdmin Instantiate

4 ozMotivEvalOnline ClsMotivator ClsGoal MotivEvalOnline Instantiate

4 ozHaveConsistForms ClsAdministrator ClsGoal HaveConsistForms Instantiate

4 ozInstantAccessToPgData ClsAdministrator ClsGoal InstantAccessToPgData Instantiate

4 ozColabHRSys ClsServer ClsGoal HaveConsistForms Instantiate

2 ClsAccessOwnApp ClsApplicant ClsTask AccessOwnApp Inheritance

2 ClsSubmitAppOnline ClsApplicant ClsTask SubmitAppOnline Inheritance

2 ClsMeetingToMotivEval ClsMotivator ClsTask MeetingsToMotivEval Inheritance

2 ClsSubmitMotivEvalOnline ClsMotivator ClsTask SubmitMotivEvalOnline Inheritance

109

order Object-Z Elements GRL Element

No. To be Created Container Template Strategy

2 ClsReportOnSubmitedApp ClsMotivator ClsTask ReportOnSubmitedApp Inheritance

2 ClsGenStatsOnApp ClsAdministrator ClsTask GenStatsOnApp Inheritance

2 ClsProvideInfoGenForms ClsAdministrator ClsTask ProvideInfoGenForms Inheritance

2 ClsKeepPgDataInDb ClsAdministrator ClsTask KeepPgDataInDb Inheritance

2 ClsGenFormSections ClsServer ClsTask GenFormSections Inheritance

2 ClsMaintSubmitedApp ClsServer ClsTask MaintSubmitedApp Inheritance

2 ClsMaintDb4SuppPg ClsServer ClsTask MaintDb4SuppPg Inheritance

3 ClsIntranet ClsResource Intranet Inheritance

3 ClsInternet ClsResource Internet Inheritance

5 ozGenSecBelief ClsBelief GenSecBelief Instantiate

Table 5.6: List of Object-Z Elements to be Created

Without being prescriptive, the numbers in the first column of Table 5.6 suggest the order in

which Object-Z element should be created. For example, it is necessary to first create class

schemas describing actors’ definitions which are containers before creating the elements that

they contain.

Link elements are not included in Table 5.6 to keep the table’s size manageable. How-

ever, it is to be recalled that each link element is formalised by instantiating one of the three

templates: ClsDependency , ClsContribution, and ClsDecomposition.

The other important class to be defined is the class ClsGrlSpec through which most of

the instantiations are performed to create and keep objects describing softgoals, goals, be-

liefs and link elements.

In total, 59 (fifty nine) Object-Z elements to be created are summarised in Table 5.7.

No. Element Number type object

1 actors 4 class schemas

2 sofgoals 7 objects

3 goals 7 objects

4 tasks 11 class schemas

5 resources 2 class schemas

6 belief 1 object

7 links 26 objects

8 grlspec 1 class schema

110

No. Element Number type object

Total : 59

Table 5.7: Summary of Object-Z elements to be created

In view of the relatively large number of class schemas and objects to be created, we have

limited the specification to:

• one actor’s definition with all the elements that it contains, as well as any link element

in which the actor or any of its elements is involved in.

• the two resources Intranet and Internet that are not bound to any actor.

• the generic class schema named ClsGrlSpec that normally defines most of the func-

tionalities of the system, as well as data pertaining to represent the big picture of the

model being formalised.

5.4.4 Formalising the identified actors

Since the specification process of actors is the same, we present only one case, that is, the

formalisation of the GRL’s actor named Applicant to illustrate the process. In the light

of the framework in Chapter 4, we first explain how different parts of the class schema

were created and present resulting Object-Z class schema thereafter with, when necessary,

additional description of its contain.

Creating the class schema: ClsActorApplicant

The class schema is generated from the template class ClsActor by inheritance (see Chapter

4, Section 4.4.2, p. 79). The class name is obtained by adding the class name Applicant to

that of the Object-Z template ClsActor . The new class (subclass) extends the superclass

with features specific to the actor under-consideration.

Creating the components of the class

The state of the class includes three type of components:

• Components inherited from the superclass ClsActor .

id : Identifier
name : String
mdata : FClsMetaData
importance : ImportanceType
impquantitative : Z

111

id is the GRL identifier of the GRL element being specified and name is the name of

the element. The class ClsMetaData was defined in the previous chapter (see Section

4.3.3, P.70). These variables are inherited by all the class schemas created in this

document to specify GRL linkable elements including Actors, Tasks and Resources.

• Components that are common to all actors class :

The following components are included in all such schemas: softgoals , goals , beliefs and

nfdependers . The first three components specify respectively, the list of softgoals, goals

and beliefs bound to the actor. The variable nfdependers keeps a record of Object-Z

objects references specifying softgoals which achievement depends directly or indirectly

on the GRL actor being specified.

It is important to note that the intentional elements Tasks and Resources bound to

an actor’s definition are specified as class schemas in Object-Z. Each of such classes

includes a variable that keeps a reference to the class schema describing the actor to

which the GRL tasks are bound. That is why, unlike softgoals , goals and beliefs , there

is no variable in the class schema of the actor to capture Object-Z objects describing

tasks and resources.

• Components specifying characteristics or properties specific to each actor.

A class schema describing an actor’s definition may include variables to specify prop-

erties specific to that particular type of actors. For example, if needed, a full profile of

an actor may be included: National Identity Card/book number (applicantid), name,

surname, home address, work address, email address, ... To keep it simple, only the

applicantid is included.

Creating the operations of the class

As shown in Table 5.6, the elements of each of the three components softgoals , goals and

beliefs are created by instantiating their respective templates. To performed this, the fol-

lowing operations are created within the actor’s class schema:

• NewSoftGoal : creates a new object by instantiating the class ClsSoftGoal of softgoals,

and adds to the variable softgoals . The class ClsSoftGoal thus, becomes part of the

specification.

• NewGoal : creates a new object by instantiating the class ClsGoal of goals, and adds

the object to the variable goals . The class ClsGoal also known as a template, becomes

part of the specification if not yet added.

112

• NewBelief : creates a new object by instantiating the class ClsBelief , a generic class

specifying GRL elements of type belief and add to the variable beliefs . Similarly to the

classes ClsSoftGoal and ClsGoal , the class ClsBelief becomes part of the specification.

• Addnfdepender : this operation adds an input object of type ClsSoftGoal to the variable

nfdependers .

An object of the class ClsSoftGoal is considered when the class containing the compo-

nent nfdependers , to which it is added, specifies a Grl element that refines (directly or

indirectly) the softgoal. The choice of such an object (describing a softgoal) is based

on the analysis of the link elements, summarised in Algorithm 2, on page 87.

In general, as recommended in our Object-Z formalisation framework (see Chapter 4, Section

4.4.4, pp.84 - 88) after using a template for the first time in a specification, the template

is added to the specification under construction. That is why the following classes used in

this section are included to the specification: ClsSoftGoal , ClsGoal , ClsBelief , as well as

ClsActor .

113

Class schema representation

ClsActorApplicant
↾(name, softgoals , goals , beliefs , nfdependers)
ClsActor

applicantid : Identifier
softgoals : PClsSoftGoal
goals : PClsGoals
beliefs : PClsBelief
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .id 6= id

INIT
softgoals = ⊥ ∧ nfdependers = ⊥ ∧ goals = ⊥ ∧ beliefs =⊥
ClsActor .Init

NewSoftGoal
∆(softgoals)
sgoal? : ClsSoftGoal

softgoals ′ = softgoals ⊕ {sgoal?}

NewGoal
∆(goals)
goal? : ClsGoal

goal?.Init ∧ goal?.actor .id = id
goals ′ = goals ⊕ {goal?}

NewBelief
∆(beliefs)
belief ? : ClsBelief

belief ?.actor .id = id
beliefs ′ = beliefs ⊕ {belief ?}

Addnfdepender
∆(nfdependers)
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

The initialisation operation

Initially, the four variables are empty. The applicantid and other characteristics (if any)

such as the id are setup when the class schema is created. The inherited components are

114

initialised by activating ClsActor .Init .

Text description

The operation NewSoftGoal initialises the instance sgoal? of softgoals’ template passed to

the operation as the unique input. The identifier of the class ClsActorApplicant is passed

to the property sgoal?.actor .id and sgoal?, which is in fact a reference to the real object, is

added to the variable softgoals . The operations so far specified are limited to the essential for

illustration purpose. In practice, one would include more operations for example to update

the components.

5.4.5 Formalising the tasks: AccessOwnApp and SubmitOnline

The two tasks bound to the actor’s definition Applicant that are to be specified are:

Access own application and Submit application online. As recommended by the transfor-

mation framework, two class schemas are created: ClsAccessOwnApp and ClsSubmitOnline.

The two classes play complementary roles; the first class (ClsAccessOwnApp) helps the

applicant to access its application and hence, allowing the owner to modify the contain. The

second class provides the applicant with the possibility to upload the modified application

back to its storage place: the database.

The construction process of these classes is the same. Thus, only one case is presented

next; the construction of the class schema ClsAccessOwnApp.

Creating the class: ClsAccessOwnApp

The class schema is generated from the template class ClsTask by inheritance (see Chapter 4,

Section 4.4.2, p. 79). The new class (subclass) extends the superclass with features specific

to the actor under-consideration and the template itself becomes part of the specification.

Creating the state of the class

The state schema of this class is composed the state inherited from the superclass ClsTask ,

as well as variables specifying properties specific to this particular task. The inherited

115

components are:

id : Identifier
name : String
mdata : FClsMetaData
importance : ImportanceType
impquantitative : Z
actor : ClsActor

The only variable specific to the task namely, apps , is used to illustrate the idea. The

component apps keeps the list of all the submitted applications from which one is to be

accessed by the applicant.

Creating the operations

Two operations are created: SelectApp and Addnfdepender .

• SelectApp is created to perform the selection of the application

• Addnfdepender to update the list of softgoals whose achievement depends on the ele-

ment being specified.

Graphical representation of the class

The list represents in fact a view, accessible by the applicant, of the applications in a

database.

ClsAccessOwnApp
↾(apps , SelectApp)
ClsIntentionalElement
[Application]

apps : PApplication
nfdependers : PClsSoftGoal

SelectApp
app! : Application

apps 6= ∅ ∧ ∃ app ∈ apps • app! = app

Addnfdepender
∆(nfdependers)
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

116

The variable apps contains a list of applications submitted by applicants for different research

support programmes. The operation SelectApp accesses the list of submitted applications

and allowing the applicant to select any of its applications.

5.4.6 Formalising the identified resources

Two resources are to be specified: ClsIntranet and ClsInternet .

Creating the class: ClsIntranet

ClsIntranet
↾(networkadmin)
ClsResource
[Person]

networkadmin : Person
nfdependers : PClsSoftGoal

Addnfdepender
∆(beliefs)
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

At this stage, it is difficult to decide which aspect of the resource to describe. It seems

reasonable that the support programme administrator (dependee actor) would be more in-

terested in knowing who to contact in case the resource (Intranet) is not available: network

problem. However, if non-functional requirements like performance and/or security are to

be considered, properties such as network type and structure will have to be included in the

specification.

Creating the class: ClsInternet

117

ClsInternet
↾(provider)
ClsResource
[Internetprovider]

provider : Internetprovider
nfdependers : PClsSoftGoal

Addnfdepender
∆(nfdependers)
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

As in the case of the class ClsIntranet , we limit the properties of the Internet to the knowledge

of the internet provider. At this stage one would have created class schemas for all the

actors, tasks and resources. Next, we engage with the specification of the class ClsGrlSpec

as recommended in the framework.

5.4.7 Formalising the system class: ClsGrlCaseStudy

The main purpose of this class is to provide for an environment from which other classes can

be accessed and manipulated.

Creating the Class schema: ClsGrlCaseStudy

The suggested class name contains the prefix ClsGrlSpec followed by any suffix that best

describes the case at hand. The structure of this class does not differ from one case to another;

mainly the content of variables will differ and in some cases more or fewer operations may

be specified.

Creating the class components

The essential components of this class are: actors , freeelts , and alllinks . The variable actors

contains the list of all the references to actors’ class schemas, whereas, freeelts keeps the list

of all the Object-Z classes and subclasses that formalise GRL elements that are not contained

in any actor’s definition. The variable alllinks captures the reference to all the link elements

within the specification. Initially, all these tree components are empty. The predicate part

of the schema ensures that no element in freeelts is bound to an actor’s definition.

118

Creating the operations needed for the class

Three operations are defined to update the variables actors , freeelts and alllinks so far

defined; and one operation to bound an element to an actor’s class: AddActor , NewFreeelt ,

NewLink and BoundIntentionElt . In practice, many more operations may be specified for

example, to remove an object from a given component.

ClsGrlCaseStudy
↾(freeelts , actorselts , alllinks)

actors : P Identifier
freeelts : P ↓ClsIntentionalElement
alllinks : P ↓ClsElementLink

∀ elt ∈ free elts • elt .actor =⊥

INIT
actors = ∅ ∧ freeelts = ∅ ∧ alllinks = ∅

AddActor [id]
∆(actors)

actors ′ = actors ⊕ {id}

NewFreeelt
∆(freeelts)
elt? : ↓ClsIntentionalElement

elt?.actor .id =⊥
freeelts ′ = freeelts ⊕ {elt?}

NewLink
∆(alllinks)
link? : ↓ClsElementLink

alllinks ′ = alllinks ⊕ {link?}

BoundIntentElt
elt? ∈ {ClsTask ,ClsResource}
actor? : Actor

elt?.actor = actor?

Some text description

Since an actor’s specification is built outside this class, the operation AddActor is meant to

add the actor’s id to the list actors . The identifier assigned to a class schema of an actor is

from the original GRL actor’s definition. It is the same for all the instances/objects of the

119

actor’s class and thus is more likely to identify the class as a whole than an object reference

which identifies a specific object. The operation NewFreeelt creates an Object-Z object

representing a GRL intentional element from the template and keeps the newly created

object’s reference in the variable freeelts . Before adding any object to the list, the system

cautiously checks to ensure that the object does not already exist. Similarly to NewFreeelt ,

NewLink creates an Object-Z’s object specifying a GRL link and adds the reference of the

new object to the variable alllinks . BoundIntentionElt : bounds a class specifying a task or

a resource to an actor’s class schema.

5.4.8 Updating the specification in the light of links

The impact of each type of link elements on the Object-Z specification of a GRL model was

presented in (Chapter 4, Section 4.4.4, pp.84 - 88) and summarised in Algorithm 2. The

list of all the GRL links in the GRL model of the case study was presented in Table 5.5.

Each link element in the table is analysed and the specification updated when necessary as

the algorithm instructs. In the algorithm, link elements are treated separately according to

their types . The analysis of the dependency link is the first, followed by the decomposition

links, and finally, the analysis of the contribution links is presented. As one may deduce

from the algorithm, the main activity that results from the analysis of the link elements is

to add objects representing softgoals to specifics components in class schemas.

Noting that each of the class schemas that needs to be updated already includes the com-

ponent nfdependers to keep such objects, and the operation Addnfdependers to add the

object into the component, the additional design action that should be taken is to create an

interface operation in the class ClsGrlCaseStudy :

Newnfdependers =̂ [newob : ClsSoftGoal , ∃myClass] • myClass .Addnfdependers

The input to the operation Newnfdependers is an object of the class of softgoals. The system

selects a class schema and activates the operation Addnfdependers of the class to add the

new object to the variable nfdependers of the selected class.

5.4.9 Finalising the specification

This phase involves mainly the validation of the specification. One may think of performing

the last checkup of the specification, create appropriate interface operations when necessary,

adjust the visibility of components and operations, review the relationships between different

class schemas, and/or proceed with a systematic validation of the whole specification.

120

The validation of the specification

Considering the inherent difficulties involved in a specification validation, this phase is sep-

arately covered in detail in Chapter 6.

5.5 Chapter conclusion

In this chapter, we have proposed an approach that allows an enterprise organogram to be

exploited, by means of graph theory and three algorithms, to facilitate the scoping of software

projets in an early phase of requirements analysis and elicitation. The idea was developed

as a full paper first published in the proceeding of the Second International Conference on

Advances In Computing, Communication and Information Technology-CCIT 2014 [63] and

later selected for the International Journal of Software Engineering and Research Method-

ology [66]. To ensure the validity of the suggested approach, a prototype was developed in

Prolog to implement the algorithms and successfully applied to the case study.

After the scope definition as described above, problem analysis was performed and an

adapted GRL construction process based on the process presented in the previous chap-

ter (Chapter 4, Section 4.1.1, pp.53 - 56 and Figure 4.1, P.54) was followed to build a GRL

model for the case study. To formalise the GRL model of the case study, Algorithms 1 and

2 were cautiously derived from the framework developed in the previous chapter (Chapter 4,

Section 4.4, PP.77-84) to guide the transformation process. By applying the two algorithms

to the input GRL model, we obtained an Object-Z specification.

The last part of Algorithm 1 prescribes the final review and the validation of the speci-

fication. Due to the importance and the inherent tedious nature of specification validation

in general, this last specification phase is fully presented in (a separate chapter) Chapter 6.

121

122

Chapter 6

Validation of the case study

specification

In the previous chapter, two algorithms were derived from the framework, developed in

Chapter 4, to guide the formalisation of a GRL model. These algorithms were applied to

the GRL model of the case study, built from scratch in the light of the GRL construction

process, to produce an Object-Z specification. Due to the importance of ensuring the cor-

rectness of the specification, the main objective of this chapter is to review the specification

and proceed with its validation following the four-way framework for validating a specifica-

tion (see Dongmo and van der Poll [61]).

Next is an overview of the different categories of a specification validation.

6.1 Specification validation

Validating a formal specification is a tedious task that has been studied by researchers and

practitioners over many years. Different levels/categories of validation are employed, each

of which addresses a specific aspect of the specification and requires specific tools:

• Reviews and Inspection - this involves manually checking a specification to detect

and correct problems, for example, Fagan inspections (see Doolan [67], Fagan [71],

Kamsties [101]). This technique is less rigorous and requires a fair amount of human

effort.

• Parsing and type-checking - these two techniques are concerned mainly with de-

tecting errors related to the specification language (syntactic and semantic errors) and

aim to ensure the internal consistency of the specification (see Johnston [98]). Most of

the tool support available perform both parsing and type-checking (see Parker [144]).

123

• Animation - animating a specification involves executing the specification with ap-

propriately selected test data and observing its behaviour (see Gray and Schach [82],

Hasselbring [87]). An animation process generally includes two major phases: the

transformation of the specification into an executable form, followed by the execution

phase. Although animation techniques are less rigorous than formal proofs, they have

been widely adopted as a means for prototyping formal specifications.

• Mathematical proofs - properties of the system are formulated as theorems, of

which the proofs are discharged in either an automated or semi-automated fashion by

specialized software, namely theorem provers (see Freitas [76], McCune [120]).

Each of these categories has its own benefits, complexities, particularities and the circum-

stances under which we may get the best of benefits from the method. Two examples to

illustrate: first, the mathematical proofs and second the animation.

Mathematical proofs, in particular, and formal methods in general, are argued to be more

cost-effective for safety-critical systems; most of the known successful projects tend to be

supportive (Gerhart et al. [78], Hall [85], Haxthausen [90], Wassyng and Lawford [186], Wood-

cock et al. [195]). The strength of these methods are mainly attributed to precision, rigour

and the level of detailed analysis performed during the specification process. Such expec-

tations from a formal specification make the process of transforming informal descriptions

of the initial user requirements into mathematical-like expressions a tedious and difficult

task. However, once well-formalised, it becomes possible to automate the validation of the

specification by applying theorem provers to the mathematically formulated properties of

the system (Van der Poll [176]). Such a validation is also argued to require a high level of ex-

pertise and is hence equally demanding in terms of efforts and difficulties. Hence, due to the

difficulties attributed to these methods, Formal methods has been mainly used in academia

and on an increasing number of safety-critical projects. Its adoption in industry, initially

very contested, is also increasingly gaining trust among software development practitioners

as revealed in a survey by Bicarregui et al. [25].

Specification animation, also known as prototyping, is another important validation tech-

nique that has been widely used on different software models (e.g., MacEwen [116]). As

typified by Sommerville [169], the benefits of prototyping includes amongst others, the elic-

itation and validation of user requirements (throw-away prototyping) and the evaluation of

proposed solutions for feasibility, performance, etc. (experimental prototyping). In formal

specifications, the term animation is the most commonly used (Salman [160], West [190]).

Despite criticisms raised against it for not being rigorous enough, research in favour of ani-

124

mating formal specifications has been abundant. Amongst the most prominent reasons put

forward in favour of animation is the ability to make the complex nature of mathematical

notations transparent, thereby facilitating discussions between developers, users and other

stakeholders (Gray and Schach [82], Liu and Wang [111]).

Although observable progress has been done by researchers to provide formal methods’ users

with techniques and tools, the scarcity of animation techniques in Object-Z is still very cru-

cial. Next, we present an approach for animating an Object-Z specification with Prolog;

derived from the existing methods developed to animate a Z specification. The approach we

are proposing was developed as a full paper first published in (Dongmo and Van der Poll

[62]) and later selected an published as a journal article in (Dongmo and Van der Poll [65]).

6.2 An approach to animate a Z/Object-Z specification

with Prolog

Although approaches and tools to validate Object-Z specifications, especially animators and

theorem provers, are still rather scarce, many more have been developed for Z. Many of

the methods for animating Z use Prolog. Two main approaches have been proposed: formal

program synthesis and structure simulation (see West and Eaglestone [188]). Formal program

synthesis obtains a Prolog program from the Z specification by means of a direct two-step

transformation of Z schemas. First any higher-order Z constructs are rewritten as first-order

formulae, and second such first-order formulae are converted into Prolog. The challenge

with this approach is that the second step is manual - there is no suitable algorithm to turn

the first-order specifications into logic programs (see Nakamura [139]). Following structure

simulation, a Prolog program is created based on the characteristics of the Z specification,

which may have been ”flattened” by eight (8) guiding rules derived for this approach (see

West and Eaglestone [188]). Seven (7) of these rules are adapted in this thesis for the

Z/Prolog transformation that follows :

(1) For each Z schema, create the following Prolog predicates:

• schema type (L, N) for state schemas and schema op (L, N) for operations. L is

the list of variables associated to schema N.

• givenset (S, N) where S is a given set and N the given set name.

(2) Possible values of variables in a Z schema are described in the body of the clause using

the logical relationship.

125

(3) Concerning Z types, the given sets characterising the schema are specified first. Each

declared (type) variable is represented by two predicates, the one naming, the other

giving the type. Decoration of variable names is achieved by Prolog functions; thus s?

and s! are named in(s) and out(s), respectively, where s is the base name. Similarly, x

and d(x) name a state variable and the post-operational state.

(4) Set operations, such as intersection and union, are (assumed to be) contained in a

library of Prolog code. Otherwise, we implement these when needed.

(5) A variable that is existentially quantified in a Z schema’s clause appears in the body of

the Prolog translation of the clause as a Prolog variable, which does not appear in the

declarations of a named variable.

(6) The Prolog translation of the conjunction C of two schemas A and B is obtained as

follows: translate the signature of C, which is obtained by merging the signatures of

A and B. The Prolog translation of the predicates of A and B are conjoined to obtain

that of C. An analogous rule applies to the disjunction of two schemas.

(7) When a schema B is used as a type in the signature of A, during the translation, schema

B is conjoined to the signature of schema A.

6.2.1 Guidelines for animating an Object-Z specification in Prolog

A three-fold process is followed for the animation: Firstly, we unfold the Object-Z classes

to extract the encapsulated Z schemas. Secondly, we transform each Z element into Prolog

and lastly, proceed with the execution.

Unfolding Object-Z classes

Since an Object-Z specification normally encapsulates standard Z elements with very little

modifications, we take advantage of the existing Z transformation guidelines. We unpack

each class individually to work on the embedded Z elements. When necessary, an identified

Z element may be slightly modified to undo slight changes due to Object-Z transformation.

Transforming Z schemas into Prolog

We use the above 7 guidelines to transform each Z schema into a Prolog program. As

and when necessary, more explanation is provided during the transformation process. The

symbol ”/” is used to couple related elements within a relation or a function.

126

Animating the specification

Two standard questions are used to guide the execution of the specification: Are we building

the correct system? (Validation) and are we building it right? (Verification). The first ques-

tion concerns the validation of the specification against the initial requirements, stakeholder

goals (upward validation), as well as constraints from the application domain (leftward val-

idation). The second question addresses the consistency and correctness of the specification

(rightward validation). A successful animation of the specification also indicates that the

specification can be transformed into operational software (downward validation).

As noted by West [189], an important requirement for a successful animation is the ability

to trace back in the specification the source of errors when they occur. This requirement is

achieved by creating a Prolog program that mimics the structure of any Z element under

consideration; whenever possible, the names used in the specification are conserved in Prolog.

Considering the fact that each of the validation categories, presented in Section 6.1, may be

applied in isolation or in combination with others, to the best of the authors’ knowledge,

there isn’t yet an approach, a framework, guidelines or algorithms available to combine those

categories in a specification validation. Thus, for the validation of the Object-Z specification

of the case study, we have chosen to apply the four-way framework for validating a specifi-

cation where at each of the four phases, a decision is made whereby among the categories,

the most appropriate one is chosen.

6.3 Overview of the validation approach: 4-way frame-

work for specification validation

The four-way framework for validating a specification (see Dongmo and van der Poll [61]),

proposes to iteratively validate and amend a specification until the desired quality is ob-

tained. As shown on Figure 6.1, at each iteration four validation phases are considered; with

each phase focused on one important aspect of the specification.

• The rightward phase targets the properties of the specification related to the specifi-

cation language and any associated tool support.

• The upward validation focuses on the properties of the specifications pertaining to

stakeholders’ expectations and initial goals.

• The leftward phase addresses attributes of the application domain,

127

• The downward validation ensures that the specification can eventually lead to the

envisioned software product.

Leftward
validation

(Problem Domain:
services, processes,
functions, etc.)

Rightward
validation

(Languages &
tool supports)

(Stakeholders:
Initial Goals)

Upward
validation

Downward
validation

(Envisioned Final Product)

X X X X

X

X

X

X

Figure 6.1: Four-way framework for validating a specification (see [61])

The validation process is repeated over the four phases, with the specification progressively

updated at each phase, until the desired level of satisfaction is reached. The order of the

phases is not prescriptive, but in this work, we start with the rightward phase to first ensure

that the specification is well-formed and can, therefore, serve as input to the available tools.

6.4 Planning the validation for one iteration

The overall planning of the validation of the Object-Z specification of the case study for one

iteration is presented in Table 6.1. The first column represents the validation phases, the

second the validation techniques/methods and the third the tool supports. The last column

represents the properties that needs to be validated.

Planning for one iteration

Phases Technique/Method Tool support Target property

Rightward Review/Cross-referencing Manual consistency

Parsing/Type checking CZT (Internal consistency)

128

Planning for one iteration

Phases Technique/Method Tool support Target property

Review Manual Traceability

Upward Animation/Prototype Prolog Correctness

Domain analysis Prolog Completeness

Leftward Animation/Prototype Z/Eve Applicability

Theorem prover Manual

Downward UCM modeling/Tables jUCMNav Feasibility

Table 6.1: Planning the validation of the Object-Z specification

A specification validation is an important task in software development which planning, we

believe, should be well-prepared. One aspect that needs good attention is the definition of

the objective(s) of the validation itself which implies deciding on the properties expected

from the specification that are to be validated. For the same specification, the objective of

the validation and consequently, the expected quality of the specification may vary depending

on the objective(s) of the specification itself. Two examples to illustrate are:

Example 6.4.1. A specification may be carried out to facilitate project’s cost estimation.

In that case, although all important aspects of the system are to be specified, the focus

would be on the functionalities of the system to be.

Example 6.4.2. The main objective of a specification may be for communication purpose.

Fo example, to convince stakeholder to finance the project, or to get decision makers to

vote for the project. In that case, the chief objective of the specification is communication

and hence, additionally to the basic properties of a specification, properties pertaining to

communication, so as readability, understandability, etc. would have to be clearly addressed.

The objective of the present validation is twofold:

• firstly, to ensure that the Object-Z specification fully describes the GRL model of the

case study. The question here is:

Question 1: does the Object-Z model correctly and sufficiently specify the

GRL model?

• Secondary, that the specification constitutes a solution to the initial set of problems.

The question that we expect the validation to address is:

Question 2: Does the Object-Z model specifies a solution to the initial set of

problems? in other words, can a software product be obtained from the specification

that resolves the initial problems.

129

To achieve these two validation objectives, we have decided to focus on the following prop-

erties: (internal) consistency, traceability, correctness, completeness, applicability and feasi-

bility. Our understanding of these properties is based on two complementary perspectives

that are relatively old but seem very relevant to us. The first is the IEEE Std 830-1998 [94]

and the second, the work published by Boehm [27]. Our approach to validate each of these

properties is explained next. Definitions 6.4.1, 6.4.2, 6.4.3, 6.4.4 and 6.4.5 were taken from

the IEEE Std 830-1998 [94] document.

6.4.1 (Internal) consistency

Definition 6.4.1. If an SRS does not agree with some higher-level document, such as a

system requirements specification, then it is not correct.

Definition 6.4.2. An SRS is internally consistent if, and only if, no subset of individual

requirements described in it conflict.

If there exists at least two requirements that conflict, the specification is not internally con-

sistent. Thus, the bulk of the validation consists in scrutinising the specification in search

of at least two conflicting requirements; the purpose being to detect and eliminate all such

conflicting requirements. Two techniques are used: firstly, parsing and type checking with

the Community of Z Tools (CZT [117]) to eliminate as many syntactic and semantic errors

as possible. Secondly, a review with cross-referencing (Boehm [27]) is performed whereby

the entire specification is manually checked to identify and correct any ambiguous expression

or any misconception that went through the type checker undetected; a table, diagram or

a graph is constructed to analyse relationships between different elements of the specification.

From a mathematical perspective, these two techniques may not guarantee at 100% the

elimination of all inconsistencies in the specification. However, manual cross-referencing is

effective for the consistency (internal, external, and traceability) and closure properties of

a specification, particularly for small to medium specifications [27]. It is also our convic-

tion that other validation phases will bring some improvement into it. For example, the

traceability analysis and animation will help detect more consistency problems.

6.4.2 Traceability

Definition 6.4.3. An SRS is traceable if the origin of each of its requirements is clear and

if it facilitates the referencing of each requirement in future development or enhancement

documentation. The following two types of traceability are recommended:

130

a Backward traceability (i.e., to previous stages of development). This depends upon each

requirement explicitly referencing its source in earlier documents.

b Foward traceability (i.e., to all documents spawned by the SRS). This depends upon each

requirement in SRS having a unique name or reference number.

Thus, items in the specification should have clear antecedents in earlier specifications or state-

ments of system objectives. Particularly on large specifications, each item should indicate

the item or items in earlier specifications from which it derives. Our approach to traceability

analysis prescribes the use of review/cross-referencing techniques. The difference with ap-

plying cross-referencing to internal consistency, is that with the internal consistency analysis,

we are interested in relationships between the components of the specification whereas, with

the traceability, we are more concerned with the relationships between the components of

the specification and the elements of some other models: higher-level model for the backward

traceability and/or a lower-level model for the forward traceability.

6.4.3 Correctness

Definition 6.4.4. An SRS is correct if, and only if, every requirement stated therein is one

that the software shall meet.

Each specified component must contribute directly or indirectly to the achievement of one or

more initial requirements or objectives. Thus, the importance of the backward traceability

to ensure that every specified requirement is clearly derived from at least one component of

a higher-level model; which is in this case the GRL model. It must equally be established

that every specified functionality is executable and can therefore be render operational as

part of the final software product. Our approach to ensure the correctness of the Object-Z

specification is based on the traceability and animation of the specification. The question

one may ask is: how does traceability or animation contribute to establish the correctness

of the specification?

• Traceability : It may be argued that definition 6.4.4 of the correctness inherently reveals

the need for a traceability analysis between the specification and the software being

constructed. According to the definition, every requirement stated therein is

one that the software shall meet; this suggests the necessity to perform some

mapping between the specified requirements and the functionalities of the software.

However, in the case of the SRS at hand, we are more interested in the backward

traceability to ensure that each component of the specification refines at least one

GRL model element.

131

• Animation: We believe that animating the specification would help to establish the

executability of specified requirements and hence, the correctness of the specification.

The prototype would, for instance, concentrate on implementing every (or carefully

selected) requirements to demonstrate their correctness.

For each (selected) class, the state schema is implemented, with the main purpose

being to prove that the components of the class appropriately describe the initial GRL

model and also ensure the correctness of the constraints on variables defined in the

predicate part of the state schema.

6.4.4 Completeness

Definition 6.4.5. An SRS is complete if, and only if, it includes the following elements:

a) All significant requirements, whether relating to functionality, performance, design con-

straints, attributes, or external interfaces. In particular any external requirements im-

posed by a system specification should be acknowledged and treated.

b) Definition of the responses of the software to all realizable classes of input data in all

realizable classes of situations. Note that it is important to specify the responses to both

valid and invalid input values.

c) Full labels and references to all figures, tables, and diagrams in the SRS and definition

of all terms and units of measure.

When validating this property, each of the three options a, b and c is studied individually. By

examining option a), it appears that a backward traceability analysis is an appropriate means

to ensure that all elements of the GRL model is well treated (or specified) in the Object-Z

specification. We also suggest to execute important/significant specified components suc-

cessfully mapped to important requirements. Option b) explicitly involves the definition

of software outputs and realizable classes of input data. Unlike the traditional Z notation,

Object-Z does not explicitly include precondition calculation and hence does not provide

for a mechanism to determine valid and invalid input data. However, we have considered

to perform such calculations during the specification animation. Such calculations would

not require extra activities to extract operations from class schemas since such activities are

already part of the animation process. Although formal specifications rarely include figures,

tables and diagrams that need to be fully labelled as recommended in Option c), a manual

inspection of the specification would be conducted to ensure that this recommendation is

satisfied. In summary, our approach to the validation of the completeness property of the

specification is summarised as followed:

132

• Backward traceability to map each important GRL model element to at least one

Object-Z specification’s component to ensure that those elements have been well spec-

ified.

• Execution of selected significant operations to validate the mapping between specifica-

tion components and GRL elements obtained from the backward traceability.

• Preconditions calculation during the animation to determine for selected operations,

realisable situations to help define software outputs both for valid and invalid input

data.

• Manual inspection of the specification to verify that figures, tables and diagrams, if

there exist, are fully labeled.

6.4.5 Applicability

The following definition is from Google < search string = “Applicability meaning” >:

Definition 6.4.6. Applicability is the usefulness of something for a particular task. When

something is applicable, it is suited to something or useful for a task. The applicability of a

thing refers to how useful it is in a given situation.

This work is concerned with two aspects of the applicability of the Object-Z specification:

Firstly, the suitability of the Object-Z notation to specify a GRL model. The question we

seek the validation to answer is the following:

Is it suitable to attempt to formalise a GRL model, especially when the model is known to

be developed at an early stage of goals and requirements analysis (and includes concepts for

describing non-functional requirements, whereas Object-Z does not)?

It is important to address this aspect because it involves the crucial and well-known prob-

lem of the integration of formal methods into the traditional software development pro-

cess [3, 4, 147, 179]. Our validation approach to address this question is merely based on

domain elements analysis: the main element being GRL models; the GRL formalisation pro-

cess proposed in this work is also explored to ensure demonstrate the suitability of Object-Z

to allow a GRL model as input. Animating the Object-Z specification is also believed to

provide for means to strengthen our argumentation.

Secondly, the usefulness of the formal model as an intermediary step in the URN process to

produce a software. Hence, the necessity to analyse the ability to build the final software

133

product from the formal specification, as well as, the analysis of the impact of the speci-

fication on the quality of the generated software. On this, we seek to answer through the

validation, the following question:

What use is an Object-Z specification of a GRL model in the process of producing a

software product?

This second aspect is rather analysed during the downwards validation phase when address-

ing the operational feasibility of the specification. One way to address this question, is to

consider two alternatives paths that may follow the construction of a GRL model are consid-

ered: firstly, the development of the UCM and/or further development phases from

the formal specification of the GRL model, and secondly, the construction of the

UCM diagrams directly from the initial GRL model.

We believe that these two aspects pertaining to the applicability of the Object-Z can be

assessed by performing domain analysis, reasoning about the domain and eventually ani-

mating the specification would provide for more elements of judgement. Thus, our approach

to the validation of the applicability property when applied to the Object-Z specification is

summarised as followed:

• Domain analysis

• Animation

6.4.6 Feasibility

Definition 6.4.7. A specification is feasible to the extent that the life-cycle benefits of the

system specified exceed its life-cycle costs. Thus, feasibility involves more than verifying

that a system satisfies functional and performance requirements. It also implies validating

that the specified system will be sufficiently maintainable, reliable, and human-engineered

to keep a positive life-cycle balance sheet (Boehm [27]).

This definition encompasses more aspects related to feasibility than those covered in this

document. For example, life-cycle benefits and life-cycle costs of the software are outside

the scope of this work. The operational feasibility of the specification is our concern, espe-

cially the transformation of the specification into an operational software. For instance, the

operational feasibility may be motivated by the following question:

Is it possible to generate an operational software product from the specification at hand by

means of existing methods/techniques?

134

The analysis of the operational feasibility of the formal specification under consideration is

in fact a complement to the applicability of the specification. As discussed in the previous

section, part of the applicability analysis aims to establish the influence of the formal specifi-

cation on the quality of the final product, whereas the concern with the feasibility evaluation

is to demonstrate that there effectively exist practical means (methods, techniques and tools)

to generate the expected software from the specification. The adopted approach to address

this property includes the following:

• Manually identify some of the existing methods, techniques and tools and show by

means of arguments that they can effectively be used to transform the specification

into a software product with desired characteristics.

• At this early stage of development, it may be argued that animating the specification

is not enough to prove its feasibility for the reasons that, for example, the architecture

of the system is still to be decided and multiple refinements of data and operations

are still to be performed to obtain the real input/output data as well as the working

functionalities of the system. However, a successful animation would demonstrate the

ability of high-level operations to achieve the initial goals. Indicating that if the existing

development methods are properly applied, the chances of producing a software that

meet the initial requirements are also improved.

As it can be observed from the above planning, the bulk of the validation depends solely

on the animation to establish most of the properties of the specification. Thus, the need to

carefully plan the animation before its development emerges. The planning presented next

is based on the prototyping process suggested by Sommerville [169], pp.409-413.

6.5 Planning the animation

A complete process of prototype development includes four phases: define the objectives

of the prototype, define prototype functionalities, develop the prototype and evaluate the

prototype (Figure 6.2).

6.5.1 Objectives of the animation/prototype

The main purpose of the animation is to ensure that the specification is an effective re-

finement of the the GRL model of the case study presented in Chapter 5. This is done by

contributing to validate the following properties expected from the specification: correctness,

completeness, applicability, feasibility and verifiability.

135

Figure 6.2: Prototyping process ([169], P.411)

6.5.2 Functionalities of the animation/prototype

An Object-Z specification is essentially composed of class schemas and definitions. Each

class schema includes amongst others, a declaration part, a state schema and the opera-

tion schemas. Thus, the three categories of the specification elements implemented are:

declarations/definitions, state schemas and operation schemas extracted from class schemas.

• declarations/definitions: declarations and definitions in a class schema are implemented

in Prolog. Basic operations, e.g., set theoretic operations such as relation, function,

union, intersection, partition, etc. also need to be implemented.

• state schemas: the two parts of each state schema (declaration and predicate parts) in

a class definition are implemented in Prolog. A common clause is used to implement

all state schemas: schema type(Variables, Name) where Variables is the list of

variables in the state schema and Name the name of the schema. For each class

schema, one instance of schema type is created to implement the state of the class.

• operation schemas: similarly to states schemas, each operation within a class is imple-

mented in Prolog using the clause schema op(Variables, Name) where Variables

represents the list of input/output variables in the operation and Name the name of

the operation.

Considering the high number of class schemas in the specification, including the templates,

that in normal circonstances have to be refined and implemented, only selected ones are

included in the prototype.

6.5.3 Executable of the animation/prototype

Guidelines to develop a Prolog program for a given Object-Z specification were proposed in

Section 6.2. Those guidelines are followed to transform generate a Prolog program from the

Object-Z specification developed in the previous chapter.

136

List of Prolog clauses for Object-Z classes’ state schemas

Table 6.3 presents the list of Prolog’s components that are to be created to implement

the state schemas of Object-Z classes. The first column of the table contains Object-Z

class schemas. The second column includes the Prolog clauses that need to be created to

implement the state of the class schema whereas, the last column, labeled “Incl?”, uses

“Yes” or “No” response to indicate whether the Prolog clause is implemented as part of the

prototype or not.

Object-Z Prolog clauses Incl?

ClsMetadata schema type (Variables, metadata) Yes

ClsGrlModelElement schema type (Variables, modelelt) Yes

ClsLinkableElement schema type(Variables, linkableelt) Yes

ClsActor schema type(Variables, actor) Yes

ClsGrlContainableElt schema type(Variables, containableelt) Yes

ClsIntentionalElement schema type(Variables, intentionalelt) Yes

ClsBelief schema type(Variables, belief) Yes

ClsResource schema type(Variables, resource) Yes

ClsTask schema type(Variables, task) Yes

ClsGoal schema type(Variables, goal) Yes

ClsComplementaryAction schema type(Variables, complementaryaction) Yes

ClsSoftGoal schema type(Variables, softgoal) Yes

ClsApplicant schema type(Variables, applicant) Yes

ClsMotivator schema type(Variables, motivator) No

ClsAdministrator schema type(Variables, administrator) No

ClsServer schema type(Variables, server) Yes

ClsIntranet schema type(Variables, intranet) Yes

ClsInternet schema type(Variables, internet) Yes

ClsAccessOwnApp schema type(Variables, accessownapp) Yes

ClsSubmitAppOnline schema type(Variables, submitapponline) Yes

ClsMeetingToMotivEval schema type(Variables, meetingtomotivate) No

ClsSubmitMotivEvalOnline schema type(Variables, submitmotivationonline) No

ClsReportOnSubmitedApp schema type(Variables, reportonsubmittedapp) Yes

ClsGenStatsOnApp schema type(Variables, generatestatistics) Yes

ClsProvideInfoGenForms schema type(Variables, provideinfogenforms) No

ClsKeepPgDataInDb schema type(Variables, keepprogdataindatabase) No

ClsGenFormSections schema type(Variables, generateformsections) No

137

Object-Z Prolog clauses Incl?

ClsMaintSubmitedApp schema type(Variables, maintainsubmittedapp) No

ClsMaintDb4SuppPg schema type(Variables, maintaindb4submittedapp) No

ClsGrlCaseStudy schema type(Variables, grlcasestudy) Yes

Table 6.2: List of Prolog clauses associated to Object-Z

class schemas states

Implementing each state schema’s clause.

The clause schema type([Arg1,Arg2,..,Argn], statename) is created for a schema that

has n components or variables and which name is statename. Normally, the state of an

Object-Z class does not have a name however, when extracted from the class, it becomes

a Z schema and hence must be given a name. Figure 6.3 shows the steps (which also

represents the structure) to implement the clause. The clause varname(Arg, varname)

associates the input argument Arg to the variable name varname of the Z state schema.

This clause is particularly important for outputs formatting since the variable name is most

often associated to the value contained in Arg for example, “age = 25”. The code for the

state of three classes: ClsMetadata, ClsActor and ClsGrlContainableElement are presented

next to illustrate.

Example 6.5.1. : The class ClsMetadata

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% State schma of ClsMetadata

%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,name).

varname(_,value).

schema_type([Name, Val], metadata):-

%Variables and partial functions

varname(Name,name),

varname(Val, value),

%reinforcing variables’ type

string(Name),

nat(Val).

% Testing the clause

%%%%%%%%%%%%%%%%%%%

Amzi! Prolog Listener

138

Figure 6.3: Prolog structure of clauses implementing state schemas

139

Amzi Prolog Listener 5.0.18h Windows

Aug 21 2000 20:19:21

Copyright (c) 1987-2000 Amzi! inc.

?- reconsult(’C:\\...\\Prolog - Case study\\operationaleltch5.pro’)

yes

?- schema_type([age,14], metadata).

yes

?-

Example 6.5.2. : The class ClsActor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% State schma of the class ClsActor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, linkableelt).

schema_type(LinkableElt, actor):-

%Variables and partial functions

varname(LinkableElt, linkableelt),

schema_type(LinkableElt, linkableelt).

%Testing the clause

%%%%%%%%%%%%%%%%%%%

?- schema_type([[001,$ImprovAppprocess$, [Qty, 10]],high, 5], actor).

yes

?-

Example 6.5.3. : The class ClsGrlContainableElement

%%%

% State schema for the class ClsGrlContainableElement

%%%

varname(_, linkable).

varname(_, actor).

140

schema_type([Linkble,Act], containable):-

% Variables and partial functions

varname(Linkble, linkable),

varname(Act, actor),

schema_type(Linkble, linkableelt),

schema_type(Act, actor).

% Testing the clause

%%%%%%%%%%%%%%%%%%%

?- schema_type([[[001,$ImprovAppprocess$, [Qty, 10]],high, 5],

[[002,$ImprovAppprocess$, [Qty, 10]],high, 5]], containable).

yes

?-

The implementation of the first set of classes, specifying the GRL conceptual elements,
revealed the inputs for clauses implementing Object-Z classes that were obtained through
multiple inheritances are progressively more complex; which implies the difficulty for the
user to interact with the system. To analyse the situation with the purpose to facilitate
user interaction (user interface), the hierarchical structure of those classes is presented in
Figure 6.4. In our previous work (Dongmo [60], PP.164-170), we firmly argued that multiple
levels of inheritance and polymorphism in a software specification have negative effects on
the quality of the specification. The idea was inspired by the study conducted by Hatton
[89] where the author uses a mathematical model of human reasoning and some empirical
work that aims to compare defects in programs, resulting from procedural languages and
the Object-Oriented programming language C++, to infer that some concepts in Object-
Orientation, do not conform to the way humans think. Due to the limited size of human’s
short-term memory, Hatton points out that “encapsulation” only partly matches human
reasoning, and that neither inheritance nor polymorphism does so. Although such a conclu-
sion is debatable, it is worth observing that multiple hierarchical levels of inheritance and
polymorphism, as well as the (large) size of objects (that may be due to encapsulation), in
a software specification, may compromise the quality of the specification, especially when
it comes to the readability, the understandability and the clarity. This is because multiple
exchanges of information between the short-term and long-term memory is required, for ex-
ample to identify inherited classes, before the correct information (on the inherited class)
becomes accessible to the reader [60].

In line with this idea, van der Poll and Kotzé [177] proposed in principle #5 to refine each
operation in a Z specification into a sequence of “primitives” to maintain high “cohesion”
in which, a primitive manipulates at most, one state component. Conversely, a low cohesion
indicates the grouping of unrelated activities.

141

Figure 6.4: Hierarchical structure of Object-Z spec of GRL conceptual elements (Fig.4.6,

p.69)

142

Object-Z classes Prolog clauses’ inputs

ClsMetadata [Name1, Val]

ClsGrlModelElement [Id, Name2, [Name1, Val]]

ClsLinkableElement [[Id, Name2, [Name1, Val]], Imp, ImpQtive]

ClsActor [[Id, Name2, [Name1, Val]], Imp, ImpQtive]

ClsGrlContainableElt [[[Id, N2, [N1, Val]], Imp, IQtive], [[Id, N4, [N3, Val]], Im, ImQtive]]

ClsIntentionalElement [[[Id, N2, [N1, Val]], Imp, ImpQtive], [[Id, N4, [N3, Val]], Imp, ImpQtive]]

Table 6.3: List of Prolog clauses associated to Object-Z class

schemas states

To address the complexity of input arguments to the schema types clauses two alterna-

tives were examined: the first option is to re-structure the entire specification; the second

alternative to simplify the complex input arguments.

Re-structuring the specification

It is possible to exploit some Object-Z concepts and operators to modify the structure of the

specification with the goal to simplify user interfaces.

Example 6.5.4. One can merge the inherited class (the superclass) into the inheriting class

(subclass) by merging state variables and conjoining other features of the two classes. By

doing so, a variable that appears in both schemas with the same name and type is introduced

only once in the subclass hence, reducing the total number of variables in the resulting class.

Example 6.5.5. If a class B inherits the class A to extend operation opa defined in A with

opb defined in B, such inheritance can be avoided since the dot operator (•) combined with

sequential operation composition (o9) can be used elsewhere (e.g., in an interface definition)

to define the composite operation needed:

op =̂ [x? : A, y? : B | ..] • x?.opa o

9
y?.opb.

These two examples show that the structure of a specification can be modified to reduce the

number of components in each class schema. Knowing that the complexity of the user inter-

face depends on multiple factors including the number and the nature of the input objets,

we believe the implementation of the specification obtained in the above examples will have

an improve user interface. However, the price for such improvement can be enormous. A

few cases are enumerated next.

Considering the fact that the structure of the Object-Z specification, at hand, is based

on that of the GRL conceptual model, modifying the structure of the specification without

143

doing the same with the GRL conceptual model, renders the traceability property of the

specification more difficult to establish. Each class schema A in the specification formalises

a specific GRL conceptual model and can therefore be traced with less effort. However,

merging a superclass A with its subclass (B), as in example 6.5.3, would make it more diffi-

cult to trace the resulting class from the original GRL model. Another important aspect to

consider is the loss of modularity in the merged class that may equally render the specifica-

tion difficult to modify. Since inheritance in Object-Z provides for a means to represent the

architectural structure of the system, eliminating an inheritance implies the destruction of

this architectural information.

Based on this brief analysis, we have chosen to find a mean to simply the structure of

the input arguments instead of modifying directly the structure of the specification.

Simplifying the input arguments to schema types

To simplify the structure of the input arguments to each schema type, the main idea is

to create an additional argument that serves as reference or unique identifier for the other

arguments. Instead of passing the entire set of variables of the inherited class as arguments to

the clause implementing the inheriting (subclass), only the reference is passed. This approach

reduces the structure of the input argument of any schema type to only two arguments:

1. A unique reference

2. A simple list of arguments containing the components of the state of the class and

variables containing each the identifier/reference of an object of each inherited class.

The modified structure of the Prolog clause is therefore the following:

schema type([Ref , [Ref 1, ..,Refn,Var1, ..,Varn]], statename)

The use of a reference in the list of arguments to replace the full set of inherited components

comes with a number of advantages (e.g., the simplification of the user interface, the modu-

larisation of the system and more convenient approach to implement the concept of object in

Object-Z) but consequently requires more programming work. A reference in this case, effec-

tively implements the concept of instantiation as it is conceptualised in Object-Z; an object

of a class is in fact manipulated only through a reference to an instance of that class (Duke

et al. [69]). This implementation approach works perfectly for all inheritances defined by ag-

gregation and considers those defined by inclusion through the set of objects that it specifies.

The disadvantage of this approach is to require more programming work. Additional op-

erations need to be developed to allow access to data of an inherited object through the

144

reference to the object; this is also how it works with Object-Z. As stated in by Graeme

Smith,

The only way an object can be changed is via the application of one of its classs

operations using the dot notation (Smith [163]).

The dot operator (•) uses the identifier (reference) of an object to access the methods and

other features of the class. The creation of additional operations to link each unique reference

to a set of data that may be consulted to ensure the validity of the inherited components.

Object-Z class Prolog clauses’ inputs

ClsMetadata schema type([RefMd,[Name, Val]], metadata)

ClsGrlModelElement schema type([RefMe, [RefMd, Id, Name]], modelelt)

ClsLinkableElement schema type([RefLe, [RefMe, Imp, ImpQtive]], linkableelt)

ClsActor schema type([RefA, RefLe], actor)

ClsGrlContainableElt schema type([RefCe, [RefLe, RefA]], containablelelt)

ClsIntentionalElement schema type([RefIe, RefCe], intentionalelt)

Table 6.4: List of states’ schemas’ clauses using OZ ob-

jects’ references

Example 6.5.6. Implementing the state of the class ClsMetadata.

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% State schma of ClsMetadata

%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,refmetadata).

varname(_,name).

varname(_,value).

schema_type([Ref, [Name, Val]], metadata):-

% Variables and partial functions

varname(Ref, refmetadata),

varname(Name,name),

varname(Val, value),

string(Ref),

145

string(Name),

save_stateref(stateref([Ref,[Name, Val]])),

reconsult(staterefs).

%%%

% Testing the schema_type([Ref, [Name, Val]], metadata)

Amzi! Prolog (IDE Only)

Licensed to

Free Version

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([$md001$,[$Size$,23]], metadata).

yes

?- stateref([md001, LinkedData]).

LinkedData = [‘Size‘, 23] ;

no

?-

Object-Z Prolog Incl?

ozImprovAppProc ClsApplicant Yes

ozFlexibleProcess ClsApplicant Yes

ozImprovMotivEvalProc ClsMotivator No

ozCombineMotivEval ClsMotivator No

ozResolvEmailPb ClsAdministrator No

ozImprovEvalMotivTime ClsAdministrator No

ozFacilAppManagement ClsAdministrator Yes

ozReduceAppTime ClsApplicant Yes

ozAppOnline ClsApplicant Yes

ozColabWithAdmin ClsMotivator No

ozMotivEvalOnline ClsMotivator No

146

Object-Z Prolog Incl?

ozHaveConsistForms ClsAdministrator No

ozInstantAccessToPgData ClsAdministrator No

ozColabHRSys ClsServer No

ozGenSecBelief No

Table 6.5: List of Object-Z components to be animated

6.6 The rightward validation phase

As mentioned earlier in Section 6.4.1, this validation phase aims to eliminate language re-

lated errors and ensure that the specification is internally consistent and well-formed. Two

techniques are used: firstly, an automatic parsing and type checking of the specification with

the Community of Z Tools (CZT) and secondly, the (manual) review of the specification

with cross-referencing.

6.6.1 Type checking the Z/Object-Z specification of the case study

The Object-Z specification of the case study being validated is presented in Appendix C.

The specification was initially constructed in a Latex document using the OZ.STY macro

(Allen [7]) and later type-checked with the Community of Z Tools CZT version 1.5.0 the

result of which indicated 220 errors found. The full list of these errors can be consulted in

Appendix D.0.2. The errors detected by the type checker are of two categories: the first

Figure 6.5: Type checking the specification with CZT

147

category includes errors due to incompatibility between OZ.Sty and CZT.Sty, reported as

“Unknown commands” and the second category includes syntax errors. A total of 197 errors,

representing about 90% of errors detected were due to oz commands (oz.sty) misunderstood

by the czt parser. The czt tool reported them as Unknown latex command followed by the

OZ command that couldn’t be parsed or checked.

Dealing with unknown command errors

To correct each of such errors, we simply replaced the OZ command with the corresponding

CZT’s one. The complete list of such replacements is presented in Table 6.6

No. OZ command CZT command

1 \pset (\power) \power

2 \ST \where

3 \fovr \oplus

4 \all (\forall) \forall

5 \bbar and \cbar | or \mid

6 \map \mapsto

7 \exi (\exists) \exists

8 \exione \exists 1

9 \perp (\bot) %%Zchar \perp U+266D

10 \uni \cup

11 \subs \subseteq

12 \prod \cross

13 \zimp \implies

14 \defs = =

15 \int (\inter) \cap

16 \seqone \seq 1

17 \ ∼

Table 6.6: Mapping between OZ and CZT commands

148

Dealing with Syntax and other errors

This category of errors was corrected by slightly modifying the command or by changing

the variable’s name. For example, oz allows the arguments of the operator \Delta() to be

parenthesised whereas czt does not. We simply removed the parentheses to get it work for

both oz and czt. The use of the word id as a variable or as the prefix in a variable’s name

was also the source of a couple of syntax errors, we simply used a different word (ref) to

replace id.

Status of the specification after parsing and typechecking.

Out of the 220 errors, 215 were corrected and the 5 presented next remained.

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Thesis>java -jar czt.jar ozedtypecheck phdAppendC.tex

ParseException errors for oz

line 283 column 24 dialect oz in "phdAppendC.tex": Syntax error at symbol BAR

line 312 column 80 dialect oz in "phdAppendC.tex": Syntax error at symbol RPAREN

line 695 column 0 dialect oz in "phdAppendC.tex": Unknown latex command \begin

line 699 column 0 dialect oz in "phdAppendC.tex": Unknown latex command \end

line 695 column 7 dialect oz in "phdAppendC.tex": Syntax error at symbol

genschemaAddActorref?actors

C:\Users\Thesis>

We couldn’t understand the reason for the first two errors since the two oz latex commands

to which they refer are indeed correct from standard Z and Object-Z perspectives. These

two errors could arguably be due to an abnormal behaviour of the parser.

It is also very plausible that the last three errors were generated because the CZT parser or

typechecker could not recognise the following generic schema definition or translate it into

unicode; we own this idea to Miller who is quoted below the schema.

\begin{genschema}{AddActor}{ref}

.

.

\end{genschema}

LATEX \begin{xxx} and \end{xxx} environments cannot be defined using LA-

TEX markup directives. If a Z extension needs to provide new LATEX envi-

149

ronments, the LATEX to Unicode converter needs to be adapted directly (Miller

et al. [126]).

Thus, the three errors could have been corrected by manually associating some sequence of

unicode to the generic schema constructs directly in the prelude part of the specification.

Such adaptation was not carried out because the construct is known to be correct (from

standard Z and Object-Z perspective) at its current stage and further utilisation of czt

was not envisaged, for example to animate the specification. However, despite the above

errors, the usefulness of the validation remains. A successful type checking ensures that the

input specification is well-formed that is, the definitions and class schemas, as well as their

components, including the operations and variables, are well-defined. This is particularly

important, for example, in an environment where the generation of the OZ specification is

automated, with no graphical representation, and is meant to serve as input to another tool.

6.6.2 The review of the specification

An inspection of the specification in Appendix C was performed at two levels: firstly, at

the specification level by analysing the inter-relationships between class schemas to evaluate

the complexity of the overall specification. Secondary, each individual class schema was

inspected to evaluate its complexity, detect contradicting elements within a class, check

that each class is well-structured with respect to a manageable size, especially the size of

the schema, and check that the formulas in the predicate parts of the state and operation

schemas within a class are intuitively clear to an average reader.

The inspection of the entire specification

Figure 6.4, presented on page 142 is the result of the overall inspection of the specification

in Appendix C. This particular figure is important because it represents the common part

of an hierarchical structure of any Object-Z specification of a GRL model generated using

our transformation framework and associated algorithms proposed in Chapter 4 and 5. This

part is common to all generated specifications because the class schemas and objects of such

a specification are obtained by inheritance and/or instantiation of class schemas at level 7

and 8. Thus, the specific structure of each particular specification (representation of the

concrete GRL model) would start from level 8 and/or level 9.

The main advantage of the figure is that it illustrates a formal representation of the GRL

conceptual model and its structure and is therefore suited to formally analyse the concep-

tual model. Considering our position regarding the adverse effects of multiple hierarchical

inheritance and polymorphism on the quality of an Object-Z specification (see discussion

150

above, on page 142 or refer directly to: Dongmo [60], PP.164-170), further analysis of the

structure in Figure 6.4 (with or without the modification of the GRL conceptual model)

purposing to optimise the structure with the goal to improve on the quality of the specifi-

cation should be envisaged. However, such analysis is outside the scope of this work and is

therefore recommended for further research.

The inspection of individual class schemas

Each class schema of the Object-Z specification, in Appendix C was visually examined with

the average schema’ size less than half a page. Schemas were intentionally kept simple and

only essential operations were specified for each class, for the reason that the chief purpose

was to illustrate our proposed GRL model transformation framework. In practice, the situa-

tion would have been slightly different because all essential static and behavioral information

would have been specified. Contradictory components or formulas couldn’t be found within

each class schema and most of the predicates were simplified enough for an average reader

to be able to comprehend.

However, it is important to observe that the use of the polymorphic data type notation

in the following two classes: ClsIntentionalElement and ClsGrlCaseStudy , keeps the specifi-

cation simple to read but, covers a complex data type for which developers need to be aware

of.

Example 6.6.1. Consider the following declaration from the class ClsIntentionalElement :

∀ elt : ↓ClsIntentionalElement

An object identifier elt , as defined in this expression, can be associated to any object of

the class ClsIntentionalElement or any object of any other class that inherits the class

clsIntentionalElement . Additionally, for elt to access a property or method of its class, the

property or method must be listed in the visibility list of the class thus, the need to readily

prepare all subclasses of the superclass for such access.

The benefit of insisting on this particular aspect of the specification is not to criticise the

notation but, to make designers aware of the complex data structure that the notation hides.

For we firmly believe that the knowledge of the level of complexity of the specification can

positively contribute to a successful planning of further development phases, including: the

choice of techniques, methods, and/or tools.

Example 6.6.2. At the implementation phase, planning the instructions that manipulate

variables of type Integer, String or similar is inherently simpler than to plan instructions to

manipulate structure of arrays or pointers to complex data structures.

151

The diagram in Figure 6.4 shows at the hierarchical level 7 that all class templates, from

which other class schemas and objects composing the specification are generated, are sub-

classes of the class ClsIntentionalElement ; meaning almost the entire specification is con-

cerned by the polymorphic definition in ClsIntentionalElement . This further illustrates the

notational power of a polymorphic definition but also appeals for awareness since subclasses

do not implement any mechanism to indicate to the reader that the inherited class has such

a complex definition.

6.7 Upward validation phase

This phase is mainly about ensuring that the specification at hand satisfies the stakeholders

goals and initial requirements. To perform this validation, a twofold approach is adopted:

firstly, each specification component is mapped to at least one initial requirement or stake-

holder’s goal to ensure that the component addresses the need(s) of stakeholder. Secondary,

a correctness proof is carried out to ensure that each component correctly responds to the

stakeholder wish or correctly specifies the requirement to which it is associated.

6.7.1 Requirements traceability

Considering the fact that the initial requirements comprise two distinct type of models,

the GRL conceptual model and the GRL model for the case study, two different traceability

analysis are conducted. The first analysis aims to trace Object-Z’s classes, namely templates

from the GRL conceptual model whereas, the second trace Object-Z components from the

GRL model for the case study.

Tracing Object-Z specification templates from the GRL conceptual model

Table 6.7 represents the traceability table mapping Object-Z class schemas to GRL concep-
tual model’s elements. The GRL elements are from the GRL conceptual model presented
in Chapter 4 (see Figure 4.6, page 69). As discussed in Chapter 4, elements pertaining to
GRL evaluation are not in the scope of this work. The Object-Z classes are also presented
in Chapter 4, Section 4.3.

Object-Z template GRL Conceptual model elements

No. OZ classes M
e
ta
d
a
ta

M
o
d
e
l
e
lt

L
in
k
a
b
le

e
lt

A
c
to

r

C
o
n
ta
in
a
b
le

e
lt

In
te
n
ti
o
n
a
l
e
lt

B
e
li
e
f

R
e
so

u
rc
e

T
a
sk

G
o
a
l

S
o
ft
g
o
a
l

E
le
m
e
n
t
li
n
k

D
e
p
e
n
d
e
n
c
y

D
e
c
o
m
p
o
si
ti
o
n

C
o
n
tr
ib
u
ti
o
n

01 ClsMetadata x

152

Object-Z template GRL Conceptual model elements

No. OZ classes M
e
ta
d
a
ta

M
o
d
e
l
e
lt

L
in
k
a
b
le

e
lt

A
c
to

r

C
o
n
ta
in
a
b
le

e
lt

In
te
n
ti
o
n
a
l
e
lt

B
e
li
e
f

R
e
so

u
rc
e

T
a
sk

G
o
a
l

S
o
ft
g
o
a
l

E
le
m
e
n
t
li
n
k

D
e
p
e
n
d
e
n
c
y

D
e
c
o
m
p
o
si
ti
o
n

C
o
n
tr
ib
u
ti
o
n

02 ClsGRLModelElement i x

03 ClsLinkableElement i i x

04 ClsActor i i i x

05 ClsContainableElement i i i i x

06 ClsIntentionalElement i i i i i x

07 ClsBelief i i i i i i x

08 ClsResource i i i i i i x

09 ClsTask i i i i i i x

10 ClsGoal i i i i i i x

11 ClsSoftGoal i i i i i i x

12 ClsElementLink i i i x

13 ClsDependency i i i i x

14 ClsDecomposition i i i i x

15 ClsContribution i i i i x

Table 6.7: Tracing Object-Z elements from GRL Conceptual model

The letter x in a cell (intersection between a line and a column of the table) indicates that the

Object-Z element in the line, formally specifies the GRL element in the column. Whereas,

the letter i is used to indicate that the Object-Z element indirectly addresses the GRL ele-

ment by inheriting another Object-Z class that either directly (x) or indirectly (i) specifies

the conceptual element in the column.

Table 6.7 shows that each Object-Z class in the specification either specifies directly a GRL

element, or indirectly contributes to the formalisation of such an element. It is also worth

noting that, in the table, each GRL element is mapped to at least one formal specification

component. Since mapping a class schema to a GRL element does not guarantee that the

class correctly specifies the element, the next step in this validation path is therefore, to

proof the correctness of the formal specification; such a proof is presented in Section 6.7.2.

Tracing Object-Z specification from the GRL model of the case study

Table 6.8 shows the mapping between the elements of the GRL model of the case study (see

fig.5.2, p.106) and the components of its Object-Z specification (see Appendix C).

153

Object-Z Elements GRL model elements for the case study

No. OZ classes A
p
p
li
c
a
n
t

Im
p
ro
v
A
p
p
P
ro
c

F
le
x
ib
le
P
ro
ce
ss

R
ed

u
ce
A
p
p
T
im

e

A
p
p
O
n
li
n
e

A
cc
es
sO

w
n
A
p
p

S
u
b
m
it
A
p
p
O
n
li
n
e

M
o
t
iv
a
t
o
r

Im
p
ro
v
M
o
ti
v
E
va

lP
ro
c

C
o
m
b
in
eM

o
ti
v
E
va

l

C
o
la
b
W

it
h
A
d
m
in

M
o
ti
v
E
va

lO
n
li
n
e

M
ee
ti
n
g
sT

o
M
o
ti
v
E
va

l

S
u
b
m
it
M
o
ti
v
E
va

lO
n
li
n
e

R
ep

o
rt
O
n
S
u
b
m
it
ed

A
p
p

A
d
m

in
is
t
r
a
t
o
r

R
es
o
lv
E
m
a
il
P
b

Im
p
ro
v
E
va

lM
o
ti
v
T
im

e

F
a
ci
lA

p
p
M
a
n
a
g
em

en
t

H
av

eC
o
n
si
st
F
o
rm

s

In
st
a
n
tA

cc
es
sT

o
P
g
D
a
ta

G
en

S
ta
ts
O
n
A
p
p

P
ro
v
id
eI
n
fo
G
en

F
o
rm

s

K
ee
p
P
g
D
a
ta
In
D
b

S
e
r
v
e
r

C
o
la
b
H
R
S
y
s

G
en

F
o
rm

S
ec
ti
o
n
s

M
a
in
tS
u
b
m
it
ed

A
p
p

M
a
in
tD

b
4
S
u
p
p
P
g

G
en

S
ec
B
el
ie
f

In
tr
a
n
et

01 ClsApplicant x

02 ozImprovAppProc c x

03 ozFlexibleProcess c x

04 ozReduceAppTime c x

05 ozAppOnline c x

06 ClsAccessOwnApp c x

07 ClsSubmitAppOnline c x

08 ClsMotivator x

09 ozImprovMotivEvalProc c x

10 ozCombineMotivEval c x

11 ozColabWithAdmin c x

12 ozMotivEvalOnline c x

13 ClsMeetingToMotivEval c x

14 ClsSubmitMotivEvalOnline c x

15 ClsReportOnSubmitedApp c x

16 ClsAdministrator x

17 ozResolvEmailPb c x

18 ozImprovEvalMotivTime c x

19 ozFacilAppManagement c x

20 ozHaveConsistForms c x

21 ozInstantAccessToPgData c x

22 ClsGenStatsOnApp c x

23 ClsProvideInfoGenForms c x

24 ClsKeepPgDataInDb c x

25 ClsServer x

26 ozColabHRSys c x

27 ClsGenFormSections c x

28 ClsMaintSubmitedApp c x

29 ClsMaintDb4SuppPg c x

30 ozGenSecBelief c x

31 ClsIntranet x

32 ClsInternet

Table 6.8: Tracing Object-Z elements from GRL concrete model

154

Object-Z components are represented in lines whereas, GRL elements are in columns of the

table. Object-Z components are of two types: class schemas and objects which are instances

of the class schemas. A cross (x) in a cell (intersection between a line and column) of the

table indicates that the Object-Z component in the line is the main component used to

specify the GRL element in the intersecting column. The letter ‘c’ in a table’s cell indicates

that the Object-Z component in the line, additionally to specifying another GRL element,

also contributes to the specification of the element in the intersecting column. Elements in

lines and columns were grouped per actor’s definition and the specification of each element

in an actor’s definition naturally contributes to the specification of the actor.

With tables 6.7 and 6.8, we have shown that the Object-Z specification developed in Chapter

4 and 5 formally describe, respectly, the GRL conceptual model and the GRL model of the

case study. It is therefore important to establish that the Object-Z model correctly specify

the two GRL models.

6.7.2 Establishing the correctness of the Object-Z specification

Considering the wish of the the stakeholder(s) to get the GRL model in fig.5.2 formally spec-

ified, from Definition 6.4.4, it is inferred that the Object-Z specification under consideration

is correct if and only if every component of the specification satisfactorily specifies a part of

the GRL model of the case study and that the entire model is fully specified.

The Object-Z specification fully describes the GRL model

The backward traceability analysis performed in Section 6.7.1 readily proves that every el-

ement of the GRL model of the case study is specified by at least one component of the

Object-Z specification. In Table 6.8 each element of the GRL model is associated to at least

one component of the formal specification indicating that the element was indeed specified.

The completeness of the specification can also be established by analysing the specification

process.

To specify the input GRL model, all the elements of the model are first identified, in Sec-

tion 5.4.2 and reported in Tables 5.4 and 5.5. Thereafter, the formal specification of those

elements is carefully planned using Table 5.6, in which for each GRL element, the associ-

ated Object-Z object(s) needed to formalise the element is indicated and finally, the planned

objects are created. Thus, when the formalisation is terminated, it is guaranteed that the

entire GRL model is fully covered.

155

By means of specification animation, we show that Object-Z specification satisfies the input

GRL model.

Approach to analyse the satisfiability of the Object-Z specification

The task to address the correctness of a software specification or the extend to which a

specification satisfies the initial requirements is complex in nature. This is mainly due to the

fact that the initial requirements against which the validation relies on is generally informal,

subjective, and not always fully documented. Thus, the need to define before hand the scope

of the validation that is for example decide which specific aspect(s) of the requirement(s) to

focus on.

In this work, the analysis of the satisfiability of a GRL model by its formal specification

is limited to the following definition:

Definition 6.7.1. A formal specification that fully specifies a GRL model is said to be

satisfactory if:

(1) internal relationships between GRL elements are preserved in the formal specification,

(2) the properties of each individual GRL element are traceable in the formal specification.

We also believe that the formal specification of a GRL model should preserve the semantic of

each formalised element. However, this aspect is not explicitly addressed at this level of the

analysis because, similarly to GRL model elements that own their semantic to GRL concep-

tual elements, the formal specification too owns its semantic to the Object-Z specification

templates that specifies the GRL conceptual model.

A straightforward approach to establish the correctness of the Object-Z specification is used

to justify that the specification explicitly integrates the relationships between GRL elements

and preserves the properties of each formalised element.

The formal specification of the relationships between GRL elements

The formalisation process readily includes internal relationships between GRL elements.

Step 2 of Algorithm 1 provides for an operation to traverse the input GRL model to iden-

tify all the link elements describing such relationships; the complete list of identified links

is shown in Table 5.5. Depending on the type of the link, the formal specification is ob-

tained by instantiating one of the following templates: ClsDependency , ClsDecomposition or

ClsContribution; the reference to the object hence created is kept in the component alllinks

156

defined in class ClsGrlCaseStudy by means of the operation Newlink that adds the object

to the component.

Animating the class ClsGrlCaseStudy focusing on the link elements provides for a means

to reveal the properties of a link element to a non-expert stakeholder and ensure the opera-

tion Newlink does exactly what it is expected to do and that in the end, the objects listed

in Table 5.5 are created and kept in the system. However, it would be more convenient to

examine the structure of every component of the specification to ensure that the properties

of the formalised model are well-preserved before proceeding with the animation which main

objective is to convince the external world.

Examining the specification process and/or the structure of class schemas

It is important to notice that the graphical representation of a GRL model, like that of the

case study represented in Figure 5.2, reveals only two types of information on its elements:

the type of the element, graphically revealed by the shape of the object representing the

element, and the relationship with other elements represented by annotated links elements.

In the preceding section, we have shown that relationships between GRL elements are being

formalised. In the same vein, it can be established that the type of each formalised object

can be traced from the specification.

There are different ways to trace the type of a GRL model element in its Object-Z speci-

fication. One alternative is to consider the template from which an Object-Z class schema

or an object was derived either by inheritance or by instantiation. Each component of the

specification is either a template, a class schema generated from a template by inheritance,

or an object derived from a template by instantiation. Recalling from Chapter 4 that each

template is an Object-Z class schema designed for a specific type of GRL element, determin-

ing the type of an initial GRL element becomes straightfoward. The traceability analysis in

Table 6.8, associates to each input GRL element an Object-Z component that formalised it.

Table 5.6 on page 110 indicates for every Object-Z element, the template used to create the

element.

Example 6.7.1. In further development phases, when manipulating, for example,

ozFlexibleProcess , it is important to know the type of the GRL element that this compo-

nent specifies to decide on further actions to take. For example, a softgoal modeling a

non-functional requirement will continue to stimulate the creation of complementary non-

functional actions (CNF-actions), discussed earlier in Chapter 4, Section 4.2.3 on page 62,

during the complete cycle of the software development system (see SDS in Figure 4.3, p.61).

157

As indicated in Table 6.8, the template used to create the object ozFlexibleProcess is

ClsSoftGoal thus, we deduce without accessing the GRL element itself that ozFlexibleProcess

specifies a softgoal. In practice, when implementing our proposed GRL formalisation frame-

work with the associated algorithms, one may not avoid implementing a formal mapping

between Object-Z templates and GRL conceptual elements to allow a proper selection of

templates during the specification process.

The type of a GRL element being specified or some other useful information, can equally be

determined by examining the the structure (specifically) the state of some class schemas.

Example 6.7.2. The unique identifier (same one that identifies the GRL element) of any

actor’s class is kept in the component actors of the class ClsGrlCaseStudy . So, the identifier

of a class schema being kept in that component readily indicates that the class specifies a

GRL actor’s definition.

Example 6.7.3. Each class schema specifying an actor’s definition includes the following

components to kept the references to objects formalising GRL elements contained in the

GRL actor being specified:

• softgoals to keep the references to objects specifying softgoals

• goals to keep the references to objects specifying goals

• beliefs to keep the references to objects specifying beliefs

• nfdependers to keep references to all objects specifying softgoals that depend on the

actor being specified.

Other properties of GRL elements that are not represented on the final model are either

inherited from the conceptual elements (e.g., metadata) or available to the URN develop-

ment tool (jUCMNav) to aid with the construction and the analysis of the model (e.g., size,

position, line color, etc). Although this work, at its present stage, is focused on the final

version of GRL model, its main purpose is to lay the foundation for an interactive environ-

ment whereby for instance, the flexibility and usability of the URN graphical environment

is exploited to guide the construction of the formal specification of the system.

Example 6.7.4. Consider the component softgoals : PClsSof , defined as a set of softgoals,

to keep all the softgoals contained in an actor’s definition, and the operation NewSoftGoal to

update the component softgoals . In the final version of the GRL model, the list of softgoals

in each actor’s definition is known. So, this design decision that provides for the possibility to

update the list is justified when the specification considers the GRL model in its construction

phase.

158

Next, such constructive operations are animated using Prolog to show that when the con-

struction is terminated, the various components of the specification are left in the correct

state. For instance, the variable softgoals in the class ClsApplicant must contain the two

softgoals: ozImprovProc and ozFlexibleProcess in the end.

Approach to Prolog animation of the Object-Z operations

Our approach to animate an Object-Z specification is presented in Section 6.2. The approach

is used in Section 6.5.3 to implement state of the class schemas. The generic clause proposed

to implement operation schemas is:

schema op([Arg1,Arg2,..,Argn], operationname)

where Arg1,Arg2,..,Argn is the list of n components or variables from the z operation

schema, namely, operationname. Figure 6.6 shows the steps (which also represents the

structure) to implement the clause. As in the case of state schemas, the clause varname(Arg,

varname) associates the input argument Arg to the variable name varname of the Z operation

schema.

Animating the class ClsActorApplicant

By animating the class ClsApplicant , we seek to establish the correctness of the state of the

class before and after any of its operations is performed, as well as the correctness of the

operations defined within the class.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% State schema for the class ClsApplicant

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, refapplicant).

varname(_, applicantid).

varname(_, sofgoals).

varname(_, goals).

varname(_, nfdependers).

schema_type([RefAp, [Appid, RefAc, SoftGs, Goals, Nfds]], applicant):-

%Variables and partial functions

varname(RefAp, refapplicant),

varname(Appid, applicantid),

varname(SoftGs, softgoals),

159

Figure 6.6: Prolog structure of clauses implementing operation schemas

160

varname(Goals, goals),

varname(Nfds, nfdependers),

stateref([RefAc, X]),

%Process RefAc and X

save_stateref(stateref([RefAp, [Appid, RefAc, SoftGs, Goals, Nfds]])),

reconsult(staterefs).

The constraint on non-functional dependents softgoals (nfdependers), that depend on the

actor’s definition,

∀ nfelt ∈ nfdependers • nfelt .actor .id 6= id

was not reinforced to keep the implementation simple but also because this implementation

does not explicitly reveal inherited properties. Examples of hidden information include the

followings:

• Inherited from ClsLinkableElement : importance type and qualitative

• inherited from ClsModelElement : element identifier , element name,

• inherited form ClsMetaData: metadata name, metadata value.

Thus, the need for a predicate to access those information and make them accessible. The

predicate data() is defined to search inherited state schemas and make their components

data directly accessible.

data(RefMd, Mdata, metadata):-

stateref([RefMd,Mdata]).

data(RefMe, [], Medata, modelelt):-

stateref([RefMe, Medata]).

data(RefMe, Mdata, [RefMd|Medata], modelelt):-

stateref([RefMe, [RefMd|Medata]]),

data(RefMd, Mdata, metadata).

data(RefLe,[],[],Ledata, linkableelt):-

stateref([RefLe, Ledata]).

data(RefLe,Mdata,Medata,Ledata,linkableelt):-

stateref([RefLe,Ledata]),

161

element(RefMe, Ledata),

data(RefMe,Mdata,Medata, modelelt).

data(RefAc,Mdata,Medata,Ledata,actor):-

stateref([RefAc,RefLe]),

data(RefLe,Mdata,Medata,Ledata,linkableelt).

data(RefCe, Mdata, Medata, Ledata, containableelt):-

stateref([RefCe,[RefLe, RefAc]]),

data(RefLe, Mdata, Medata, Ledata, linkableelt).

data(RefIe, Mdata, Medata, Ledata, intentionalelt):-

stateref([RefIe, RefCe]),

data(RefCe, Mdata, Medata, Ledata, containableelt).

The operation schema NewSoftGoal is implemented next.

NewSoftGoal
∆(softgoals)
sgoal? : ClsSoftGoal

softgoals ′ = softgoals ⊕ {sgoal?}

The only component of the class ClsActorApplicant that is updated by this operation is

softgoals . The declaration of the input component sgoal? : ClsSoftGoal implicitly encom-

passes the operation to create an object of the class ClsSoftgoal . The reference to the newly

created object is added to the list softgoals of all softgoals contained in the class.

Creating a new softgoal (sgoal? : ClsSoftGoal)

An instance of the class ClsSoftGoal inherits data from the following classes: CLsMetaData,
ClsModelElement , ClsLinkableElement , ClsContainableElement , ClsIntentionalElement and
ClsComplementaryAction (see Figure 6.4). The last class can be omitted when the object
is newly created since the list of CFN-actions for a softgoal is continuously updated during
the entire software development process after its creation.

Inherited class Property ozImprovAppProc ozFlexibleProcess

ClsMetadata name maxtime size

value 2 36

state ref. ’md001’ ’md002’

ClsModelElement identifier id001 id002

Name ozImprovAppProc ozFlexibleprocess

state Refs [me001, md001] [me002, md002]

162

Inherited class Property ozImprovAppProc ozFlexibleProcess

ClsLinkableElement importance High Medium

qualitative 95 80

state Refs [le001, me001] [le002, me002]

ClsActor state Refs [ac001, le001] [ac002, le002]

ClsContainableElement state refs [ce001,[le001, ac001]] [ce002,[le002, ac002]]

ClsIntentionalElement state refs [ie001, ce001] [ie002, ce002]

Table 6.9: Data for the two softgoals of the actor applicant

Licensed to

Free Version

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([$md001$, [$maxtime$, 2]], metadata).

yes

?- schema_type([$md002$, [$size$, 36]], metadata).

yes

?- schema_type([$me001$, [$md001$, $id001$, ozimprovappproc]], modelelt).

yes

?- schema_type([$me002$, [$md002$, $id002$, ozflexibleprocess]], modelelt).

yes

?- schema_type([le001, [me001,high,95]],linkableelt).

yes

?- schema_type([le002, [me002,medium,80]],linkableelt).

yes

?- schema_type([ac001,le001],actor).

yes

?- schema_type([ac002,le002],actor).

yes

?- schema_type([ce001,[le001, ac001]], containableelt).

yes

?- schema_type([ce002,[le002, ac002]], containableelt).

yes

?- schema_type([ie001, ce001], intentionalelt).

163

yes

?- schema_type([ie002, ce002], intentionalelt).

yes

?-

We now test the data linked to the intentional element with the reference number ie001:

?- data(ie001, Metadata, ModelEltdata, LinkableEltdata, intentionalelt).

.

.

Metadata = [‘maxtime‘, 2]

ModelEltdata = [‘md001‘, ‘id001‘, ozimprovappproc]

LinkableEltdata = [me001, high, 95] ;

no

?-

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([sg001,[ie001,[]]],softgoal).

yes

?- schema_type([sg002,[ie002,[]]],softgoal).

yes

?- data(ie002,Metadata,Modeldata,Linkabledata,intentionalelt).

Metadata = ’[]’

Modeldata = ’[]’

Linkabledata = [me002, medium, 80] ;

Metadata = ’[]’

Modeldata = [‘md002‘, ‘id002‘, ozflexibleprocess]

Linkabledata = [me002, medium, 80] ;

Metadata = [‘size‘, 36]

164

Modeldata = [‘md002‘, ‘id002‘, ozflexibleprocess]

Linkabledata = [me002, medium, 80] ;

no

?-

%%

% Create an instance of the class ClsApplicant

%%

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([ap001, [id001, ac001, [],[],[]]],applicant).

yes

?-

Implementing the operation schema: NewSoftGoal

%%

% Creating a new softgoal for an applicant

%%

varname(_, softgoal).

schema_op([RefAp, RefSg], newsoftgoal):-

%variables

varname(RefSg, softgoal),

stateref([RefAp, [Appid,RefAc,Sgoals,Goals,Nfds]]),

% add the input softgoal RefSg to Sgoals is not already in it

insert(RefSg, Sgoals, NewSgoals),

save_stateref(stateref([RefAp, [Appid, RefAc, NewSgoals, Goals, Nfds]])),

reconsult(staterefs).

%%

Licensed to

165

Free Version

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([ap001, [id001, ac001, [],[],[]]],applicant).

yes

?- schema_op([ap001, sg001], newsoftgoal).

yes

?- schema_op([ap001, sg002], newsoftgoal).

yes

?-

6.8 The leftward validation phase

This phase is about ensuring the completeness and applicability of the specification, as well

as the specification process.

6.8.1 Establishing the completeness of the specification

As discussed in Section 6.4.4, the followings activities were planned to ensure the complete-

ness of the Object-Z specification: backward traceability analysis, animation of selected com-

ponents of the specification, preconditions calculation for selected operations, and a manual

inspection of the specification.

Backward traceability

A backward traceability analysis is carried-out to show that all significant requirements were

addressed in the specification as recommended in option a) of Definition 6.4.5. This analysis

was successfully performed in Section 6.7.1 the results of which reported in Tables 6.7 and

6.8.

166

Animating selected components of the specification

To reinforce the backward traceability in the effort to demonstrate option a) of Definition

6.4.5, it was also planned to animate some significant components of the specification. Such

animation was fully discussed (see Sections 6.5.3, 6.5.3 and 6.7.2).

Manual inspection

An inspection of the specification was conducted during the rightward validation phase in

Section 6.6.2 whereby the entire specification was fully reviewed. It is confirmed that figures,

tables and diagrams, in this document in generale, and those related to the specification in

particular are fully labeled and referenced hence, fulfilling option c) in Definition 6.4.5 that

recommends full labels and references to all figures, tables, and diagrams in the SRS.

6.8.2 The applicability of the specification

If we consider the process of transforming a GRL model into an Object-Z specification as an

operation, the analysis of the applicability of the specification can be reduced to the study of

the precondition of the operation where the formal specification is seen as the postcondition

(in a larger sense). Although the operation may not be strictly/fully formalised, it appears

to us that such a study is convenient to ensure that the Object-Z model obtained through

our proposed formalisation process is a useful description of the original GRL model.

Domain description

The analysis is based on the following definitions:

Definition 6.8.1. AGRL model is a set of GRL elements interconnected by means of GRL

links. The different GRL elements include: softgoals, goals, tasks, resources, and beliefs.

Definition 6.8.2. An Object-Z specification is a finite set of related Object-Z elements.

For example, class schemas, objects (instances of classes), operations, definitions, etc. are

Object-Z elements related by means of inheritance, instantiation, inclusion, etc.

A Z specification of a GRL model and an Object-Z specification are proposed.

[GrlE ,OzE]

GrlE denotes the set of all possible elements of a GRL model. Since the topic of interest

here is the applicability of the formal approach to describe GRL models, we prefer to keep

the list of GRL elements rather abstract. In the same vein, the list of Object-Z elements

denoted by OzE is also kept abstract.

167

Grlmodel
grlelements : FGrlE
links : GrlE 7→ GrlE

dom links ∪ ran links ⊆ grlelements

A GRL model is therefore, formed by a finite set of GRL elements that are interconnected

by means of link elements represented by the partial function, named links .

InitGrlmodel
Grlmodel ′

grlelements ′ = ∅

links ′ = ∅

INITGrlmodel defines an initial state for a GRL model. Theorem 6.8.1 is used to prove that

the proposed initial state is realisable.

theorem 6.8.1. ∃Grlmodel ′ • InitGrlmodel

Ozspec
ozelements : FOzE
related : OzE 7→ OzE

dom related ∪ ran related ⊆ ozelements

The schema Ozspec specifies an Object-Z specification. As in the case of GRL models, the

description of an Object-Z specification is kept simple and abstract. This is convenient for

the type of analysis being conducted.

INITOzspec is an initial state for the schema Ozspec.

InitOzspec
Ozspec ′

ozelements ′ = ∅

related ′ = ∅

theorem 6.8.2. ∃Ozspec ′ • InitOzspec

The partial function ozgrle defined next associates GRL models’ elements to Object-Z spec-

ification components. It should be perceived as being illustrated by the mappings in Table

6.8 where each GRL model element can be traced from at least one Object-Z specification’s

component.

168

ozgrle : GrlE 7→ OzE

The state schema StateOzGrl includes only one component that maps each GRL model to

an Object-Z specification.

StateOzGrl
ozgrl : Grlmodel 7→ Ozspec

∀ grl : Grlmodel ; oz : Ozspec | grl 7→ oz ∈ ozgrl •
∀ grle : GrlE | grle ∈ grl .grlelements •
∃ oze : OzE | oze ∈ oz .ozelements •

grle 7→ oze ∈ ozgrle

The predicate part of this schema specifies the strategy adopted in this work to formalise a

GRL model. That is, for an Object-Z specification in Ozspec to specify a GRL model, each

element of the GRL model must be associated, by means of the partial function ozgrle, to

an element of its Object-Z specification.

InitStateOzGrl
StateOzGrl ′

ozgrl ′ = ∅

The initial state schema INITStateOzGrl can established by proving Theorem 6.8.3.

theorem 6.8.3. ∃ StateOzGrl ′ • InitStateOzGrl

The formalisation proposed in this work is now summarised or abstracted with the operation

FormaliseGrlmodel .

FormaliseGrlmodel
∆StateOzGrl
grlm? : Grlmodel
ozspec! : Ozspec

θStateOzGrl ′.ozgrl = θStateOzGrl .ozgrl ⊕ {grlm? 7→ ozspec!}

The purpose of this analysis is to study the behaviour of this operation vis-a-vis the input

GRL models to identify, if exist, the circumstances where a GRL model may or may not be

formalisable. One way of doing this is to calculate the pre-condition of the operation.

Calculating the pre-condition with Z/Eves

A precondition is an operation, denoted by pre, that applies to operation schemas. Calcu-

lating a precondition of an operation helps to describe precisely the conditions under which

169

the operation is applicable, and therefore helps to avoid applying operations outside their

domain. Such calculation involves, in general, two major steps (see Potter et al. [150], Wood-

cock [193], Woodcock and Davis [194]):

• First, to define the precondition schema of the operation by removing the after-state

variables and outputs from the declaration part of the operation schema and existen-

tially quantifying them in the predicate.

• Secondly to simplify the schema by applying predefined inference rules and techniques,

such as the one-point-rule, which is defined later in this section.

The precondition for the operation FormaliseGrlmodel is defined as:

Define pre FormaliseGrlmodel =̂ preFormaliseGrlmodel

The schema representation of preFormaliseGrlmodel is:

preFormaliseGrlmodel
StateOzGrl
grlm? : Grlmodel

(∃ StateOzGrl ′; ozspec! : Ozspec) •
θStateOzGrl ′.ozgrl = θStateOzGrl .ozgrl ⊕ {grlm? 7→ ozspec!}

Obviously, this schema does not seem to be easy to manipulate since the type of the input and

outputs variables are themselves state schemas. Multiple steps may therefore be required

to developed and simplify the schema. Thus, the decision to use Z/Eves theorem prover

tool to automatically calculate the precondition. The software does the calculation when

attempting to prove the Theorem 6.8.4.

theorem 6.8.4. ∀ StateOzGrl ; grlm? : Grlmodel • preFormaliseGrlmodel

To successfully perform the calculation, the Z specification defined in this section, including

the given sets: OzE and GrlE , the state schemas: Grlmodel , Ozspec, and StateOzGrl , as

well as the partial function ozgrle and the operation FormaliseGrlmodel were first loaded

onto Z/Eves followed by a command to request Z/Eves to prove Theorem 6.8.4 by reduce

and to simplify the result whenever possible:

=> try ∀ StateOzGrl ; grlm? : Grlmodel • preFormaliseGrlmodel ;
prove by reduce; simplify ;

After multiple steps of development and simplification, the theorem prover generated the

result presented next. Only the inputs, the first and last steps are shown here; the middle

steps were deleted to reduce the size. Lines were also added in between the proof steps to

170

make them more visible.

Z/Eves proof result:

StateOzGrl
∧ grlm? ∈ Grlmodel
−−−−−−−−−−−−−−−−−−−−−−−−−−−
⇒ (∃ ozgrl ′ : P(〈| grlelements : PGrlE , links : P(GrlE ×GrlE) |〉×
〈| ozelements : POzE , related : P(OzE × OzE) |〉);
ozspec! : 〈| ozelements : POzE , related : P(OzE × OzE) |〉 •
FormaliseGrlmodel)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

deleted steps ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⇒ (∃ ozspec! : 〈| ozelements : POzE , related : P(OzE × OzE) |〉 •

ozspec! ∈ Ozspec
∧ (∀ grl 0 : Grlmodel ; oz 0 : Ozspec | (grl 0, oz 0) ∈ ozgrl ⊕ {(grlm?, ozspec!)} •

(∀ grle 0 : GrlE | grle 0 ∈ grl 0.grlelements •
(∃ oze 0 : OzE • (oze 0 ∈ oz 0.ozelements

∧ (grle 0, oze 0) ∈ ozgrle)))))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Command had no effect .
=>

This result looks interesting considering the state of the theorem at the beginning of the

proof and the result after all the possibilities being explored.

To summarise, the condition for the input GRL model (grlm?) to be transformed into ozspec!

is for each element of grlm? to be formalisable; where the formal specification of the ele-

ment is a component of the ozspec!. This is incorporated into the following mathematical

expression:

∀ grle 0 : GrlE | grle 0 ∈ grl 0.grlelements •
(∃ oze 0 : OzE •

(oze 0 ∈ oz 0.ozelements
∧ (grle 0, oze 0) ∈ ozgrle)))

Recall that (grle 0, oze 0) ∈ ozgrle indicates that the Object-Z element oze 0 formalises

the GRL element grle 0. This condition enlighten the usefulness of ozgrle, to transforms

GRL elements into Object-Z components, in the overall formalisation process. Thus, the

importance of Object-Z templates developed in Chapter 4, Section 4.3, pp. 66 - 77 on which

ozgrle is entirely based.

171

6.9 The downward validation phase

This validation phase seeks to demonstrate that the evisaged system can effectively be ob-

tained from the specification(feasibility) and that it can be demonstrated that such a system

meets its requirements.

6.9.1 The operational feasibility analysis

It is a known fact software products or computers’ systems can be generated from Z/Object-Z

specifications. Known refinement techniques and successful software and hardware projects

developed from Z/Object-Z specifications are very supportive. Hence, the issue at this stage

is not about the feasibility of Object-Z specifications in general, but rather about the Object-

Z specification describing GRL models obtained by applying the GRL models formalisation

process proposed in this work.

Constructing a UCM from the Object-Z specification

The analysis of the relationship between GRL and UCM was discussed in Chapter 4, Sec-

tion 4.1, pp.53-59. Focusing on the joined and iterative construction of GRL and UCM

illustrated in Figure 4.1, it was observed that UCM refines GRL and the bulk of UCM

inputs are generated by GRL through goals analysis and operationalisation. It was also

argued that although use cases and/or scenarios from user requirements can be used directly

as inputs to UCM, those inputs to be justified must be connected in one way or another

to some goals or softgoals in GRL. To the best of the authors knowledge, there isn’t any

explicit or formal mapping between the inputs from GRL and the model elements of UCM

meaning that the refinement of each input merely depends on the analyst understanding.

The idea in this section is to compare the inputs to UCM from two sources:

• the Object-Z specification, developed in Chapter 5 and presented in (Appendix C),

• the GRL model in fig.5.2, p.106.

The purpose of this comparison is initially to show that the formalisation process does not

loose information. Additionally, it enlightens any improvement brought into the process by

the formal model.

Linking GRL elements to UCM model elements

Table 6.10 presents the inputs from the GRL model with an attempt to map each GRL
element to the UCM model elements that are most likely to be used for its specification.

172

GRL Elements UCM model elements

No. GRL elements T
y
p
e
o
f
in
p
u
t

R
es
p
o
n
si
b
il
it
y

A
n
d
F
o
rk
-O

rF
o
rk

A
n
d
J
o
in
-O

rJ
o
in

W
a
it
in
g
P
la
ce

S
ta
rt
P
o
in
t-
E
n
d
P
o
in
t

E
m
p
ty
P
o
in
t

S
ta
ti
cS
tu
b

D
y
n
a
m
ic
S
tu
b

S
y
n
ch
ro
n
iz
a
ti
o
n
S
tu
b

T
ea
m

P
ro
ce
ss

O
b
je
ct

A
g
en
t

A
ct
o
r

01 Applicant Actor X X X X X

02 ImprovAppProc Softgoal

03 FlexibleProcess Softgoal

04 ReduceAppTime Goal

05 AppOnline Goal

06 AccessOwnApp Task X X X X X

07 SubmitAppOnline Task X X X X X

08 Motivator Actor X X X X X

09 ImprovMotivEvalProc Softgoal

10 CombineMotivEval Softgoal

11 ColabWithAdmin Goal

12 MotivEvalOnline Goal

13 MeetingToMotivEval Task X X X X X

14 SubmitMotivEvalOnline Task X X X X X

15 ReportOnSubmitedApp Task X X X X X

16 Administrator Actor X X X X X

17 ResolvEmailPb Softgoal

18 ImprovEvalMotivTime Softgoal

19 FacilAppManagement Softgoal

20 HaveConsistForms Goal

21 InstantAccessToPgData Goal

22 GenStatsOnApp Task X X X X X

23 ProvideInfoGenForms Task X X X X X

24 KeepPgDataInDb Task X X X X X

25 Server Actor X X X X X

26 ColabHRSys Goal

27 GenFormSections Task X X X X X

28 MaintSubmitedApp Task X X X X X

29 MaintDb4SuppPg Task X X X X X

30 GenSecBelief Belief

31 Intranet Resource X X

32 Internet Resource X X

Table 6.10: Mapping GRL components to UCM model elements

UCM model elements are represented in columns and GRL elements in lines. Darkened

173

lined (in gray) indicate GRL elements that are not considered for UCM specification. These

include goals and softgoals, as well as link elements that are not in the table. The connection

between inputs elements in lines and UCMmodel elements in columns, represented by a cross

(X), results from an attempt to identify UCM elements that are most likely to be used in

the UCM modelling of an input element. Such identification is mainly based on the type of

the input entity considered, as it is described in the GRL notation. The following examples

are presented to illustrate:

Example 6.9.1. In GRL, an actor models an entity that has intentions and carries out

actions to achieve its goals; it often represents a stakeholder or a system (see URN[1], p.26).

The actions carried out by an actor are the tasks that operationalize goals and softgoals of

the actor definition. Thus, the most plausible UCM elements for an actor definition include:

Team, Object, Agent and Actor’s components. Since an actor may also represent a system,

it is very likely to create a (static) stub for such an actor’s definition.

Example 6.9.2. A task specifies a particular way of doing something (see URN [1], p.30).

This definition of a task is so generic that any action or activity would be included and

therefore, any UCM model element describing actions would be considered: Responsibility,

Start-Point, End-Point, Process, and Agent.

Example 6.9.3. A resource in GRL is a physical or informational entity for which the main

concern is whether it is available (see URN[1], p.30). To the authors’ understanding, this

definition suggests a UCM Object component as the most plausible model element to specify

a resource.

It is the author’s belief that knowing beforehand UCM elements required to specify an input

entity would positively contribute to the automation of the process. However, a thorough

analysis of the individual entity remains a viable option that provides for detailed information

needed for the complete modeling of the entity.

Linking Object-Z components to UCM model elements

Table 6.11 illustrated the association between the Object-Z components and UCM conceptual

elements. Object-Z entities are obtained from the traceability analysis table shown in (Table

174

6.8,P.154), that readily associates each GRL element (used in Table 6.10) to the Object-Z

element(s) that formalises it. The column titled “Type source GRL” includes the type of

GRL element formalised by the Object-Z element that precedes it in the same line. A cross

symbol (X) in a cell indicates a mapping identical to one of the corresponding GRL element

in Table 6.10. A star symbol (*) is used for any extra linking due to the formalisation.

175

Object-Z components UCM model elements

No. OZ compnents T
y
p
e
so

u
rc
e
G
R
L

R
es
p
o
n
si
b
il
it
y

A
n
d
F
o
rk
-O

rF
o
rk

A
n
d
J
o
in
-O

rJ
o
in

W
a
it
in
g
P
la
ce

S
ta
rt
P
o
in
t-
E
n
d
P
o
in
t

E
m
p
ty
P
o
in
t

S
ta
ti
cS
tu
b

D
y
n
a
m
ic
S
tu
b

S
y
n
ch
ro
n
iz
a
ti
o
n
S
tu
b

T
ea
m

P
ro
ce
ss

O
b
je
ct

A
g
en
t

A
ct
o
r

01 ClsApplicant Actor * * * X X X X X

02 ozImprovAppProc Softgoal * * * * * * * *

03 ozFlexibleProcess Softgoal * * * * * * * *

04 ozReduceAppTime Goal

05 ozAppOnline Goal

06 ClsAccessOwnApp Task X * X * X X

07 ClsSubmitAppOnline Task X * X * X X

08 ClsMotivator Actor * * * X X X X X

09 ozImprovMotivEvalProc Softgoal * * * * * * * *

10 ozCombineMotivEval Softgoal * * * * * * * *

11 ozColabWithAdmin Goal

12 ozMotivEvalOnline Goal

13 ClsMeetingToMotivEval Task X * X * X X

14 ClsSubmitMotivEvalOnline Task X * X * X X

15 ClsReportOnSubmitedApp Task X * X * X X

16 ClsAdministrator Actor * * * X X X X X

17 ozResolvEmailPb Softgoal * * * * * * * *

18 ozImprovEvalMotivTime Softgoal * * * * * * * *

19 ozFacilAppManagement Softgoal * * * * * * * *

20 ozHaveConsistForms Goal

21 ozInstantAccessToPgData Goal

22 ClsGenStatsOnApp Task X * X * X X

23 ClsProvideInfoGenForms Task X * X * X X

24 ClsKeepPgDataInDb Task X * X * X X

25 ClsServer Actor * * * X X X X X

26 ozColabHRSys Goal

27 ClsGenFormSections Task X * X * X X

28 ClsMaintSubmitedApp Task X * X * X X

29 ClsMaintDb4SuppPg Task X * X * X X

30 ozGenSecBelief Belief

31 ClsIntranet Resource * * * * X

32 ClsInternet Resource * * * * X

Table 6.11: Mapping Object-Z components to UCM model ele-

ments

When linking Object-Z classes to UCM conceptual elements, the main criteria was to con-

176

sider the class itself and its components without performing any content analysis of both the

class and its components. The goal is to intentionally limit the contribution of the formal

model at the initial phase of a UCM model construction by considering only the structure of

the specification. The idea is for example to let the system suggest different options for the

initial model and when the designer has decided, detailed analysis of the formal specification

may hence be exploited to refine the (generated/initial) UCM model.

To complete the table, the column indicating the type of GRL element being formalised

is first used. For each type, the mapping for the same type in Table 6.10 is replicated using

the same cross symbol (X). After this first step, the star symbol is used to complete the

table with additional linking that results from considering the type and composing elements

of the input object-Z entity.

Example 6.9.4. since a class schema generally contains a state with variables and at least

one primitive operation to update the variables in the class, UCM elements that may be

used for an Object-Z class should at least include:

• Responsibility point(s) for primitive operations, and

• Component to model the state of the class schema.

Example 6.9.5. each Object-Z entity describing a softgoal comprises a component that

prescribes actions (CNF-action) on parts or entire model to propagate the influence of the

non-functional requirements on the model. Examples of CNF-actions:

• Introduce concurrency with: And-fork and Join-fork to reinforce performance,

• Group related elements together (stubbing, team) to apply security measures,

• Create alternative paths (Or-fork, Or-Join, stubs) to reinforce flexibility or compati-

bility.

It is worth noticing that a CNF-action defines actions on the UCM model but not actions

in the model. That is why the element Responsibility point is not selected in the table.

Comparing the two linkings

The comparison is based on the assumption that if for each input entity all the UCM el-

ement(s) needed for its specification is known, then the generation of the complete UCM

specification is made easier and the construction process can also be, partially or fully, au-

tomated. Thus, by comparing the two tables, the following observations appear:

177

1- The linking in Table 6.10 are included in Table 6.11 confirming that the formalisation

process does not cause any loss of information.

2- Inputs from Object-Z are likely to be easier to model with UCM than the GRL elements

that they formalise. This is supported by the fact Table 6.11 readily suggests more UCM

elements to model each of the Object-Z inputs than Table 6.10 for GRL elements.

3- With the concept of Complementary Non-Functional action (CNF-action), the Object-Z

specification provides for a mechanism to stimulate thinking about actions to perform

on the UCM to optimize the model with the purpose to achieve non-functional/quality

requirements.

Two examples are used next to illustrate this comparison: the first example presents the

UCM modeling of the actor definition Applicant and all elements bound to it as well as

Internet one of the resources needed. The second constructs the UCM specification of the

class schema ClsApplicant , the two classes: ClsAccessOwnApp and SubmitAppOnline, as

well as, the class schema ClsInternet .

Example 6.9.6. UCM specification of Applicant and Internet

• Applicant- four UCM elements proposed are: Static Stub, and Team, Object, Agent,

and Actor components. Since it can be known from the GRL model that the actor’s

definition includes other elements, the best choice would be on the Team and Actor

components. Since there is doubt on whether an actor component can contain other

elements,choosing the the Team component over the actor component is preferable.

To summarise, the use of the Stub is not yet decided, the object, Agent and Actor

components are discarded, and the Team component chosen. This context can be save

for future consideration. For example,

savecontext(Appliquant [StaticSTub(0), Team(1), Object(-1),Agent(-1), Actor(-1)]).

Figure 6.7: UCM specification of the GRL actor applicant

178

• AccessOwnApp / SubmitAppOnline:

The task AccessOwnApp defines the means through which an applicant access its own

submitted application. The suggested elements in Table 6.10, for a Task, are: Respon-

sibility, Start and End Points, Process, and Agent. Process, Start and End Points may

be chosen and hence, the following context saved for future use:

savecontext(AccessOwnApp[Responsibility(-1), StarPoint(1), EndPoint(1), EmptyPoint(1),

Process(1), Agent(-1)])

The task SubmitAppOnline defines a means for an applicant to submit its application

online. The task is analysed in the vein as AccessOwnApp.

• Internet is a resource needed for online communications as intended in Figure 5.2.

To specify the resource, the only possible UCM conceptual elements to select from

(see Table 6.10), are: Team and Object. Since the resource stands alone, the Team

component is more appropriate for its modeling.

Figure 6.8: UCM specification of the GRL actor applicant

At this stage, more detailed UCM map may be obtained only by means of further analysis.

Example 6.9.7. UCM specification of ClsApplicant , ClsAccessOwnApp, ClsSubmitAppOnline,

and ClsInternet

• To specify the class ClsApplicant , Table 6.11 provides for a set of conceptual elements

from which one may choose the most appropriate. These are: Responsibility, Start-

Point, EndPoint, EmptyPoint, StaticStub, Team, Object, Agent, and Actor. Some of

the elements are naturally made to be together, for example, a Responsibility point is

always placed between a Start point and an End Point.

It is also important to notice that any class schema with state variables, naturally de-

fines at least primitives operations to update its state. These operations are abstracted

in this example with one responsibility point, namely, UpdateState.

179

UCM model elements chosen for the class ClsApplicant are therefore:

– Responsibility point (UpdateStateApplicant), with a start point and an end point,

to represent the primitive operations to update the state of the class,

– a team component to represent the class itself,

– an object component to represent the state of the class, and

– the decision to use a stub may be taken at a later stage.

Figure 6.9: UCM specification of the class schema Clsapplicant

• ClsAccessOwnApp / ClsSubmitAppOnline

The UCM conceptual elements provided in Table 6.11 for class schemas formalising

the same type of GRL elements are the same. The elements to choose from are:

Responsibility, WaitingPlace, StartPoint, EndPoint, EmptyPoint, StaticStub, Team,

Process, Object, and Agent. The selection for each of the two classes is the same:

– Responsibility point, StartPoint and EndPoint, to represent the operation SelectApp

for the class ClsAccessOwnApp and SubmitApp for the class ClsSubmitAppOnline,

– no decision for WaitingPlace and StaticStub,

– Team, Object and Agent rejected, and

– Process to represent each of the two classes.

The resulting map is presented in Figure 6.10. Notice that the state of the two classes

are not represented. This is because their common component, inet , is in fact a refer-

ence to an object of another class and hence accessible from that class. The variable,

nfdependers in the class ClsAccessOwnApp is updated only when the specification is

being constructed; afterward, it becomes like a constant. The UCM modeling of the

class ClsInternet describing a resource needed by other classes is considered next.

180

Figure 6.10: UCM specification of the class ClsApplicant and processes

• The UCM modeling of the class ClsInternet is done in a similar way as in the cases

above. The resulting model is presented in Figure 6.11. The purpose of including this

class in the example is mainly to show how the selection of some UCM elements can

be made at later stages.

Figure 6.11: UCM specification for ClsApplicant, ClsAccessOwnApp, ClsSubmitAppOnline,

ClsInternet

As mentioned above, the two classes ClsAccessOwnApp and ClsSubmitAppOnline inherit

objects from the class ClsInternet . This justifies why a waiting place and/or a stub were

suggested for their modeling: means to connect to the map specifying the inherited class. A

quick look at the operations SelectApp in ClsAccessOwnApp and SubmitApp in ClsSubmitAppOnline

also confirms the necessity for the connection and makes it more convenient to choose the

181

WaitingPlace over the StaticStub. For example, consider the following operation:

inet .saveform(myform?)

The operation requires inet , a reference to an object of the class ClsInternet to save an input

webpage via the internet connection. The advantage of the waiting place is that, not only, it

would provide means to communicate (send a request via the Internet) but, also allows for a

timeout-recovery mechanism to control the communication. The next example is presented

Figure 6.12: UCM model for ClsApplicant, ClsAccessOwnApp, ClsSubmitAppOnline, ClsIn-

ternet

to illustrate how the analysis of softgoals may help to create CNF-actions to optimise the

model.

Illustrating the concept of Complementary Non-Functional Actions: CNF-actions

Example 6.9.8. as mentioned above, the component nfdependers , in a class schema, con-

tains the list of softgoals that depend on the class for their achievement. In the case of the

model in Figure 6.12, only two softgoals are involved: the first is ozImprovAppProc whose

main goal is to improve the application process. The second is ozFlexible whose purpose is

for the application process to be flexible. The second softgoal is in fact a refinement of the

first one. However, both can still be analysed together since Table 6.11 suggests the UCM

conceptual elements for any softgoal.

The suggested list of elements to choose from includes: AndFork, OrFork, AndJoin, Or-

Join, WaitingPlace, StaticStub, DynamicStub, SynchronizationStub, Team component, and

Agent component.

182

The analysis of softgoals in this case, stimulates thinking about:

• Concurrency/parallelism (AndFork, AndJoin),

• Alternatives (OrFork, OrJoin),

• Communication (WaitingPlace [Timer]),

• SubSystems (StaticStub, DaynamicStub, SynchronizationStub), and

• Modularisation (Team component, Agent).

with the purpose to perform appropriate actions (CNF-actions) on the model to achieve

stated software qualities. For example, in Figure 6.12, one may argue that having two dis-

tinct path segments to connect to the Internet; one to access submitted application forms

and the other to submit new applications, is not flexible and also time consuming because

it requires an applicant to open a new Internet connection for each operation. This problem

involves two aspects of the map: the Internet communication and the choice between parallel

and alternative execution of the two processes.

Concerning the second aspect, that is to make decision about parallel or alternative execu-

tion of the two processes, the most relevant CNF-action is to or-join the two path segments

before the connection to the Internet and Or-Fork them before they are processed. This

would eliminate one waiting place and keep only one for the communication.

Regarding the control of communication, since there is already a waiting place to control the

communication, the CNF-action would consist to transform the waiting place into timeout-

recovery mechanism by replacing the waiting place with a Timer and by adding a timeout

path through which appropriate actions may be taken when timeout occurs.

CNF − action =̂
id = ozFlexibleProc.id
name =
importance = ozFlexibleProc.importance
impQualitative = ozFlexibleProc.impQualitative
phase = “UCM specification”
actor = ClsApplicant .id
action = “Replace watingPlace06 with Timeout − Recovery mechanism”
domain = UCM < ClsApplicant , ClsAcessOwnApp, ClsSubmitAppOnline,

ClsInternet >
description = “map optimisation to achieve flexibility in order

to improve the application process .”

183

Figure 6.13: Optimised UCM model for ClsApplicant, ClsAccessOwnApp, ClsSubmitAp-

pOnline, ClsInternet

The resulting map is represented in Figure 6.13.

6.10 Chapter conclusion

This chapter was presented in three parts. The first part introduced different specification

validation techniques including parsing and type checking, animation, and mathematical

proofs. An approach to animate an Object-Z specification using Prolog was also suggested

followed by an introduction to the four-way framework for validating a specification.

The second part covered the overall planning of the validation. Based on the four-way

framework, the validation of the Object-Z specification of the case study was planned for an

iteration over four phases. The rightward validation phase to establish the consistency of

the specification, the upward targeting the traceability and correctness of the specification,

the leftward to address the completeness and applicability of the specification, and lastly

the downward phase during which the feasibility of the specification was analysed. The

four-phase planning was summarised in Table 6.1. The planning of the Prolog animation of

the specification was also discussed based on the prototyping process in Figure 6.2 proposed

by Sommerville [169].

The third and last part included the four-phase validations process. The rightward phase

during which the specification was parsed and type checked using the Community of Z

Tools (CZT) and errors corrected followed by a review that enlightened the hierarchical

structuring of the specification illustrated in Figure 6.4. The upward phase proceeded with

184

the traceability analysis (see Table 6.7 and 6.8) to show that each Object-Z specification

component was traceable from the original GRL model and that to each GRL element in

the model, there was at least one Object-Z entity that formalises it. The correctness of

the specification was also established through animation and argumentation. The leftward

phase exploited the traceability analysis, the result from the Prolog animation, as well as

the review of the specification performed in previous phases to conclude the completeness

of the specification. Domain elements and properties were formalised with the Z notation,

theorems formulation, as well as the use of the theorem prover Z/Eves were all together

exploited to justify the applicability of the specification. The downward validation phase fo-

cused on the UCM modeling process to discuss the operational feasibility of the specification.

The next chapter proceeds with the analysis and generalisation of the main ideas devel-

oped in Chapters 4, 5 and 6.

185

186

Chapter 7

Analysis and Generalisation

This chapter performs a review of the work presented in the previous chapters of this doc-

ument. The purpose of the review is to analyse all identifiable contributions and when

possible, examine the possibility to generalise the result. The contributions are organised

into categories including: contributions related to the URN construction process, the comple-

mentary non-functional actions (CNF-actions), contributions related to the proposed GRL

formalisation approach, to the case study as well as contributions resulting from the Object-

Z specification validation.

Next is presented the analysis of contributions related to the URN construction process.

7.1 URN construction process

As a result of the analysis of relationship between GRL and UCM based on the URN con-

struction process presented in Chapter 4, Section 4.1, pp. 53 - 59, it was concluded that:

(a) a UCM specification is a refinement of a GRL model,

(b) a more consistent link/relationship needs be established between GRL and UCM to fill

the conceptual gap that currently exists between the two techniques.

These two results are discussed next.

7.1.1 Discussion about UCM refining GRL

The UCM model in Figure 6.8, p.179, as well as the modeling process followed in (Exam-

ple 6.9.6, p.178) to generate the model, best illustrates how a UCM model should not be

perceived as a mere translation of the input GRL elements, but rather their refinements.

It is observable from the example that to generate a more expressive UCM specification, a

187

detailed analysis of the input elements is required. This discussion owes its worthiness from

the inherent nature of the concept of refinement and the two important activities that it

requires to be accomplished.

• the first activity includes, for instance, transforming/decomposing the model from its

current state into a more detailed one, and

• the second consists to validate the refined model against the initial one.

These two activities bring in the need to rethink, at the conceptual level, a mechanism to

facilitate the tracing/linking of UCM elements to those of the input GRL. One would also

expect the suggestion of a method to analyse GRL elements to facilitate their UCM specifi-

cation.

As illustrated in Example 6.9.6, developed in Chapter 6, Table 6.10, on page 173 provides

for a means to associate GRL elements to UCM conceptual components to facilitate the

construction of the UCM map. During the UCM specification, for an input GRL element,

the table together with the UCM elements selected, using the table and accessible through

the operation such as

savecontext(Appliquant[StaticSTub(0),Team(1),Object(−1),Agent(−1),Actor(−1)])

constitutes a perfect approach to link GRL elements to those of UCM and hence, facilitate

the tracing of those elements from one model to another. Let’s recall that the operation

savecontext , used above, stores the following information:

• Applicant - a GRL element of type actor that is to be specified,

• StaticStub, Team, Object , Agent , and Actor - UCM conceptual elements proposed to

specify the actor’s definition Applicant , based on the information in Table 6.10,

• StaticStub(0) - the selection of this element is not yet decided.

• Team(1) - a team component is chosen to specify the actor definition Applicant .

• Object(−1), Agent(−1), and Actor(−1) - these components are rejected.

It is clear that having this information stored and made available provides for a technique

for backward and forward traceability between GRL and UCM elements. Thus, the next

important aspect discussed next, focuses on the analysis technique to facilitate the UCM

modeling of an input GRL element.

188

7.1.2 Discussion about improving the relationship between UCM

and GRL

Example 6.9.7 presented from page 179 to 184, illustrates a UCM specification of a set of

Object-Z elements, the classes: ClsApplicant , ClsAccessOwnApp, clsSubmitAppOnline, and

ClsInternet , resulting in the UCM model presented in Figure 6.11, p.181. The modeling

process used in Example 6.9.6 was followed with the use of Table 6.11, similar to Table 6.10,

to suggest for each input Object-Z element, a list of UCM conceptual elements appropriate

to specify the input Object-Z entity. However, a closer look at the two UCM maps produced

in both examples, reveals the map from Example 6.9.7 is more detailed and complete (de-

scribes better the input elements and is more expressive) than the one in Example 6.9.6.

The high quality of the UCM model produced in Example 6.9.7 can rightfully be attributed

to two important factors that need further discussion:

• the application of our proposed concept of Complementary Non-Functional Actions,

namely CNF-actions, to stimulate thinking about additional actions to perform, on

a model in construction, to reinforce the achievement of softgoals (non-functional re-

quirements), and

• the formalisation of GRL elements, with Z/Object-Z, that induces a preliminary de-

tailed analysis of the initial GRL model before the UCM specification.

Each of these two points are further discussed next.

7.2 Complementary Non-Functional Action: CNF-action

7.2.1 The essence of CNF-action

This work proposed in Section 4.2.3, pp. 62 - 66 the concept of Complementary Non-

Functional Action (CNF-action) to propagate the analysis of non-functional and quality

requirements to each software development phase as illustrated in Figure 4.3.

We argue that the major part of softgoals and/or non-functional requirements are actions

performed on models and not functional requirements that can be explicitly added to the

list of existing functional requirements.

Inherently, a non-functional requirement has an influence on the system at each phase of the

software development and a once-off analysis of them would be too limited to bring in the

189

full potentials of such requirements.

One of the most difficult aspect of non-functional requirements is conflict resolution when

analysing the influence of the requirements specification phase.

7.2.2 Further efforts needed

The main objective of the proposed concept, the CNF-action, is to stimulate at each soft-

ware construction phase, thorough thinking about developing strategies to allow paral-

lel/concurrent analysis and modeling of functional and non-functional/quality requirements.

Thus, further efforts are expected to address the following aspects:

1. develop at each phase strategies for non-functional requirements analysis,

2. strategy for conflict resolution, and

3. strategy to document and propagate actions performed from one stage to the next one.

Next is the discussion about the URN formalisation approach presented in this work.

7.3 Contributions related to the GRL formalisation

approach

One of the most important contributions of this work is the GRL formalisation approach

presented in Chapter 4, illustrated in Chapter 5 with a case study and validated in Chapter

6. The fundamental idea of the formalisation process is based on the basic GRL modeling

approach introduced next.

7.3.1 The basic GRL modeling approach

Figure 7.1 illustrates our perception of the basic GRL modeling process summarised in three

phases: phase A, B, and C.

Phase A: the input analysis, consisting to identify amongst the model elements, the most

appropriate one(s) to model the input under consideration.

Phase B: one or more instance(s) of the GRL conceptual element(s) identified during the

input analysis phase is created and added to the GRL model in construction.

190

Figure 7.1: Illustrating the basic GRL modeling approach

Phase C: element(s) in the GRL model are iteratively refined/operationalised to obtain the

final version of the model. The refinement process consists to analyse the element

at hand, identify the most appropriate model elements (e.g., Task, Contribution)

that would best refine/decompose/operationalise the selected element. Then, the

model element(s) are instantiated and added to the model in construction.

In summary, each GRL model, specifying a set of inputs, is obtained from the GRL con-

ceptual elements by instantiation. The idea for the formalisation deduced from this basic

approach is the following: if all conceptual elements are formalised, then the formal spec-

ification of a GRL model can directly be obtained from the formal specifications of the

conceptual models.

7.3.2 The basic formalisation strategy

The generic approach to formalise an input GRL model, proposed in this work, fully depends

on the ability of the formal technique to formalise the GRL conceptual elements. The

approach is depicted in Figure 7.2 with four specification steps, namely, Phase A, B, C, and

D briefly explained in the legend.

Phase A: the formalisation of GRL conceptual elements with the development of templates;

each template specifying a specific model element. It is only when the complete

set of templates is created that the technique can be used to specify an input

GRL model.

Phase B: the analysis of the input GRL model pertaining to identify, for each input element,

an appropriate template to formalise the element.

191

Figure 7.2: Illustrating the basic GRL formalisation approach

Phase C: the transformation of the template, identified during the input analysis, to gen-

erate the formal specification of the input element. In the case of the Object-Z

technique used in this work to illustrate the approach, the transformation process

is based on two concepts: inheritance and instantiation.

Phase D: the formal model constructed in the previous phases is finalised in the light of

components describing links connecting the elements of the input GRL model.

The process may require the use templates to create new objects to update the

formal specification.

To summarise, the condition for a (formal) method/technique to be considered for GRL

models formalisation based on the above basic approach is the following:

Considering the formal notation X, the condition for formalising a GRL model into X are:

• the ability of the method X to formalise GRL conceptual elements, namely templates

(element type),

• the ability of the method X to formalise elements of the input GRL model from the

templates.

This strategy was formalised in (Chapter 6, Section 6.8.2, pp. 167 - 171) with the Z notation.

The operation ozgrle defined as: ozgrle : GrlE 7→ OzE formalises each GRL conceptual

element into a template. The operation FormaliseGrlmodel was defined to transform an

input GRL model grlm? into an Object-Z specification ozspec!.

192

FormaliseGrlmodel
∆StateOzGrl
grlm? : Grlmodel
ozspec! : Ozspec

θStateOzGrl ′.ozgrl = θStateOzGrl .ozgrl ⊕ {grlm? 7→ ozspec!}

The precondition calculation for the operation FormaliseGrlModel was automated with

Z/Eves theorem prover, the result of which obviously confirmed that for the formal specifi-

cation ozspec! to formalise the input GRL model grlm?, each GRL conceptual element must

be formalisable.

Note that although in the Z specification of the strategy, Object-Z was

considered the formal method, no Object-Z concept was used neither in the

specification nor in the proof thus, the formal technique could simply be

kept generic and be noted for example, method X.

7.3.3 Future efforts needed

The Object-Z method was exploited in this work to explore different aspects of this formali-

sation strategy. However, for the strategy to become a model or standard, more experiments

with other types of formal techniques (e.g., algebraic methods, ontology) are still required.

One should also consider analysing the ability of the strategy to cope with changes in GRL

model affecting either the structure or the model elements.

The major contributions of this work were generated in the following areas: when devel-

oping the templates and the framework presented in Chapter 4. The other phase during

which tangible contributions were developed is during the application to the case study

presented in Chapter 5. And lastly, some contributions came from the validation phase dis-

cussed in Chapter 6 during which the object- z specification of the case study, as well as the

specification process were analysed.

7.4 Contributions associated to Object-Z specification

To complete the Object-Z specification of GRL models, three main contributions were devel-

oped in this work. Firstly, an approach to formalise each GRL conceptual element to create

templates. Secondarily, a framework to formalise GRL models with Object-Z was proposed.

And lastly, algorithms to describe each important step of the formalisation process were

derived.

193

7.4.1 Templates: approach to formalise GRL model elements

The formalisation of the GRL conceptual model was presented in (Chapter 4, Section 4.3,

pp.66 - 77). The specification focused on two important meta-classes and their sub-classes

which comprise the meta-class of linkable elements (GRLLinkableElements) and that of el-

ement links (ElmentLinks) (see Table 4.2, p.67).

Elements pertaining to model evaluation were not included since the evaluation elements

apply to the model whereas our interest was mainly on the model construction process. In

fact the idea of excluding these elements is that if the model can be formalised, then the

mechanism to evaluate the formalised model can also be derived.

The main criteria for the construction of templates are:

• The formalised version of the GRL abstract model must keep the original (hierarchical)

structure of the model. This was made possible by the use of the concept of inheritance

in Object-Z at the class level.

• The specification was kept to the minimum. For example, primitives operations that

are nomally included in class schemas to update the variables in the class were not

included. The assumption was that if a class kept to the minimum (without some

operations and even variables) can successfully be used to formalise a GRL element,

then adding more information or details to it would not change the strategy but rather

add more details to the final specification.

Since GRL abstract elements are themselves structured from meta-classes to subclasses, a

top-down approach was adopted as the main formalisation strategy. Super classes/metaclasses

were first considered followed by subclasses where Object-Z classes formalising sub-classes

inherited those formalising the super-classes.

The formalisation of each model element was based on the analysis of the element (se-

mantic, relationships, etc) and highly facilitated by the fact that Object-Z and UML used

for the modeling of GRL abstract elements share a number of concepts in common including

the concept of: the class, instantiation, inheritance, etc.

Complementary Non-Functional Actions: CNF-actions

To make our suggested CNF-action more visible, an abstract class was created that inher-

ited the class of intentional elements. CNF-actions are not inherently part of any of the

URN components, so the decision to integrate them into the model was to allow to GRL

194

specifications to benefit from such actions (to apply them when necessary to GRL models)

and also to prepare them for the next software development phase.

Another advantage of our attempt to integrate CNF-actions into GRL abstract model,

is that, it rendered the association of CNF-actions with other GRL elements, especially

softgoals easier. A CNF-action became an intentional element similarly to tasks and re-

sources and hence, allowing the use of the concept of class to formalise it as an an Object-Z

schema (ClsComplementaryAction). Thus, in a specification of a softgoal, the list of all

CNF-actions of the softgoal is simply defined as a subset of the set of objects of the class

ClsComplementaryAction.

Future efforts

As observed during the validation phase, keeping the structure of the GRL model elements

when creating templates may result in having a formal model that inherits the complex

structure of the original model and which also may have negative effects on the quality of

the system interfaces, as demonstrated during the animation. This may, if proper care is

not taken during the refinement, introduce recursions into the code at the implementation

phase.

• Having successfully ensured that templates developed with the above criteria can in-

deed be used to formalise GRL models, the next move would consist develop templates

that do not necessary conserve the structure of the original GRL model but rather focus

on optimizing the final formal models.

• Another important aspect to focus on is to develop approaches, guidelines, and or

techniques to analyse and generate CNF-actions at each software development phase.

The next contribution to discuss is the framework proposed to guide the formalisation of the

specification of an input GRL model.

7.4.2 Framework to formalise an input GRL model

This work proposed in Chapter 4, Section 4.4, pp.77 - 88, a framework to guide the Object-Z

specification of an input GRL model. Two alternatives transformation approaches were first

discussed and the direct transformation was recommended. The framework insists also on

GRL model traversal strategy to identify GRL elements to be formalised (see Section 4.4.1,

p.78), as well as the specification approach for each type of elements (see Sections 4.4.2 and

4.4.3, pp.79 - 83). The framework also recommends to update the specification in the light

195

of element links (see Section 4.4.4, pp.84 - 86) with guidelines provided to analyse each type

of link element.

7.5 Contributions associated to the case study

The case study used in this work to support our ideas is presented in Chapter 5, pp.91 -

121. The contributions that were made during the case study analysis include the followings:

an approach to assist with scope definition and requirements analysis, algorithms, and the

formalisation of the GRL model for the case study.

The suggested strategy to assist with scope definition and requirements analysis is first

presented.

7.5.1 Suggested strategy for requirements analysis

GRL inputs are generally expected to be stakeholders’ intentions that can be specified using

GRL model elements such as softgoal, goal, task, resource, and belief. However, as in the

case study in this work, the reality is not always as expected; the initial requirements or

problem description may require a preliminary analysis to define the scope of the system

and identify or determine stateholders’ real intentions.

Enterprise architectures are commonly accepted as standard to bridge the gap between

the realities within enterprises and computer systems. However, the high cost and efforts

required to develop an enterprise architecture do not make such solutions easily accessible to

small and medium enterprise. Thus, our suggestion to exploit information, generally readily

available in companies’ organograms to fill the gap. The approach provides for guidelines to

construct and model an organogram as a graph. Three algorithms were proposed to manip-

ulate the graph. The graph model representing an organogram together with the algorithms

were formalised with Object-Z and animated with Prolog aiming to show how the model can

be used to facilitate scope definition and requirements analysis.

7.5.2 Suggested algorithms for graph manipulation

The three algorithms proposed to manipulate graphs are the followings:

196

Algorithm 3: The main algorithm

The main algorithm provides inputs to the two other graph traversal algorithms and coor-

dinates their execution from the beginning to the end.

Algorithm 4: The horizontal search

The horizontal algorithm scans the graph horizontally, from left to right, to identify and

process the relevant information necessary to resolve the problem at hand.

Algorithm 5: The vertical search

This algorithm scans the graph vertically, from top to bottom, to identify and process infor-

mation necessary to resolve any problem at hand.

Contributions made when applying the formalisation framework to specify the GRL model

of the case study are presented next.

7.5.3 Applying the framework to the GRL model of the case study

The framework was successfully used to formalise the GRL model developed for the case

study. The correctness of the Object-Z specification generated for the case study, was ex-

tensively discussed in Chapter 6.

Algorithm 1

This algorithm summarises the GRL model transformation process introduced in the frame-

work and structure the different parts of the formalisation process (see Algorithm 1, p.85).

The algorithm scans an input GRL specification and performs multiple tasks including the

followings:

1. templates : ensures that there is a template for each abstract element, otherwise create

one.

2. GRL traversal strategy: prescribes three traversals of the input GRL specification.

One to identify the actors, the other to identify free elements (not bound to any actor)

and actors’ elements (bound to actors), and the third traversal to identify link elements.

It is important to observe that the emphasis is not necessary on the number of times

the GRL spec is to be traversed but instead on the different type of outputs that are

expected.

197

3. Instructions are given on how to use the template to specify each of the following three

types of GRL elements: Actor’s definition , Task , and Resource.

4. The class schema ClsGRLSpec is a special class that acts as the system interface

through which all other classes can be accessed.

5. Update of the specification in the light of link elements (See Algorithm 2 presented next).

6. Instructions to finalise the specification.

Algorithm 2: Updating the specification

The algorithm, presented on page 87, provides for more detailed instructions to guide the

analysis of each type of link element to update the specification in construction. One of the

advantages of this algorithm is to prepare the system for appropriate application of CNF-

ctions to achieve non-functional and quality requirements. This is done by affecting objects

specifying softgoals into the right class schemas.

Example 7.5.1. Consider the softgoal ImprovAppProc (Improve Application Process) in the

GRL model of the case study (see Figure 5.2, p.106). This softgoal is decomposed into the

softgoal FlexibleProcess and the goal ReduceAppTime respectively with the links dc1 and dc2

(see Table 5.5, p.109). The Object-Z specification of the source softgoal (ImprovAppProc)

is ozImprovAppProc and those of the two others are, respectively, ozFlexibleProcess and

ozReduceAppTime (see Table 5.6, p.110).

1- ozFlexibleProcess (is not a class schema): refinement/decompositions branches from the

softgoal FlexibleProcess are:

(a) 〈FlexibleProcess , AccessOwnApp〉 leads to task: AccessOwnApp which Object-Z

specification is ClsAccessOwnApp,

(b) 〈FlexibleProcess , AppOnline, SubmitAppOnline〉 leads to the task SubmitAppOnline

which Object-Z specification is ClsSubmitAppOnline,

(c) 〈FlexibleProcess , AppOnline, GenFormSections〉 leads to the taskGenFormSections

which Object-Z specification is ClsGenFormSections , and lastly,

(d) 〈FlexibleProcess , AppOnline, Internet〉 involving the dependency link dp1: (Appli-

cant:ApplyOnline,Free:Internet) that is treated is step 1 when processing depen-

dency links.

As recommended in the last part of Step 2 of the algorithm, ImprovAppProc is added

to the variable named nfdependers of each of the following Object-Z class schemas:

ClsAccessOwnApp, SubmitAppOnline, GenFormSections .

198

2- ozReduceAppTime (is not a class schema): a similar analysis as in (1), additionally

to some of the refinement branches found in (1), the following branch is also to be

considered:

〈ReduceAppTime, AppOnline, MotivEvalOnline, SubmitMotivEvalOnline〉

the first task on the branch is SubmitMotivEvalOnline which Object-Z specification

is ClsSubmitMotivEvalOnline. ImprovAppProc is also added to the variable named

nfdependers of the class ClsSubmitMotivEvalOnline.

3- In the same vein, the two contribution links from AccessOwnApp and AppOnline to

FlexibleProc are analysed by applying Step 3 of the algorithm. This results in adding

the softgoal ozFlexibleProc to the variable nfdependers of the following class schemas:

ClsAccessOwnApp, ClsSubmitAppOnline and ClsGenFormSections .

4- Following the same analysis approach, the execution of Step 1 of the algorithm with the

following dependency link:

dp1: (Applicant, ApplyOnline), Internet, (Nil, Nil)

results in adding both ozImprovAppProc and ozFlexibleProc to the variable, nfdependers

of the class ClsInternet .

Important note: Having, for example, an object ozA specifying a softgoal A in the variable

nfdependers of the class ClsB , indicates that the softgoal A relies on B to be satisfied. In

that case, ClsB becomes the prime target of CNF-actions for ozA: the minimum application

domain.

Example 7.5.2. From the Example 7.5.1, the minimum domain for CNF-actions for each

of the two softgoals ImprovAppProc and FlexibleProc are:

Domain ImprovAppProc is:

{ClsAccessOwnApp, ClsSubmitAppOnline, ClsGenFormSections , ClsSubmitMotivEvalOnline, ClsInternet }

Domain FlexibleProc is:

{ClsAccessOwnApp, ClsSubmitAppOnline, ClsGenFormSections , ClsInternet }

199

These are system components or elements on which CNF-actions may be applied to improve

either the application process (ImprovAppProc) or to render the application process more

flexible (FlexibleProc). Depending on the relationship of these elements with their envi-

ronment or other components in the system, the domain may be extended to include more

elements.

These two examples 7.5.1 and 7.5.2 justify why only ozImprovAppProc and ozFlexibleProc

were considered in Example 6.9.8, Figure 6.13, p.184 when constructing the UCM model of

the Object-Z specification. They equally justify the application domain indicated noting that

the domain was extended to include the class schema ClsApplicant and that at the time CNF-

actions were created, two domain’s elements were not yet available: ClsGenFormSections

and ClsSubmitMotivEvalOnline.

7.5.4 Areas that require some improvements

• Design an intelligent system to implement the organogram approach,

• Optimize the algorithms and study the possibilities to associate heuristics,

• Test the proposed framework on a couple of known (failed/suceeded) industrial projects.

Contributions made during the validation are discussed next.

7.6 Contributions associated to the Validation

The validation presented in Chapter 6, pp. 123 - 185 is a multipurpose operation carried

out in this work to examine different facets of the proposed formalisation framework as well

as the qualities of the resulting formal specification. A number of contributions were made

amongst which the idea to use Prolog to animate an Object-Z specification discussed next.

7.6.1 Animating an Object-Z specification with Prolog

The approach proposed in this work to animate an Object-Z specification with Prolog is

presented in Chapter 6, Section 6.2, pp. 125 - 127. Seven rules are suggested to transform

an Object-Z specification into Prolog and three guidelines provided for a proper use of the

rules and to monitor the animation process.

The strategy was successfully used in Chapter 5, Sections 5.2.3 and 5.2.4, pp.100 - 103,

to animate the organogram model and hence facilitate the scope definition and problem

200

analysis. As indicated in Table 6.1, p.129, the proposed animation strategy was largely used

in Chapter 6 to animate the Object-Z specification of the case study and thereby contributing

to further illustrate the correctness and the completeness of the specification.

7.6.2 Application of the four-way framework for validating a spec-

ification

As shown in Figure 6.1, p.128, the four-way framework for validating a specification pro-

poses guidelines to iteratively examine a software specification and correct errors until the

desired quality is obtained. Applying only one iteration would also help to determine the

status of the specification at some development. Another advantage of the framework is

that it facilitates the planning and monitoring of the validation over four different phases

whereby each phase focuses on one important aspect of the specification. Thus, before

the validation, it stimulates thinking about the properties of the specification that ought to

be verified, the techniques and methods to be used, as well as tools needed for the validation.

The framework is opened about properties, methods, techniques and tools needed for the

validation of a specification. That is why a successful application to a specific type of spec-

ification is a contribution to the field because it provides for more examples of properties

required to ensure the quality of the specification and more importantly, associates to those

properties examples of successfully used techniques, methods and tools to validate the se-

lected properties.

Figure 7.3 illustrates the complete validation process adopted in this work. The overall

planning of the validation is discussed in Chapter 6, Section 6.4, pp. 128 - 135 and sum-

marised in Table 6.1. p. 129. During the planning phase, each identified property to be

validated is defined and the validation approach, including the technique/method and tools

clearly indicated. The planning of the animation is adapter from the prototype process in

Figure 6.2, p. 136 proposed by Sommerville [169] and fully presented in Chapter 6, Section

6.5, pp. 135 - 147.

In Figure 7.3 above, the arrows from the rectangles illustrating the planning to the vali-

dation phases indicate the repartition of the validation tasks per phase. The arrow from one

phase to another indicates the (cyclic) order in which the validation was performed with the

results from one phase re-usable in the next one thus, avoiding to repeat exactly the same

activity in two different validation phases.

201

Figure 7.3: Summary of the complete validation process

7.6.3 Automated proofs

To establish the consistency, or more precisely to detect and correct language related errors

in the Object-Z specification of the case study discussed in Chapter 5, Section 5.4, pp. 107

- 121 and fully presented in Appendix C, the CZT tool was used to parse and type check

the specification. This exercise was indeed a normal activity however, together with the

approach adopted to address issues raised, it constitutes a good learning example. More

important was the use of the theorem prover Z/Eves to assist with the proof of the applica-

bility of the specification

Considering the basic formalisation approach proposed in this work and illustrated in Figure

7.2, p.192, the real question that ought to be resolved was:

can all possible GRL models be formalised using this strategy?

The approach adopted to address the question was to consider a domain consisting of all

possible GRL models, all possible Object-Z specifications and find the condition under which

for a given GRL model there exist an Object-Z specification that formalises it. The domain

was therefore formalised with the Z notation as well as the formalisation strategy as an op-

eration that transforms GRL models into Object-Z specifications. The Z specification was

parsed and type checked with Z/Eves. The theorem prover was also used to calculate the

precondition for the formalisation operation the result of which confirmed that the condition

for the input GRL specification to be formalised is for each conceptual element used in the

specification to be formalisable; that is to be transformable into a template.

202

This result ensures that if more properties or constraints are discovered in the domain,

they can simply be added to the Z specification and the theorem prover will be able to

automatically re-calculate the pre-condition.

The main purpose of the validation process covered in Chapter 6, pp. 123 - 185 was to

provide for sufficient supporting arguments to decide on the qualities of the Object-Z spec-

ification as well as the specification process. Based on the validation, those qualities are

therefore discussed next.

7.6.4 Qualities of the formal specification

The specification is consistent

During the rightward validation phase, the consistency of the Object-Z specification was

intensively discussed. With the type checker czt, more than 98% of language related errors

detected could be corrected and the remaining 2% presented no serious risk to the overall

quality of the specification. The inspection of individual class schemas as well as the speci-

fication as a whole also confirmed the absence of inconsistencies between class schemas and

within each individual class.

As illustrated in Figure 6.4, p. 142, the inspection of the entire specification showed that

the specification may have a complex structure due to the multiple levels of hierarchical

inheritance of class schemas derived from the very structure of the GRL conceptual elements

being formalised. However, it was also illustrated through the Prolog animation that the

negative effect of such a complex structure can be eliminated during the development.

The specification is traceable

A twofold traceability analysis was conducted in Chapter 6, Section 6.7.1, pp. 152 - 155

during the upward validation phase. The analysis shows that all Object-Z elements speci-

fying the GRL conceptual elements are clearly traceable from those elements and that each

element was clearly specified (see Table 6.7, p. 153). As shown in Table 6.8, p. 154, the

Object-Z specification was also shown to be traceable from the input GRL model of the case

study and more importantly, the input GRL was fully specified.

The next point of interest is to decide on the correctness of the specification.

203

The specification correctly addresses stakeholders’ needs

The correctness of the Object-Z specification was analysed in Chapter 6, Section 6.7.2,

pp. 155 - 167 during which different aspects of the specification were examined and some

selected components animated. Based on the traceability analysis, it was concluded that

the Object-Z specification fully specifies the input GRL model. It was also illustrated by

analysing the specification process that the specification fully describes the relationships

between the elements of the GRL model. In the same vein, the Prolog animation of the

specification was exploited to establish that each GRL element was correctly specified. The

animation of the state of the class schemas was conducted in Chapter 6, pp. 138-146, 159-162

and Appendix D, pp. 267 - 277 to show that the specification conserves the properties of the

element being specified and the animation of the operations was also conducted in Chapter

6, pp. 159-166 to show how operations were also correctly described.

The specification is complete

The completeness of the specification was concluded based on the traceability analysis con-

ducted in Chapter 6, Section 6.7.1, pp. 152 - 155 and summarised in (Table 6.7, p.153 and

Table 6.8, p.154), the animation discussed above, and a manual review of the specification

performed in (Chapter 6, Section 6.6.2, pp.150 - 152).

The formalisation process is applicable to all instances of GRL model

The validation of the applicability of the formalisation process was conducted in Chapter 6,

Section 6.8.2, pp. 167 - 171 and fully discussed in detail in Chapter 7, Section 7.3, pp. 190 -

193 the result of which indicates that the formalisation of a GRL model, solely depends on

the ability to generate templates: the formal specification of the GRL conceptual elements.

From this result, it is therefore, concluded that the proposed Object-Z formalisation process

has the ability to formalise any instance of the GRL model.

An operational system can very well be generated from the Object-Z specification

The operational feasibility of the specification, indicating the ability to transform the speci-

fication into an operational system, was established in the previous chapter in Section 6.9.1,

pp. 172 - 184 by following the same construction approach to build two UCM models one

from the GRL model of the case study and the other from the Object-Z specification of the

same GRL model.

The analysis of the two UCM models clearly reveals that the one obtained from the formal

specification is more elaborated, includes more details and inherently integrates, through the

204

construction process, mechanism to perpetrate the influence of CNF-actions to the resulting

UCM map.

7.6.5 Qualities of the formalisation process

The GRL formalisation process proposed in this work that includes the framework developed

in Chapter 4 together with the associated algorithms, present a number of characteristics

among which the following three qualities are worth discussing: the traceability, the ability

to be automated and the ability to be generalised.

The process facilitates traceability

It is important to observe that the traceability of the Object-Z specification normally derives

from the ability of the formalisation process to readily prepare, during construction, elements

of the formal model to be traced back from the GRL model. Next are two illustrative

examples.

Example 7.6.1. Table 4.5 on page 82 which main objective is to indicate for each type of

input element, the action that has to be performed on the template to formalise the element,

also readily prepare the templates in the final specification to be easily traced back to the

GRL conceptual elements and other specification elements to be traced back to templates.

Example 7.6.2. Table 5.6 which is built to aid the construction process readily prepares

components of the final specification to be easily traced back from the input GRL model.

This quality is important because it makes it possible for the process to contribute to the

building of an interactive environment whereby, for example, the GRL model and its formal

specification are interactively created.

The process can be automated

Although it is not formally proven, the assurance for this quality stems from the experience

gained by successfully applying the process to the case study. The other two factors that

support the idea are: the status of the formal specification in Appendix C and the modular-

ity of Algorithms 1 and 2.

As represented in Appendix C, the Object-Z specification of the GRL model of the case

study is still in construction. Let’s illustrate with the following example:

205

Example 7.6.3. Consider the class ClsActorApplicant presented in Chapter 5, p. 114. The

operations: NewSoftGoal , NewGoal , NewBelief , and Addnfdepender of this class are all

useful only during the construction process. When, for example, all the softgoals, goals

and beliefs contained in the actor definition, namely, Applicant and their relationships with

other elements of the GRL model are processed, these operations becomes useless and a new

class schema without these operations can therefore, be created with updated components

to specify the actor’s definition Applicant . Thus, the successful animation of this class in

Chapter 6, also shows the ability to implement the formalisation process. However, a closer

at the two main algorithms for the process reveals more evidences.

The modularity of the two algorithms: Algorithms 1 and 2, is another factor that one can

rely on to show that the specification process can well be implemented. Let’s consider, for

example, the first five steps or modules of Algorithm 1.

Algorithm 1

Module 1 is about creating templates. Since templates are created only once, the module

can be implemented (independently of others) and be updated only when the

GRL conceptual model has also been updated.

Module 2 is about scanning an input GRL model to identify all its elements. The jUCMNav

is an example of a software that successfully implement this module to perform,

for instance, an evaluation or to export the model into another format.

Module 3 is about creating an Object-Z class schema; many examples of software that

create Object-Z exist. In the same vein, Modules 4, 5 and 6 are also about

creating an Object-Z.

Module 7 is about executing Algorithm 2.

206

Algorithm 2

This algorithm is mainly about examining each GRL link element (stored in a table, e.g.,

Table 5.5, p.109) to make appropriate processing decision based on the type of the link

element. The algorithm is subdivided into three modules where each module examines each

type of link element. Since the algorithm involves mostly the manipulation of data stored

in a table, the question of whether it can be automated or not becomes obsolete.

The process is generalisable

This quality was fully discussed in (Section 7.3.2, pp.191 - 193) where it was demonstrated

that the formalisation strategy is not Object-Z dependant. According to the analysis, in

theory, any formal method that satisfies the following two conditions can very well be used

to formalise an input GRL model:

Considering the formal notation X, the condition for formalising a GRL model into X are:

• the ability of the method X to formalise GRL conceptual elements, namely templates

(element type),

• the ability of the method X to formalise elements of the input GRL model from the

templates.

7.7 Chapter conclusion

This chapter has presented the discussion of the contributions made per main topic devel-

oped in this work. An analysis of the URN construction process leaded to the conclusion

that a UCM model is a refinement of GRL model and a more consistent link/relationship

between the two models needs to be established. Another important contribution is the

concept of Complementary Non-Functional Actions (CNF-actions) to allow the develop-

ment of non-functional requirements alongside the functional ones throughout the complete

software development cycle. The proposed GRL formalisation process was also discussed to

have among others, three important qualities which are the ability to prepare the final formal

specification to be traceable from the initial requirements, be automated and is generalisable.

To generate a GRL model for the case study, an approach exploiting enterprise organograms

to facilitate goal analysis was proposed; three algorithms were also derived to manipulate

graph modeling the organograms. The Object-Z specification of the GRL model of the case

study, resulting from the suggested formalisation process, was shown to be consistent, trace-

able from the initial GRL model, correct, complete and operationally feasible. To validate

207

these specification’s properties, the four-way framework for validating a specification was

adopted and a strategy derived to animate Object-Z specifications with Prolog.

The discussion of each contribution in this chapter was conducted independently from each

other. the next chapter combines them in a way to respond to the research questions.

208

Chapter 8

Summary of main findings, conclusion

and future work

Most of the contributions made in this work were fully analysed in Chapter 7, as well as

possible generalisation of some of the proposed ideas. This chapter purposes to derive from

that analysis, a summary of the main findings and relate them to the research problem. In a

short discussion, it enlightens the extent to which the research questions, posed in Chapter 1,

were addressed. The chapter is concluded with some future potential research areas requiring

attentions to complement the findings.

8.1 Main findings

This study is part of a broader research area of combining semi-formal and formal software

techniques. The complex problem of integrating formal methods into the existing tradi-

tional software processes was investigated with the focus on Z/Object-Z as formal technique

and URN as a semi-formal one. The goal being to develop strategies to formalise goal

models specifying both functional and non-functional requirements, derive mechanisms to

perpetrate, beyond their operationalisation, the influence of non-functional requirements on

further software models hence improving their qualities.

To this end, the first research question posed was the following:

RQ1 : what lightweight (enterprise) model could there be to facilitate the process

of goals and/or requirements elicitation at an initial phase of requirements

elicitation and analysis?

This question is interested in: where the goals/requirements that are to be formalised come

from and how they are extracted from their original sources. This requires the knowledge

209

of enterprise models [128, 145, 181]; which are generally known to be appropriate sources of

goals and requirements (see for example, [55, 104]), as well as the existing elicitation process.

The bulk of the work done, by the researcher, to address the question was published in [66]

the result of which was applied to the case study in Chapter 5. We proposed an approach

for establishing guidelines to construct enterprise organograms in a bottom-up fashion and

transform these into useful models that can be exploited in goal and requirements elicitation

phases to identify vital sources of information within an entire organisation. Our approach

also proposes strategies, including three formulated algorithms, to manipulate the model

and derive the necessary information in a simplistic manner.

The main benefit of the proposed method stems from the simplicity and availability of

enterprise organograms to which appropriate information may be cautiously added to con-

struct flexible and lightweight enterprise models vital to goal and requirement elicitation.

Such a model therefore achieve objective RObj 1 defined in Chapter 1 on page 7. Having

developed our lightweight model, the next important step in the process requires the iden-

tification or construction of a goals/requirements modeling and analysis approach that may

take advantage of the model. Thus the next research question:

RQ2 : To what extent could the URN model construction process take advantage

of any lightweight model that would result from the research question 1?

This question requires in the first place an investigation of the literature to identify any

existing construction process. But also more importantly, a detail analysis of such a process

to bring forth any of its weak points that need to be improved. Such weak aspects would

serve as measures to evaluate the contribution of the integrated formal technique to improve

the quality of the process.

The basic top-down URN construction process presented in Chapter 2 is generic to GORE

methods that follow, for most of them, the same Softgoals Interdependency Graphs(SIG)

construction principles rooted from the NFR framework (Chung and Nixon [50], Merilinna

et al. [122], Mylopoulos et al. [137]). One of the particularities of URN stems from the need

to combine the construction of GRL and UCMs for which an iterative and inter-related pro-

cess (for constructing GRL and UCM models) was proposed by Liu and Yu [110]. A detailed

analysis of the process presented in Chapter 4 leaded to the following conclusions:

• UCM refines GRL.

Although a UCM map can be created at different abstraction levels (this depends on

the level of details), for the map to be justified, each of its elements/components must

be linked to some goal/softgoal in a GRL model. Otherwise, it would be reasonable to

210

ask why a software engineer would want to add to a software the functionalities that

do not support neither business objectives nor any of the stakeholders’ intentions.

• There is a gap between GRL and UCM .

We provided few examples in Chapter 4 to illustrate how this gap is conceptual. UCM

has a lot more concepts than those needed to model the three types of inputs from

GRL, namely, beliefs, resources and tasks. For example, non-functional requirements

are known to be critical inputs to guide system architecture [149] however, they are

not (directly) part of the inputs from GRL. This makes it difficult to trace UCMs’

elements specifying the system architecture from the initial GRL model.

To our view, this gap is also an indicator of the weakness of GORE methods; their in-

ability to fully operationalise, decompose or refine softgoals, especially those describing

NFRs.

This analysis also constitutes an important step towards achieving the second objective of

this research (RObj 2). Knowing that UCM refines GRL indicates the ability of URN to

be expended in different manners. For example by integrating other techniques or methods

in between GRL and UCM which can consequently contribute to fill the gap between the

two modeling techniques. As argued in Chapter 5, the gap between UCM and GRL leads to

traceability issues for which Merilinna et al. [122] suggested their NFR+ framework tool to

manage the entire requirements specification and design process.

In this work we believe in the benefit of extending the analysis of NFRs beyond the tradi-

tional operationalisation/decomposition/refinement proposed in GORE methods thus, the

reason for the next research question.

RQ3: To what extent are goals describing non-functional requirements formal-

isable?

The initial idea was to formalise NFRs embedded in GRL models. However, due to the fact

SIG own their value to the use of elements such as goals, tasks, resources and beliefs to refine

softgoals, isolating the softgoals and formalising them without considering those elements

would simply result in a loss of vital information in the formal model. That is why the entire

GRL model was considered in this work with the focus on softgoals. This question is in fact

the most challenging one since it is about analysing and formalising NFRs with Z/Object-Z

that does not naturally integrate mechanisms for describing NFRs.

As illustrated in Figure 4.3, a process-oriented analysis of NFRs was performed in Chapter 4

211

based on the idea that the development of NFRs should be extended beyond the refinement

proposed by GORE methods and further analysis considered at each software development

phase. We have therefore suggested the concept of Complementary Non-Functional Action

(CNF-action) that allows the software developers to continuously think about the actions to

be taken to propagate the influence of NFRs at each development phase from requirements

specification to the implementation. CNF-actions include actions performed on intermediate

models to improve the quality, as well as important decisions regarding for example the selec-

tion of appropriate techniques/methods or tools at given phase. The concept of CNF-action

was applied to construct the UCM in Figure 6.13.

Regarding the formalisation of GRL models, an approach was proposed whereby an Object-Z

class schema, called template, is created for each type of GRL conceptual element including

CNF-actions. The formalisation of an element in a GRL model is therefore obtained by

instantiating the template for the element being specified or by creating new class from the

template by inheritance. A framework was developed to guide the formalisation process

from which two algorithms were derived. Figure 7.2 on page 192 illustrates the complete

formalisation process presented in four phased after detailed analysis. The approach was

successfully applied to the GRL model of the case study to produce an Object-Z specifica-

tion. The suggested CNF-actions concept has therefore provided for means to address the

research objective RObj 3. In the same vein, the proposed formalisation framework success-

fully applied to the case study in Chapter 5 has very well contributed to the achievement of

the fourth research objective (RObj 4).

The approach hence summarised constituted the first step towards addressing the research

question. However, specific concerns were equally the target of the study. Thus, the following

sub-question:

(a) To what extent can a GRL model, describing both functional and non-

functional requirements, serve as input to a formal specification tech-

niques, case of Z/Object-Z?

As discuss in Chapter 7, Section 7.3.2, the proposed formalisation strategy was specified with

Z and the Z/Eves theorem prover applied to the generated Z specification of the approach

to determine the precondition for a GRL model to be formalised (see Chapter 6, Section

6.8.2, pp. 167 - 171). It was therefore formally illustrated that, with the proposed method,

any GRL model can be specified with Z/Object-Z. The only two important conditions for

a formal notation to be able to formalise an input GRL model, as generated by the Z/Eves

theorem prover, are:

212

• the ability of the method to generate a template for each type of GRL elements, and

• the ability of the method to formalise elements of the input GRL model from the

templates.

The next sub-question:

(b) To what extent is it possible to formalise a goal model describing both

functional and non-functional requirements in Z and Object-Z?

The GRL formalisation strategy proposed in this work was successfully applied to the GRL

model of the case study to produce the Object-Z specification presented in Chapter 5, which

full version is in Appendix C. To specify a softgoal, an Object-Z class schema was first

created for CNF-actions (complementary non-functional actions). In the class template for

softgoals, a component containing the list of CNF-actions for the softgoal at the specification

phase was added. With each element of the list representing an object of the following class

schema for CNF-actions:

ClsComplementaryAction
↾(id , name,mdata, phase, action, domain, option)
ClsIntentionalElement

phase : ClsPhase
action : ClsAction
domain : ClsDomain
option : Description

This made it possible to use the same approach to formalise all GRL elements, including

goals, softgoals, tasks, resources, beliefs, and links. The validation carried-out in Chapter 6,

pp.123 - 185 and discussed in Chapter 7, Section 7.6.4 revealed the qualities of the Object-Z

specification of the case study from different perspectives and thence indicating the success

of the formalisation process. However, some qualities of the specification could very well

stem from the input model being formalise thus, the reason for the next research question:

RQ4: What would the impact of a semi-formal modelling technique/method for

non-functional requirements be on the process of constructing a formal

specification?

The Object-Z specification of the GRL model of the case study was shown to embed some

good qualities. For example, the specification is consistent, correctly and completely ad-

dresses the stakeholders’ needs and an operational system could be obtained from the spec-

ification as well. Each of the Object-Z’s elements can be traced back from the initial GRL

213

model and vis versa. Some of these qualities such as the traceability are attributed to the

formalisation process however, the contribution of the input GRL model is considerable.

Before the formal specification, the initial goals/requirements are elaborated, classified or

categorised, prioritised, modeled, analysed and evaluated. For example the semi-formal tech-

nique readily structures the requirements, provides for means to render them distinguishable

and links to relate them one to another. We argue that this preliminary work evidently con-

tributes to the quality of the formal specification and to make the formalisation process

more flexible. This maybe well apprehended if we consider the situation where goals and/or

requirements are formalised immediately after they are identified.

One aspect of the influence of the initial model on the formal specification was spotted

out during the validation of the specification. It was shown that the structure of the Object-

Z specification in Figure 6.4, p. 142 was very similar to that of the GRL conceptual model in

Figure 4.6, p. 69 from which Object-Z templates were created. This evidence of the impact

of the initial model on its formal specification highly contributes to the achievement of the

sixth research objective (RObj 6).

RQ5: To what extent can a formal specification of a GRL model help to improve

on the process and quality of URN models?

During the discussion of the operational feasibility of the formal specification in Section 6.9.1,

pp. 172 - 184, the same construction approach was followed to build two UCMs; one directly

from the GRL model of the case study and the other from the Object-Z specification of the

same GRL model. It appeared that the UCM map obtained from the formal specification was

more elaborated than the one generated directly from the GRL model. The map included

more details and inherently integrated, through the construction process, mechanism to

perpetrate the influence of CNF-actions to the resulting UCM. This observation may not be

enough to show the full potentials of the formal model to improve the quality of the URN,

nevertheless, it addresses the fifth research objective (RObj 5) and opens perspectives for

elaborating on the topic.

8.2 Concluding notes

One may ask at this point if the research problem was solved. The answer may not be

straightforward however, a lot has been done towards achieving the final goal which is to

integrate formalism into URN without decreasing its flexibility and usability which are im-

portant factors for the growing adoption of the method in industry and even in academia.

214

Figure 8.1 summarises most of the work done so far in this direction and presents the struc-

ture of the improved URN we aim to develop with Object-Z serving as an intermediate

technique between GRL and UCM.

Figure 8.1: An approach to integrate Object-Z into URN process

8.2.1 The process from GRL to Object-Z

This work has proposed means to transform GRL models into Object-Z specifications. The

process was proven to allow forward and backward traceability between the GRL model and

the constructed Z/Object-Z specification. It was also shown that the process can very well

be automated. However, the degree of automation is still to be determined. In Figure 8.1,

the shaded part of the Z/Object-Z module, in Figure 8.1, is a graphical representation of

whatever can be automated and hence hidden to users. The main objective being to hide as

much difficulties inherent to formal techniques as possible and present to users an interface,

to the best, as flexible as that of URN itself.

The GRL formalisation framework follows what we called a direct transformation where

the input is the whole GRL model. However, most of the operations within the framework

(see Algorithms 1 and 2) treat GRL elements individually. Such individual treatment of the

elements of the input model makes it easier to complete the formalisation process such as to

allow inter-active transformation of each element during the model construction.

215

8.2.2 The Object-Z specification

Most of the contributions of this work discussed in Chapter 6 and 7 aimed to evaluate the

Object-Z specification, as well as the formalisation process. The specification was therefore

argued to embody some good qualities including the ability to serve as input to UCM mak-

ing it possible for the semi-formal notation to benefit from the precision of mathematical

operations that may be operated on the formal model. For example, preconditions needed in

UCM can be calculated on the input Object-Z specification and simply transferred to UCM.

Another useful aspect is that each class schema of the specification includes the component,

nfdependers , containing the list of all the NFRs that depend on the class to be satisficed.

Consequently, UCM elements resulting from the transformation of the Object-Z class are

potential targets of CNF-actions of those NFRs. The benefit of this is huge since the anal-

ysis of the causalities between NFRs and software design, particularly architectural design,

has long been the concern of numerous research work (Examples: [8, 44, 81, 103, 107, 196]).

8.2.3 From Object-Z to UCM

To reinforce the existing URN process [110], we proposed in Section 6.9.1, pp. 172 - 184

the use of a table (see Table 6.10) to record possible mappings between GRL elements and

those of UCM. Owing to the traceability between GRL model and its Object-Z specification,

similar mappings between the Object-Z specification and UCMs’ elements (see Table 6.11)

were adequately exploited to construct a UCM map from the formal specification.

Based on the UCMs in figures 6.8 and 6.13, it was argued in Section 7.1, p. 187 that the pro-

posed UCM construction approach is more flexible, since for each GRL element or Object-Z

component, the list of possible UCM elements to use is proposed and the designer may sim-

ply choose the most appropriate one. In addition, the approach reinforces the tracing of

UCM elements from the source GRL model or Object-Z specification. For example, with

the following function:

savecontext(Appliquant[StaticSTub(0),Team(1),Object(−1),Agent(−1),Actor(−1)])

one may record the identifier of the team component selected for the GRL actor Applicant

and hence create a link between the two elements.

216

8.3 Future work

Challenges that need to be addressed in the future to complement this work are presented

under two categories: generalisation (of concepts) and implementation (of the proposed

approaches).

8.3.1 Generalisation of concepts

Extend the GRL formalisation strategy to other formal techniques

The strategy proposed in this work, to formalise GRL models with Object-Z, was argued to

be generalisable to any formal technique that fulfils to conditions:

1. the technique has the ability to formalise GRL conceptual elements into Object-Z

metaclasses, namely templates (element type),

2. the technique has the ability to formalise elements of the input GRL model from the

templates.

to confidently confirm this generalisation idea, the two conditions should be applied to two

or three other formal specification techniques.

Extend the GRL formalisation idea to other semi-formal methods

As illustrated in Figure 8.1, Object-Z is integrated into URN to feed the gap between GRL

and UCM and to improve on the quality of the URN model, as well as the construction

process. We have also argued that the main benefit is not just to transform GRL or UCM

into Object-Z and vis versa, but rather to build an environment where the flexibility and

usability of URN are conserved and the hard part of the formal technique hidden to the user.

Many semi-formal methods propose more than one model at different abstraction levels that

share very similar types of relationships that connect GRL to UCM. For example, with UML

we have scenarios, use cases diagrams, class diagrams, etc.

The challenge here is to start developing strategies, as the one proposed in this work, to

integrate formal techniques into existing, well adopted semi-formal methods, whereby the

semi-formal techniques serve as interface to users with much of the difficulties inherent to

formal methods hidden to them. Having semi-formal techniques empowered by the formal

ones could be the beginning of a massive use of formal methods without the end users being

(fully) exposed to the hard part of formal methods. In this regard, the hard part of formal

techniques will remain the responsibility of Formal Methods experts.

217

Extend the idea of CNF-actions to other software development phases

The idea behind the concept of CNF-actions is to provide for means to extend the influence

of NFRs beyond the normal analysis and evaluation performed by GORE methods. That

is to continue developing NFRs in parallel with functional requirements from the initial

phase to the production of the operational system. We have illustrated how the concept

can be integrated into the Object-Z specification of a GRL model. We have also shown

how CNF-actions could be generated to enhance UCMs. However, the challenge remains

because similar strategies need to be developed for each software construction phase where

approaches, guidelines or mechanisms to analyse, generate, model and propagate the influ-

ence of NFRs in the form of CNF-actions are to be created.

8.3.2 Implementation

Integrate formalism into the existing jUCMNav

To become utilisable, the strategy illustrated in Figure 8.1 needs to be implemented. Differ-

ent designs may be experimented to determine the most appropriate solution. For example,

one may think of re-engineering the existing jUCMNav to integrate the new functionalities

pertaining to Object-Z, implementing the part on Object-Z as a plug-in to jUCMNav, an

intelligent or expert system to guide the URN construction with jUCMNav.

Implement the organogram approach

To get the full benefit of the organogram approach to (software project) scope definition

and problem analysis proposed in this work, a software system implementing the approach

ought to be constructed. If well implemented, such a system can also serve as enterprise

resources management system. In large companies, one may think of a distributed system

where independent and inter-connected sub-systems are developed for different branches of

the enterprise. Where for example each sub-system implements a sub-graph modeling the

organogram of the branch and links between the sub-systems uniting the sub-graphs to form

the one representing the organogram of the enterprise as a whole.

The successful animation with Prolog also prompts the idea of developing the sub-systems

(or the entire system) as expert systems or to integrate elements of intelligent computing

into the software product.

218

Optimise the algorithms

It would be of benefit to analyse the complexity of the algorithms proposed in this work

with the purpose to optimise them. Studying the possibilities to extend the algorithms with

heuristics may also bring in some benefits to the different processes that use the algorithms.

219

220

Appendix A

Additional results from the

systematic literature review

2000

2002

2004

2006

2008

2010

2012

2014

List of selected publications

Figure A.1: List of the selected publications

221

Figure A.2: List of publications per specification technique

222

Appendix B

Additional items for case study

developed in Chapter 5

B.0.1 Business objectives

Node’s objectives

Label Domain Managment Operational

cd College Deanery Deanery

cdob1 Develop research and postgraduate supervision capacity within the institution

cdob2 Create and environment that encourages and foster the culture of research

cdob3 Attract funding from industries and other external bodies

cdob4 Develop a culture of professional teaching and learning through practice

cdob5 Increase under-graduate and postgraduate success rates

cdob6 Create an environment where students are encouraged to actively

participate to industrial projects

crdd College Research department Director

crddob1 Timeously report on research funding for different programmes

crddob2 Encourage as many academics and students as possible to apply for funding

crddob3 Negotiate research funding and scholarships from industries

crddob4 Attract new postgraduate students

crdsp College Research department Support programme

crdspob1 Provide maximum support to applicants

crdspob2 Increase the number of applicants through advertisement

crdspob3 Reduce the overall processing time of submitted applications

crdrm College Research department Research management

crdrmob1 Attract new research student by offering them specific programmes

crdrmob2 Timeously report on research outputs

223

Node’s objectives

Label Domain Managment Operational

crdrmob3 Develop research and innovation policies and incentives

chrd College Human resources Director

chrdob1 Define appropriate and time effective appointment policies

chrdob2 Develop strategies to retain high quality staff members

chrs College Human resource Staffing

chrsob1 Appoint academic with PhD or those who are about to complete their PhD

chrsob2 Optimize the overall appointment process

chrsob3 Appoint quality admin and support staff with practical experiences

csd College School Director

csdob1 Increase the school research output by at least 5%

csdob2 Increase the number of academics with PhD by 5%

csdob3 Efficiently and timeously assist researchers applying for funding

csdob4 Implement effective research support process

csas College School Academic staff

csasob1 Publish at least one journal article or two conference papers per year

csasob2 Timeously motivate students’ applications for scholarship and research funding

csasob3 Supervise to completion at least one masters student in two years time

csasob4 Increase the number of industrial projects for Masters and PhD students

csad College School Admin staff

csadob1 Reduce the time management and academics spend on administrative duties

csadob2 Assist registered and prospectives students with general information

csadob3 Assist with all type of document exchange within the department

cscd College School/COD COD’s office

cscdob1 Increase the number of publications in ISI and IBSS listed journals

cscdob2 Efficiently implement the policies on research and tuition

cscdob3 Offer performing postgraduate students to become academics

cscdob4 Encourage research students to attend conferences

cscdob5 Implement strategies to motivate performing students and staff

cscdr College School/COD Research

cscdrob1 Report on research outputs at the school level

cscdrob2 Organise and monitor research and supervision training workshops

cscdt College School/COD Tuition

cscdtob1 Report on tuition and staff development

cscdtob2 Improve on individual lecturer’s performance

224

Node’s objectives

Label Domain Managment Operational

cscdce College School/COD Community Engagement

cscdceob1 Increase the number of staff participating to community works

cscdceob2 Implement strategies to render community works publishable

cscsed College School/CSE Director

cscsedob1 Efficiently implement policies on industry funding research

cscsedob2 Improve the relationship with enterprises through quality teaching & research

cscseel College School/CSE Enterprise liaison

cscseelob1 Intensify discussions with enterprise regarding their needs and problems

cscseelob2 Includes as many students as possible in discussions with industries

cscseelob3 Increase the number of M & D industry sponsored projects to attract students

cscsecc College School/CSE Certificate course

cscseccob1 Maximise the number of short courses addressing industry needs

cscseccob2 Increase the number of contrats for group training by at least 7%

cscseccob3 Increase the number of courses for skill development in government

cscsess College School/CSE Support staff

cscsessob1 Timeously respond to all type of maintenance needs

cscsessob2 Provide maximum support in tuition through labs works and programming

cfd College Finances Director

cfdob1 Report on all financial matters within the institution

cfdob2 Efficiently implement policies on remuneration and research funding

cfr College Finances Renumeration

cfrob1 Timeously compute and pay staff salaries

cfrf College Finances Research funding

cfrfob1 Optimize the process of releasing funds especially for conferences

cfrfob2 Timeously release scholarships to benefiting students

Table B.1: Business objectives

B.0.2 Vertical relationships

Vertical relationships

Label Domain Managment Operational

cd College Deanery Deanery

cdob1 crddob1, crddob4, chrdob1, chrdob2, csdob2

cdob2 crddob2, csdob1, csdob3, csdob4, cfdob1, cfdob2

225

Vertical relationships

Label Domain Managment Operational

cdob3 crddob3, cfdob1, cfdob2

cdob4 chrdob2, csdob2, csdob4

cdob5 chrdob2, csdob2, csdob4

cdob6 crddob3, cfdob2

crdd College Research department Director

crddob1 crdspob3, crdrmob2

crddob2 crdspob1, crdspob2

crddob3 crdrmob3

crddob4 crdspob1, crdrmob1

chrd College Human resources Director

chrdob1 chrsob1, chrsob2, chrsob3

chrdob2 chrsob3

csd College School Director

csdob1 csasob1, csadob1, cscdob1

csdob2 csasob3, cscdob2, cscdob3

csdob3 csasob2, csasob3, cscdob5

csdob4 csasob2, csasob4, csadob3, cscsedob1

cscd College School/COD COD’s office

cscdob1 cscdrob1, cscdceob2

cscdob2 cscdrob2, cscdtob1

cscdob3

cscdob4 cscdrob2

cscdob5 cscdtob2

cscsed College School/CSE Director

cscsedob1 cscseelob2, cscseelob3

cscsedob2 cscseccob1, cscseccob2, cscseccob3, cscsessob2

cfd College Finances Director

cfdob1 cfrob1, cfrfob2

cfdob2 cfrob1, cfrfob1, cfrfob2

Table B.2: Vertical relationships among business objec-

tives

B.0.3 Horizontal relationships

226

Horizontal relationships

Label Domain Managment Operational

cd College Deanery Deanery

(cdob6,cdob3)

crdd College Research department Director

(crddob3,crddob4)

crdsp College Research department Support programme

(crdspob3, crdspob1)

crdrm College Research department Research management

chrd College Human resources Director

chrs College Human resource Staffing

csd College School Director

(csdob2, csdob1), (csdob4, csdob1)

csas College School Academic staff

csad College School Admin staff

(csadob2, csadob1),(csadob3, csadob1)

cscd College School/COD COD’s office

(cscdob2, cscdob1),(cscdob4, cscdob1), (cscdob5, cscdob2)

cscdr College School/COD Research

cscdt College School/COD Tuition

cscdce College School/COD Community Engagement

cscsed College School/CSE Director

(cscsedob1, cscsedob2)

cscseel College School/CSE Enterprise liaison

(cscseelob1, cscseelob3)

cscsecc College School/CSE Certificate course

(cscseccob1, cscseccob3), (cscseccob2, cscseccob3)

cscsess College School/CSE Support staff

(cscsessob1, cscsessob2)

227

Horizontal relationships

Label Domain Managment Operational

cfd College Finances Director

(cfdob2, cfdob1)

cfr College Finances Renumeration

cfrf College Finances Research funding

Table B.3: Horizontal relationships among business ob-

jectives

B.0.4 The Prolog code for the case study

%list of identifiers

givenset([cd,crdd,crdsp,crdrm,chrd,chrs,csd,csas,csad,cscd,cscdr,cscdt,cscdce,

cscsed,cscseel,cscsecc,cscsess,cfd,cfr,cfrf],identifier).

%list of objectives

givenset([cdob1,cdob2,cdob3,cdob4,cdob5,cdob6,

crddob1,crddob2,crddob3,crddob4,

crdspob1,crdspob2,crdspob3,

crdrmob1,crdrmob2,crdrmob3,

chrdob1,chrdob2,

chrsob1,chrsob2,chrsob3,

csdob1,csdob2,csdob3,csdob4,

csasob1,csasob2,csasob3,csasob4,

csadob1,csadob2,csadob3,

cscdob1,cscdob2,cscdob3,cscdob4,cscdob5,

cscdrob1,cscdrob2,

cscdtob1,cscdtob2,

cscdceob1,cscdceob2,

cscsedob1,cscsedob2,

cscseelob1,cscseelob2,cscseelob3,

cscseccob1,cscseccob2,cscseccob3,

cscsessob1,cscsessob2,

cfdob1,cfdob2,

cfrob1,

228

cfrfob1,cfrfob2],objective).

% List of edges

edge(cd/crdd).

edge(cd/chrs).

edge(cd/csd).

edge(cd/cfd).

edge(crdd/crdsp).

edge(crdd/crdrm).

edge(chrd/chrs).

edge(csd/csas).

edge(csd/csad).

edge(csd/cscd).

edge(csd/cscsed).

edge(cscd/cscdr).

edge(cscd/cscdt).

edge(cscd/cscdce).

edge(cscsed/cscseel).

edge(cscsed/cscsecc).

edge(cscsed/cscsess).

edge(cfd/cfr).

edge(cfd/cfrf).

%Mapping nodes to objectives

%Deanery of the college

%----------------------

nodeobj(cd/cdob1).

nodeobj(cd/cdob2).

nodeobj(cd/cdob3).

nodeobj(cd/cdob4).

nodeobj(cd/cdob5).

nodeobj(cd/cdob6).

%Director of the college research department

%---

nodeobj(crdd/crddob1).

229

nodeobj(crdd/crddob2).

nodeobj(crdd/crddob3).

nodeobj(crdd/crddob4).

% Support programme

nodeobj(crdsp/crdspob1).

nodeobj(crdsp/crdspob2).

nodeobj(crdsp/crdspob3).

% Research management

nodeobj(crdrm/crdrmob1).

nodeobj(crdrm/crdrmob2).

nodeobj(crdrm/crdrmob3).

% Director Human resources

%-------------------------

nodeobj(chrd/chrdob1).

nodeobj(chrd/chrdob2).

%Human resources staffing

nodeobj(chrs/chrsob1).

nodeobj(chrs/chrsob2).

nodeobj(chrs/chrsob3).

% School director

%----------------

nodeobj(csd/csdob1).

nodeobj(csd/csdob2).

nodeobj(csd/csdob3).

nodeobj(csd/csdob4).

% Academic staff in the school

nodeobj(csas/csasob1).

nodeobj(csas/csasob2).

nodeobj(csas/csasob3).

nodeobj(csas/csasob4).

230

% Admin staff in the school

nodeobj(csad/csadob1).

nodeobj(csad/csadob2).

nodeobj(csad/csadob3).

%Chair of Department

nodeobj(cscd/cscdob1).

nodeobj(cscd/cscdob2).

nodeobj(cscd/cscdob3).

nodeobj(cscd/cscdob4).

nodeobj(cscd/cscdob5).

%Research

nodeobj(cscdr/cscdrob1).

nodeobj(cscdr/cscdrob2).

%Tuition

nodeobj(cscdt/cscdtob1).

nodeobj(cscdt/cscdtob2).

%Community engagement

nodeobj(cscdce/cscdceob1).

nodeobj(cscdce/cscdceob2).

%Director Centre for Software Engineering

%--

nodeobj(cscsed/cscsedob1).

nodeobj(cscsed/cscsedob2).

%Enterprise liaison

nodeobj(cscseel/cscseelob1).

nodeobj(cscseel/cscseelob2).

nodeobj(cscseel/cscseelob3).

%Certificate course

nodeobj(cscsecc/cscseccob1).

nodeobj(cscsecc/cscseccob2).

231

nodeobj(cscsecc/cscseccob3).

%Support staff

nodeobj(cscsess/cscsessob1).

nodeobj(cscsess/cscsessob2).

%Director department of finances

%-------------------------------

nodeobj(cfd/cfdob1).

nodeobj(cfd/cfdob2).

%Remuneration finances department

nodeobj(cfr/cfrob1).

%Research funding finances department

nodeobj(cfrf/cfrfob1).

nodeobj(cfrf/cfrfob2).

%Vertical relationships:

%Business objectives refinement

%Deanery

%------------------

vrel(cdob1/crddob1).

vrel(cdob1/crddob4).

vrel(cdob1/chrdob1).

vrel(cdob1/chrdob2).

vrel(cdob1/csdob2).

vrel(cdob2/crddob2).

vrel(cdob2/csdob1).

vrel(cdob2/csdob3).

vrel(cdob2/csdob4).

vrel(cdob2/cfdob1).

vrel(cdob2/cfdob2).

vrel(cdob3/crddob3).

vrel(cdob3/cfdob1).

232

vrel(cdob3/cfdob2).

vrel(cdob4/chrdob2).

vrel(cdob4/csdob2).

vrel(cdob4/csdob4).

vrel(cdob5/chrdob2).

vrel(cdob5/csdob2).

vrel(cdob5/csdob4).

vrel(cdob6/crddob3).

vrel(cdob6/cfdob2).

%Director Research department

%----------------------------

vrel(crddob1/crdspob3).

vrel(crddob1/crdrmob2).

vrel(crddob2/crdspob1).

vrel(crddob2/crdspob2).

vrel(crddob3/crdrmob3).

vrel(crddob4/crdspob1).

vrel(crddob4/crdrmob1).

%Director human resources

%------------------------

vrel(chrdob1/chrsob1).

vrel(chrdob1/chrsob2).

vrel(chrdob1/chrsob3).

vrel(chrdob2/chrsob3).

% School director

%----------------

vrel(csdob1/csasob1).

vrel(csdob1/csadob1).

vrel(csdob1/cscdob1).

vrel(csdob2/csasob3).

vrel(csdob2/cscdob2).

vrel(csdob2/cscdob3).

vrel(csdob3/csasob2).

vrel(csdob3/csasob3).

233

vrel(csdob3/cscdob5).

vrel(csdob4/csasob2).

vrel(csdob4/csasob4).

vrel(csdob4/csadob3).

vrel(csdob4/cscsedob1).

% COD’s office

%-------------

vrel(cscdob1/cscdrob1).

vrel(cscdob1/cscdceob2).

vrel(cscdob2/cscdrob2).

vrel(cscdob2/cscdtob1).

vrel(cscdob4/cscdrob2).

vrel(cscdob5/cscdtob2).

% Center for software engineering

%--------------------------------

vrel(cscsedob1/cscseelob2).

vrel(cscsedob1/cscseelob3).

vrel(cscsedob2/cscseccob1).

vrel(cscsedob2/cscseccob2).

vrel(cscsedob2/cscseccob3).

vrel(cscsedob2/cscsessob2).

% Direct department of finances

%------------------------------

vrel(cfdob1/cfrob1).

vrel(cfdob1/cfrfob2).

vrel(cfdob2/cfrob1).

vrel(cfdob2/cfrfob1).

vrel(cfdob2/cfrfob2).

% hrel: HORIZONTAL RELATIONSHIPS

% Supporting objectives

hrel(cdob6/cdob3).

hrel(crddob3/crddob4).

hrel(crdspob3/crdspob1).

hrel(csdob2/csdob1).

234

hrel(csdob4/csdob1).

hrel(csadob2/csadob1).

hrel(csadob3/csadob1).

hrel(cscdob2/cscdob1).

hrel(cscdob4/cscdob1).

hrel(cscdob5/cscdob2).

hrel(cscsedob1/cscsedob2).

hrel(cscseelob1/cscseelob3).

hrel(cscseccob1/cscseccob3).

hrel(cscseccob2/cscseccob3).

hrel(cscsessob1/cscsessob2).

hrel(cfdob2/cfdob1).

%%

% set operations needed for the animation

%%%

element(X,[X|L]).

element(X,[Y|L]):- element(X,L).

%subset

subset([],_).

subset([A|X],Y):-

element(A,Y),subset(X,Y).

%union

union([], X, X).

union(X,[],X):- !.

union([X | R], Y, Z) :-

element(X, Y),

!,

union(R, Y, Z).

union([X | R], Y, [X | Z]) :- union(R, Y, Z).

%Delete all the ocurrences of an element from a list

delelement(X, [], []) :- !.

delelement(X, [X|Xs], Y) :- !, delelement(X, Xs, Y).

delelement(X, [T|Xs], Y) :- !, delelement(X, Xs, Y2), union([T], Y2, Y).

% Assumes lists contain no duplicate elements.

235

intersection([], X, []):- !.

intersection(X, [], []):- !.

intersection([X | R], Y, [X | Z]) :-

element(X, Y),

!,

intersection(R, Y, Z).

intersection([X | R], Y, Z) :- intersection(R, Y, Z).

%partition

partition([],Y,Y):- !.

partition(X,[],X):- !.

partition([X|Tail1],Y,[X|Tail2]):-

not(element(X,Y)),

intersection(Tail1,Y,[]),

partition(Tail1,Y,Tail2).

% Checks if R is a relation from A to B

rel([],_,_):- !.

rel([X/Y|R],A,B):-

element(X,A),

element(Y,B),

rel(R,A,B).

%checks if F is a function

func([],_,_):-!.

func([X/Y|F],A,B):-

element(X,A),

element(Y,B),

not(element(X/_,F)),

func(F,A,B).

% Domain and range of a relation

dom([],[]).

dom(R,D):-

236

setof(X,element(X/_,R),D).

ran([],[]).

ran(R,Ran):-

setof(X,element(_/X,R),Ran).

% unifying all the objectives of a group of operational elements

gadd(Ob,L,[Ob|L]).

gunion([[_,Ob,_,_,_]|Tail],D):-

gunion(Tail,D1),

gadd(Ob,Tail,D).

%Remove duplicates on a list

rem_dups([], []).

rem_dups([First | Rest], NewRest) :-

element(First, Rest),

rem_dups(Rest, NewRest).

rem_dups([First | Rest], [First | NewRest]) :-

not(element(First, Rest)),

rem_dups(Rest, NewRest).

validedges([]).

validedges([X/Y|Tail]):-

edge(X/Y),!,

validedges(Tail).

validnodeobj([]).

validnodeobj([X|Tail]):-

nodeobj(X),!,

validnodeobj(Tail).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma stateOperationalElt

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,id).

varname(_,name).

237

schema_type([Id,Name], stateoperationalelt):-

%given sets

givenset(I,identifier),

%Variables and partial functions

varname(No,id),

varname(Nom,name),

element(No,I).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma stateOrganogram

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,edges).

varname(_,nodeob).

schema_type([Edges,Obj],stateorganogram):-

%given sets

givenset(Ns, identifier),

givenset(Gs,objective),

%variables names

varname(Edges, edges),

varname(Obj, nodeob),

% variables’ definition

validedges(Edges),

validnodeobj(Obj),

%Predicate

findall(X,element(X/_,Edges),DE),

rem_dups(DE,DomE),

findall(D,element(_/D,Edges),RE),

rem_dups(RE,RanE),

union(DomE,RanE,UNodes),

findall(X,element(X/_,Obj),DomOb),

rem_dups(DomOb,Dob),

subset(Dob,UNodes).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Horizontal search

238

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicate to select a tuple for output

hsel(Ov,Oi,V, Lhrel):-

nodeobj(V/Ov),

hrel(Oi/Ov),

not(element(Oi/Ov, Lhrel)),

nodeobj(W/Oi).

%select node

selnode(N, O, Ni, List):-

not(N==Ni),

element(O, List),

nodeobj(N/O).

varname(_, in(id)).

varname(_,inout(curobj)).

varname(_,inout(newv)).

varname(_,inout(newobj)).

varname(_,inout(newhrel)).

schema_op([Nodeid, CurObj, CurHr, NewV, NewObj, NewHrel],horizsearch):-

%Given sets

givenset(Ns, identifier),

givenset(Gs, objective),

%variables’ names

varname(Nodeid, in(id)),

varname(CurObj, inout(curobj)),

varname(NewV, inout(newv)),

varname(NewObj, inout(newobj)),

varname(NewHrel, inout(newhrel)),

write(’*****Horizontal search: Inputs *********’),nl,

write(’Nodeid: ’), write(Nodeid),nl,

write(’CurObj: ’), write(CurObj),nl,

%find the horizontal relationships for the input node

findall(Oi/Ov,hsel(Ov,Oi,Nodeid, CurHr),Od),

rem_dups(Od, NewHrel),

%Add input node objectives participating to horizontal relationships

findall(X,element(X/_,Od),Obs),

239

rem_dups(Obs, NewObj),

%union(Obs,CurObj,CurObjo),

%find new nodes

findall(N, selnode(N, On, Nodeid, NewObj), Ln),

rem_dups(Ln, NewV0),

delelement(Nodeid, NewV0, NewV),

%display outputs

write(’*******Horizontal search: Ouputs *********’),nl,

write(’NewObj! : ’), write(NewObj),nl,

write(’NewHrel!: ’), write(NewHrel),nl,

write(’NewV! : ’), write(NewV),nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vertical search

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicate to select a tuple for output

% **** predecessors *****

vpsel(Owi,Ovi,V,Wi, Lwi, Lobj, Lvrel):-

element(Wi, Lwi),

element(Ovi, Lobj),

nodeobj(Wi/Owi),

nodeobj(V/Ovi),

not(element(Owi/Ovi, Lvrel)),

vrel(Owi/Ovi).

% **** successors *****

vssel(Ovi, Osi, V, Si, Lsi, Lobj, Lsrel):-

element(Si, Lsi),

element(Ovi, Lobj),

nodeobj(Si/Osi),

nodeobj(V/Ovi),

not(element(Ovi/Osi, Lsrel)),

vrel(Ovi/Osi).

%List of valid predecessors

240

validpred(W, V):-

edge(W/V),

nodeobj(V/Ov),

nodeobj(W/Ow),

vrel(Ow/Ov).

% Validate a successor node

validsucc(V, S, Lobj):-

edge(V/S),

nodeobj(V/Ov),

nodeobj(S/Os),

element(Ov, Lobj),

vrel(Ov/Os).

varname(_,in(id)).

varname(_,inout(curobj)).

varname(_,inout(newv)).

varname(_,inout(newobj)).

varname(_,inout(newhrel)).

schema_op([Nodeid, CurObj, CurVr, NewV, NewObj, NewVrel],verticalsearch):-

%Given sets

givenset(Ns, identifier),

givenset(Gs, objective),

%variables’ names

varname(Nodeid, in(id)),

varname(CurObj, inout(curobj)),

varname(NewV, inout(newv)),

varname(NewObj, inout(newobj)),

varname(NewVrel, inout(newhrel)),

%display inputs

write(’**’),nl,

write(’ Vertical search: Inputs ’), nl,

write(’Nodeid : ’), write(Nodeid),nl,

write(’CurObj : ’), write(CurObj),nl,

%find all predecessor w of the input node v

241

findall(W, validpred(W, Nodeid),Lw0),

rem_dups(Lw0, Lw),

%find all successors S of the input node V

findall(S, validsucc(Nodeid, S, CurObj),Ls0),

rem_dups(Ls0, Ls),

%find the vertical relationships for the input node

findall(Ow/Ov, vpsel(Ow,Ov,Nodeid,W,Lw,CurObj, CurVr),Od1),

findall(Ov/Os, vssel(Ov,Os,Nodeid,S,Ls, CurObj, CurVr),Od2),

union(Od1, Od2, Od),

rem_dups(Od, NewVrel),

%Add input node objectives participating to horizontal relationships

findall(X,element(X/_, Od1),Obs0),

findall(X,element(_/X, Od2), Obs1),

union(Obs0, Obs1, Obs),

rem_dups(Obs, NewObj),

%Add all predecessor and successor nodes to the list of current vertices

union(Lw, Ls, L),

rem_dups(L, NewV1),

delelement(Nodeid, NewV1, NewV),

%display outputs

write(’************Vertical search: Outputs ***************’), nl,

write(’NewObj! : ’), write(NewObj),nl,

write(’NewVrel!: ’), write(NewVrel),nl,

write(’NewV! : ’), write(NewV).

%******************************

% The main processing algorithm

%******************************

schema_op([[],_,_,_,_], main):-!.

schema_op([Black,_,_,_,Black],main):- !.

schema_op([[X|Tail],X1,X2,X3,Black], main):-

element(X,Black),

nonvar(Tail),

nonvar(X1),

%nonvar(X2),

schema_op([Tail,X1,X2,X3,Black],main).

242

schema_op([[V|Tail], CurObj, CurHrel, CurVrel, Black], main):-

%Perform the horizontal search

schema_op([V, CurObj, CurHrel, NewNodes1, NewObj1, NewHrel], horizsearch),

% Perform the vertical search

schema_op([V, CurObj, CurVrel, NewNodes2, NewObj2, NewVrel], verticalsearch),

%process the horizontal/vertical search results

union(NewHrel, CurHrel, NewHrel0),

rem_dups(NewHrel0, CurHrel1),

union(NewVrel, CurVrel, CurVrel0),

rem_dups(CurVrel0, CurVrel1),

union(NewNodes1, NewNodes2, NewNodes),

union(NewNodes, Tail, NewNodes3),

delelement(V,NewNodes3,NewN),

rem_dups(NewN, Tail1),

union(NewObj1, NewObj2, NewObj),

union(NewObj, CurObj, CurObj0),

rem_dups(CurObj0, CurObj1),

gadd(V,Black, Black1),

% **********************

% Main Program Outputs

%***********************

nl,

write(’************** main program ***********’),nl,

write(’CurV! : ’), write(Tail1), nl,

write(’CurObj! : ’), write(CurObj1),nl,

write(’CurHrel!: ’), write(CurHrel1), nl,

write(’CurVrel!: ’), write(CurVrel1),nl,

write(’black! : ’), write(Black1),nl,

schema_op([Tail1, CurObj1, CurHrel1, CurVrel1, Black1], main).

B.0.5 Execution

Amzi! Prolog (IDE Only)

Licensed to

Free Version

243

Interpreting project: MyProject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’operationaleltch5.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_op([[crdsp], [crdspob1,crdspob2], [], [], []],main).

************** main program ***********

CurV! : [crdd]

CurObj! : [cdob3, cfrob1, cfrfob1, cfrfob2, cscseelob1, cscseelob2, cscseelob3,

cscdob4, cscdrob2, cscdrob1, cscdtob1, cscdtob2, cscdceob2, csadob2, cdob4,

cdob5, csasob1, csasob3, csasob2, csasob4, csadob1, csadob3, cscdob2, cscdob3,

cscdob1, cscdob5, cscsedob1, cdob6, crddob1, csdob2, csdob1, csdob3, csdob4,

cfdob1, cfdob2, crddob3, cdob1, cdob2, crdrmob1, crdspob3, crddob4, crddob2,

crdspob1, crdspob2]

CurHrel!: [cfdob2/cfdob1, cscseelob1/cscseelob3, cscsedob1/cscsedob2,

cscdob2/cscdob1, cscdob4/cscdob1, cscdob5/cscdob2, csadob2/csadob1,

csadob3/csadob1, csdob2/csdob1, csdob4/csdob1, cdob6/cdob3, crddob3/crddob4,

crdspob3/crdspob1]

CurVrel!: [cdob3/cfdob1, cdob3/cfdob2, cdob6/cfdob2, cfdob1/cfrob1, cfdob2/cfrob1,

cfdob1/cfrfob2, cfdob2/cfrfob1, cfdob2/cfrfob2, cscsedob1/cscseelob2,

cscsedob1/cscseelob3, cscdob4/cscdrob2, cscdob2/cscdrob2, cscdob1/cscdrob1,

cscdob2/cscdtob1, cscdob5/cscdtob2, cscdob1/cscdceob2, cdob4/csdob2, cdob5/csdob2,

cdob4/csdob4, cdob5/csdob4, csdob2/csasob3, csdob1/csasob1, csdob3/csasob2,

csdob3/csasob3, csdob4/csasob2, csdob4/csasob4, csdob1/csadob1, csdob4/csadob3,

csdob2/cscdob2, csdob2/cscdob3, csdob1/cscdob1, csdob3/cscdob5, csdob4/cscsedob1,

cdob1/crddob1, cdob1/csdob2, cdob2/csdob1, cdob2/csdob3, cdob2/csdob4, cdob2/cfdob1,

cdob2/cfdob2, cdob1/crddob4, cdob2/crddob2, crddob4/crdrmob1, crddob2/crdspob1,

crddob4/crdspob1, crddob2/crdspob2]

black! : [crdrm, cfrf, cfr, cfd, cscseel, cscsed, cscdce, cscdt, cscdr,

cscd, csad, csas, csd, cd, crdd, crdsp]

yes

244

?-

245

B.0.6 Problem analysis

pDomain p1: limited p2: Inconsistent p3: statistics p4: stressfull p5: stressfull

Component Emails size Appl. forms Hard to draw App. process Eval Process

crdsp ob1 data access errors delay time

ob2 accessibility delay discourage

ob3 delay errors delay time

crdrm ob1

crdd ob1 delay

ob2

ob3 no info

ob4 discourage delay

cfd ob1 errors delay

ob2

csas ob1 time time

ob2 delay delay

ob3

ob4

csd ob1 neg. impact discourage discourage

ob2

ob3 delay

ob4 obstacle errors neg. impact

csad ob1

ob2

ob3 more work more work

cscd ob1 errors

ob2

ob3

ob4 errors discourage discourage

ob5

cscdr ob1 error delay

ob2

cscdce ob2

cscdt ob1

ob2

cscsed ob1 errors delay

cscseel ob1

246

pDomain p1: limited p2: Inconsistent p3: statistics p4: stressfull p5: stressfull

Component Emails size Appl. forms Hard to draw App. process Eval Process

ob2

ob3 comm. pb errors delay discourage discourage

cfr ob1

cd ob1 errors delay discourage discourage

ob2 discourage discourage

ob3

ob4

ob5

ob6

cfrf ob1 errors delay

ob2 errors

Table B.4: Analysing the initial problems

B.0.7 Reduced pNode

Let pNodes = {
crdsp{ob1, ob2, ob3}, crdd{ob1, ob3}, cfd{ob1},
csas{ob1, ob2}, csd{ob1, ob3, ob4}, csad{ob3},
cscd{ob1, ob4}, cscdr{ob1}, cscsed{ob1},
cscseel{ob3}, cfr{ob1}, cd{ob1}, cfrf {ob1, ob2}
}

247

248

Appendix C

The Object-Z specification of the case

study

ClsMetadata
↾(name, value)
[Name]

name : Name
value : String

ClsGRLModelElement
↾(ref , name,mdata)
[Identifier]

ref : Identifier
name : String
mdata : FClsMetaData

INIT
ref =⊥

C.0.1 Actors’ classes: ClsApplicant, ClsMotivator , ClsAdministrator ,

ClsServer

Components inherited from the superclass: ClsActor

ref : Identifier

name : String

mdata : FClsMetaData

249

importance : ImportanceType

impquantitative : Z

Actor’s class schema: ClsApplicant

ClsActorApplicant
↾(name, softgoals , goals , beliefs , nfdependers)
ClsActor

applicantid : Identifier
softgoals : PClsSoftGoal
goals : PClsGoals
beliefs : PClsBelief
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .ref 6= ref

INIT
softgoals = ⊥ ∧ nfdependers = ⊥ ∧ goals = ⊥ ∧ beliefs =⊥
ClsActor .Init

NewSoftGoal
∆softgoals
sgoal? : ClsSoftGoal

sgoal?.Init ∧ sgoal?.actor .ref = ref
softgoals ′ = softgoals ⊕ {sgoal?}

NewGoal
∆goals
goal? : ClsGoal

goal?.Init ∧ goal?.actor .ref = ref
goals ′ = goals ⊕ {goal?}

NewBelief
∆beliefs
belief ? : ClsBelief

belief ?.actor .ref = ref
beliefs ′ = beliefs ⊕ {belief ?}

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

250

Actor’s class schema: ClsMotivator

ClsActorMotivator
↾(name, softgoals , goals , beliefs , nfdependers)
ClsActor

motivatorid : Identifier
softgoals : PClsSoftGoal
goals : PClsGoals
beliefs : PClsBelief
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .ref 6= ref

INIT
softgoals = ⊥ ∧ nfdependers = ⊥ ∧ goals = ⊥ ∧ beliefs =⊥
ClsActor .Init

NewSoftGoal
∆softgoals
sgoal? : ClsSoftGoal

sgoal?.Init ∧ sgoal?.actor .ref = ref
softgoals ′ = softgoals ⊕ {sgoal?}

NewGoal
∆goals
goal? : ClsGoal

goal?.Init ∧ goal?.actor .ref = ref
goals ′ = goals ⊕ {goal?}

NewBelief
∆beliefs
belief ? : ClsBelief

belief ?.actor .ref = ref
beliefs ′ = beliefs ⊕ {belief ?}

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

Actor’s class schema: ClsAdministrator

251

ClsActorAdministrator
↾(name, softgoals , goals , beliefs , nfdependers)
ClsActor

adminid : Identifier
softgoals : PClsSoftGoal
goals : PClsGoals
beliefs : PClsBelief
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .ref 6= ref

INIT
softgoals = ⊥ ∧ nfdependers = ⊥ ∧ goals = ⊥ ∧ beliefs =⊥
ClsActor .Init

NewSoftGoal
∆softgoals
sgoal? : ClsSoftGoal

sgoal?.Init ∧ sgoal?.actor .ref = ref
softgoals ′ = softgoals ⊕ {sgoal?}

NewGoal
∆goals
goal? : ClsGoal

goal?.Init ∧ goal?.actor .ref = ref
goals ′ = goals ⊕ {goal?}

NewBelief
∆beliefs
belief ? : ClsBelief

belief ?.actor .ref = ref
beliefs ′ = beliefs ⊕ {belief ?}

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

Actor’s class schema: ClsServer

252

ClsActorServer
↾(name, softgoals , goals , beliefs , nfdependers)
ClsActor

serverid : Identifier
softgoals : PClsSoftGoal
goals : PClsGoals
beliefs : PClsBelief
nfdependers : PClsSoftgoal

∀ nfelt ∈ nfdependers • nfelt .actor .ref 6= ref

INIT
softgoals = ⊥ ∧ nfdependers = ⊥ ∧ goals = ⊥ ∧ beliefs =⊥
ClsActor .Init

NewSoftGoal
∆softgoals
sgoal? : ClsSoftGoal

sgoal?.Init ∧ sgoal?.actor .ref = ref
softgoals ′ = softgoals ⊕ {sgoal?}

NewGoal
∆goals
goal? : ClsGoal

goal?.Init ∧ goal?.actor .ref = ref
goals ′ = goals ⊕ {goal?}

NewBelief
∆beliefs
belief ? : ClsBelief

belief ?.actor .ref = ref
beliefs ′ = beliefs ⊕ {belief ?}

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

253

ClsLinkableElement
↾(ref , name,mdata, importance, impQualitative)
ImportanceType == High | Medium | Low | None
ClsGRLModelElement

importance : ImportanceType
impQualitative : Z

ClsActor
↾(ref , name,mdata, importance, impQualitative)
ClsLinkableElement

ClsGRLContainableElt
↾(ref , name,mdata, importance, impQualitative, actor)
ClsLinkableElement

actor : ClsActor

INIT
actor .ref = ⊥

ClsIntentionalElement
↾(ref , name,mdata, importance, impQualitative, actor)
ClsContainableElement

(actor 6=⊥∧ ∀ elt : ↓ClsIntentionalElement | elt .actor .ref = actor .ref
∨
actor =⊥∧ ∀ elt : ↓ClsIntentionalElement | elt .actor =⊥) •

elt .name 6= name

C.0.2 The OZ specification of the resources

Two resources are to be specified: ClsIntranet and ClsInternet .

254

ClsResource
↾(ref , name,mdata, importance, impQualitative, actor , available)
ClsIntentionalElement

available : Integer

available ≥ 0

INIT
available = 0

Creating the class: ClsIntranet

ClsIntranet
↾(messageout ,messagein, send , receive)
ClsResource
[Message]

nfdependers : PClsSoftGoal
messageout : PMessage
messagein : PMessage

messageout ∩messagein = ∅

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

send
∆messageout
msg? : Message

messageout ′ = messageout ∪ {msg?}

receive
∆messagein
msg? : Message

messagein ′ = messagein ∪ {msg?}

Creating the class: ClsInternet

255

ClsInternet
↾(provider)
ClsResource
[Webpage]

nfdependers : PClsSoftGoal
openedpages : PWebpage
savedpages : PWebpage
connected : B

openedpages ⊆ savedpages

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

saveform
∆savedpages
myform? : Webpage

savedpages ′ = savedpages ⊕ {myform?}

loadpage
∆openedpages
myform? : Webpage

openedpage ′ = openedpage ∪ {myform?}

C.0.3 The OZ specification of Tasks and ressources linked to ap-

plicant

The two classes to specify are: ClsAccessOwnApp and ClsSubmitAppOnline.

The class ClsAccessOwnApp

The list represents in fact a view, accessible by the applicant, of the applications in a

database.

256

ClsAccessOwnApp
↾(apps , SelectApp)
ClsIntentionalElement
[Webpage]

inet : ClsInternet
nfdependers : PClsSoftGoal

SelectApp
∆inet .openedpages

inet .savedpages 6= ∅

∃ aform ∈ inet .savedpages • inet .loadpage(aform)

Addnfdepender
∆nfdependers
sgoal? : ClsSoftGoal

nfdependers ′ = nfdependers ⊕ {sgoal?}

The variable apps contains a list of applications submitted by applicants for different research

support programmes. The operation SelectApp accesses the list of submitted applications

and allowing the applicant to select any of its’ applications.

The class: ClsSubmitAppOnline

This class is very similar to the class ClsAccessOwnApp;

ClsSubmitAppOnline
↾(SubmitApp)
ClsIntentionalElement
[Webpage]

inet : ClsInternet

SubmitApp
∆inet .savedpages
myform? : Webpage

inet .saveform(myform?)

The operation SubmitApp sends the application app? back to the database. At this stage

of the specification, the operation does not indicate if the older version of the application is

replaced by the modified version or not.

257

C.0.4 The OZ specification of Tasks and ressources linked to Mo-

tivator

The classes to specify are: ClsMeetingToMotivEval, ClsSubmitMotivEvalOnline and ClsRe-

portOnSubmitedApp.

The class: ClsMeetingToMotivEval

ClsMeetingToMotivEval
↾(meetings ,members , applications , organizeAmeeting , inviteAmember ,

allocateApplications)
ClsIntentionalElement
[Meeting ,Person,Date,Time]

meetings : Meeting 7→ Place × Date × Time
members : Meeting 7→ Person
applications : Meeting 7→ Application

INIT
meetings = ∅ ∧ members = ∅ ∧ applications = ∅

organizeAmeeting
∆meetings
meet? : Meeting
place? : Place
date? : Date
time? : Time

meetings ′ = meetings ∪ {meet? 7→ (place?, date?, time?)}

inviteAmember
∆members
memb? : Person
meet? : Meeting

members ′ = members ∪ {meet? 7→ memb?}

allocateApplications
∆applications
apps? : PApplication
meet? : Meeting

applications ′ = applications ∪ {meet? 7→ apps?}

The class: ClsSubmitMotivEvalOnline

258

ClsSubmitMotivEvalOnline
↾(submitEvaluation, submitMotivation)
ClsIntentionalElement
[Webpage]

inet : ClsInternet

inet .connected

INIT
evaluations = ∅ ∧ motivations = ∅

submitEvaluation
∆inet .savedpages
evalform? : Webpage

inet .save(evalform?)

submitMotivation
∆inet .savedpages
motivform? : Webpage

inet .save(motivform?)

The class: ClsReportOnSubmitedApp

ClsReportOnSubmitedApp
↾(allreports , newReport)
ClsIntentionalElement
[Report ,Webpage]

report : PWebpage 7→ Report

applreports : PReport

newReport
∆applreports
report? : Report

dom(report ⊲ {report?}) 6= ∅

applreports ′ = applreports ⊕ {report?}

259

C.0.5 The OZ specification of Tasks and ressources linked to Ad-

ministration

The classes to specify are: ClsGenStatsOnApp, ClsProvideInfoGenForms and ClsKeepPg-

DataInDb.

The class: ClsGenStatsOnApp

ClsGenStatsOnApp
↾(msgdata, stat , statistic)
ClsIntentionalElement
[Data, Statistic,Webpage]

msgdata : Message 7→ Data
stat : PData 7→ Statistic

tranet : ClsIntranet

statistic
data? : PData
stat ! : Statistic

dom(msgdata ⊲ data?) 6= ∅

data? 7→ stat ! ∈ stat

The class: ClsProvideInfoGenForms

ClsProvideInfoGenForms
↾(msgsection, savesection)
ClsIntentionalElement
[Section]

msgsection : Section 7→ Message

tranet : ClsIntranet

savesection
sec? : Section

sec? 7→ msg ∈ msgsection
tranet .sent(msg)

The class: ClsKeepPgDataInDb

260

ClsKeepPgDataInDb
↾(progmsg , saveprogramme)
ClsIntentionalElement
[Programme]

progmsg : Programme 7→ Message

tranet : ClsIntranet

saveProgramme
prog? : Programme

prog? 7→ msg ∈ progmsg
tranet .sent(msg)

C.0.6 The OZ specification of Tasks and ressources linked to Server

The classes to specify are: ClsGenFormSections, ClsMaintSubmitedApp and ClsMaintDb4SuppPg.

The class: ClsGenFormSections

ClsGenFormSections
↾(sections , pages , onlineforms , generateAnonlineform)
ClsIntentionalElement
[Section,Webpage]

sections : PSection
pages : PWebpage
onlineforms : P(seq1 Section 7→Webpage)

∀ oform ∈ onlineforms •
f ∈ dom oform ⇒ f ∈ sections
ran oform ⊆ forms

INIT
sections = ∅ ∧ forms = ∅

generateAnonlineform
∆onlineforms
page? : Webpage

∀ form ∈ onlineforms • page? 6∈ ran form
∃ Sec : seq Section | {s | s ∈ Sec} ⊆ sections •

onlineforms ′ = onlineforms ⊕ {Sec 7→ page?}

261

The class: ClsMaintSubmitedApp

ClsMaintSubmitedApp
↾(appdata, appforms , receiveOnlineData)
ClsIntentionalElement
[Data,Webpage]

formdata : Data 7→Webpage

appdata : PData
appforms : PWebpage
inet : ClsInternet

∀ data : Webpage • data ∈ appdata ⇒ ∃1 page : Webpage •
data 7→ page ∈ formdata

receiveOnlineData
∆appdata
sform? : Webpage

sform? ∈ inet .savedpages
∃ data : Data | data 7→ sform ∈ formdata •

appdata ′ = appdata ⊕ {data}

The class: ClsMaintDb4SuppPg

ClsMaintDb4SuppPg
↾(programmes , data, receiveNewprogdata)
ClsIntentionalElement
[Programme,Data]

progdata : Data 7→ Programme
msgdata : Message 7→ Data

programmes : PProgramme
data : PData
tranet : ClsIntranet

ran(data ⊳ progdata) ⊆ programmes

receiveNewprogdata
∆data
prog? : Programme

∃(msg , data) ∈ tranet .messagein × Data | msg 7→ datain ∈ msgdata •
datain 7→ prog?
data ′ = data ⊕ {datain}
programmes ′ = programmes ⊕ {prog?}

262

C.0.7 Formalising the system class: ClsGrlCaseStudy

ClsGrlCaseStudy
↾(freeelts , actorselts , alllinks)

actors : P Identifier
freeelts : P ↓ClsIntentionalElement
alllinks : P ↓ClsElementLink

∀ elt ∈ free elts • elt .actor =⊥

INIT
actors = ∅ ∧ freeelts = ∅ ∧ alllinks = ∅

AddActor [ref]
∆actors

actors ′ = actors ⊕ {ref }

NewFreeelt
∆freeelts
elt? : ↓ClsIntentionalElement

elt?.actor .ref =⊥
freeelts ′ = freeelts ⊕ {elt?}

NewLink
∆alllinks
link? : ↓ClsElementLink

alllinks ′ = alllinks ⊕ {link?}

BoundIntentElt
elt? ∈ {ClsTask ,ClsResource}
actor? : Actor

elt?.actor = actor?

263

264

Appendix D

Prolog implementation of the

Object-Z specification

%%

% facts

%%%

% list of identifiers

givenset([high, medium, low, none], importancetype).

%%

% set operations needed for the animation

%%%

element(X,[X|L]).

element(X,[Y|L]):- element(X,L).

% subset

subset([],_).

subset([A|X],Y):-

element(A,Y),subset(X,Y).

% union

union([], X, X).

union(X,[],X):- !.

union([X | R], Y, Z) :-

element(X, Y),

!,

265

union(R, Y, Z).

union([X | R], Y, [X | Z]) :- union(R, Y, Z).

% Assumes lists contain no duplicate elements.

intersection([], X, []):- !.

intersection(X, [], []):- !.

intersection([X | R], Y, [X | Z]) :-

element(X, Y),

!,

intersection(R, Y, Z).

intersection([X | R], Y, Z) :- intersection(R, Y, Z).

%partition

partition([],[],[]):- !.

partition(X,Y,Z):-

intersection(X,Y,[]),

union(X,Y,Z).

% Checks if R is a relation from A to B

rel([],_,_):- !.

rel([X/Y|R],A,B):-

element(X,A),

element(Y,B),

rel(R,A,B).

%checks if F is a function

func([],_,_):-!.

func([X/Y|F],A,B):-

element(X,A),

element(Y,B),

not(element(X/_,F)),

func(F,A,B).

266

% Domain and range of a relation

dom([],[]).

dom(R,D):-

setof(X,element(X/_,R),D).

ran([],[]).

ran(R,Ran):-

setof(X,element(_/X,R),Ran).

%Remove duplicates on a list

rem_dups([], []).

rem_dups([First | Rest], NewRest) :-

element(First, Rest),

rem_dups(Rest, NewRest).

rem_dups([First | Rest], [First | NewRest]) :-

not(element(First, Rest)),

rem_dups(Rest, NewRest).

%Natural number

nat(0).

nat(X0) :-

X0 @>0,

X1 is X0-1,

nat(X1).

%Save each successful state data into the file ’staterefs.pro’

%%

save_stateref(SRef):-

open(’staterefs.pro’,append,Stream,[type(wide_text)]),

pp(Stream,SRef),

close(Stream).

D.0.1 Implementing schema type() using object’references

The class ClsMetadata

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma of ClsMetadata

267

%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,refmetadata).

varname(_,name).

varname(_,value).

schema_type([Ref, [Name, Val]], metadata):-

%Variables and partial functions

varname(Ref, refmetadata),

varname(Name,name),

varname(Val, value),

string(Ref),

string(Name),

save_stateref(stateref([Ref,[Name, Val]])),

reconsult(staterefs).

%%%

% Testing the schema_type([Ref, [Name, Val]], metadata)

Amzi! Prolog (IDE Only)

Licensed to

Free Version

Interpreting project: phdproject

Loading Extensions: aosutils.lsx (always loaded in IDE)

Consulting Source Files: ’commonclauses.pro’, ’ozprologclauses.pro’, ’staterefs.pro’

Type ’quit.’ to end and [Ctrl]-C to stop user input.

?- schema_type([$md001$,[$Size$,23]], metadata).

yes

?- stateref([md001, LinkedData]).

268

LinkedData = [‘Size‘, 23] ;

no

?-

The class ClsModelElement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma of ClsModelElement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%)

varname(_, refmodelelt).

varname(_, identifier).

schema_type([RefMe, [RefMd, Id]], modelelt):-

%Variables and partial functions

varname(RefMe, refmodelelt),

varname(Id, identifier),

varname(RefMd, refmetadata),

string(RefMe),

string(Id),

string(RefMd),

stateref([RefMd, X]),

%Process [RefMd, X]

save_stateref(stateref([RefMe, [RefMd, Id]])),

reconsult(staterefs).

%%%

% Testing the schema_type([RefMe, [RefMd, Id]], modelelt)

?- schema_type([$me004$, [$md003$, $id0001$]], modelelt).

yes

?- stateref([me004, LinkedData]).

LinkedData = [‘md003‘, ‘id0001‘] ;

no

?-

269

The class ClsLinkableElement

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma of Linkable Element

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, reflinkableelt).

varname(_, importance).

varname(_, imprtancequalitative).

schema_type([RefLe,[RefMe,Imp, Iqtive]],linkableelt):-

%given set

givenset(Itype, importancetype),

%Variables and partial functions

varname(RefLe, reflinkableelt),

varname(RefMe, refmodelelt),

varname(Imp, importance),

varname(Iqtive, imprtancequalitative),

stateref([RefMe, X]),

%Process [RefMe, X]

element(Imp, Itype),

nat(Iqtive),

save_stateref(stateref([RefLe,[RefMe,Imp,Iqtive]])),

reconsult(staterefs).

%%

% Testing the schema_type([RefLe,[RefMe,Imp, Iqtive]],linkableelt)

?- schema_type([le003, [me004, low, 40]], linkableelt).

yes

?- stateref([le003, LinkedData]).

LinkedData = [me004, low, 40] ;

no

270

?-

The class ClsActor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma of the class ClsActor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_,refactor).

schema_type([RefAc, RefLe], actor):-

%Variables and partial functions

varname(RefAc,refactor),

varname(RefLe, reflinkableelt),

stateref([RefLe,X]),

%process X

save_stateref(stateref([RefAc,RefLe])),

reconsult(staterefs).

%%

% Testing the schema_type([RefAc, RefLe], actor)

?- schema_type([ac003, le001], actor).

yes

?- stateref([ac003, LinkedData]).

LinkedData = le001 ;

no

?-

The class ClsContainableElement

%%%

%State schma for the class ClsGrlContainableElement

%%%

varname(_, refcontainableelt).

271

schema_type([RefCe,[RefLe,RefAc]], containableelt):-

%Variables and partial functions

varname(RefCe,refcontainableelt),

varname(RefLe, reflinkableelt),

varname(RefAc, refactor),

stateref([RefLe,Xle]),

%process Xle

stateref([RefAc,Xac]),

%process Xac

save_stateref(stateref([RefCe,[RefLe,RefAc]])),

reconsult(staterefs).

%%

% Testing the schema_type([RefCe,[RefLe,RefAc]], containableelt)

?- schema_type([ce002, [le003, ac003]], containableelt).

no

?- stateref([le003, LinkedData]).

no

?- stateref([le002, LinkedData]).

LinkedData = [me001, medium, 34] ;

no

?- schema_type([ce002, [le002, ac003]], containableelt).

yes

?- stateref([ce002, LinkedData]).

LinkedData = [le002, ac003] ;

no

?-

The class ClsIntentionalElement

%%

272

%State schma for the class ClsIntentionalElement

%%

varname(_, refintentionalelt).

schema_type([RefIe,RefCe], intentionalelt):-

%Variables and partial functions

varname(RefIe, refintentionalelt),

varname(RefCe, refcontainableelt),

stateref([RefCe,X]),

%process X

save_stateref(stateref([RefIe, RefCe])),

reconsult(staterefs).

%%

% Testing the schema_type([RefIe,RefCe], intentionalelt)

?- schema_type([ie002, ce001], intentionalelt).

yes

?-

The class ClsBelief

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma for the class ClsBelief

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, refbelief).

varname(_, description).

schema_type([RefBl,[RefIe, Desc]], belief):-

%Variables and partial functions

varname(RefBl, refbelief),

varname(RefIe, refintentionalelt),

varname(Desc, description),

273

string(Desc),

stateref([RefIe, X]),

%Process RefIe and X here

save_stateref(stateref([RefBl,[RefIe, Desc]])),

reconsult(staterefs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma for the class ClsResource

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, refresource).

varname(_, available).

schema_type([RefRs, [RefIe, Avail]], resource):-

%Variables and partial functions

varname(RefRs, refresource),

varname(RefIe, refintentionalelt),

varname(Avail, available),

nat(Avail),

Avail @>= 0,

stateref([RefIe, X]),

write(X),nl,

%Process RefIe and X

save_stateref(stateref([RefRs, [RefIe, Avail]])),

reconsult(staterefs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma for the class ClsTask

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, reftask).

274

schema_type([RefTa,RefIe], task):-

%Variables and partial functions

varname(RefTa, reftask),

varname(RefIe, refintentionalelt),

stateref([RefIe,X]),

%process X

save_stateref(stateref([RefTa,RefIe])),

reconsult(staterefs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma for the class ClsGoal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, refgoal).

schema_type([RefGo,RefIe], goal):-

%Variables and partial functions

varname(RefGo, refgoal),

varname(RefIe, refintentionalelt),

stateref([RefIe,X]),

%process X

save_stateref(stateref([RefGo,RefIe])),

reconsult(staterefs).

%%%

%State schma for the class ClsComplementaryAction

%%%

varname(_, refcomplementaryaction).

varname(_,cnf-phase).

varname(_,cnf-action).

varname(_,cnf-domain).

varname(_,cnf-option).

275

schema_type([RefCa,[RefIe,Phase, Action, Domain, Option]], complementaryaction):-

%Variables and partial functions

varname(RefCa, refcomplementaryaction),

varname(RefIe, refintentionalelt),

varname(Phase, cnf-phase),

varname(Action, cnf-action),

varname(Domain, cnf-domain),

varname(Option, cnf-option),

string(Phase),

string(Action),

string(Domain),

string(Option),

stateref([RefIe,X]),

%process X

save_stateref(stateref([RefCa,[RefIe,Phase, Action, Domain, Option]])),

reconsult(staterefs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%State schma for the class ClsSoftGoal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varname(_, refsoftgoal).

varname(_, cnfactions).

schema_type([RefSg, [RefIe, RefCas]], softgoal):-

%Variables and partial functions

varname(RefSg, refsoftgoal),

varname(RefIe, refintentionalelt),

varname(RefCas, cnfactions),

stateref([RefIe, X]),

%Process RefIe and X

276

save_stateref(stateref([RefSg, [RefIe, RefCas]])),

reconsult(staterefs).

D.0.2 Upward validation

typechecking with CZT 1.5.0

line 74 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

line 82 column 5 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 91 column 2 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol COLON

line 103 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 104 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 105 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 106 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 107 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 108 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 108 column 27 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol SPOT

line 111 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 111 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 111 column 65 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 111 column 90 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 117 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 119 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 125 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 127 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 132 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 134 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 139 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 140 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 149 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 150 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 151 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 152 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 153 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 154 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 154 column 27 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol SPOT

line 157 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 157 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 157 column 65 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 157 column 90 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 163 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 165 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

277

line 171 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 173 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 178 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 180 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 185 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 186 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 195 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 196 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 197 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 198 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 199 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 200 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 200 column 27 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol SPOT

line 203 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 203 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 203 column 65 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 203 column 90 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 209 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 211 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 217 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 219 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 224 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 226 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 231 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 232 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 241 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 242 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 243 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 244 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 245 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 246 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 246 column 27 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol SPOT

line 249 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 249 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 249 column 65 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 249 column 90 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 255 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 257 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 263 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 265 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 270 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 272 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 277 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 278 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 282 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

278

line 283 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \defs

line 283 column 26 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \bbar

line 283 column 39 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \bbar

line 283 column 49 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \bbar

line 291 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

line 295 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

line 301 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 306 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

line 309 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 310 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 310 column 24 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 310 column 61 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \bbar

line 312 column 8 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 312 column 20 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 312 column 57 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \bbar

line 312 column 76 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 319 column 9 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol id

line 323 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 339 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 340 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 341 column 11 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 342 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 343 column 11 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \int

line 346 column 0 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol DELTA

line 348 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 349 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 354 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 355 column 24 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 360 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 361 column 22 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 371 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 372 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 373 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 375 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 376 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \subs

line 379 column 0 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol DELTA

line 381 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 382 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 387 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 388 column 24 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 393 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 394 column 24 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 409 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 412 column 0 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol DELTA

line 413 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

279

line 415 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \exi

line 420 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 421 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 436 column 0 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol DELTA

line 438 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 453 column 30 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \prod

line 453 column 41 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \prod

line 466 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 467 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 467 column 33 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 473 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 474 column 17 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 474 column 29 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 478 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 480 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 481 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \uni

line 481 column 39 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 491 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 498 column 11 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol DOT

line 500 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 507 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 517 column 8 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 520 column 12 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 525 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 527 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 539 column 5 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 545 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 547 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 549 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 565 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 566 column 5 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 583 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 584 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 600 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 601 column 7 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 602 column 13 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 602 column 20 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \seqone

line 603 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 604 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 604 column 27 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol SPOT

line 605 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \zimp

line 606 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \subs

line 614 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 615 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 616 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \exi

280

line 616 column 22 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \cbar

line 616 column 32 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \cbar

line 616 column 50 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \subs

line 617 column 29 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 617 column 41 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 629 column 8 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 630 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 632 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 633 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 633 column 5 in "C:\Users\Thesis\phdAppendC.tex":

Syntax error in variable declaration at token data;

an expression is expected after token COLON

line 633 column 36 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \zimp

line 633 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \exione

line 634 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 639 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 641 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \exi

line 641 column 5 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol data

line 641 column 15 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \cbar

line 641 column 25 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 642 column 23 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 655 column 11 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 656 column 6 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 658 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 659 column 27 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \subs

line 664 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 665 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \exi

line 665 column 20 in "C:\Users\Thesis\phdAppendC.tex":

Syntax error in variable declaration at token messagein;

an expression is expected after token COLON

line 665 column 43 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \cbar

line 665 column 52 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 666 column 11 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \map

line 667 column 17 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 668 column 29 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 685 column 7 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 686 column 9 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 686 column 15 in "C:\Users\Thesis\phdAppendC.tex":

Syntax error in variable declaration at token POLY;

an expression is expected after token COLON

line 687 column 10 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \pset

line 687 column 16 in "C:\Users\Thesis\phdAppendC.tex":

Syntax error in variable declaration at token POLY;

an expression is expected after token COLON

line 688 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

281

line 689 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \all

line 689 column 42 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 692 column 53 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \

line 695 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \begin

line 695 column 7 in "C:\Users\Thesis\phdAppendC.tex": Syntax error at symbol

genschemaAddActorid

line 697 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 698 column 17 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 699 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \end

line 703 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 704 column 14 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \perp

line 705 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 710 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

line 711 column 21 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \fovr

line 716 column 0 in "C:\Users\Thesis\phdAppendC.tex": Unknown latex command \ST

Calculating the precondition with Z/Eves

Allegro CL for Windows Copyright (C) 1992-1997, Franz Inc., Berkeley, CA, USA.

All rights reserved.

=>

Reading file C:\Users\Dongmc\User Data\PHD Package\Thesis\zevesch6.tex

given sets GrlE, OzE

schema Grlmodel

... axiom Grlmodel\$declarationPart

schema InitGrlmodel

... axiom InitGrlmodel\$declarationPart

theorem CanInitGrlmodel

... theorem CanInitGrlmodel

schema Ozspec

... axiom Ozspec\$declarationPart

schema InitOzspec

... axiom InitOzspec\$declarationPart

theorem CanInitOzspec

... theorem CanInitOzspec

declaration of ozgrle

... axiom ozgrle\$declaration

schema StateOzGrl

... axiom Grlmodel\$thetasEqual

... axiom Grlmodel\$inSet

282

... axiom Grlmodel\$thetaInSet

... axiom Grlmodel\$setInPowerSet

... axiom Grlmodel\$member

... axiom Grlmodel\$thetaMember

... axiom Grlmodel\$declaration

... axiom Ozspec\$thetasEqual

... axiom Ozspec\$inSet

... axiom Ozspec\$thetaInSet

... axiom Ozspec\$setInPowerSet

... axiom Ozspec\$member

... axiom Ozspec\$thetaMember

... axiom Ozspec\$declaration

... axiom Grlmodel\$select\$grlelements

... axiom Grlmodel\$select\$links

... axiom Ozspec\$select\$ozelements

... axiom Ozspec\$select\$related

... axiom StateOzGrl\$declarationPart

schema InitStateOzGrl

... axiom InitStateOzGrl\$declarationPart

theorem CanInitStateOzGrl

... theorem CanInitStateOzGrl

schema FormaliseGrlmodel

... schema \Delta StateOzGrl

... axiom Delta\$StateOzGrl\$declarationPart

... axiom StateOzGrl\$thetasEqual

... axiom StateOzGrl\$select\$ozgrl

... axiom FormaliseGrlmodel\$declarationPart

theorem preFormaliseGrlmodel

... theorem preFormaliseGrlmodel

Done.

=> try \forall StateOzGrl; grlm?:Grlmodel \spot \pre FormaliseGrlmodel; prove by reduce;

Beginning proof of ...

=> try \forall StateOzGrl; grlm?:Grlmodel \spot \pre FormaliseGrlmodel; prove by reduce;

Beginning proof of ...

StateOzGrl \\

283

\land grlm? \in Grlmodel \\

\implies

(\exists

ozgrl’:

\power (\lblot grlelements: \power GrlE,

links: \power (GrlE \cross GrlE) \rblot

\cross \lblot ozelements: \power OzE,

related: \power (OzE \cross OzE) \rblot);

ozspec!:

\lblot ozelements: \power OzE, related: \power (OzE \cross OzE) \rblot

@ FormaliseGrlmodel)

Which simplifies

with invocation of \Delta StateOzGrl, FormaliseGrlmodel, StateOzGrl

when rewriting with mapDef, weakening

forward chaining using Delta\$StateOzGrl\$declarationPart,

FormaliseGrlmodel\$declarationPart, KnownMember\$declarationPart, knownMember,

StateOzGrl\$declarationPart, ‘[internal items]‘

with the assumptions ‘&oplus$declaration‘, StateOzGrl\$select\$ozgrl,

ozgrle\$declaration, select_2_1, select_2_2, ‘&map$declaration‘,

pfun_type, Ozspec\$declaration, Grlmodel\$declaration, ‘[internal items]‘ to

...

ozgrl \in Grlmodel \pfun Ozspec \\

\land (\forall grl: Grlmodel; oz: Ozspec | (grl, oz) \in ozgrl

@ (\forall grle: GrlE | grle \in grl.grlelements

@ (\exists oze: OzE

@ (oze \in oz.ozelements \\

\land (grle, oze) \in ozgrle)))) \\

\land grlm? \in Grlmodel \\

\implies

(\exists

@ ozgrl \oplus \{(grlm?, ozspec!)\}

\in \power (\lblot grlelements: \power GrlE,

links: \power (GrlE \cross GrlE) \rblot

\cross \lblot ozelements: \power OzE,

related:

\power (OzE \cross OzE) \rblot) \\

284

\land ozspec!

\in \lblot ozelements: \power OzE,

related: \power (OzE \cross OzE) \rblot \\

\land ozgrl \oplus \{(grlm?, ozspec!)\} \in Grlmodel \pfun Ozspec \\

\land (\forall

grl__0: Grlmodel; oz__0: Ozspec

| (grl__0, oz__0) \in ozgrl \oplus \{(grlm?, ozspec!)\}

@ (\forall grle__0: GrlE | grle__0 \in grl__0.grlelements

@ (\exists oze__0: OzE

@ (oze__0 \in oz__0.ozelements \\

\land (grle__0, oze__0) \in ozgrle)))) \\

\land ozspec! \in Ozspec)

Rearranging gives ...

ozgrl \in Grlmodel \pfun Ozspec \\

\land grlm? \in Grlmodel \\

\land (\forall grl: Grlmodel; oz: Ozspec | (grl, oz) \in ozgrl

@ (\forall grle: GrlE | grle \in grl.grlelements

@ (\exists oze: OzE

@ (oze \in oz.ozelements \\

\land (grle, oze) \in ozgrle)))) \\

\implies

(\exists

ozspec!:

\lblot ozelements: \power OzE, related: \power (OzE \cross OzE) \rblot

@ ozspec! \in Ozspec \\

\land

ozgrl \oplus \{(grlm?, ozspec!)\}

\in \power (\lblot grlelements: \power GrlE,

links: \power (GrlE \cross GrlE) \rblot

\cross \lblot ozelements: \power OzE,

related: \power (OzE \cross OzE) \rblot) \\

\land ozgrl \oplus \{(grlm?, ozspec!)\} \in Grlmodel \pfun Ozspec \\

\land (\forall

grl__0: Grlmodel; oz__0: Ozspec

| (grl__0, oz__0) \in ozgrl \oplus \{(grlm?, ozspec!)\}

@ (\forall grle__0: GrlE | grle__0 \in grl__0.grlelements

285

@ (\exists oze__0: OzE

@ (oze__0 \in oz__0.ozelements \\

\land (grle__0, oze__0) \in ozgrle)))))

Which simplifies

when rewriting with overrideInPfun, unitInPfun, applicationInDeclaredRangeFun,

rel_type, Ozspec\$setInPowerSet, CrossSubsetCross2, inPowerSelf,

Grlmodel\$setInPowerSet, unitInRel, weakening, rel_sub, power_sub,

tupleInCross2

forward chaining using KnownMember\$declarationPart, knownMember,

‘[internal items]‘

with the assumptions relDefinition, fun_type, ‘&oplus$declaration‘,

ozgrle\$declaration, select_2_1, select_2_2, pfun_type,

Ozspec\$declaration, Grlmodel\$declaration, ‘[internal items]‘ to ...

ozgrl \in Grlmodel \pfun Ozspec \\

\land grlm? \in Grlmodel \\

\land (\forall grl: Grlmodel; oz: Ozspec | (grl, oz) \in ozgrl

@ (\forall grle: GrlE | grle \in grl.grlelements

@ (\exists oze: OzE

@ (oze \in oz.ozelements \\

\land (grle, oze) \in ozgrle)))) \\

\implies

(\exists

ozspec!:

\lblot ozelements: \power OzE, related: \power (OzE \cross OzE) \rblot

@ ozspec! \in Ozspec \\

\land (\forall

grl__0: Grlmodel; oz__0: Ozspec

| (grl__0, oz__0) \in ozgrl \oplus \{(grlm?, ozspec!)\}

@ (\forall grle__0: GrlE | grle__0 \in grl__0.grlelements

@ (\exists oze__0: OzE

@ (oze__0 \in oz__0.ozelements \\

\land (grle__0, oze__0) \in ozgrle)))))

Proving gives ...

ozgrl \in Grlmodel \pfun Ozspec \\

\land grlm? \in Grlmodel \\

286

\land (\forall grl: Grlmodel; oz: Ozspec | (grl, oz) \in ozgrl

@ (\forall grle: GrlE | grle \in grl.grlelements

@ (\exists oze: OzE

@ (oze \in oz.ozelements \\

\land (grle, oze) \in ozgrle)))) \\

\implies

(\exists

ozspec!:

\lblot ozelements: \power OzE, related: \power (OzE \cross OzE) \rblot

@ ozspec! \in Ozspec \\

\land (\forall

grl__0: Grlmodel; oz__0: Ozspec

| (grl__0, oz__0) \in ozgrl \oplus \{(grlm?, ozspec!)\}

@ (\forall grle__0: GrlE | grle__0 \in grl__0.grlelements

@ (\exists oze__0: OzE

@ (oze__0 \in oz__0.ozelements \\

\land (grle__0, oze__0) \in ozgrle)))))

Command had no effect.

=>

287

288

Bibliography

[1] ITU-T, Recommendation Z.151 (10/12), User Requirements Notation (URN)-

Language definition., October 2012. URL http://www.itu.int/rec/T-REC-Z.

151-201210-I/enlastaccessed-04/2015.

[2] Tawfig Abdelaziz, Mohamed Elammari, and Rainer Unland. Visualizing a Multiagent-

Based Medical Diagnosis System Using a Methodology Based on Use Case Maps.

In Gabriela Lindemann, J. Denzinger, Ingo Timm, and Rainer Unland, editors,

Multiagent System Technologies, volume 3187 of Lecture Notes in Computer Sci-

ence, pages 545–559. Springer Berlin / Heidelberg. ISBN 978-3-540-23222-3. URL

http://dx.doi.org/10.1007/978-3-540-30082-3_15.

[3] Matoussi Abderrahman, Frédéŕıc Gervais, and Régine Laleau. A Goal-Based Approach

to Guide the Design of an Abstract Event-B Specification. In Proceedings of the 2011

16th IEEE International Conference on Engineering of Complex Computer Systems,

ICECCS ’11, pages 139–148, 2011. ISBN 978-0-7695-4381-9.

[4] Jean-Raymond Abrial. Formal methods in industry: achievements, problems, future.

In Proceedings of the 28th international conference on Software engineering, ICSE

’06, pages 761–768, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. URL

{http://doi.acm.org/10.1145/1134285.1134406}.

[5] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Hoang, Farhad Mehta,

and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-B.

International Journal on Software Tools for Technology Transfer (STTT), 12:447–466.

ISSN 1433-2779.

[6] M Ahmad, J Araujo, N Belloir, J.-M. Bruel, C Gnaho, R Laleau, and F Semmak.

Self-adaptive systems requirements modelling: Four related approaches comparison.

In Comparing Requirements Modeling Approaches Workshop (CMA@RE), 2013 Inter-

national, pages 37–42, July 2013. doi: 10.1109/CMA-RE.2013.6664183.

289

[7] Edward B. Allen. Typesetting Technical Reports that Include Z Specifications Using

LaTeX, 2006.

[8] D Ameller, C Ayala, J Cabot, and X Franch. Non-functional Requirements in Archi-

tectural Decision Making. Software, IEEE, 30(2):61–67, mar 2013. ISSN 0740-7459.

doi: 10.1109/MS.2012.176.

[9] Daniel Amyot. Use Case Maps: Quick Tutorial, September 1999.

[10] Daniel Amyot. Introduction to the user requirements notation: learning by example.

Computer Networks, 42(3):285–301, June 2003. ISSN 1389-1286.

[11] Daniel Amyot. Use Case Maps as a Feature Description Notation. In FIREworks

Feature Constructs Workshop, pages 27–44. Springer-Verlag, May, 2000.

[12] Daniel Amyot and R. Andrade. Description of Wireless Intelligent Network Services

with Use Case Maps. In SBRC’99, 17th Brazilian Symposium on Computer Networks,

Salvador, Brazil, May 1999.

[13] Daniel Amyot and Gunter Mussbacher. URN: Towards a New Standard for the Vi-

sual Description of Requirements. In Proceedings of the 3rd International Confer-

ence on Telecommunications and Beyond: The Broader Applicability of SDL and

MSC, SAM’02, pages 21–37, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-

540-00877-2. URL http://0-dl.acm.org.oasis.unisa.ac.za/citation.cfm?id=

1765408.1765411.

[14] Daniel Amyot and Gunter Mussbacher. User Requirements Notation: The First Ten

Years, The Next Ten Years (Invited Paper). Journal of Software, 6(5), 2011. URL

http://ojs.academypublisher.com/index.php/jsw/article/view/0605747768.

[15] Daniel Amyot, Luigi Logrippo, and Michael Weiss. Generation of test purposes from

use case maps. Comput. Netw., 49(5):643–660, December 2005. ISSN 1389-1286. URL

http://dx.doi.org/10.1016/j.comnet.2005.05.006.

[16] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam Peyton,

and Eric Yu. Evaluating goal models within the goal-oriented requirement language.

Int. J. Intell. Syst., 25(8):841–877, August 2010. ISSN 0884-8173.

[17] Daniel Amyot, Rouzbahan Rashidi-Tabrizi, Gunter Mussbacher, Jason Kealey, Etienne

Tremblay, and Jennifer Horkoff. Improved GRL Modeling and Analysis with jUCMNav

5. In iStar, pages 137–139, 2013.

290

[18] Daniel Amyot, R. J. A. Buhr, T. Gray, and L. Logrippo. Use Case Maps for the Capture

and validation of Distributed Systems Requirements. In ISRE’99, Fourth International

Symposium on Requirements Engineering, pages 44–53, Limerick, Ireland, June 1999.

[19] Amyot, Daniel and Roy, Jean-François and Weiss, Michael. UCM-Driven Testing of

Web Applications. In SDL Forum’05, pages 247–264, 2005.

[20] Annie I. Anton. Goal-based requirements analysis. In Proceedings of the 2Nd Inter-

national Conference on Requirements Engineering (ICRE ’96), ICRE ’96, pages 136–,

Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7252-8. URL

http://dl.acm.org/citation.cfm?id=850944.853130.

[21] Annie I. Anton and Colin Potts. The use of goals to surface requirements for evolving

systems. In International Conference on Software Engineering, pages 157–166, Kyoto,

April 1998. URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=

671112.

[22] Sara Baase and Allen Van Gelder. Computer algorithms : Introduction to design and

analysis. Addison-Wesley, Delhi, 2000. ISBN 0-201-61244-5. URL www.awlonline.

com/cs.

[23] Martin L Barrett. Putting Non-functional Requirements to Good Use. J. Comput.

Sci. Coll., 18(2):271–277, December 2002. ISSN 1937-4771. URL http://0-dl.acm.

org.oasis.unisa.ac.za/citation.cfm?id=771322.771361.

[24] Saeed Ahmadi Behnam, Daniel Amyot, Alan J. Forster, Liam Peyton, and Azalia

Shamsaei. Goal-driven development of a patient surveillance application for improv-

ing patient safety. In Gilbert Babin, Peter Kropf, Michael Weiss, Wil Aalst, John

Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski, editors,

E-Technologies: Innovation in an Open World, volume 26 of Lecture Notes in Busi-

ness Information Processing, pages 65–76. Springer Berlin Heidelberg, 2009. ISBN

978-3-642-01187-0. URL {http://dx.doi.org/10.1007/978-3-642-01187-0_6}.

[25] J. C. Bicarregui, J. S Fitzgerald, P. G. Larsen, and J. C. Woodcock. Industrial practice

in formal methods: A review. In Proceedings of the 2nd World Congress on Formal

Methods, FM ’09, pages 810–813, 2009. ISBN 978-3-642-05088-6.

[26] M. Bittner and F. Kammuller. Translating Fusion/UML to Object-Z. In Formal Meth-

ods and Models for Co-Design, 2003. MEMOCODE ’03. Proceedings. First ACM and

IEEE International Conference on, pages 49–50, June 2003. doi: 10.1109/MEMCOD.

2003.1210087.

291

[27] Barry W. Boehm. Verifying and validating software requirements and design specifi-

cations. IEEE software, 1(1):75, 1984.

[28] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language

User Guide. Addison-Weseley, 2nd edition, 2005. ISBN 0-321-26797-4.

[29] F. Bordeleau and R. J. A. Buhr. The UCM-ROOM Design Method: from Use

Case Maps to Communicating State Machines. In Conference on the Engineering

of Computer-Based System, Monterey, USA, 1997.

[30] Jonathan Bowen. Formal Specification and Documentation Using Z: A Case Study

Approach. International Thomson Computer Press, London / Boston, 1996. ISBN

1-85032-230-9.

[31] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of Formal Methods

... Ten Years Later. Computer, 39:40–48, January 2006. ISSN 0018-9162. URL http:

//portal.acm.org/citation.cfm?id=1110638.1110672.

[32] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-

lopoulos. Tropos: An Agent-Oriented Software Development Methodology. Au-

tonomous Agents and Multi-Agent Systems, (3):203–236. ISSN 1387-2532. doi:

10.1023/B:AGNT.0000018806.20944.ef.

[33] Frederick P. Jr. Brooks. No Silver Bullet: Essence and Accidents of Software Engi-

neering. Information Processing ’86, IFIP 1986, 1986.

[34] R. J. A. Buhr. Use Case Maps: A New Model to Bridge the Gap Between Requirements

and Design. SCE 95- Contribution to the OOPSLA 95 Use Case Map Workshop, pages

1–4, 1995.

[35] R. J. A. Buhr. Understanding Macroscopic Behavior Patterns with Use-Case Maps.

In Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson, editors, Building

Application Frameworks - Object-Oriented Foundations of Framework Design, pages

415–439. John Wiley & Sons, New York, 1999.

[36] R. J. A. Buhr. Use Case Maps as Architectural Entities for Complex Systems. In

IEEE, editor, Transaction on Software Engineering, pages 1131–1155, December 1998.

[37] R. J. A. Buhr and R. S. Casselman. Use Case Maps for Object-Oriented Systems.

Printice Hall, USA, 1999.

292

[38] R. J. A. Buhr, Daniel Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski.

Features-Interaction Visualisation and Resolution in an Agent Environment. In

K. Kimbler and L. G. Bouma, editors, FIW’98, Fifth International Workshop on Fea-

ture Interaction in Telecommunications and Software Systems, Lund, Sweden, 1998.

IOS Press, 135-149.

[39] R. J. A. Buhr, Daniel Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski.

High Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-

Interaction Example. In H.S. Nwana (Eds) and D.T. Ndumu, editors, PAAM’98, Third

Conference on Practical Application of Intelligent Agents and Multi-Agents, London,

UK, 277-295, March 1998.

[40] Ron Burback. SOFTWARE ENGINEERING METHODOLOGY:THE WATER-

SLUICE. PhD thesis, Stanford University: Department of Computer Science, USA,

December 1998. Principal adviser-Gio Wiederhold.

[41] Michael Butler. Decomposition Structures for Event-B. In Michael Leuschel and

Heike Wehrheim, editors, Integrated Formal Methods, volume 5423 of Lecture Notes in

Computer Science, pages 20–38. Springer Berlin / Heidelberg. ISBN 978-3-642-00254-0.

[42] Gustavo Cabral and Augusto Sampaio. Automated formal specification gen-

eration and refinement from requirement documents. Journal of the Brazil-

ian Computer Society, 14(1):87 – 106, 03 2008. ISSN 0104-6500. doi:

10.1007/BF03192554. URL http://www.scielo.br/scielo.php?script=sci\

_arttextandpid=S0104-65002008000100008andnrm=iso.

[43] Kai-Yuan Cai. Non-Functional Computing: Towards a More Scientific Treatment to

Non-Functional Requirements. In Computer Software and Applications Conference,

2007. COMPSAC 2007. 31st Annual International, volume 2, pages 493–494, July

2007. doi: 10.1109/COMPSAC.2007.156.

[44] Rafael Capilla, Muhammad Ali Babar, and Oscar Pastor. Quality requirements

engineering for systems and software architecting: methods, approaches, and

tools. Requirements Engineering, (4):255–258. ISSN 0947-3602. doi: 10.1007/

s00766-011-0137-9.

[45] David Carrington and Graeme Smith. Extending Z for Object-Oriented Specifications.

5th Australian Software Engineering Conference, (Sydney), May, 1990.

[46] Anis Charfi, Benjamin Schmeling, Andreas Heizenreder, and Mira Mezini. Reliable,

Secure, and Transacted Web Service Compositions with AO4BPEL. In 2006 European

293

Conference on Web Services (ECOWS’06), pages 23–34. IEEE. ISBN 0-7695-2737-X.

doi: 10.1109/ECOWS.2006.32.

[47] S Chawla and S Srivastava. A Goal based methodology for Web specific Requirements

Engineering. In Information and Communication Technologies (WICT), 2012 World

Congress on, pages 173–178, October 2012. doi: 10.1109/WICT.2012.6409070.

[48] Sang-soo Choi, So-yeon Kim, and Gang-soo Lee. Enhanced Misuse Case Model: A

Security Requirement Analysis and Specification Model. In Proceedings of the 2006

International Conference on Computational Science and Its Applications - Volume

Part V, ICCSA’06, pages 618–625, Berlin, Heidelberg. Springer-Verlag. ISBN 3-540-

34079-3, 978-3-540-34079-9. doi: 10.1007/11751649\ 68.

[49] L Chung and S Supakkul. Representing NFRs and FRs: A goal-oriented and

use case driven approach. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3647

LNCS:29–41, 2005. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-33745127388\&partnerID=40\&md5=29aa326709f89c31664c72a65767782c.

[50] Lawrence Chung and Brian A Nixon. Dealing with non-functional requirements: three

experimental studies of a process-oriented approach. In Proceedings of the 17th inter-

national conference on Software engineering, pages 25–37. ACM, 1995.

[51] Kendra Cooper, Lirong Dai, and Yi Deng. Performance modeling and analysis of soft-

ware architectures: An aspect-oriented {UML} based approach. Science of Computer

Programming, (1):89–108. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/j.scico.

2004.10.007.

[52] Agostino Cortesi and Francesco Logozzo. Abstract Interpretation-based Verification

of Non-functional Requirements. In Proceedings of the 7th International Conference

on Coordination Models and Languages, COORDINATION’05, pages 49–62, Berlin,

Heidelberg. Springer-Verlag. ISBN 3-540-25630-X, 978-3-540-25630-4. doi: 10.1007/

11417019 4.

[53] L M Cysneiros, K K Breitman, C Lopez, and H Astudillo. Querying Software Interde-

pendence Graphs. In Software Engineering Workshop, 2008. SEW ’08. 32nd Annual

IEEE, pages 108–112, October 2008. doi: 10.1109/SEW.2008.28.

[54] Lirong Dai and Kendra Cooper. Modeling and performance analysis for security

aspects. Science of Computer Programming, (1):58–71. ISSN 0167-6423. doi:

http://dx.doi.org/10.1016/j.scico.2005.11.006.

294

[55] Jose Luis de la Vara, Juan Sánchez, and Óscar Pastor. Business process modelling and

purpose analysis for requirements analysis of information systems. In Zohra Bellahsène

and Michel Léonard, editors, Advanced Information Systems Engineering: 20th Inter-

national Conference, CAiSE 2008 Montpellier, France, June 16-20, 2008 Proceedings,

pages 213–227. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-

69534-9. doi: 10.1007/978-3-540-69534-9 17.

[56] Dursun Delen, Nikunj P. Dalal, and Perakath C. Benjamin. Integrated modeling: the

key to holistic understanding of the enterprise. Commun. ACM, 48(4):107–112, April

2005. ISSN 0001-0782.

[57] John Derrick and Eerke Boiten. Refinement in Z and Object-Z: Foundations and

Advanced Applications. Formal Approaches to Computing and Information Technology.

Springer-Verlag, London, UK, 2001. ISBN 1-85233-245-X. URL http://www.cs.kent.

ac.uk/people/staff/eab2/refbook/.

[58] Rachida Djouab, Alain Abran, and Ahmed Seffah. An ASPIRE-based method for

quality requirements identification from business goals. Requirements Engineering,

Springer London, pages 1–20, 2014. ISSN 0947-3602. doi: 10.1007/s00766-014-0211-1.

[59] G Dobson, S Hall, and G Kotonya. A domain-independent ontology for non-

functional requirements. In Proceedings - ICEBE 2007: IEEE International Confer-

ence on e-Business Engineering - Workshops: SOAIC 2007; SOSE 2007; SOKM 2007,

pages 563–566, 2007. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-47349085554\&partnerID=40\&md5=98af8ab72df9d3b853cff788bee81ac6.

[60] Cyrille Dongmo. Towards the Formalisation of Use Case Maps(UCMs). Master’s

thesis, School of Computing, University of South Africa(Unisa), 2011. URL {http:

//uir.unisa.ac.za/handle/10500/5621}.

[61] Cyrille Dongmo and John A. van der Poll. A Four-Way Framework for Validating

a Specification. In Paula Kotze, Aurona Gerber, Alta van der Mervwe, and Nicola

Bidwell, editors, SAICSIT, pages 46–59. ACM PRESS, 2010. ISBN 978-1-60558-950-

3.

[62] Cyrille Dongmo and John Andrew Van der Poll. An application of a four-way frame-

work for validating a specification: Animating an object-z specification using prolog.

In Proc. of the Second Intl. Conf. on Advances In Computing, Communication and

Information Technology-CCIT 2014, . ISBN 978-1-63248-051-4.

295

[63] Cyrille Dongmo and John Andrew Van der Poll. Exploiting enterprise organograms to

facilitate goal/requirements elicitation. In Proc. of the Second Intl. Conf. on Advances

In Computing, Communication and Information Technology-CCIT 2014, . ISBN 978-

1-63248-051-4.

[64] Cyrille Dongmo and John Andrew van der Poll. Addressing the Construction of Z and

Object-Z with Use Case Maps (UCMs). International Journal of Software Engineering

and Knowledge Engineering, 24(02):285–327, 2014. doi: 10.1142/S0218194014500120.

[65] Cyrille Dongmo and John Andrew Van der Poll. An application of a four-way frame-

work for validating a specification: Animating an object-z specification using prolog.

International Journal of Software Engineering and Research Methodology, 2(1):10–19,

2015. ISSN 2374 - 1619. URL http://www.seekdl.org/journal_page_papers.php?

jourid=131&issueid=148.

[66] Cyrille Dongmo and John Andrew Van der Poll. Exploiting enterprise organograms to

facilitate goal/requirements elicitation. International Journal of Software Engineering

and Research Methodology, 2(1):20–29, 2015. ISSN 2374 - 1619. URL http://www.

seekdl.org/journal_page_papers.php?jourid=131&issueid=148.

[67] E. P. Doolan. Experience with fagan’s inspection method. Softw., Pract. Exper., 22(2):

173–182, 1992. ISSN 1097-024X. URL http://dblp.uni-trier.de/db/journals/

spe/spe22.html#Doolan92.

[68] Roger Duke and Gordon Rose. Formal Object-Oriented Specification Using Object-Z.

Macmillan, Basingstoke, 2000. ISBN 0333801237.

[69] Roger Duke, Paul King, Gordon A. Rose, and Graeme Smith. The Object-Z Specifica-

tion Language. In Timothy D. Korson, Vijay Vashnavi, and Bertrand Meyer, editors,

TOOLS (5), pages 465–484. Prentice Hall, 1991. ISBN 0-13-923178-1.

[70] H.a Espinoza, H.a Dubois, S.a Gérard, J.b Medina, D.C.c Petriu, and M.c

Woodside. Annotating UML models with non-functional properties for quan-

titative analysis. Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3844

LNCS:79–90, 2006. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-33745648549\&partnerID=40\&md5=9657a0ed9eafcf1e3b416c1d0e6e31a0.

[71] Michael E Fagan. Design and code inspections to reduce errors in program develop-

ment. IBM Systems Journal, 38(2-3):258–287, June 1999. ISSN 0018-8670.

296

[72] W M Farid. The NORMAP Methodology: Lightweight Engineering of Non-functional

Requirements for Agile Processes. In Software Engineering Conference (APSEC), 2012

19th Asia-Pacific, volume 1, pages 322–325, December 2012. doi: 10.1109/APSEC.

2012.23.

[73] W M Farid and F J Mitropoulos. Novel lightweight engineering artifacts for modeling

non-functional requirements in agile processes. In Southeastcon, 2012 Proceedings of

IEEE, pages 1–7, March 2012. doi: 10.1109/SECon.2012.6196988.

[74] Ye Fei and Zhu Xiaodong. An XML-Based Software Non-Functional Requirements

Modeling Method. In Electronic Measurement and Instruments, 2007. ICEMI ’07. 8th

International Conference on, pages 2–380, August 2007. doi: 10.1109/ICEMI.2007.

4350695.

[75] John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna Development

Method. John Wiley and Sons, Inc. ISBN 9780470050118.

[76] Leonardo Freitas. Proving theorems with z/eves. Appendix A, 1(1), 2004. URL

https://www.cs.york.ac.uk/ftpdir/pub/leo/york-msc-2007/information/

zeves/tutorials/CRG-3.pdf.

[77] Peter B. Galvin, Greg Gagne, and Abraham Silberschatz. Operating System Concepts.

John Wiley & Sons, Inc., New York, NY, USA, 9th edition, 2013. ISBN 1118093755,

9781118093757.

[78] Susan Gerhart, Dan Craigen, and Ted Ralston. Experience with formal methods in

critical systems. High-Integrity System Specification and Design, page 413, 2012.

[79] C Gnaho, F Semmak, and R Laleau. An overview of a SysML extension for goal-

oriented NFR modelling: Poster paper. In Research Challenges in Information Science

(RCIS), 2013 IEEE Seventh International Conference on, pages 1–2, May 2013. doi:

10.1109/RCIS.2013.6577734.

[80] Martin Gogolla and Mark Richters. On Combining Semi-Formal and Formal Object

Specification Techniques. In Recent trends in algebraic development techniques: 12th

international workshop, WADT97, pages 238–252. Springer, 1998.

[81] Gemma Grau and Xavier Franch. A Goal-oriented Approach for the Generation and

Evaluation of Alternative Architectures. In Proceedings of the First European Con-

ference on Software Architecture, ECSA’07, pages 139–155, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 3-540-75131-9, 978-3-540-75131-1. URL http://0-dl.acm.

org.oasis.unisa.ac.za/citation.cfm?id=2394215.2394230.

297

[82] Jeff Gray and Stephen Schach. Constraint animation using an object-oriented declar-

ative language. In Proceedings of the 38th Annual on Southeast Regional Conference,

ACM-SE 38, pages 1–10, 2000. ISBN 1-58113-250-6.

[83] Sarthak Grover and Nigamanth Sridhar. GenQA: Automated Addition of Architec-

tural Quality Attribute Support for Java Software? In Proceedings of the 2009 ACM

Symposium on Applied Computing, SAC ’09, pages 483–487, New York, NY, USA.

ACM. ISBN 978-1-60558-166-8. doi: 10.1145/1529282.1529385.

[84] R.a Guizzardi, F.-L.b Li, A.c Borgida, G.a Guizzardi, J.b Horkoff, and

J.b Mylopoulos. An ontological interpretation of non-functional require-

ments. Frontiers in Artificial Intelligence and Applications, 267:344–357, 2014.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84907001173\

&partnerID=40\&md5=b07611f375aa422d42bee63e9ba2fde0.

[85] Anthony Hall. Industrial-Strength Formal Methods in Practice, chapter Using Formal

Methods to Develop an ATC Information System, pages 207–229. Springer London,

London, 1999. ISBN 978-1-4471-0523-7. doi: 10.1007/978-1-4471-0523-7 10.

[86] Brahim Hamid and Christian Percebois. A modeling and formal approach for the pre-

cise specification of security patterns. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

pages 95–112. ISBN 9783319048963. doi: 10.1007/978-3-319-04897-0-7.

[87] W. Hasselbring. Z User Workshop, Cambridge 1994: Proceedings of the Eighth Z User

Meeting, Cambridge 29–30 June 1994, chapter Animation of Object-Z Specifications

with a Set-Oriented Prototyping Language, pages 337–356. Springer London, London,

1994. ISBN 978-1-4471-3452-7. doi: 10.1007/978-1-4471-3452-7 20. URL http://dx.

doi.org/10.1007/978-1-4471-3452-7_20.

[88] Jameleddine Hassine. Describing and assessing availability requirements in the early

stages of system development. Software & Systems Modeling, pages 1–25. ISSN 1619-

1366. doi: 10.1007/s10270-013-0382-0.

[89] Les Hatton. Does OO Sync with How We Think? IEEE Softw., 15(3):46–54, 1998.

ISSN 0740-7459. doi: http://dx.doi.org/10.1109/52.676735.

[90] Anne Elisabeth Haxthausen. An Introduction to Formal Methods for the Development

of Safety-critical Applications. 2010. This report is a delivery to The Danish Govern-

ment’s railway authority, Trafikstyrelsen, as a part of the Public Sector Consultancy

service offered by the Technical University of Denmark.

298

[91] Andrea Herrmann and Barbara Paech. MOQARE: misuse-oriented quality require-

ments engineering. Requirements Engineering, 13(1):73–86, 2008. ISSN 0947-3602.

doi: 10.1007/s00766-007-0058-9.

[92] Erik Hofstee. Constructing a Good Dissertation: A Practical Guide to Finishing a

Master’s, MBA or PhD on Schedule. EPE, 2006. ISBN 0-9585007-1-1.

[93] Gerard Horgan and Souheil Khaddaj. Use of an adaptable quality model approach

in a production support environment. Journal of Systems and Software, (4):730–738.

ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2008.10.009.

[94] IEEE Std 830-1998. IEEE Recommended Practice for Software Requirements Speci-

fications. Technical report, IEEE, 1998. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=720574.

[95] Jonathan Jacky. The way of Z: practical programming with formal methods. Cambridge

University Press, New York, NY, USA, 1996. ISBN 0-521-55976-6.

[96] Kealy Jason. Enhanced Use Case Map Analysis and Transformation Tooling. Master’s

thesis, 2007. Ottawa-Carleton Institute for Computer Science, Canada.

[97] Mouton Johann. How to succeed in your Master’s and Doctoral Studies: A South

African Guide and Resource Book. Van Schaik, 1064 Arcadia Street, Hatfield, Pretoria,

South Africa, 1st edition, 2001. ISBN 0 627 02484 X.

[98] Wendy Johnston. A Type Checker for Object-Z. Technical report, Department of

Computer Science, The University of Queensland Australia, 1996.

[99] Hyo Taeg Jung and Gil-Haeng Lee. A systematic software development process for

non-functional requirements. In 2010 International Conference on Information and

Communication Technology Convergence (ICTC), pages 431–436. IEEE, 2010.

[100] Chanwit Kaewkasi and Wanchai Rivepiboon. WWM: A Practical Methodology for

Web Application Modeling. In COMPSAC, pages 603–608. IEEE Computer Society,

2002. ISBN 0-7695-1727-7.

[101] Erik Kamsties. Engineering and Managing Software Requirements, chapter Under-

standing Ambiguity in Requirements Engineering, pages 245–266. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-28244-0. doi: 10.1007/

3-540-28244-0 11.

299

[102] M Kassab, O Ormandjieva, and M Daneva. An Ontology Based Approach to Non-

functional Requirements Conceptualization. In Software Engineering Advances, 2009.

ICSEA ’09. Fourth International Conference on, pages 299–308, September 2009. doi:

10.1109/ICSEA.2009.50.

[103] Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, and Soo-Yong Park. A Tactic-Based Approach

to Embodying Non-functional Requirements into Software Architectures. In 2008 12th

International IEEE Enterprise Distributed Object Computing Conference, pages 139–

148. IEEE, September 2008. ISBN 978-0-7695-3373-5. doi: 10.1109/EDOC.2008.18.

[104] M. Kirikova and J. Bubenko. Enterprise Modelling: Improving the Quality of Require-

ments Specifications. Report series - Department of Computer & Systems Sciences.

DSV, 1994. URL https://books.google.co.za/books?id=G1ZzMwAACAAJ.

[105] Barbara Kitchenham. Procedures for performing systematic reviews. Technical report,

Keele University and NICTA, 2004.

[106] Alexei Lapouchnian. Goal-Oriented Requirements Engineering: An Overview of the

Current Research. Technical report, Department of Computer Science, University of

Toronto, Toronto, Canada, Jun 2005.

[107] Jonathan Lee and Kuo-Hsun Hsu. Modeling software architectures with goals in virtual

university environment. Information and Software Technology, (6):361–380. ISSN

0950-5849. doi: http://dx.doi.org/10.1016/S0950-5849(02)00021-6.

[108] Isaac Lera, Carlos Juiz, and Ramon Puigjaner. Performance-related ontologies and

semantic web applications for on-line performance assessment of intelligent systems.

Science of Computer Programming, (1):27–37. ISSN 0167-6423. doi: http://dx.doi.

org/10.1016/j.scico.2005.11.003.

[109] David Lightfoot. Formal Specification Using Z. Grassroots Series. Palgrave, 2nd edi-

tion, 2001.

[110] Lin Liu and Eric Yu. Designing information systems in social context: A goal and

scenario modelling approach. Inf. Syst., 29(2):187–203, April 2004. ISSN 0306-4379.

[111] Shaoying Liu and Hao Wang. An automated approach to specification animation for

validation. J. Syst. Softw., 80(8):1271–1285, August 2007. ISSN 0164-1212.

[112] Xiaoqing (Frank) Liu, Manooch Azmoodeh, and Nektarios Georgalas. Specification

of Non-functional Requirements for Contract Specification in the NGOSS Framework

for Quality Management and Product Evaluation. In Fifth International Workshop on

300

Software Quality (WoSQ’07: ICSE Workshops 2007), pages 7–7. IEEE, May . ISBN

0-7695-2959-3. doi: 10.1109/WOSQ.2007.12.

[113] Yi Liu, Zhiyi Ma, and Weizhong Shao. Integrating Non-functional Requirement

Modeling into Model Driven Development Method. In Software Engineering Con-

ference (APSEC), 2010 17th Asia Pacific, pages 98–107, November 2010. doi:

10.1109/APSEC.2010.21.

[114] Grzegorz Loniewski, Etienne Borde, Dominique Blouin, and Emilio Insfran. Model-

Driven Requirements Engineering for Embedded Systems Development. In 2013 39th

Euromicro Conference on Software Engineering and Advanced Applications, pages 236–

243. IEEE, September . ISBN 978-0-7695-5091-6. doi: 10.1109/SEAA.2013.48.

[115] Francisca Losavio, Nicole Levy, Parinaz Davari, and François Colonna. Pattern-based

Architectural Design Driven by Quality Properties: A Platform to Model Scientific

Calculation. In Proceedings of the 2Nd European Conference on Software Architecture,

EWSA’05, pages 94–112, Berlin, Heidelberg. Springer-Verlag. ISBN 3-540-26275-X,

978-3-540-26275-6. doi: 10.1007/11494713\ 7.

[116] Glenn H. MacEwen. Specification prototyping. In Proceedings of the Workshop on

Rapid Prototyping, pages 112–119, 1982. ISBN 0-89791-094-X.

[117] Petra Malik and Mark Utting. CZT: A Framework for Z Tools. ZB2005: Formal

Specification and Development in Z and B, 4th International Conference of B and Z

Users, Guildford, UK, pages 65–84, 2005.

[118] Tegegne Marew, Joon-Sang Lee, and Doo-Hwan Bae. Tactics based approach for

integrating non-functional requirements in object-oriented analysis and design. Journal

of Systems and Software, 82(10):1642–1656, October 2009. ISSN 01641212. doi: 10.

1016/j.jss.2009.03.032.

[119] Tim McComb and Graeme Smith. Animation of Object-Z Specifications Using a Z

Animator. In SEFM, pages 191–200. IEEE Computer Society, 2003. ISBN 0-7695-

1949-0.

[120] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,

2005–2010.

[121] Timothy Meline. Selecting studies for systematic review: Inclusion and exclusion

criteria. Contemporary Issues in Communication Science and Disorders, 33(21-27),

2006.

301

[122] Janne Merilinna, Anton Yrjönen, and Tomi Räty. NFR+ framework method to support

bi-directional traceability of non-functional requirements. Computer Science - Research

and Development, pages 1–15. ISSN 1865-2034. doi: 10.1007/s00450-012-0205-5.

[123] Christel Michael and Kang Kyo. Issues in Requirements Elicitation (CMU/SEI-92-TR-

012). Technical report, Software Engineering Institute, Carnegie Mellon University,

1992. URL http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm.

[124] A. Miga. Application of Use Case Maps to System Design with tool Support. Master’s

thesis, Carleton University, Canada, 1998.

[125] Andrew Miga, Daniel Amyot, Bordeleau Francis, Donald Cameron, and Murray Wood-

side. Deriving Message Sequence Charts from Use Case Maps Scenario Specifications.

In Maps Scenario Specifications. 10th SDL Forum, pages 268–287. Springer, 2001.

[126] Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. Czt support for z extensions.

In Judi Romijn, Graeme Smith, and Jaco van de Pol, editors, IFM, volume 3771 of

Lecture Notes in Computer Science, pages 227–245. Springer, 2005. ISBN 3-540-30492-

4. URL http://dblp.uni-trier.de/db/conf/ifm/ifm2005.html#MillerFMU05.

[127] H. Miyazaki and A. Tanaka. Study on representation of security aspects

in each viewpoint using UML for ODP. In Proceedings - IEEE Interna-

tional Enterprise Distributed Object Computing Workshop, EDOC, 2007.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-52049119736\

&partnerID=40\&md5=ea08d51208a28e89c249489f9f57bcf6.

[128] Lakhoua M.N. and M. Rahmouni. Investigation of the Methods of Enterprise Modeling.

African Journal of Business Management, 5(16):6845–6852, August 2011.

[129] Farid Mokhati and Yahia Menassel. Towards formalising use case maps in maude strat-

egy language: application to multi–agent systems. International Journal of Computer

Applications in Technology, 47(2-3):138–151, 2013.

[130] David Mole. Z - An Introduction to Formal Methods, by Antoni Diller, Wiley, 2nd

Edition, 1994 (Book Review). Softw. Test., Verif. Reliab., 4(3):191, 1994.

[131] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. Modelling secure mul-

tiagent systems. In Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems - AAMAS ’03, page 859, New York, New

York, USA, July . ACM Press. ISBN 1581136838. doi: 10.1145/860575.860713.

302

[132] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson. When security meets

software engineering: a case of modelling secure information systems. Information

Systems, (8):609–629, December . ISSN 03064379. doi: 10.1016/j.is.2004.06.002.

[133] G Mussbacher, S Ghanavati, and Daniel Amyot. Modeling and Analysis of URN Goals

and Scenarios with jUCMNav. In Requirements Engineering Conference, 2009. RE ’09.

17th IEEE International, pages 383–384, aug 2009. doi: 10.1109/RE.2009.56.

[134] Gunter Mussbacher. Models in software engineering. chapter Aspect-Oriented User

Requirements Notation: Aspects in Goal and Scenario Models, pages 305–316. 2008.

ISBN 978-3-540-69069-6.

[135] Gunter Mussbacher and Daniel Amyot. Goal and Scenario Modeling, Analysis, and

Transformation with jUCMNav. In ICSE Companion, pages 431–432. IEEE, 2009.

ISBN 978-1-4244-3494-7.

[136] Gunter Mussbacher, Daniel Amyot, and Michael Weiss. Visualizing Early Aspects

with Use Case Maps. In Awais Rashid and Mehmet Aksit, editors, Transactions on

Aspect-Oriented Software Development III, volume 4620 of Lecture Notes in Computer

Science, pages 105–143. Springer Berlin / Heidelberg. ISBN 978-3-540-75161-8.

[137] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using non-

functional requirements: A process-oriented approach. IEEE Transactions on Software

Engineering, 18:483–497, 1992.

[138] Mehrnaz Najafi and Hassan Haghighi. An Integration of UML-B and Object-Z in Soft-

ware Development Process. In Khaled Elleithy and Tarek Sobh, editors, Innovations

and Advances in Computer, Information, Systems Sciences, and Engineering, volume

152 of Lecture Notes in Electrical Engineering, pages 633–648. Springer New York,

2013. ISBN 978-1-4614-3534-1. doi: 10.1007/978-1-4614-3535-8\ 53.

[139] Katsuhiko Nakamura. Introduction to logic programming by Christopher J. Hog-

ger. New Generation Computing, 3(4):487–487, 1985. ISSN 1882-7055. doi:

10.1007/BF03037083.

[140] Q L Nguyen. Non-functional requirements analysis modeling for software product

lines. In Modeling in Software Engineering, 2009. MISE ’09. ICSE Workshop on,

pages 56–61, May 2009. doi: 10.1109/MISE.2009.5069898.

[141] Martin S Olivier. Information Technology Research — A Practical Guide for Computer

Science and Informatics. Van Schaik, Pretoria, South Africa, 2nd edition, 2009. ISBN

9780627027581.

303

[142] Gerard O’Regan. Mathematical Approaches to Software Quality. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006. ISBN 184628242X.

[143] Carlos Otero. Software engineering design: theory and practice. CRC Press, 2012.

[144] Tim Parker. TOZE-A Graphical Editor for the Object-Z Specification Language with

Syntax and Type Checking Capabilities. PhD thesis, University of Wisconsin-La Crosse,

2008. Promoter-Kotze, P. and Promoter-Labuschagne, W. A.

[145] Ajit K Patankar and Sadashiv Adiga. Enterprise integration modelling: a review of

theory and practice. Computer Integrated Manufacturing Systems, 8(1):21 – 34, 1995.

ISSN 0951-5240. doi: 10.1016/0951-5240(95)92810-H.

[146] Catherine Pickering and Jason Byrne. The benefits of publishing systematic quanti-

tative literature reviews for phd candidates and other early-career researchers. Higher

Education Research & Development, 33(3):534–548, 2014.

[147] Christophe Ponsard and Emmanuel Dieul. From requirements models to formal spec-

ifications in B. In ReMo2V, volume 241 of CEUR Workshop Proceedings. CEUR-

WS.org, 2006. URL http://dblp.uni-trier.de/db/conf/caise/remo2v2006.

html\#PonsardD06.

[148] P M S Poon, Tharam S Dillon, and E Chang. Transformation of QoS data into XML

characterising data communication in real time distributed systems. In Industrial

Informatics, 2004. INDIN ’04. 2004 2nd IEEE International Conference on, pages

204–209, June 2004. doi: 10.1109/INDIN.2004.1417330.

[149] Eltjo R. Poort, Nick Martens, Inge van de Weerd, and Hans van Vliet. How Architects

See Non-Functional Requirements: Beware of Modifiability, pages 37–51. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-28714-5. doi: 10.1007/

978-3-642-28714-5 4.

[150] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and

Z. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991. ISBN 0-13-478702-1.

[151] Shengchao Qin and Guanhua He. Linking Object-Z with Spec#. In ICECCS ’07:

Proceedings of the 12th IEEE International Conference on Engineering Complex Com-

puter Systems, pages 185–196, Washington, DC, USA, 2007. IEEE Computer Society.

ISBN 0-7695-2895-3. doi: http://dx.doi.org/10.1109/ICECCS.2007.27.

[152] Prasad Rajagopal, Roger Lee, Thomas Ahlswede, Chia-Chu Chiang, and Dale Karo-

lak. A new approach to software requirements elicitation. In Proceedings of the Sixth

304

International Conference on Software Engineering, Artificial Intelligence, Network-

ing and Parallel/Distributed Computing and First ACIS International Workshop on

Self-Assembling Wireless Networks, SNPD-SAWN ’05, pages 32–42, 2005. ISBN 0-

7695-2294-7.

[153] Venkataraman Ramesh, Robert L Glass, and Iris Vessey. Research in computer science:

an empirical study. Journal of systems and software, 70(1):165–176, 2004.

[154] Gil Regev and Alain Wegmann. Where do goals come from: the underlying principles of

goal-oriented requirements engineering. In Proceedings of the 13th IEEE International

Conference on Requirements Engineering, pages 253–362, 2005. ISBN 0-7695-2425-7.

[155] C Rohleder. Representing Non-functional Requirements on Services - A Case Study.

In Computer Software and Applications Conference Workshops (COMPSACW), 2012

IEEE 36th Annual, pages 359–366, July 2012. doi: 10.1109/COMPSACW.2012.71.

[156] N S Rosa, P R F Cunha, and G R R Justo. ProcessNFL: a language for describing

non-functional properties. In System Sciences, 2002. HICSS. Proceedings of the 35th

Annual Hawaii International Conference on, pages 3676–3685, January 2002. doi:

10.1109/HICSS.2002.994496.

[157] Nelson Souto Rosa and Paulo Roberto Freire Cunha. An approach for reasoning and

refining non-functional requirements. J. Braz. Comp. Soc., 10(1):59–81, 2004. URL

http://dblp.uni-trier.de/db/journals/jbcs/jbcs10.html#RosaC04.

[158] Simone Röttger and Steffen Zschaler. Tool Support for Refinement of Non-functional

Specifications. Software & Systems Modeling, (2):185–204. ISSN 1619-1366. doi:

10.1007/s10270-006-0024-x.

[159] Jean-François Roy, Jason Kealey, and Daniel Amyot. Towards Integrated Tool Support

for the User Requirements Notation. In Reinhard Gotzhein and Rick Reed, editors,

SAM, volume 4320 of Lecture Notes in Computer Science, pages 198–215. Springer,

2006. ISBN 3-540-68371-2.

[160] Omar Salman. Animation of Z specifications by translation to Prolog. Doğuş

Üniversitesi Dergisi, 1(1):155–167, 2011.

[161] Pere P Sancho, Carlos Juiz, Ramon Puigjaner, Lawrence Chung, and Nary Subrama-

nian. An Approach to Ontology-aided Performance Engineering Through NFR Frame-

work. In Proceedings of the 6th International Workshop on Software and Performance,

WOSP ’07, pages 125–128, New York, NY, USA. ACM. ISBN 1-59593-297-6. doi:

10.1145/1216993.1217014.

305

[162] A. M. Sen and K. Hemachandran. Goal Oriented Requirements Engineering: A Liter-

ature Survey. Assam University Journal of Science & Technology: Physical Sciences

and Technology, 6(II):16–25, 2010.

[163] Graeme Smith. The Object-Z specification language. Kluwer Academic, Boston, 2000.

ISBN 0792386841.

[164] Graeme Smith. State-Based Formal Methods for Distributed Processing: From Z to

Object-Z. Technical report, Software Verification Research Center, The University of

Queensland Australia, 2001.

[165] Graeme Smith and John Derrick. Abstract specification in Object-Z and CSP. In

Formal Methods and Software Engineering, volume 2495 of LNCS, pages 108–119.

Springer, 2002.

[166] Graeme Smith, Florian Kammller, and Thomas Santen. Encoding Object-Z in Is-

abelle/HOL. In International Conference of Z and B Users (ZB 2002), volume 2272

of LNCS, pages 82–99. Springer-Verlag, 2002.

[167] Colin Snook and Michael Butler. Using a graphical design tool for formal specification.

In Proceedings of the 13th Annual Workshop of the Psychology of Programming Interest

Group, pages 311–321, 2001.

[168] Colin Snook and Michael Butler. UML-B and Event-B: an integration of languages and

tools. In The IASTED International Conference on Software Engineering - SE2008,

February 2008. URL http://eprints.soton.ac.uk/264926/.

[169] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.

[170] Jim Mike Spivey. The Z notation: a reference manual. Prentice Hall International

(UK) Ltd., Hertfordshire, UK, 1992. ISBN 0-13-978529-9.

[171] J. Sun, P. Loucopoulos, and L. Zhao. Representing and elaborating quality require-

ments: The QRA approach. Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

8217 LNCS:446–453, 2013. URL http://www.scopus.com/inward/record.url?eid=

2-s2.0-84894198355.

[172] Sam Supakkul and Lawrence Chung. A UML profile for goal-oriented and use case-

driven representation of NFRs and FRs. In Software Engineering Research, Manage-

ment and Applications, 2005. Third ACIS International Conference on, pages 112–119,

August 2005. doi: 10.1109/SERA.2005.19.

306

[173] Fathi Taibi, Jacob K. Daniel, and Fouad Mohammed Abbou. On checking the consis-

tency of object-z classes. SIGSOFT Software Engineering Notes, 32, July 2007. ISSN

0163-5948. doi: http://doi.acm.org/10.1145/1281421.1281433.

[174] Chris Taylor, John Derrick, and Eerke Boiten. A Case Study in Partial Specification:

Consistency and Refinement for Object-Z. pages 177–185, September 2000.

[175] Ian Toyn and John A. Mcdermid. CADiZ: An Architecture for Z Tools and its Imple-

mentation. Software - Practice and Experience, 25:305–330, 1995.

[176] John Andrew Van der Poll. Automated support for set-theoretic specifications. PhD the-

sis, University of South Africa: School of Computing (South Africa), 2001. Promoter-

Kotze, P. and Promoter-Labuschagne, W. A.

[177] John Andrew van der Poll and Paula Kotzé. Enhancing the Established Strategy for

Constructing a Z Specification. SACJ, (No. 35):118–131, 2005.

[178] John Andrew van der Poll, Kotzé Paula, Ahmed Seffah, Thiruvengadam Radhakrish-

nan, and Asmaa Alsumait. Combining UCMs and Formal Methods for Representing

and Checking the Validity of Scenarios as User Requirements. SAICSIT’03, pages

111–113, 2003.

[179] Axel van Lamsweerde. Formal specification: a roadmap. In Proceedings of the Con-

ference on The Future of Software Engineering, ICSE ’00, pages 147–159, 2000. ISBN

1-58113-253-0.

[180] Axel van Lamsweerde. Requirements Engineering: from craft to discipline. In

Mary Jean Harrold and Gail C. Murphy, editors, SIGSOFT FSE, pages 238–249.

ACM, 2008. ISBN 978-1-59593-995-1.

[181] F. Vernadat. Enterprise Modeling and Integration (EMI): Current status and research

perspectives. Annual Reviews in Control, (1):15–25. ISSN 13675788. doi: 10.1016/

S1367-5788(02)80006-2.

[182] Andrws Vieira, Pedro Faustini, Luigi Carro, and Érika Cota. NFRs Early Estimation

Through Software Metrics. In Proceedings of the 2015 Design, Automation & Test in

Europe Conference & Exhibition, DATE ’15, pages 329–332, San Jose, CA, USA, 2015.

EDA Consortium. ISBN 978-3-9815370-4-8. URL http://dl.acm.org/citation.

cfm?id=2755753.2755827.

[183] Jaya Vijayan and G. Raju. Requirements elicitation using paper prototype. In Tai-

hoon Kim, Haeng-Kon Kim, MuhammadKhurram Khan, Akingbehin Kiumi, Wai-chi

307

Fang, and Dominik lzak, editors, Advances in Software Engineering, volume 117 of

Communications in Computer and Information Science, pages 30–37. Springer Berlin

Heidelberg, 2010. ISBN 978-3-642-17577-0. doi: 10.1007/978-3-642-17578-7 4.

[184] H Wada, J Suzuki, and K Oba. A Feature Modeling Support for Non-Functional

Constraints in Service Oriented Architecture. In Services Computing, 2007. SCC 2007.

IEEE International Conference on, pages 187–195, jul 2007. doi: 10.1109/SCC.2007.5.

[185] Hai H. Wang, Terry Payne, Nick Gibbins, and Ahmed Saleh. Formal Specification of

OWL-S with Object-Z: The Dynamic Aspect. In Boualem Benatallah, Fabio Casati,

Dimitrios Georgakopoulos, Claudio Bartolini, Wasim Sadiq, and Claude Godart, ed-

itors, Web Information Systems Engineering WISE 2007, volume 4831 of Lecture

Notes in Computer Science, pages 237–248. Springer Berlin Heidelberg, 2007. ISBN

978-3-540-76992-7. doi: 10.1007/978-3-540-76993-4\ 20.

[186] Alan Wassyng and Mark Lawford. FME 2003: Formal Methods: International Sym-

posium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003. Proceedings,

chapter Lessons Learned from a Successful Implementation of Formal Methods in an

Industrial Project, pages 133–153. Springer Berlin Heidelberg, Berlin, Heidelberg,

2003. ISBN 978-3-540-45236-2. doi: 10.1007/978-3-540-45236-2 9.

[187] Bo Wei, Zhi Jin, and Lin Liu. A Formalism for Extending the NFR Framework to

Support the Composition of the Goal Trees. 2010 Asia Pacific Software Engineering

Conference, pages 23–32, November . doi: 10.1109/APSEC.2010.13.

[188] M. M. West and B. M. Eaglestone. Software development: two approaches to animation

of z specifications using prolog. Software Engineering Journal, 7(4):264–276, July 1992.

ISSN 0268-6961. doi: 10.1049/sej.1992.0027.

[189] Margaret Mary West. Issues in Validation and Executability of Formal Specifications

in the Z Notation. PhD thesis, University of Leeds: School of Computing (UK), 2002.

URL http://etheses.whiterose.ac.uk/id/eprint/1305.

[190] Margaret Mary West. Correctness Criteria for the Animation of Z Specifications

via a Logic Programming Language. Technical report, University of Huddersfield,

Queensway, HD1 4DH, UK, 2007.

[191] Roel Wieringa and Eric Dubois. Integrating semi-formal and formal software speci-

fication techniques. Information Systems, 23(3-4):159–178, 1998. URL http://doc.

utwente.nl/61832/.

308

[192] Kirsten Winter and Roger Duke. Model Checking Object-Z Using ASM. In Proceedings

of the Third International Conference on Integrated Formal Methods, IFM ’02, pages

165–184, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-43703-7. URL http:

//dl.acm.org/citation.cfm?id=647983.743685.

[193] Jim Woodcock. Calculating Properties of Z specifications. SIGSOFT Softw. Eng.

Notes, 14(5):43–54, 1989. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/71633.

71634.

[194] Jim Woodcock and Jim Davis. Using Z: Specification, Refinement, and Proof. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-948472-8.

[195] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal

methods: Practice and experience. ACM Comput. Surv., 41(4):19:1–19:36, October

2009. ISSN 0360-0300.

[196] Lihua Xu, Hadar Ziv, Thomas A Alspaugh, and Debra J Richardson. An architectural

pattern for non-functional dependability requirements. Journal of Systems and Soft-

ware, (10):1370–1378. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2006.02.

061.

[197] Bin Yin and Zhi Jin. Extending the Problem Frames Approach for Capturing Non-

functional Requirements. In 2012 IEEE/ACIS 11th International Conference on Com-

puter and Information Science, pages 432–437. IEEE, May . ISBN 978-1-4673-1536-4.

doi: 10.1109/ICIS.2012.47.

[198] Lin Yu and Eric Liu. From requirements to architectural design–using goals and sce-

narios. In First International Workshop From Software Requirements to Architectures-

STRAW, volume 1, page 22, 2001.

[199] Liming Zhu and I Gorton. UML Profiles for Design Decisions and Non-Functional

Requirements. In Sharing and Reusing Architectural Knowledge - Architecture, Ra-

tionale, and Design Intent, 2007. SHARK/ADI ’07: ICSE Workshops 2007. Second

Workshop on, page 8, May 2007. doi: 10.1109/SHARK-ADI.2007.14.

[200] Didar Zowghi and Chad Coulin. Requirements Elicitation: A Survey of Techniques,

Approaches, and Tools., pages 19–46. Springer Berlin Heidelberg, 2005. doi: 10.1007/

3-540-28244-0\ 2.

309

310

Index

Case study, 91

formalising GRL model, 107

Algorithm 1, 85

Algorithm 2, 87

ClsAccessOwnApp, 115

ClsActorApplicant, 111, 114

ClsGrlCaseStudy, 118

ClsInternet, 118

ClsIntranet, 117

create class operation, 112

planning, 109

Update the specification based on links,

120

Problem description, 91

CNF-action, 177

formal methods, 1, 2

formal specification, 2

GRL, 19

Construction, 55

evaluation, 23

Example, 19

Notation, 19

Actor, 20

Intentional elements, 20

Links, 21

Model-oriented, 3

NFRs, 40

CNF-action, 62

Representation/propagation, 63

Domain, 65

Influence on software process, 60

NF-actions, 61

Process-oriented, 45

Product-oriented, 45

selected publications, 43

Object-Z, 36

inheritance, 39

polymorphism, 40

shema operation, 37

tools, 40

Organogram approach, 93

graph modeling, 97

Horizontal processing, 96

main algorithm, 96

Problem analysis, 102

scope definition, 100

vertical processing, 96

Property-oriented, 2

Research design, 47

Techniques, 47

Arguments, 49

Case study, 48

Framework and algorithms, 48

Literature review, 47

Models, 49

Synthesis of scholarship, 49

SDS, 60

illustration, 61

311

UCM, 24

Construction, 56

Example, 24

Notation, 25

components, 25

Failure-point, 30

path, 26

path connectors, 27

Stubbing techniques, 28

timeout-recovery mechanism, 29

Waiting place, 30

Path segment, 27

URN, 15

Construction process, 17, 53

formalisation, 67

approach, 79

ClsBelief, 73

ClsComplementaryAction, 75

ClsContribution, 77

ClsDecomposition, 77

ClsDependency, 76

ClsElementLink, 76

ClsGoal, 74

ClsGRLContainableElt, 71

ClsGrlSpec, 82

ClsIntentionalElement, 72

ClsLinkableElement, 70

ClsResource, 73

ClsSoftgoal, 75

ClsTask, 73

framework, 77

GRL model traversal, 78

Top-down approach, 68

formalisation approaches, 18

formlisation

ClsMetadata, 70

metamodel, 16

Tool supports, 17

Validation, 123

4-way framework, 127

Planning, 128

Downward phase, 172

Analyse feasibility, 172

Illustrate CNF-actions, 182

UCM from Object-Z, 172

Leftward phase, 166

Manual inspection, 167

Precondition with Z-Eves, 169

Prove the completeness, 166

Reasonning about applicability, 167

Planning

Applicability, 133

Completeness, 132

Correctness, 131

Feasibility, 134

Internal consistency, 130

Traceability, 130

Prolog animation, 125

Executable, 136

Functionalities, 136

guidelines, 126

Objectives, 135

planning, 135

simplify inputs, 144

Rightward phase, 147

Review spec, 150

Type checking, 147

Upward phase, 152

Animating ClsActorApplicant , 159

Proof of correctness, 155

Traceability, 152

Z, 31

Basic types, 32

312

Initialising the state space, 34

Schema

decoration, 33

Schemas, 33

operation schema, 34

schema calculus, 36

state schema, 33

tools, 40

313

