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Abstract—The impedance of a low voltage distribution network
is analyzed and presented. Data collected from field measurement
which was done over one week is used in this analysis. Basically,
a chirp is injected into the electric grid, and the voltage and
current signals (corrupted by various noises, including the 50 Hz
mains signal) are time-sampled and stored for processing. The
voltage and current are processed to obtain the impedance of the
electric grid. Simulations are performed to establish the efficacy
of the method of analysis used to obtain the impedance. The
sliding window method of the Discrete Fourier Transform (DFT)
is used in analyzing these impedance values. An eventual channel
model describing the network is also presented.

Index Terms—DFT, STFT, Impedance, Power Line Communi-
cations.

I. INTRODUCTION

The low impedance characteristic of a power line has been
highlighted as one of the major factors militating against a
significant commercial roll-off of the power line communi-
cations system. Some references on this topic can be found
in [1]–[13], all of which have highlighted the low value of
the power line access impedance. In [6], the characteristic
impedance of a power line in the frequency range of 20–100
kHz is reported to be in the range of 0–80 Ω. The access
impedance of the same channel is reported to be very low (0.5
mΩ–10 Ω) in [8]. The time and frequency dependent nature
of the power line impedance is also its peculiar characteristic
[1]. Perhaps [11] and [12] are the most recent works on this
topic, in which the authors presented the access impedance
characteristics of buildings up to 500 kHz using the voltage
and current method as described in [10]. As pointed out in
[5], these impedance measurements were taken under different
power line environments and consequently have wide variation
in value. In [1], [3], and [5], the inductive or capacitive
characteristic of the power line channel has been established.

The knowledge of the impedance of a network is essential for
a successful point-to-point transmission between a transmitter
and a receiver on the power line grid [3]. More measurements
in determining the impedance characteristics of the network is
essential as the network condition varies with time [10].

Since the condition of the network is hard to control, a
possible solution to ensuring a reliable communication would
be to adapt to the system. The aim of this work is to give
information about the access impedance of a power line
network. The impedance information can therefore enhance
strategic positioning of modems in the network. The use of
an impedance analyzer or a network analyzer would first
come to mind for impedance measurement. However, these
devices are useless when the data being analysed has already
been collected and stored. As stated in [4], one can simply
measure the output voltage and input current of a system, and
divide them in the frequency domain to obtain the impedance
characteristic of the system. To do this we employ the well
known Discrete Fourier Transform (DFT) analysis which is a
useful tool for frequency domain analysis.

The DFT takes discrete samples of signals, usually in the
time domain, say s(n), and translate them into their frequency
components, say S(k) as follows:

S(k) =

N−1∑
n=0

s(n)e
−j2πkn

N . (1)

Computationally, the DFT requires a longer time to compute,
therefore the Fast Fourier Transform algorithm was developed
to compute the DFT. In principle, the FFT algorithm comput-
ers the DFT but at a much lesser time. In this paper, the use of
the term ‘DFT’ implies the FFT algorithm. This method, how-
ever, has a major downside, time and frequency resolution still



remains a major issue as far as this method is concerned. This
problem is somehow explained by the Heisenberg uncertainty
principle, which describes why time and frequency resolution
cannot be increased simultaneously [13]. While increasing
resolution in time, the frequency resolution decreases. One
method of tackling this problem is truncating a sampled signal
and do a DFT on the truncated signal. This method is termed
“Short Time Fourier Transform” (STFT), a repetition of this
process till the whole signal has been processed is termed
“sliding window STFT”.

The STFT is explained as follows: Let f(n) be a time
domain sampled sequence at sampling frequency Fs over a
period of time T , the total number of discrete samples M is
defined by TFs. The M samples of f(n) can be grouped into
N = M

a samples, where each group of N consecutive samples
form a sequence s(n) as follows:

s(n) = [fiN+1, fiN+2, . . . f(i+1)N ], (2)

where i = 0, 1, 2 . . . , a − 1, and a is an integer that defines
the length of N . A DFT is then performed on s(n) for all the
values of i resulting in the STFT of f(n).

This is the concept of the STFT, which is also known
as the ‘sliding window’. The short fall of this method is
poor frequency resolution on the edges of the DFT output.
One method of solving this problem is overlapping the DFT
windows by a factor ‘α’, such that the relation in (2) becomes:

S(n, α) = [fiN+1−α, fiN+2−α, . . . , f(i+1)N−α], (3)

where i = 1, 2, 3, . . . , a− 1.
The DFT window is defined by s(n). There are other

issues such as zero padding and data truncation depending
on the choice of DFT window length, details of which are not
mentioned here because they are well known attributes of the
DFT method.

The motivation of this work was born out of the need
to understand the impedance characteristics of a power line
network. Also, to explain how the DFT can be used to
analyze the impedance of an electrical network - thereby
adding knowledge to the numerous existing results on the
FFT algorithm, by giving a detailed step-by-step procedure in
analyzing the impedance of a power line with the DFT method
from a practical point of view. Also, in most cases, STFT
analysis results are usually shown in spectrograms, in which
the amplitude is shown as color intensity on a 2D frequency-
time plot or as the height in a 3D frequency-time plot. This
work shows how STFT is implemented while showing results
on a 2D frequency-amplitude plane instead of the conventional
way of showing STFT results.

II. SIMULATIONS

In this section, the DFT sliding window method is
investigated in the analysis of impedance. Two scenarios of
the power line are assumed. A purely resistive system, and
then a capacitive system are assumed. We would like to

highlight at this point that these assumptions do not represent
the power line channel model. The sole purpose is to test the
efficacy of the DFT method we intend to apply to the actual
field measurement.

A. Resistive System Consideration

Consider the simple circuit in Fig. 1(a), with supply voltage,
V (t), and load of impedance, Z. Given that V (t) is a cosine
function with an amplitude A. A current I(t) flows in the
circuit according to the relation: 
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Fig. 1. (a). Purely Resistive System (b). Capacitive System.

u(t) = Acos(2πft). (4)

Current I(t) can be derived by dividing the relation in (4)
by Z. V (t) and I(t) are sampled and transformed into their
frequency domain components V (f) and I(f). The impedance
Z(f) of the system can therefore be retrieved according to (5)

Z(f) =
V (f)

I(f)
, (5)

Since it is a resistive system, a constant impedance value for
all frequency ranges should be expected. These values are
compared with the known reference value of Z. If these values
are equal, then the accuracy of this method is established.

Because of its frequency changing property, a linear chirp
signal is used for this analysis as well as the field measure-
ment. In Matlab, a chirp (0–250 kHz) voltage, sampled at 500
kHz with an amplitude of 2 Vp is generated. An Impedance
value of 2 Ω is assumed. The spectrogram of V (t) is shown
in Fig. 2.

Fig. 2. Chirp signal for a noiseless system.



Applying STFT on V (t) and I(t) of the chirp signal for
the circuit in Fig. 1(a), the image in Fig. 3 is obtained. At
this stage no overlapping of samples is involved. This image
depicts the plots of V (f) and I(f). The upper plot represents
V (f) while the lower plot represents I(f). Attention should
be given to the thin line that cuts across the dense region of
each of the two plots, which after our careful observation is
identified as the amplitude of the signal present. The lines are
lines of best fit for the plots and they are achieved by applying
a spline to the plots using the polynomial relation as described
in [15].

Fig. 3. V (f) (V) and I(f) (A) plots for a noiseless resistive system.

If Figure 3 is further zoomed in, spaces between different
DFT windows can be observed. This is poor frequency reso-
lution on the DFT edges and it is a consequence of applying
the relation in (2). One way of combating this problem is
by finding a line of best fit for the DFT magnitude. This
solution is based on intuition which solely relies on the
condition that the signal-to-noise ratio is significantly high,
especially where background noise is concerned. Z(f) is
therefore derived according to the relation in (5). To achieve
this, we implemented (5) in two different approaches:

• Direct division of V (f) and I(f), i.e.

|V (f)|
|I(f)|

=

(
|a1 + jb1|
|c1 + jd1|

,
|a2 + jb2|
|c2 + jd2|

, . . . ,
|aN + jbN|
|cN + jdN|

)
(6)

• Division using average values of V (f) and I(f) (line of
best fit).

The essence of these two approaches is to find out how
much effect the observed poor frequency resolution has on
the eventual impedance value. The result of this investigation
is shown in Fig. 4. It is evident that this method yields the
2 Ω impedance value for all frequencies as expected. Note
that only one line is visible on the plot, this is because the
two plots perfectly overlapped. The poor frequency resolution
appears not to have any effect on the result, this is explained
by the fact that the voltage and the derived current thereof are
similar for a purely resistive load. One can therefore conclude
that any error introduced into the voltage as a result of DFT

Fig. 4. Impedance Z(f) derived with the DFT sliding window method
(resistive noiseless channel).

would be the same for the current, hence the effect would be
canceled out with division.

We consider a simulated channel with three types of known
noise associated with the power line channel. The three types
of noise added to the voltage signal are:

1) Narrow-band noise;
2) Impulse noise;
3) Background noise.

For more information about these types of noise, reader is
referred to [18].

Fig. 5 is a spectrogram showing how these noises affect
the chirp signal. The vertical lines represent narrow band
noise; the horizontal lines represent impulse noise, while white
Gaussian noise is used as background noise, it fills all the
spectrum.

Fig. 5. Spectrogram of a chirp signal (voltage) for noisy system that is
resistive.

A first glance at Fig. 5 immediately shows the effectiveness
of the STFT method as far as a transient signal is concerned.
Apart from the background noise that spreads over the spec-
trum, the other two types of noise only affect the chirp at
a specific point. For example, the chirp is only affected by
the the impulse noise around 125–130 kHz, 2.5s approx. The
narrow band noise therefore poses more problem as it occurs
more frequently. One solution is to avoid these noises in
analysis and use interpolation to get the values for the affected
frequencies - this, however, we find to be computationally
difficult. Another solution would be to perform a STFT on
the signal without avoiding the noise spectrum. An estimate
of the actual value can be found by using the coefficients of
the relation in (6). This second solution is applied in this work.
The reader is referred to [16], [17], and any Matlab documen-
tation on curve fitting and least squares approximation method.
For the purpose of this analysis, these narrow-band noises are



spaced 5 kHz apart. The spacing is in agreement with the
observed harmonics from the field measurement.

Fig. 6 demonstrates how noise affects the STFT method,
where the direct division of V (f) by I(f) is found to yield
error. However, the average values yielded the expected 2 Ω
impedance value. As a result of this, only result from average
values obtained from finding a line of best fit for the STFTs
will be presented in the remaining sections of this work.

Fig. 6. Impedance Z(f) derived with the DFT’s sliding window method
(resistive noisy channel).

B. Capacitive System Consideration

For the second scenario of our DFT test, we consider a
simple parallel network of a resistor and a capacitor (Fig. 1(b)).
This type of circuit not only has a frequency dependent
impedance characteristic, there is also a difference between
the phases of the voltage and current in the circuit [15]. The
aim is to test how these characteristics influence the STFT
result.

Given a parallel RC circuit as shown in Fig. 1(b), we
can compute the instantaneous impedance according to the
relation:

Z(ω) =
R

(1 + jωRC)
, (7)

where, R = 10 Ω and C = 10−6 F; ω = 2πf .

The instantaneous impedance values obtained from (7) will
be compared with the DFT method which is applied to both
V (t) and I(t). The total current can be determined by applying
Kirchhoff’s current law.

Using a chirp that spans between 20 kHz–80 kHz and
sampled at 1 MHz, A STFT is obtained for the voltage and
current signal. The limitation to this frequency range for the
capacitive system is a deliberate action. In order to derive
current from a given voltage, the signal has to be over-sampled.
However, this is computationally uneconomical, we therefore
restrict analysis to lower frequency region (up to 80 kHz).

Attention is called to Fig. 7. Here the plot shows impedance
values from the STFT and the calculated impedance with the
use of (7). The STFT can be seen to deviate from the cal-
culated impedance as the frequency increases. This deviation
is attributed to the method by which I(t) was derived, which

translates to the need for a very high sampling frequency as
stated in the previous paragraph. The percentage deviation is
therefore shown in Fig. 8. Although not shown here, the STFT
method approaches the calculated values with an increase in
the sampling frequency.

Fig. 7. Comparison of calculated impedance values with the STFT derived
values for a noiseless capacitive system.

Fig. 8. Percentage deviation. (The DFT method deviates from ideal due to
insufficient sampling).

The last test of the sliding window DFT is the noisy scenario
of the capacitive system. The same noise scenario as the
resistive system is applied. The same types of noise are added
to the voltage and current signals. The resulting impedance
(Fig. 9) indicates error caused by these noises. However we
find these errors to be in an acceptable limit.

Fig. 9. Comparison of calculated impedance values with the STFT derived
values for a noisy capacitive system.

III. APPLYING THE SLIDING WINDOW TO FIELD
MEASUREMENT

This section covers the implementation of the method de-
scribed in the previous section on an actual field measurement.



This measurement was done in an area called Kastel in the
Netherlands. Fig. 10 shows the measurement setup, while
Fig. 11 shows a summary of the impedance analysis process.
The data is captured and stored using a program called
Dewesoft. The stored information is further processed and
analyzed in Matlab. Since the data contains low frequency
components such as the 50 Hz mains signal, filtering becomes
necessary. This high pass filter in Fig. 11 filters the low
frequency components present in the data. Also it is necessary
to note that the low pass filter in Fig. 11 is only serving
the purpose of windowing, a Kaiser window is used in this
case. From Fig. 10, the tick line between the transformer and
the feeder branch represents the three phases (red, blue, and
green) of the power line network. A chirp signal is injected
into one of the phases at any point in time. The voltage and
current flowing in the lines are measured and stored at 500 kHz
sampling frequency. As stated in [6], it is worth mentioning
that crosstalk across the phases is observed, this, however, is
beyond the scope of this work.

Transformer 

Medium Voltage  

Feeders 

Impedance 
measurement Chirp Injector  

V(t) 
I(t) 

Fig. 10. Field measurement setup.

Data 

High Pass 
Filter 

Time Filtering /Samples Overlapping 
 

Band pass 
Filter 

DFT 

Select Frequency range of 
Interest & Approximate 

Compute & 
store 
Impedance 

Windowing 

Fig. 11. Summary of impedance analysis process.

A very first observation from the spectrogram plot of the
data are the harmonics spaced at approximate value of 5 kHz
apart. Their source is traced to some variable frequency drives
(VFDs) present in the transformer station. These harmonics
are identical to the vertical lines shown in Figure 5. It is also
observed the their signal strength fades away in the higher
frequency region.

After applying the sliding window DFT to the data, the
first observation is that the curve fitting approximation method
failed dismally in comparison to the result obtained in the
simulations section. This problem is solved by curve fitting
individual DFT window before bringing them together. A

comparison between Fig. 3 and Fig. 12 shows a clear improve-
ment in the approximation method. It therefore goes without
saying that overlapping the DFT windows improves the poor
frequency resolution on the edges.

Fig. 12. V (f) of a chirp from field measurement showing improvement in
approximation method.

Finally, the estimated impedance values of loaded phases
of a medium voltage transformer are shown in Fig. 13. The
word ‘estimate’ is used to describe these values, because
approximations have been used in arriving at the values.
Fig. 13 shows a resonant behavior of the load, which suggests
some reactive property of the connected load. The dynamic
nature of the power line impedance is further established here.
The lower frequency region (30–50 kHz approx.) shows the
effect of low SNR, values in this region are not reliable.

Fig. 13. Impedance of a power line load for different phases.

IV. MODELLING THE POWER LINE CHANNEL

This section gives a simple model of circuit elements that
can be connected to obtain results approaching (or comparable
to) those obtained from the real data of the power line network.

Fig. 14 is a diagram of the secondary side of a loaded
3-phase transformer, with a voltage signal V injected into
one of the phases. This shows more information about the
measurement setup as well as explains the cross-talk observed
across phases. A simplified network model of Figure 14 is
shown in Fig. 15. Each phase is represented by an inductor,
with the inductance represented by P1, P2, P3 for phase-
1, phase-2, and phase-3 respectively. Assuming all series
parameters are negligible for the purpose of analysis, the load
on each phase can be represented by a parallel LC circuit with
a resistor connected in series with the inductor.

The impedance, ZP1, of coil1 is given by:



Fig. 14. Loaded 3-Phase transformer circuit.

Fig. 15. Simplified power line channel model.

ZP1 = jωP1. (8)

If the coils have equal impedance values, then,
ZP1 = ZP2 = ZP3.

From (8), it is evident that the impedance value approaches in-
finity as the frequency increases. Also, assuming Z1 = Z2 = Z3,
then branch B will sink almost all the current flowing in the
circuit. Branches A, C, and D can be replaced with an open
circuit. Therefore the observed cross-talk across phases from
the field measurement can only be coupled through air and not
through the transformer. In our simulations, the behavior of the
load in branch A is comparable to those shown in Fig. 13. The
resonant characteristic of the load depends on the value of the
capacitor. Also, the resistance value determines the minimum
value of the impedance.

V. CONCLUSION

This work has presented the impedance characteristics of
a power line network from a measurement point of view and
simulations have been used to justify the results. STFT with
Matlab is used in analyzing these measurements. In this work,
results from actual field measurements have been presented.
A step-by-step procedure on how STFT can be implemented
from a practical point of view has also been presented.
Absolute values have only been presented in this work. This
is a bottleneck of the DFT method, in the presence of noise,
signal reconstruction from the STFTs becomes very difficult.
The impedance value ranges from 12 Ω to a maximum of
200 Ω in the frequency range of 50 kHz–200 kHz.
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