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A primacy code for odor identity
Christopher D. Wilson1, Gabriela O. Serrano1, Alexei A. Koulakov2 & Dmitry Rinberg1,3

Humans can identify visual objects independently of view angle and lighting, words inde-

pendently of volume and pitch, and smells independently of concentration. The computa-

tional principles underlying invariant object recognition remain mostly unknown. Here we

propose that, in olfaction, a small and relatively stable set comprised of the earliest activated

receptors forms a code for concentration-invariant odor identity. One prediction of this

“primacy coding” scheme is that decisions based on odor identity can be made solely using

early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the

sensory integration time necessary for odor identification and demonstrate that animals can

use information occurring <100ms after inhalation onset to identify odors. Using multi-

electrode array recordings of odor responses in the olfactory bulb, we find that concentration-

invariant units respond earliest and at latencies that are within this behaviorally-defined time

window. We propose a computational model demonstrating how such a code can be read by

neural circuits of the olfactory system.
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A substantial computational challenge for the olfactory
system lies in resolving odorant identities despite fluc-
tuations in odor concentration arising from proximity to

odorant source, air turbulence, and natural breathing1–3. Odor-
ants are sensed by olfactory sensory neurons (OSNs), each
expressing one out of a large family of olfactory receptor (OR)
genes4. Axon terminals from OSNs expressing the same OR gene
converge in a few discrete structures in the olfactory bulb (OB)
called glomeruli. Odorants evoke responses in an ensemble of
glomeruli to create a combinatorial representation of odor iden-
tity5, 6. This representation varies not only across odorants, but
also across concentrations of a single odorant (Fig. 1a)7–9. Low
concentrations of odorant evoke activity in only the most sensi-
tive glomeruli, while increases in concentration result in
recruitment additional less sensitive glomeruli. Despite this
variability, odors’ qualitative identities are preserved across a
range of concentrations2, 10, 11.

In several sensory systems, including olfaction, neurons have
been shown to convert the strength of excitatory input into
latency of response12, and it has been hypothesized that ORs with
high affinity will depolarize OSNs earlier than those with low
affinity13–15. This emerges as a result of multiple processes,
including intracellular signal integration16 and temporal
dynamics of odorant concentration17–19. For air breathing ani-
mals, sniffing determines the temporal dynamics of odorant
concentration in the nose, resulting in an affinity-defined
sequence of OSN recruitment. While these sequences of recruit-
ment vary across odorants, they have been shown to be mostly
concentration invariant, as changes in concentration preserve
temporal rankings of ORs with different affinities and these
latencies are proposed to encode information about odor iden-
tity15, 20, 21.

Here we propose a strategy for concentration-invariant odor
identification which uses a few earliest activated glomeruli in a
coding scheme we call “Primacy Coding”. We assume that the

first few glomeruli activated during a sniff are those receiving
input from the most sensitive ORs for a given odorant. We
propose that solely the members of this small set of early glo-
meruli encode odor identity. While this primary set varies
between odorants, we assume that it is mostly preserved across
concentrations of the same odorant. As concentration is
increased, responses of less sensitive glomeruli are recruited later
than the primary set, thereby maintaining the members of the
early set and preserving encoded odor identity information
(Fig. 1b, c).

One of the central predictions of primacy coding is that ani-
mals use early “slices” of odor-evoked neural activity to define
odor identity independently of the remainder of the pattern of
evoked activity. To test this hypothesis, we developed an opto-
genetic masking paradigm in which we could create a temporally
controlled masking stimulus during an odor discrimination task
(Fig. 1d). Through delayed triggering of this optogenetic masking
stimulus relative to inhalation onset, we could preserve early
epochs of odor-evoked information while making the overall
combinatorial code unreliable through the activation of a large,
heterogeneous subset of OSNs. We reasoned that if odor identity
can be defined using only a small subset of early-responding
primary glomeruli, our mask should not impair odor identifica-
tion as long as it is initiated after this identity-defining subset.
Conversely, activation of the mask before this initial subset of
glomeruli is active should impair odor discrimination.

Results
Optogenetic masking of late odor-evoked activity. To produce
the mask stimulus, we delivered 2 light pulses (25 mW, 2 ms
duration, 10 ms inter-pulse interval) to the olfactory epithelium in
both nostrils of the transgenic mouse expressing channel rho-
dopsin-2 (ChR2) in all OSNs22. The light was delivered via optical
fiber stubs implanted above the olfactory epithelium. To char-
acterize the neural response to the mask stimulus, we recorded
light and odor-evoked activity of mitral-tufted (MT) cells (n=
119: 39 single-unit, 80 multi-unit) in the OB, which are the first
recipient of input from OSNs (Fig. 2a, Supplementary Fig. 2A–D).
The masking stimulus generated responses occurring after a short
delay following light onset (mean= 11.5 ms, mode= 8 ms)
(Fig. 2c). The overall mask excitatory response lasts approxi-
mately 50 ms, followed by prolonged inhibitory response until
approximately 200 ms (Fig. 2b, Supplementary Fig. 2E).

How effective is the mask in eliminating odorant responses?
Out of 119 recorded units, 29 responded to one of two odorants
(pinene, limonene). The mask, presented at 20 ms latency post
inhalation onset, modified most of the odor responses, even
though odor responses typically occur later than the mask
stimulus (Fig. 2a). To characterize the effect of mask on
information available for discrimination, a support vector
machine (SVM) was trained to classify MT cell responses to
two odorants (limonene vs. pinene) with and without masking
stimulus.

Only on the basis of the odor responses of 29 units,
classification performance on an individual trial raised from
chance level to 100% in the first 260 ms from the inhalation onset.
On the masked trials, performance of the classifier stayed at
chance level until ~ 180 ms post inhalation onset, and never
exceeded 68% (Fig. 2d). We may assume that the mask is efficient
in eliminating odor information for at least 100 ms following the
mask.

To test the effect of the mask on behavior, mice (n= 3) were
trained in a head-fixed 2-alternative choice paradigm to
discriminate between two odorants (eugenol and 2-hydroxyace-
tophenone) for a water reward (Fig. 3a). To ensure that decisions
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Fig. 1 Primacy coding of odor identity. a Schematic presentation of the
patterns of glomerulus (OSN) activation for three concentrations of the
same odor. The total number of active glomeruli increases with an increase
of odor concentration. b The temporal profiles of the odor concentration in
the nose during inhalation for three concentrations of the presented stimuli.
Dashed lines represent concentration thresholds for representative
glomeruli (horizontal) and corresponding response latencies (vertical). c
Temporal sequence of glomeruli activation for three different odor
concentrations. d Optogenetic mask schematic demonstrating the effect of
the optogenetic mask on temporal sequences when presented late and
early relative to odor-evoked temporal pattern
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were based on odor identity and not intensity, we scrambled the
odorant concentrations by presenting five concentrations within a
two order of magnitude range. On probe trials within the session,
the optogenetic mask was presented with target odor. The probe
trial structure was used to prevent animals from adopting a novel
strategy to overcome the effect of the mask. The animals’
performance was strongly affected by the masking stimulus when
it was initiated between 0 and 50 ms after inhalation onset
(Fig. 3b and Supplementary Fig. 1E). The presence of the mask
lowered the mean performance at these early latencies to almost
chance level of 56% compared with the unmasked performance of
92% (at odorant concentration 1 μM). As the onset latency of the
mask is increased to latencies greater than 50 ms, performance in
the odor identification task recovers and approximates the
unmasked asymptotic performance at ~100 ms.

Scaling of integration time with odorant concentration.
Changes in odorant concentration should change the absolute
timing of OSN recruitment and, thus, affect the timing of odor
percept formation in our task. We tested this prediction by fitting
a Weibull generalized linear model (see “Methods” section) to

masking data for two concentrations of odorant and comparing
the thresholds of these fits. A 10-fold decrease in concentration
delays the recovery of performance in masking trials by 13.3 ms
(100.3 vs. 87.0 ms, bootstrapped 95% confidence intervals [94.2,
105.9] and (81.8, 91.5), p= 0.048 (one-tailed Monte Carlo test, R
= 50,000). As expected, odor percepts are formed later for lower
odorant concentrations, likely due to delayed recruitment of OSN
activity12. Very similar dependencies have been observed for
other odor pairs and 5 other mice (Supplementary Fig. 1D).

Reaction time (RT) has been used extensively to determine the
timing of sensory processing and decision-making based on
sensory stimuli. The dependence of performance on both mask
latency and RT are qualitatively similar, except that the reaction
time curve is shifted by ~66ms. This relationship is similar for
both concentrations tested here (65.5 and 66.2 ms, Fig. 3c, Insert).
The concentration-dependent shift in RT vs. performance can be
wholly explained by the shift observed in our masking paradigm,
indicating that peripheral encoding of odor information limits the
timing of olfactory decision making. The observed delay between
the RT and mask can be ascribed to a motor delay that is constant
across concentrations.
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Fig. 2 Neural response to optogenetic mask and effect on odor information. a Example raster and PSTH for two example MT cells. Inhalation onset
corresponds to t= 0. Top: Example MT cell responses to optogenetic mask (25mW, ON:2ms—OFF:8ms—ON:2 ms), light stimulation at 20ms post-
inhalation onset. Middle: Odor response (left: 2-hydroxyacetophenone, right: alpha-pinene). Bottom: Odor plus laser mask. b Baseline-subtracted mean of
PSTHs for laser-responsive units (n= 113). c Cumulative distribution function (black line) and histogram of units’ response latencies to masking light
stimulus. d Linear classifier cross-validation results for unmasked data for two odor presentations (limonene, pinene). Responses to unmasked odor
presentations were time-binned (10ms bins) and used to train support vector machine (SVM) classifiers. For each time point, SVMs were trained using the
response vector inclusive of bins from t= 0 to that time. Each classifier’s performance is described by cross-validation on unmasked trials (blue) and
testing on masked trials (green). Shaded areas indicate 95% confidence interval (Clopper–Pearson method)
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Mask trials may promote the use of a novel strategy to utilize
early information. To address this issue, we performed two
analyses. First, we compared reaction time in unmasked trials and
trials where the mask was presented late (t≥ 100ms) and had

minimal effect on performance (Fig. 3d and Supplementary
Fig. 1G). The Weibull fits to the dependencies of performance on
reaction time in both cases are nearly identical. Second, we see no
effect of learning on mask trials between early and late behavioral
sessions, comparing the performance on the first and last 20
masked trials across all sessions (Fisher-Exact test p> 0.05).
(Supplementary Fig. 1F). Together, these results provide evidence
that randomly presented masking trials do not change the animal
decision strategy and that animals typically use early evoked
information in the odor discrimination tasks.

Scaling of integration time with odor contrast. Does primacy
coding strategy apply only to simple tasks? To make the beha-
vioral task more difficult, we trained animals to discriminate
between mixtures of carvone enantiomers (60:40 vs. 40:60). Using
mixtures to reduce the contrast between stimuli decreases dis-
crimination performance relative to pure carvones (83.3 vs. 90.8%)
and delays the mask threshold time (118ms vs. 101ms) (Fig. 3e).
As with the latency shift between concentrations of odorant, the
shift due to decreased contrast is consistent with the measure of
reaction time vs. performance (Supplementary Fig. 1H). To
generate an equivalent level of performance in the more
difficult mixture discrimination task, sensory information must be
integrated by the subject over a longer period of time.
However, the extension in integration time is relatively small on
the scale of the length of a sniff, demonstrating that animals are
still using early information to make this more difficult
discrimination.

Neural correlates of concentration-invariant primacy code. Our
behavioral results define the temporal window in which odor
information is integrated. To determine if primacy codes exist in
the OB at timescales consistent with our behavior, we recorded
responses of 338 MT cells to 3 odorant concentrations spanning a
range of 2 order of magnitude. The primacy coding model pre-
dicts the existence of MT neurons that display excitatory
responses to odor across a wide range of concentrations in a
narrow temporal window at the beginning of the sniff. Among
119 units which exhibit excitatory responses to odorant α-pinene,
15 responded to all three concentrations, a subset that we called
“concentration-stable” (Fig. 4a). The remaining 104 units
responded only to subset of concentrations, which we called
“concentration-unstable” (Fig. 4b). As expected, a number of

Fig. 3 Optogenetic masking behavioral paradigm. a Behavioral task
schematic: Mice were trained to respond to 2 odors "A" and "B" at 5
different concentrations to lick left or right water spout. Mask timed to the
onset of the first inhalation after odor delivery was presented during subset
of trials for two concentrations (asterisks). b Discrimination performance
vs. mask latency for odors (2-hydroxyacetophenone and eugenol) at two
concentrations. Mask stimulus presentation was initiated on the first
inhalation of odorant and after the mask onset latency, tmask, had elapsed.
High concentration annotated in black markers, low concentration in grey.
Error bars indicate 95% confidence interval estimates. Weibull fit to the
data indicated with thick lines. Markers above performance curves indicate
Weibull threshold latency values for each fit with 95% confidence interval
estimates. c Mouse reaction time vs. performance in unmasked stimuli of
two concentrations (as above). Dots indicate the data binned into bins of
125 trials. Lines indicate Weibull fit. Inset: difference between mask and
reaction time threshold latencies. d Mouse reaction time vs. performance
for unmasked trials (gray) compared with late masked trials with tmask> =
100ms (blue) for the same data set. Points represent bins of 50 trials each.
e Performance vs. mask latency for discrimination of pure (blue) carvone
enantiomers vs. mixtures made with those odorants (green)
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responsive units grew as concentration increased (Fig. 4c). While
the population response at low concentration was dominated by
concentration-stable units, unstable units were 3.7 times more
numerous at the highest concentration tested.

According to our primacy coding model, the identity of early,
stable units that are responsive across concentrations represent
odor identity. The stable population’s mean response latency was
shorter than the unstable population at all concentrations (conc
10−3: 86.8 ms vs. 177.2 ms, p= 0.0003; conc 10−2: 82.7 ms vs.
148.2 ms, p= 0.0071; and conc 10−1: 85.7 ms vs. 149.0 ms, p=
0.0249; one-sided KS test). While the latencies of the unstable and
stable populations overlapped, a subset of stable units responded
earlier than all unstable units at the highest concentration, which
is consistent with the primacy coding model (Fig. 4d). The
latencies of these stable units scaled with concentration, as
predicted by the model and behavioral result. The mean latency
shift between concentrations for this early, concentration-stable
subset was 15.5 ms, (σ: 5.5 ms). This is comparable to the timing
shifts in behavioral identification across concentration (13.3 ms).
The stable population’s activity encoded odor-identity informa-
tion and was not representative of non-specific odor responses;
only one of these concentration-stable units was responsive to
another odorant tested, α-limonene.

Importantly, we find that latencies and even latency relation-
ships are not preserved across concentrations in awake
animals, although this has been observed in anesthetized animals
(Fig. 4d)20. Instead, both absolute and relative latencies of stable
units' responses shift dramatically as concentration increases,
clustering into early and late subsets at the highest concentrations.
We observed that the excitatory responses of the late set of stable
cells was preceded by transient inhibition at high concentrations
(Fig. 4a lower panel, 4e). This transient odor-evoked inhibition
was observed widely in our recorded population (Supplementary
Fig. 3F, H), and we hypothesize that it is due to lateral and
feedback inhibition in the OB. For late stable units, we predict that
earlier members of the MT population drive inhibition arriving
earlier than or in coincidence with feedforward excitation. This
shunts the neuron’s initial excitatory response, causing an
apparent increase in response latency. As a result, we conclude
that these units are not in the primary set, as it is obvious that
earlier members of the population must precede them to generate
the network activity responsible for this inhibition. So, while short
latency is predictive of concentration-invariance, the relationships
of response latencies within our recorded population as a whole
are not conserved across concentrations and are unlikely to
encode odor identity.
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Read out of primacy code by a model neural network. What
elements of olfactory networks are sufficient to process primacy
information? How does mask affect odor recognition? Our beha-
vioral data show an incomplete suppression of animal performance
at small masking delays (Fig. 3b). In a more difficult discrimination
task, the effect of mask is slightly delayed compared to easier tasks
(Fig. 3e). Are these features expected within the primacy coding
mechanism? To address these questions, we developed a compu-
tational primacy decoding model based on known features of the
OB and piriform cortical (PC) circuits. First, our model includes
random feedforward connectivity between the OB and PC which
provides the basis for coincidence detection of MT cell activity
arriving early in the sniff cycle. Second, our model includes ran-
dom recurrent inhibitory circuits in the PC (blue in Fig. 5a). The
role of this connectivity is to suppress late arriving, “non-primary”
input to PC neurons. This architecture is consistent with observed
global and broadly tuned inhibition in the PC23 and has been used
as a feature of network models for the processing of fine temporal
information in the PC, including the proposed mechanism for
coincidence detection24. Finally, we assumed that PC neurons have
a memory property such that once activated, they can maintain the
persistent activity in order to retain the odorant representation in
the network until the initiation of action. Although our compu-
tational model does not explicitly specify the mechanism of per-
sistency, it has been hypothesized to emerge from voltage
dependent synaptic channels, such as NMDAR or GABAB acti-
vating KIR channels24. Overall, our network included randomly
connected 300 MC and 1000 PC neurons.

Our model provides insights into the mechanism of optoge-
netic suppression of the animal’s performance for early delivered
masks. We simulated odor-evoked activity in MT cells as a
random spatiotemporal pattern and the mask as synchronous
activity independent of odor (Fig. 5b, c). When the mask follows
initial odor-evoked activity, it does not affect odorant-dependent
activity patterns in PC (Fig. 5b), due to the broad inhibitory
network, which suppresses excitatory inputs from the late mask
or odorant-dependent inputs. In contrast, when the mask
precedes odor activation, a pattern of activity emerging in the
PC is not odorant-dependent and is different from those of the
odorants alone (Fig. 5c). This light-evoked pattern can be viewed
as a new percept that is unrelated to the original odors.

Our model qualitatively explains an incomplete suppression of
discrimination for early masks (t< 0.2) (Figs. 3b and 5d, black
and gray lines). This occurs due to the presence of noise: on
certain trials, odor-dependent OB responses are more robust than
on average, causing failure of the mask on these trials
(Supplementary Fig. 4). In case of complex mixture, the
behavioral response is delayed compared to an easy stimulus
(Fig. 5d, blue vs. black lines), which is consistent with
experimental results (Fig. 3e). This occurs because the differences
in pools of primary glomeruli emerge slightly later in the sniff
cycle, as both of the stimuli have similar sets of initially activated
glomeruli. This result implies that primacy read out mechanism
does not take the sequence of glomerular activation into account,
since such differences are expected to occur early. In a version of
the model sensitive to the activation sequence, the delay in
performance for complex tasks is strongly reduced (Supplemen-
tary Fig. 5). Overall, our computational model confirms that the
experimental data is consistent with the identity of primary
MT cells rather their recruitment order being important for the
coding of odor identity.

Discussion
We demonstrate here that the earliest evoked neural activity can
be used to make olfactory decisions and demonstrate that neural

activity in this time window may encode odor identity across
concentrations through primacy coding. Previous behavioral
studies demonstrate that early epochs of odor-evoked activity are
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sufficient for the detection of odorants25, 26 and concentration
discrimination27 in rodents. However, while these studies allude
to fast coding of olfactory stimuli, it is impossible to rule out
subjects’ use of intensity cues that are external to odor identity. By
scrambling concentrations of odorant, we make intensity cues
unreliable and encourage the use of odor identity in these
experiments. Studies using activity-dependent imaging have
proposed that the most sensitive glomeruli may encode individual
odors15, 28; however, to our knowledge, our work provides the
first behavioral evidence and computational support for this
hypothesis.

Primacy coding and latency coding both attempt to solve the
“analog match” problem odor identification through the use of
timing, although they each make unique predictions. Central to
both models is the expression of input strength to individual
sensory neurons into spike latency relative to theta rhythm14 or to
inhalation. Apart from the synthesis of these temporal patterns,
primacy coding and latency coding differ significantly in the
mechanisms by which these spatiotemporal patterns are read out.
In general, latency coding describes a family of models that match
a vector of response latencies evoked by an unknown stimulus
with a prototype latency vector. This comparison has been
modeled through a combination of a “delay line” architecture
with coincidence detection29, 30. In these models, a decoder cell
receives inputs from several glomeruli, each of which is delayed
such that their signals arrive coincidentally at the decoder neuron
only when a specific odor is encountered. These models imply
that relative latencies of different glomeruli must scale equally
with concentration to preserve coincidence, while in our data we
find that both absolute and relative latencies within the popula-
tion of odor-responsive MT units are not maintained across
concentrations in awake animals (Fig. 4e).

As predicted by Hopfield, computational models of the OB
based on the experimental data demonstrate that similarity of
these latency vectors across concentrations of the same odorant
are more similar than latency vectors generated by different
odorants31. If latency vectors for different odors are evaluated in
snap-shots that evolve after inhalation, divergence is predicted at
short timescales (< 100 ms) for dissimilar odorants. However, the
mechanisms by which these vectors are evaluated on these short
timescales has not been fully explored24.

Primacy coding extends latency encoding models by making
the assumption that solely the earliest members of the set are
representative of odors across concentrations. It proposes that
temporal relationships are important only insofar as they help in
identifying these early members, and predicts a basic network
architecture that can decode this early information to create
stable patterns in piriform cortex44. These patterns, by definition,
are formed fast and through the use of early divergence of the
spatiotemporal pattern of glomerular activity. The primacy model
emphasizes the role of the set membership of early-responding
neurons rather than the sequence of glomerular activation. Our
experiments with mixtures in combination with computational
modeling provide indirect evidence towards this prediction.
Further experiments with precise temporal control of early acti-
vated glomeruli may confirm this prediction.

The primacy model sets limits for information capacity of the
olfactory code. The upper bound estimate for the number of
odorant identities represented by the primacy code is ~Np=p!,
where N is the number of different OR types and p is size of the
subset used to define identity. With p= 5–6 and the N= 350 OR
genes found in the human genome, the coding scheme can
represent ~ 1010–1012 different odors.

The primacy model emphasizes the role of individual glomeruli
for odor coding. In mice, a deletion of a single receptor TAAR4 is
sufficient to abolish aversive behavior to a specific odor32. Studies

of human genetic variability lends evidence that only highly
sensitive receptors predominate in defining odor quality. Subjects
with different alleles of a single OR report differences in per-
ceptual qualities for strong ligands of the OR, while they are likely
to report similar qualities for weaker ligands33.

The primacy model also makes specific predictions about
mixtures of odorants because the earliest activity should dominate
perceptual qualities of the mixture. Perceptual masking of slowly
perceived odors by fast odors (temporal suppression) has been
observed in human psychophysics, but warrants more atten-
tion34. If both odorants evoke early activity within the primary
set, we predict that this combination will cooperate to synthesize
a new odor percept. Finally, primacy coding does not make
explicit provision for parallel processing of components in mix-
tures, a task where humans demonstrate poor performance35.

Primacy coding suggests a relatively simple solution to the
complex computational problem of robust concentration-
invariant representation of odorant identity in olfaction. It pro-
vides inherently rapid odor identification, a vast coding capacity
and can be implemented by the architecture of the olfactory
system.

Methods
Mice. The behavioral concentration series data were collected in 4 OMP-ChR2-YFP
heterozygous mice (2 female, 2 male). The mixture data were collected in a separate
cohort of 5 OMP-ChR2-YFP heterozygous mice (2 female, 3 male). Electro-
physiological data to characterize masking were collected from a separate cohort of
mice (n= 2). Five male C57B/6 mice (Jackson Labs) were used for concentration
series electrophysiology. Subjects were 8–12 weeks old at implantation and were
maintained on 12hr light–dark cycle in isolated cages after implantation. All
procedures were approved by the IACUC of NYULMC in compliance with the
NIH guidelines for the care and use of laboratory animals.

Sniff recording. Sniff was monitored via intra-nasal pressure. An 8mm long, 21-
gauge cannula was implanted into the anterior dorsal recess. Total insertion depth
from the surface of the nasal bone was 1.5 mm. Pressure change relative to
atmospheric pressure was measured using a pressure sensor (24PCEFJ6G, Hon-
eywell) and amplified (AD620, Analog Devices). A Schmitt (dual-threshold) trigger
was used to define inhalation and exhalation onsets in real time on an Arduino
microcontroller. For concentration series electrophysiology, respiration was mea-
sured using an externally mounted pressure sensor placed in front of the subjects’
nares.

Surgery. Mice were anesthetized using isofluorane gas during surgery. The head
bar, pressure cannula and optical fibers were implanted in a single surgery. The
nasal cannula was implanted in a small hole in the anterior nasal bone and affixed
with glue and dental cement. The optical fibers were implanted bilaterally in two
holes drilled in the posterior nasal bones and affixed using the same technique.
Two small screws (size #000–120 × 0.0625”, Small Parts, Inc.) used to stabilize the
implant and provide electrical connection for lick detection were implanted in the
skull at a location approximately corresponding with S1 cortex. Animals were
allowed to recover for at least 3 days before water deprivation.

Stimulus delivery and behavioral control. Behavioral control and data acquisi-
tion was computer-controlled using the custom Voyeur software36. For odor sti-
mulus delivery, we used an 8-odor olfactometer (Supplementary Fig. 1A). Odorants
were diluted in mineral oil and stored in amber volatile organic analysis vials.
Olfactometery manifolds, valves, and tubing contacting odorized air consisted
entirely of PTFE to minimize cross-contamination of odorant. During odor pre-
sentation, nitrogen carrier gas is diverted through a single vial and enters the main
air stream, resulting in an adjustable dilution in a range between 10× and 100×.
Airflow rates for carrier and main flow rates were controlled using two mass flow
controllers (Bronkhorst). During periods between stimuli, animals were presented
with 1 L/min background air and olfactometer air was directed to exhaust using a
four-way PTFE final valve (NResearch).

Odorant concentrations were controlled using a combination of gas- and liquid-
phase dilution. Through manipulation of the ratio of odorized and clean air flow
rates, we were able to achieve a dilution range of 10–1% odorized air (10×). In
experiments where more that 10-fold dilution was required, we used liquid dilution
to increase our range. Because liquid dilution ratios do not accurately predict
headspace (gas-phase) concentrations, liquid dilutions were assayed using a photo
ionization detector (Aurora Scientific) to determine relative concentrations of
odorant in gas-phase. For concentration-series electrophysiology, all dilutions were
made in air-phase by diluting odorized air with unodorized air.
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Mixtures of carvone enantiomers were made in liquid phase. Enantiomers have
identical vapor pressures and solvent interactions, thereby allowing accurate
prediction of component ratios in gas phase from liquid mixture ratios.

Light masking stimulus was provided by two 473-nm, 105 um ID fiber coupled
diode laser (Blue Sky Research, PN: FTEC2471) terminated in a ceramic ferrule.
During behavioral sessions, the laser source ferrule was mated to a ferrule
permanently implanted on the mouse. Implanted ferrules (MM-FER2007-304-
4050, Precision Fiber Products, Milpitas, CA) were fabricated with 400 um ID, 0.39
NA fiber (FT400UMT, Thorlabs, Newton, NJ) and etched using hydrofluoric acid
to provide diffuse light within the nasal cavity. Laser power was calibrated using a
light power meter (Thorlabs) prior to behavioral sessions at the ferrule tip.

Water reward stimulus was delivered through two 21-gauge stainless steel lick
tubes (Small Parts) and controlled using pinch valves (BioChem Fluidics).

Licks were detected by measuring change in resistance at the lick port when
animals made contact with the lick tube using custom lick detectors (Janelia, HHMI).

Behavioral procedure and training. Animals were water deprived for at least
5 days prior to start of behavioral training. Animals were housed on a 12:12
light–dark cycle were tested between 1500 and 2400 ZT (where ZT 0 corresponds
to beginning of light period). To acclimatize animal to head-fixation and behavioral
apparatus, animals were shaped by given water through a single lick tube until
animals received their entire 1 ml water ration during a session. In subsequent
sessions, a second lick tube was introduced. To encourage exploratory behavior in
subsequent training, animals were rewarded for alternating licks between left and
right lick tubes. Two-lick shaping sessions persisted until animals successfully
received entire 1 ml water ration in a session.

Odor discrimination was trained on subsequent sessions with only slight
modifications to the paradigm used in testing sessions (Supplementary Fig. 1C). After
a variable inter-trial interval (12–15 s) and with the condition that 1 s had elapsed
since the last licking activity was recorded. Odor stimulus was delivered for 500ms
and was initiated on the start of exhalation so that odor stimulus was stable prior to
inhalation (Supplementary Fig. 1B). For each trial, odor concentration was drawn
randomly. After stimulus onset, a “grace” period was enforced where licks were not
scored to reduce impulsive licking prior to odor sampling. To eliminate stereotypic
response bias, trials were chosen using a bias correction algorithm during training and
testing37. For initial training, this grace period included time point until 500ms after
the first inhalation of odorant. After criterion performance was met, this grace period
was shorted in the following session to 300, then to 150ms for testing. Randomization
was preformed using Mersenne Twister RNG (NumPy).

Testing sessions were conducted only after animals reached criterion
performance (>80%) on the odor discrimination task. Mask trials was randomly
interleaved in sessions for only 2 of the 5 concentrations presented (Fig. 2a). Trial
ordering within a session was computer-controlled and the investigator was blind
to the conditions of each trial. For masking data at multiple concentrations,
masking trials was presented in every other session with both concentrations
masked in the same sessions at rate of 17% of total trials. For the masking data for
carvone mixtures, masking trials were interleaved throughout each session at a rate
of 8.3% of total trials. The data were excluded from animals that did not complete
training and testing due to loss of sniff signal, illness, or loss of implant. Two
animals were excluded from mixture experiment due to faulty fiber implantation.
The data from experiments represented in Fig. 3b and Supplementary Fig. 1D were
collected from the same animals.

Behavioral analysis. All behavioral analysis was conducted using custom scripts
on the Anaconda Python distribution (NumPy 1.9.2, SciPy 0.15.1)38. Binomial
proportion confidence intervals were calculated using the Clopper–Pearson “exact”
method. Trials from sessions in which animals preformed a level of <80% correct
responses were excluded from analysis. The data were fit with the Weibull psy-
chometric function using maximum likelihood estimation method:

px ¼ γ þ 1� λð Þ
1þ e�β x�αð Þ

For the masking data, γ (guess rate: the asymptotic performance at short latencies)
was fixed using the average frommasking at time points< 60ms and λ (lapse rate: the
asymptotic performance at long latencies) was fixed based on the data obtained in
unmasked trials within these sessions. For reaction time analysis, all parameters were
fit. Confidence intervals for fit parameters (thresholds) were estimated using the 2.5th
and 97.5th percentile of distributions created by fitting each of 10,000 bootstrap
simulations for each experimental condition. To bootstrap, trials were randomly
drawn with replacement using Mersenne Twister RNG (Numpy).

The reaction time data were taken only from trials in which no mask stimuli
were presented. These sessions were interleaved with mask sessions. The reaction
time performance data and timing were taken using the first responses following
odor stimulus onset irrespective of grace period. These data were fit using the same
techniques as above, but with all parameters free. Trials with very long reaction
times ( >= 300 ms) were truncated from this analysis, as performance was not
monotonic after ~300 ms.

Masking electrophysiology. Electrophysiology was conducted in awake animals
during using acute recording techniques. Six-shank, 64-ch silicone probes (Buzsaki
64sp, NeuroNexus) were used to record neural activity. The neural data were
acquired using “Whisper” acquisition system (Janelia, HHMI) at 20,833 Hz using
SpikeGL software (Janelia, HHMI). Action potentials were detected and clustered
using SpikeDetekt2 and KlustaKwik with manual clustering preformed using
KlustaViewa39.

All basic analysis was done using the Anaconda Python distribution. Mask
response latency was determined by comparing baseline (no mask) activity
distribution to mask response. To construct baseline sample distribution, PSTHs
for 7 sniffs prior to every mask trial were sampled. From these baseline samples,
100,000 samples of the same size as the number of mask trial were drawn with
replacement to create a simulated PSTH from the same number of trials as the
masked PSTH. Finally, the PSTH from masked trials was compared with the
baseline PSTH distribution. Latency to mask response was defined as the first bin
where firing rate was> 3 fold greater than the baseline PSTH and the bin was at the
0.0001th percentile of the bootstrapped baseline distribution.

Linear SVM classifier. Population vectors were assembled from spike trains of
recorded unit (n= 29) that responded to one of the odors presented. For each cell
and for each trial, a 35-dimensional vector was created by binning action
potential events into 10 ms bins from the 0–350 ms after the first inhalation onset
of the odorant. Activity vectors from cells were concatenated and standardized to
make a population vector for training and testing. Linear classifiers were created
using the Scikit-learn v0.16.1 LinearSVC class40. To assess performance of the
classifiers on unmasked trials, a leave-one-out cross validation strategy was used.
To classify masked trials, classifiers were built using all available unmasked
trials (N= 19), and the classifier was scored on its performance at classifying all
masked trials.

Concentration series electrophysiology. NeuroNexus A64 Poly5 2 × 32 probes
were used to record acutely from awake animals. Units were detected using Spyking
Circus software (v0.3.0)41. Significant odor responses were defined by comparing
inhalation-aligned blank odor response distributions with responses to odor pre-
sentations (Supplementary Fig. 3A–D). To establish these distributions, blank and
odor responses were bootstrapped across trials, summed across trials, and
smoothed with a 3-sigma Gaussian kernel of width 30 ms. For each time point, the
bootstrapped firing rates were fitted with a Gaussian and the Cohen’s D
(discriminability) score was calculated for each time bin. Response latencies were
defined as the first time-bin in with a D-score above 5, where overlap is< 0.01
(Supplementary Fig. 3E, G).

Computational model. Our model was based on random and sparse connectivity
between the MT cells and the PC cells, as well as within the cortex as detailed
below. Our simulation included 300 MT cells and 1000 cells in the PC. Neurons in
PC formed random sparse inhibitory recurrent connections to other cells in PC
with 50% probability. Non-zero inhibitory recurrent connection weights within PC
were WinPP

ij ¼ 3. MT cells also formed random excitatory connections with the PC
cells with 13% probability (each PC cell received inputs from 40 MT cells).
Non-zero projections from MT cells to a PC cell were WinPB

ij ¼ 0:15. In the case of
order dependent model, we used WinPB

ij ¼ 0:30.
The state of each PC neuron was defined by the input that this neuron receives

ui that satisfied the equation

τdui=dt ¼ �ui þ
X

j

WPP
ij fj þ

X

j

WPB
ij mj

Here τ= 0.05 is the time constant measured in the fraction of sniffing cycle. The
activation state for each PC neuron had a hysteretic dependence on its inputs fi=
F±(ui). The activation function F± was single valued for values of input variable u
satisfying u> u+ = 0.2 and u < u−= −150. For these values of parameters, the
activation function F± was equal to 1 and 0, respectively. Within the bistable range,
i.e., for u−≤ u≤ u+, F± was bistable and remained constant depending on prior
history. Therefore, if a neuron was activated, the activation function within the
bistable range remained equal to 1, whereas for an inactivated neuron, the
activation function was 0. Activation occurred when inputs exceeded u+, and
inactivation happened when inputs fell below u−.

Each simulation was carried out over the period of 700 time units using
Runge–Kutta method with time step Δt= 0.002. The simulation started at t= −0.2
and lasted until t= 1.2. t= 0 corresponds to the onset of inhalation, and t= 1 is the
end of the early stage of the sniff cycle. The masking stimulus was presented
between t= 0 and t= 1. This time interval was expected to reproduce the early part
of the sniff cycle during which odorant identity is established.

To model MT cell responses to odorants, we generated random spatiotemporal
patterns of MT cell activity. For the case of pure odorants (black and gray in
Fig. 5d), we used two different random patterns for each of the two odorants. The
response of each responsive MT cell was represented by a transient that lasted 0.5
time units (in fractions of the early part of the sniff cycle). The transient response
consisted of an increase of the output of a mitral cell mj from 0 to 1 and reset back
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to 0. For low/high concentration conditions, the earliest transients began at t= 0.4/
0.25, respectively and the following MT cell transients were distributed at random
times with the time step of 0.02 (every 0.02 a MT cell was recruited). This feature
was intended to replicate the tendency of MT cells to respond later in the sniff cycle
to lower odorant concentrations42. For the mixture case (Fig. 5d), we generated two
sets of random recruitment orders for each of the pure binary compounds within
the mixture and combined them into a single sequence by offsetting one of them by
2 positions, depending on which component concentration was bigger (60 + 40%
vs. 40 + 60% composition). Following the earliest transient onset at t= 0.25, as in
high concentration case, one MT cell was recruited every time interval of 0.02 with
the recruitment order as described above. In each trial, MT cell transients had a
finite probability to be emitted to mimic the experimentally observed transient
event reliability43. The probability was p= 0.8/0.9 for low/high concentration
conditions. To simulate the ChR2 stimulation, we added a pulse that began at the
time indicated in Fig. 4 and lasted 0.1. The amplitude of the pulse was 0.18. The
pulse was present in 75% of MT cells chosen randomly. We added normally
distributed white noise with the standard deviation of 0.1 to the activity of
MT cells. This was done to reproduce observed features of psychophysical
performance. We tested our simulations for a range of parameters and verified that
the qualitative conclusions are not sensitive to the exact set of parameters chosen.
We ran 500 trials for each of the two odorants and each concentration. After each
set of 10 trials, we reset the randomly selected weights and parameters in the model
to mimic trials performed by different animals.

The perceived identity of the stimulus in each trial was inferred from the
activity of PC cells at the end of the simulation (t= 1.2) from the template pattern
of PC response that maximally overlapped the evoked response. To obtain the
template, we ran the simulation once without noise for every condition.

Code availability. The code used for data acquisition is available at https://github.
com/olfa-lab. MATLAB code of the computational model is available in ModelDB
at http://modeldb.yale.edu/231814

Data availability. The behavioral data set is available at https://doi.org/10.6084/
m9.figshare.5325310. Concentration-series electrophysiological (spike times)
data set is available at https://doi.org/10.6084/m9.figshare.5325340. Raw binary
electrophysiological data will be made available on request to corresponding
author.
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