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Abstract — Battery equivalent circuit models (ECMs) are
widely used in battery management systems (BMSs),
such as in electric vehicles (EVs). The battery terminal
voltage-current (V) dynamics and the ECM
parameters depend on the operating conditions, such as
the state of charge (SOC) and temperature. Online
parameter estimation can improve not only the
modelling accuracy, but also the performance of model-
based SOC estimation, which plays a key role in BMS.
This paper presents a continuous-time (CT) domain
algorithm for online co-estimation of the battery ECM
parameters and SOC, using the linear integral filter
(LIF) method. Compared with the conventional discrete
time domain least square algorithm, the proposed CT
LIF technique has superior performance at capturing
the battery slow dynamics, which can further improve
the SOC estimation accuracy. Experimental data are
collected using a Li ion battery (LIB), and the results
are analyzed to verify the efficacy of the proposed
algorithm.

Keywords - equivalent circuit model, recursive parameter
and SOC estimation, linear integral filter.

1 INTRODUCTION

Equivalent circuit models (ECMs) have been
widely used in battery management systems of battery
energy storage systems due to the ease of
parametrization and implementation and acceptable
modelling accuracy. An ECM uses a combination of
electric components, including resistors and
capacitors, to represent the battery terminal voltage-
current (VI) behavior. Figure 1 presents a typical
ECM, where v,i are the battery terminal voltage and
current, respectively. The battery open circuit voltage
(OCV) depends on the battery state of charge (SOC).
The R, stands for the battery series resistance, and the

RC networks are used to capture the dynamics voltage
relaxation effects.

One key issue with ECM is that the model
parameters depend on the operating conditions, for
instance, the ambient temperature, SOC and state of
health (SOH). For example, a Li ion battery (LIB) cell
shows nearly doubled internal resistance as the
temperature drops from 25 ‘C to 0 "C [1]. The
parameter dependency can be described using a look-
up table trained offline. However, this offline battery
characterization is time-consuming. Moreover, the
tabulated ECM parameters will lose efficacy as the
battery degrades. Therefore, online recursive
parameter identification schemes should be used to

keep track of the evolving ECM parameters to
improve modelling accuracy.

SOC estimation is another key issue in BMSs [2].
Existing SOC estimation algorithms based on onboard
VI measurements include Ampere hour (Ah) counting
and OCV-based algorithms [1, 2]. ECM-based state
observer techniques, such as Kalman filter (KF),
unscented KF (UKF), H-infinite filter, etc. [3-6], have
been widely used for real-time battery SOC estimation
by combining the advantages of the Ah and OCV-
based methods. The SOC estimation performance
depends on the model accuracy, and therefore online
estimation of the ECM parameters can improve not
only the modelling accuracy, but also the SOC
estimation performance [7].

Various of recursive identification algorithms have
been proposed for online ECM parameter estimation,
such as the recursive least square (RLS) schemes [1,
8] and the state-observer based algorithms including
KF, UKF [3, 4], H-infinite filter [9], etc. Forexample,
Plett suggested joint/dual extended KF and UKF for
co-estimation of the ECM parameters, SOC and SOH
[3, 4]. Chen et al [5] proposed using dual H-infinite
filters for simultaneous estimation of model
parameters and SOC. A combination of the RLS
algorithm for recursive parameter identification and
the KF algorithm for SOC estimation has been
reported in [10]. These algorithms are generally
derived and implemented in discrete-time (DT)
domain. However, for the battery system consisting of
both fast and slow dynamics (e.g., the charge transfer
as the fast dynamics and diffusion as the slow
dynamics), the time constants of the RC branches in
Figure 1 will be widely separated. This poses severe
numerical problems to the DT domain identification
methods like RLS. Another problem shows in the case
of fast sampling because the model poles will lie close
to the unit circle in the complex domain, so that the
model parameters are more poorly defined in
statistical terms [11]. These problems can be
addressed using continuous time (CT) domain
identification algorithms. The advantages of CT
domain identification algorithms compared to the DT
methods include (i) that the model parameters are
independent of the sampling time and, (ii) that the CT
methods can deal with widely separated system poles.
Xia et al [12] compared the CT and DT algorithms,
for ECM parameter optimization, and concluded that
the CT method has superior performance for
identifying a stiff systemlike the battery, especially in
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the presence of measurement noises and with low data
storage resolution. One limitation is that the proposed
algorithm is implemented offline, and thus cannot be
used for online recursive estimation of ECM
parameters and SOC.

This paper presents a CT domain identification
method for online co-estimation of the battery
parameters and SOC. The linear integral filter (LIF)
algorithm is adopted for the ECM parameter
estimation. Comparing with the DT LS method, the
LIF algorithm shows improved modelling accuracy,
which further leads to improved SOC estimation
performance. The proposed algorithm can be
implemented offline or recursively for realtime
applications. Test data are collected on a LIB cell and
the experimental results verify the superiority of the
CT LIF algorithm over the DT RLS method.

2  Battery ECM

L J »
1 2

v,
<—0— Rl "2

Ry

Figure 1 Battery equivalent circuit model

2.1 DTRLS

The battery ECM is depicted in Figure 1, the
symbols OCV,v,i,R,, R C,,R,C, have been explained
in the Introduction section. Assume that zero-order
holder is applied for the VI measurements, the RC
dynamics can then be put as

vi(k+)=a,; v, (k)+b,,i(k), j=12 (1)
where
a,,=exp(-T, /R, /C))
bjy=R,(1-a;,)
Where v, (k) stands for v, (k7)) , and 7| is the
sampling interval in seconds.

Let z be the time shift operator, i.e.,
zx(k) = x(k +1). Eq (1) can be re-written as

b,
v, (k) = ——i(k)
z—a,,

The Ah method is used for calculating the battery
SOC [1],i.e.,

SOC(k+1) = SOC(k) + gi(k) 2)

where C, is the battery nominal capacity.

The model terminal voltage in Figure 1 is a sum of
the OCV and the over-potentials as follows,

(k) =0CV (k) +v,(k)+v,(k)+v,(k) (3)

Let v, =v,+v,+v, =v=-0CV In case of

unknown battery SOC and OCV, an estimated OCV
value can be used, i.e.,

v, =v—0CV =v— f(SOC) 4
where OCV and SOC are the OCV and SOC
estimations, respectively.

Combining Eq (3) and Eq (4) leads to,
v, =v, +v, +v, +(OCV - OCV) %)
Define

¢, =0CV —OCV = £(SOC)~ £(SOC)
~ k (SOC - SOC) ’

which depends on the SOC error SOC —SOC and
the slope of the OCV-SOC curve &, . For the LIB cell

used in this paper having a quasi-linear OCV-SOC
curve as depicted in Figure 5, the slope k, can be

taken as a constant or a slowing varying variable. On
the other hand, the SOC error SOC-SOC is a
constant if both SOC and SOC are updated using Eq
(2). Therefore c, can be taken approximately as a
constant. Eq (5) leads to

v, (k) =v,(k)+v, (k)+v,(k)+c,

bld bZd .
=R, +——+—=)i(k)+¢c, (6)

Z—al_’d Z—azyd

6,,z22+0,.z+6,,
_ d,42z 03210, ith) +e,
z°—-6,,z-0,,

The relationship between 6, and the RC values is

straightforward and thus omitted here. Eq (6) can be
reformulated into the linear in the parameter (LITP)
way as follows

v (k) = 0,,2v,(k)+6, v, (k)+ 6’“221'(1()

. . )
+0, ,zi(k)+ 6, ,i(k)+(1-6,, -6, ,)c,

Let
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vy (k) = v (k),
T
ed = [Hd,loed_deA ’ed‘.?: 3‘9(1‘2 (1= ed‘l - 0(1_0 )Co ] >
0, (k) = [ 2v, (k). v, (k). 22i(k). zi(k),i(k),1 ]
Eq (7) yields
yd(k)=9f¢7d(k) ®
The parameters &, can be optimized using the LS
algorithm or recursively using RLS in Eq (9).
Problem Formulation:
w(k)=0"p(k)
RLS solution
e(k+1) = y(k+1)— " (k+1)6(t)

Ok +1) = 0(k) + P(k + Dop(k + De(k +1)
P(k)p(k +1)p" (k+1)P(k)
1+¢" (k+1)P(k)p(k +1)
The initial parameters €(0), P(0) can be obtained by

performing a block-wise LS identification procedure
as discussed within [13]. O, is set to be P(0)/1000 in

this paper.
2.2 CT LIT method

The CT domain dynamics of a RC network can be
expressed as

P(k+1)= P(k)- +0, 9

d SN
Zv}. ) ==-a;, v;O)+b, i(t),j=12 (10)

Where a, . =1/R,/C,,b, =1/C,.

b.

Eq (10) leads to v,=—=—i , where s
s+a,
Jj.e

represents the Laplace operator.

Similar to Eq (6), the sum of over-potentials v,
can be calculated as follows,

v (1) = v, () +v () +v, () +¢,

, b
= (R, +——+—=)i(1) +¢,
S+al’c s+azyc

0 ,4s2 +0,,5+0,

c 2 .
=% 2 j(t)+c
st 4+ 0.s+0,, 0

(11)

Next, the LITP form of Eq (11) is given below,
v =0, 0= 0, (0)+0,,7 ()
+0, 1P+ 0,,i(t) + 0.,

(12)

Where x® stands for the k-th order derivative of
x . The derivative terms v*'(¢),i*’(¢) are not directly

measurable. Different algorithms can be used to deal
with these derivative terms, such as the state variable
filter, LIF, and modulating function methods, etc. The
LIF method is adopted in this paper because of its
ease of digital implementation and the relief of
calculating initial conditions.

Perform two successive integral calculations on
both sides of Eq (12), i.e.,

T j Eq (12)dtdt, (13)

1,~LT, 4~LT,

Where L is a positive integer and L7, is the length
of the integral window.

Let
fo=(05+z" + 27 + L+ 27+ 0.5279)T,
fi=1- z*
Then, Eq (13) can be re-expressed as
v =0,/ v, (0 =0, /v, () + 6., fi(D) (14)
+49(,'3f0f1i(t) + 49(,_2f02i(t) +¢0,, (LZ;)Z
Define
y.(0) = £, (@)
ac = [_90,1’_90,0’ 9@,4’ 60,3 > 9@,2 ’C()ec:() (LT; )2 ]T
@ = LS, (O, 15v (0, 1210, [ 1), £, 1]
Eq (14) leads to

y.(0)=0"p.(1) (15)

Eq (15) is a LITP problem and thus the LS and
RLS algorithms can be adopted for offline and online
parameter estimation.

2.3 SOC Estimation

Since c¢,(k) =OCV (k)—OCV (k) , the estimation
of the battery OCV and SOC can be corrected after
obtaining ¢, as follows,

OCYV correciion = OCV k)+ ot
t ( ) Correction (1 6)
SOCcomzct[on = ]('_1 (OCVcorrection )

where f~' stands for SOC-OCV relationship, and

[
C, ection =" C k_l+1
corre Nl IZ:I: 0 ( )

As discussed within [14], there is no need to
correct the SOC estimation at every sample, since the
convergence of parameter estimation takes certain
time. Executing Eq (16) every N, samples can avoid

unnecessary parameter fluctuations. The estimated
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values of OCV,v_,c, will be affected by this SOC

correction. Therefore, update these variable as
follows,

OCV(t=2LT, :t)=OCV (t=2LT, :t) + C,pprpesion
v (t=2LT :t)=v (t=2LT, :t)—c
c,(k)=c,(k)-c

correction

in @, and 6,

correction

and the rest model parameters Ro,aj,bj will

remain unaffected [14]. Note that the Matlab syntax is
used here to indicate the way of variable update.

The recursive implementation of the CT LIF
algorithm (similarly, the DT RLS scheme) for co-
estimation of the ECM parameters and SOC is
illustrated in Figure 2.

Ve CTUF f
g 1 g . e B =
- (LY
Figure 2 The implementation procedure of the CT LIF
algorithm. The Ah method is represented by the integral
block, and the ‘SOC Correct” block stands for the SOC
correction scheme detailed in Section 2.3

3  Experimental Setup

Experimental data have been collected using a
commercial cylindrical 3Ah 18650-type cell which
comprises graphite negative electrode and a
LiNiCoAlO; positive electrode. A Bitrode battery
cycler is used with a thermal chamber for maintaining
the ambient temperature constant at 25°C . First, the
battery is fully charged by the constant-current, -
constant-voltage (CC-CV) method, and then
discharged at 1C rate to 50% SOC, followed by a rest
period for two hours. Next, a drive cycle test is
applied that reduces the battery SOC to 45% SOC.
The VI measurements are plotted in Figure 3. The
sampling interval is 1 second.

Another drive cycle test is implemented in a
similar way, starting from 75% SOC until end of
discharge i.e., when the voltage reaches the cut-off
voltage level. Figure 4 depicts the VI measurements.

The battery OCV-SOC relationship s
characterized experimentally, as presented in Figure
5.
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Figure 3 Battery drive-cycle test 1 at25°C . The test
starts at 50% SOC and ends at 45% SOC
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Figure 5 Battery OCV versus SOC
4  Experimental Results

4.1 Offline Model Training

The test data in Figure 3 are used here to train the
ECM offline. The battery SOC is assumed to be
known and thus the OCV can be calculated using the
OCV-SOC relationship in Figure 5. The over-
potential v, can then be obtained, i.e., v, =v—-0CV .

The DT LS and CT LIF algorithms are applied for
the ECM parameter identification for comparison.
Note that ¢, =0 in both cases, since the battery SOC

and OCV are known exactly.

The identified model parameters are given as
follows,

DTLS: 7,=1.28s, R =0.93mQ,
7, =39.4s, R, =23.2mQ, R, =37.7TmQ
CT LIF: 7, =13.2s, R, =9.41mQ),
7, =265s, R, = 27.4mQ, R, = 37.8mQ

(17)

The parameter identification results show that the
CT model covers a wider time scale, as the larger time
constant of the CT model is z, =265s , compared to

7, =39.45 of the DT model. The model fitting results
are depicted in Figure 6, and it shows that the CT
model has superior accuracy. The modelling root
mean square errors (RMSEs) are in turn 3.4mV and
7.4mV.

Figure 6 compares the true v, (i.e., v minuses the
true OCV) and the model output v, (i.e., v, +v, +v,.
v,v, are calculated using Eq (1)) of the two
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comparative algorithms. Based on the parameter
identification results in Eq (17) and the modelling
error in Figure 6, the higher accuracy of the CT model
can be attributed to the wider time scale it covers
compared to the DT model. Another distinctive
feature in Figure 6 which can support this conclusion
is that the DT model shows remarkably larger errors
during 200-300s, where the load current is dominated
by low frequency components (i.e., <0.01 Hz),
indicating that the DT model has a poor fitting at this
low frequency range.

Moreover, in case of unknown battery SOC, the
battery OCV can only be estimated by v-v,
Therefore, a better v, estimation accuracy will lead to

a better OCV estimation, and thus higher SOC
estimation performance.
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Figure 6 The offline model training results

4.2 Recursive ECM Parameter and SOC
Estimation

The test data in Figure 4 are used for recursive
ECM parameter and SOC estimation. The SOC range
is limited to 75-25% in order to avoid the low SOC
level where the battery shows strong nonlinearities.
The initial SOC estimation is set to be 65%, with a
10% initial error.

The model parameter identification results are
shown in Figure 7. The results show that (i) the CT
model covers a larger time scale compared with the
DT model. Based on the conclusion in Section 4.1, we
can reasonably assume that the CT model will have
better performance at capturing the battery slow
dynamics; and (ii) the total resistance R,+ R, +R,
using the CT algorithm is higher than that of the DT
method. This may be explained by that the DT model
cannot capture the battery slow-dynamic resistance
(because 7, <30s in the DT model); and (iii) the
R, values of the two algorithms are similar, which
indicates that both the DT and CT algorithms can
reliably estimate this series resistance R, ; and (iv) the
total resistance shows relatively lower value around
5000 seconds, at about 50% SOC, which indicates

that the total resistance of this cell is lower around
50% SOC.

The SOC estimation results are shown in Figure 8.
It can be observed that the CT LIF algorithm
outperforms the DT LS method in terms of SOC
estimation accuracy. The SOC RMSEs are 1.78% and
3.49%, respectively. This different SOC estimation
performance can be explained by the v, estimation

results depicted in Figure 9. Since the CT model can
capture the battery dynamics within a wider time
scale, the v, estimation error using the LIF algorithm
is lower than that of the DT LS method. This higher
v, fitting performance further led to the higher SOC

accuracy.

The modelling errors are shown in Figure 10. Note
that the modeling errors are different from the
v, estimation errors in Figure 9, because the OCV
estimations are different for the two algorithms.
Although the DT model shows slightly higher
modelling accuracy compared with the CT model (the
RMSEs are 4.9mV and 6.0mV in turn.), it comes at an
expense of higher SOC estimation error because the
DT model cannot capture the slow dynamics within
the battery over-potential voltage.

5 Conclusion

This paper proposed using the CT LIF algorithm
for recursive co-estimation of the battery ECM
parameters and SOC. Compared with the DT LS
algorithm, the proposed CT LIF algorithm has
superior performance at capturing the battery slow
dynamics, which further leads to better SOC
estimation accuracy. Test data are collected using a
LIB cell, and the experimental results are analyzed to
demonstrate the efficacy of the proposed algorithm.
The proposed CT LIF algorithm has low
computational complexity, and depends only on the
online-available VI measurements. Therefore, it has
high capability to be implemented for onboard
systems to improve the modelling and SOC
estimation accuracy.
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Figure 7 The parameter identification results using the
DT LS method (a) and the CT LIF method (b). The unit for
time constants 7 is second, and the unit for resistors is mQ.
The x-axes show the time in seconds.
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