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a b s t r a c t 

The mevalonate pathway is normally found in eukaryotes, and allows for the production of isoprenoids, a 

useful class of organic compounds. This pathway has been successfully introduced to Escherichia coli , en- 

abling a biosynthetic production route for many isoprenoids. In this paper, we develop and solve a math- 

ematical model for the concentration of metabolites in the mevalonate pathway over time, accounting 

for the loss of acetyl-CoA to other metabolic pathways. Additionally, we successfully test our theoretical 

predictions experimentally by introducing part of the pathway into Cupriavidus necator . In our model, we 

exploit the natural separation of time scales as well as of metabolite concentrations to make significant 

asymptotic progress in understanding the system. We confirm that our asymptotic results agree well with 

numerical simulations, the former enabling us to predict the most important reactions to increase isopen- 

tenyl diphosphate production whilst minimizing the levels of HMG-CoA, which inhibits cell growth. Thus, 

our mathematical model allows us to recommend the upregulation of certain combinations of enzymes 

to improve production through the mevalonate pathway. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Isoprenoids are a diverse class of naturally occurring organic

hemicals found in all organisms. In plants, isoprenoids are the

ause of many aromas and, in animals, isoprenoids form steroids

nd sterols. The wide range of isoprenoid products is one rea-

on why the successful introduction of a viable isoprenoid path-

ay to Escherichia coli by Martin et al. (2003) (in this case to

roduce amorpha-4,11-diene, a pre-cursor to the antimalarial com-

ound artemisinin) was a major breakthrough in synthetic biology.

ince then, a significant amount of experimental work has been

arried out to improve the yield from this pathway (see, for exam-

le, Anthony et al., 2009; Kizer et al., 2008; Newman et al., 2006;

itera et al., 2007; Tabata and Hashimoto, 2004 ). 

There are two main pathways from pyruvate to isopentenyl

iphosphate (IDP) and dimethylallyl diphosphate (DMADP), and

hese two products can react to make isoprenoid compounds. IDP

nd DMADP are essentially interchangeable due to the enzyme

sopentenyl diphosphate isomerase that allows conversion between

he two. The first pathway is known as the mevalonate pathway,
∗ Corresponding author. 
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nd starts from acetyl coenzyme A (acetyl-CoA), mainly derived

rom pyruvate, which is converted to IDP via the key pathway

ntermediate mevalonate. The second pathway is known as the

on-mevalonate or, alternatively, the 2-C-methyl- D -erythritol 4-

hosphate/1-deoxy- D -xylulose 5-phosphate (MEP/DOXP) pathway,

nd also converts pyruvate to IDP. The mevalonate pathway was

he first to be discovered, and occurs naturally in eukaryotes. The

on-mevalonate pathway mainly occurs in bacteria (with some ex-

eptions), and some plants. 

The reason for introducing the mevalonate pathway to E. coli , a

acterium that naturally expresses only the non-mevalonate path-

ay, is to bypass the natural negative feedback mechanisms in

lace that would ordinarily prevent the overproduction of iso-

renoids. We are interested in mathematically modelling this

evalonate pathway, with the goal of understanding how to fur-

her modify the pathway by, for example, upregulating genes that

ontrol certain enzymes, in order to produce more IDP. The meval-

nate pathway we will model comprises the following: 

yruvate 
k 1 → Acetyl-CoA , (1a) 

cetyl-CoA 

k 2 �
k −2 

Acetoacetyl-CoA , (1b) 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A schematic network diagram for the pathway we consider in this paper, where arrows denote the direction of the reactions. We only track the metabolites included 

in this Figure and, specifically, not any involved in the acetyl-CoA sink. Where we write E i (for i = 1 , . . . , 7 ) next to a reaction arrow, this denotes a specific enzyme that 

controls the reaction. Hence, E 1 corresponds to the pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12, and EC 1.8.1.4), E 2 corresponds to acetyl-CoA acetyltransferase 

(EC 2.3.1.9), E 3 corresponds to HMG-CoA synthase (EC 2.3.3.10), E 4 corresponds to HMG-CoA reductase (EC 1.1.1.34), E 5 corresponds to mevalonate kinase (EC 2.7.1.36), E 6 
corresponds to phosphomevalonate kinase (EC 2.7.4.2), and E 7 corresponds to mevalonate diphosphate decarboxylase (EC 4.1.1.33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Dimensional and dimensionless variable definitions. 

Original variable Description Nondimensionalisation 

[ S 1 ] Pyruvate [ S 1 ] = S 0 S 1 
[ S 2 ] Acetyl CoA [ S 2 ] = S 0 S 2 
[ S 3 ] Acetoacetyl-CoA [ S 3 ] = S 0 S 3 
[ S 4 ] HMG-CoA [ S 4 ] = S 0 S 4 
[ S 5 ] Mevalonate [ S 5 ] = S 0 S 5 
[ S 6 ] Mevalonate phosphate [ S 6 ] = S 0 S 6 
[ S 7 ] Mevalonate diphosphate [ S 7 ] = S 0 S 7 
[ P ] Isopentenyl diphosphate [ P] = S 0 P

τ Time τ = (S 0 /k 1 E 1 ) t
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d  
Acetyl-CoA 

A → φ, (1c)

Acetoacetyl-CoA + Acetyl-CoA 

k 3 → HMG-CoA , (1d)

HMG-CoA 

k 4 → Mevalonate , (1e)

Mevalonate 
k 5 → Mevalonate phosphate , (1f)

Mevalonate phosphate 
k 6 → Mevalonate diphosphate , (1g)

Mevalonate diphosphate 
k 7 → Isopentenyl diphosphate , (1h)

where (1c) represents the loss of acetyl-CoA to other metabolic

pathways, such as the citric acid cycle or any pathways directly

involved with fatty acid biosynthesis. Moreover, we will not keep

track of any metabolites associated with this acetyl-CoA sink. We

show a schematic of the pathway in Fig. 1 . 

In general, the aim of our model is to determine which reac-

tions are the most important for IDP production without resort-

ing to expensive and time-consuming experiments. We are also in-

terested in determining which reactions have the most significant

control over the levels of 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA), linked to the inhibition of cell growth due to its in-

hibition of fatty acid biosynthesis ( Kizer et al., 2008 ). Specifically,

we will be interested in maintaining low levels of HMG-CoA whilst

increasing IDP production. 

We make several key modelling assumptions to facilitate anal-

ysis of our system. Firstly, we assume that the formation rate of

enzyme complex is much quicker than the rate of substrate con-

sumption, and thus the reaction rates are governed by Michaelis–

Menten-type laws, the specific form of which we obtain from the

literature. We also consider a system that is well mixed and thus

spatially independent. Additionally, we consider the case where

pyruvate is instantaneously introduced to a system containing all

of the relevant enzymes, but none of the intermediate metabolites,

allowing for a cleaner mathematical analysis. We first investigate

the case where pyruvate is continuously replenished and held at

a constant concentration, then the case where pyruvate is never

replenished. We show that the second case shares many similari-

ties with the first until the pyruvate is depleted to a certain criti-

cal level, which we determine. Understanding these extreme cases

allows us to determine the key reactions in this pathway, and to

suggest targets for upregulation. 

As is the case with many biological systems, there are many

parameters in the system. Thus, a comprehensive understanding of

the system using a purely experimental approach would be very

time consuming. This reasoning also applies to investigating our
athematical model using a fully numerical approach, although

he time taken to investigate the system would be shorter than the

urely experimental approach. To get around this issue, we supple-

ent and guide our numerical simulations by determining asymp-

otic approximations (see, for example, Hinch, 1991; Kevorkian and

ole, 2013; O’Malley, Jr., 2012 ) of the metabolite concentrations.

his will enhance our physical insight into the underlying system

nd allow us to determine how the concentrations vary as func-

ions of the experimental parameters. Moreover, this approach al-

ows us to bypass the issue we have with the uncertainty in the

arameters, as this method only requires an idea of the order of

agnitude of each parameter. 

Finally, to test our theoretical predictions, we introduce part

f the mevalonate pathway (from acetyl-CoA to mevalonate) into

upriavidus necator by transforming it with a plasmid harbour-

ng the mvaE and mvaS genes from Enterococcus faecalis under the

ontrol of the P BAD L -arabinose inducible promoter. The mvaE and

vaS genes code for the enzymes responsible for the conversion of

cetyl-CoA to mevalonate (in the first half of the mevalonate path-

ay). We show that mevalonate can be produced by our bacterial

hassis, and confirm that our experimental results are successfully

redicted by our model. 

The outline of this paper is as follows. We introduce a math-

matical model to describe the nonlinear reaction kinetics in

ection 2 . We solve this system in Section 3 , where we give both

umerical and asymptotic solutions to describe the system be-

aviour. In that section, we consider the continuous replenishment

f pyruvate case first, then we consider the no replenishment of

yruvate case. We discuss the experimental procedure and results

n Section 4 , and compare these results to our model predictions.

e finish by discussing our results and comparing the two regimes

n Section 5 . 

. Model description 

The dimensional system we consider is derived from Michaelis–

enten-type laws found in the literature, where each variable is

efined in Table 1 . The forms of each reaction rate are obtained
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Table 2 

Parameters. We use the value S 0 = 1 mM , and assume that E i = E j for i, j = 1 , . . . , 7 . Different values of E j can be considered by varying the appropriate dimensionless 

parameter. We introduce the small dimensionless parameter ε = 0 . 01 , to formally account for the large difference in magnitude between parameters, and choose Ā = 1 in 

the simulations, as there is a distinguished asymptotic limit when Ā = O (1) . 

Dimensional Organism Range 

k 1 = 10 s −1 Saccharomyces cerevisiae ( Kresze and Ronft, 1981a; 1981b ) 4 – 30 s −1 ( Kresze and Ronft, 1981a; 1981b; Snoep et al., 1992 ) 

k 2 = 200 s −1 Enterococcus faecalis ( Hedl et al., 2002 ) 10 – 260 s −1 ( Hedl et al., 2002; Matsumoto et al., 2013; Okamura et al., 2010 ) 

k −2 = 30 0 0 s −1 Enterococcus faecalis ( Hedl et al., 2002 ) 80 – 3600 s −1 ( Hedl et al., 2002; Reddick and Williams, 2008 ) 

k 3 = 6 s −1 Saccharomyces cerevisiae ( Middleton, 1972 ) 0.5 – 14 s −1 ( Middleton, 1972; Nagegowda et al., 2004; Sutherlin et al., 2002 ) 

k 4 = 10 s −1 Enterococcus faecalis ( Hedl et al., 2002 ) 1 – 20 s −1 ( Ching et al., 1996; Hedl et al., 2002; Ma et al., 2011 ) 

k 5 = 20 s −1 Methanosarcina mazei ( Primak et al., 2011 ) 4 – 40 s −1 ( Huang et al., 1999; Primak et al., 2011 ) 

k 6 = 4 s −1 Saccharomyces cerevisiae ( Garcia and Keasling, 2014 ) 2 – 6 s −1 ( Garcia and Keasling, 2014; Voynova et al., 2004 ) 

k 7 = 1 s −1 Saccharomyces cerevisiae ( Krepkiy and Miziorko, 2004 ) 0.1 – 5 . 5 s −1 ( Krepkiy and Miziorko, 2004; Qiu et al., 2007 ) 

K M 1 = 0 . 65 mM Saccharomyces cerevisiae ( Kresze and Ronft, 1981a ) 0.13 – 1 mM ( Kresze and Ronft, 1981a; Pronk et al., 1996; Snoep et al., 1992 ) 

K i 1 = 0 . 014 mM Saccharomyces cerevisiae ( Kresze and Ronft, 1981a ) 0.014 – 0.018 mM ( Kresze and Ronft, 1981a; Pronk et al., 1996 ) 

K M 2 = 1 mM Enterococcus faecalis ( Hedl et al., 2002 ) 0.06 – 1.2 mM ( Hedl et al., 2002; Matsumoto et al., 2013; Okamura et al., 2010 ) 

K M −2 = 0 . 01 mM Enterococcus faecalis ( Hedl et al., 2002 ) 0.01 – 0.09 mM ( Hedl et al., 2002; Reddick and Williams, 2008 ) 

K M 3 ,a = 0 . 015 mM Saccharomyces cerevisiae ( Middleton, 1972 ) 0.01 – 0.04 mM ( Middleton, 1972; Nagegowda et al., 2004; Sutherlin et al., 2002 ) 

K M 
3 ,b 

= 0 . 003 mM Saccharomyces cerevisiae ( Middleton, 1972 ) 0.0 0 01 – 0.01 mM ( Middleton, 1972; Nagegowda et al., 2004 ) 

K i 3 = 0 . 01 mM Saccharomyces cerevisiae ( Middleton, 1972 ) 0.008 – 0.02 mM ( Middleton, 1972; Nagegowda et al., 2004 ) 

K M 4 = 0 . 02 mM Enterococcus faecalis ( Hedl et al., 2002 ) 0.015 – 0.065 mM ( Ching et al., 1996; Hedl et al., 2002; Ma et al., 2011 ) 

K M 5 = 0 . 1 mM Methanosarcina mazei ( Primak et al., 2011 ) 0.06 – 0.24 mM ( Huang et al., 1999; Primak et al., 2011 ) 

K M 6 = 0 . 9 mM Saccharomyces cerevisiae ( Garcia and Keasling, 2014 ) 0.004 – 0.9 mM ( Garcia and Keasling, 2014; Voynova et al., 2004 ) 

K M 7 = 0 . 2 mM Saccharomyces cerevisiae ( Krepkiy and Miziorko, 2004 ) 0.03 – 0.9 mM ( Krepkiy and Miziorko, 2004; Qiu et al., 2007 ) 

A [s −1 ] 

Dimensionless parameters 

k̄ 2 = εk 2 E 2 /k 1 E 1 = 0 . 2 K̄ M 1 = K M 1 /S 0 = 0 . 65 K̄ M 4 = K M 4 /εS 0 = 2 

k̄ −2 = εk −2 E 2 /k 1 E 1 = 3 K̄ i 1 = K i 1 /εS 0 = 1 . 4 K̄ M 5 = K M 5 /S 0 = 0 . 1 

k̄ 3 = k 3 E 3 /k 1 E 1 = 0 . 6 K̄ M 2 = K M 2 /S 0 = 1 K̄ M 6 = K M 6 /S 0 = 0 . 9 

k̄ 4 = k 4 E 4 /k 1 E 1 = 1 K̄ M −2 = K M −2 /εS 0 = 1 K̄ M 7 = K M 7 /S 0 = 0 . 2 

k̄ 5 = k 5 E 5 /k 1 E 1 = 2 K̄ M 3 ,a = K M 3 ,a /εS 0 = 1 . 5 Ā = AS 0 /k 1 E 1 = 1 

k̄ 6 = k 6 E 6 /k 1 E 1 = 0 . 4 K̄ M 
3 ,b 

= K M 
3 ,b 

/εS 0 = 0 . 3 

k̄ 7 = k 7 E 7 /k 1 E 1 = 0 . 1 K̄ i 3 = K i 3 /εS 0 = 1 
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rom the corresponding reference in Table 2 . The dimensional sys-

em is as follows 

d[ S 1 ] 

d τ
= − k 1 E 1 K 

i 
1 [ S 1 ] 

K 

i 
1 

(
[ S 1 ] + K 

M 

1 

)
+ [ S 1 ][ S 2 ] 

, (2a) 

d[ S 2 ] 

d τ
= 

k 1 E 1 K 

i 
1 [ S 1 ] 

K 

i 
1 

(
[ S 1 ] + K 

M 

1 

)
+[ S 1 ][ S 2 ] 

− k 2 E 2 [ S 2 ] 

[ S 2 ] + K 

M 

2 

+ 

k −2 E 2 [ S 3 ] 

[ S 3 ] + K 

M 

−2 

−A [ S 2 ] , 

(2b) 

d[ S 3 ] 

d τ
= 

k 2 E 2 [ S 2 ] 

[ S 2 ] + K 

M 

2 

− k −2 E 2 [ S 3 ] 

[ S 3 ] + K 

M 

−2 

− k 3 E 3 K 

i 
3 [ S 2 ][ S 3 ] 

K 

i 
3 
[ S 2 ][ S 3 ] + K 

M 

3 ,a 
[ S 3 ] 

(
[ S 3 ] + K 

i 
3 

)
+ K 

i 
3 
K 

M 

3 ,b 
[ S 2 ] 

, (2c) 

d[ S 4 ] 

d τ
= 

k 3 E 3 K 

i 
3 [ S 2 ][ S 3 ] 

K 

i 
3 
[ S 2 ][ S 3 ] + K 

M 

3 ,a 
[ S 3 ] 

(
[ S 3 ] + K 

i 
3 

)
+ K 

i 
3 
K 

M 

3 ,b 
[ S 2 ] 

− k 4 E 4 [ S 4 ] 

[ S 4 ] + K 

M 

4 

,

(2d) 

d[ S 5 ] 

d τ
= 

k 4 E 4 [ S 4 ] 

[ S 4 ] + K 

M 

4 

− k 5 E 5 [ S 5 ] 

[ S 5 ] + K 

M 

5 

, (2e) 

d[ S 6 ] 

d τ
= 

k 5 E 5 [ S 5 ] 

[ S 5 ] + K 

M 

5 

− k 6 E 6 [ S 6 ] 

[ S 6 ] + K 

M 

6 

, (2f) 

d[ S 7 ] 

d τ
= 

k 6 [ S 6 ] 

[ S 6 ] + K 

M 

6 

− k 7 E 7 [ S 7 ] 

[ S 7 ] + K 

M 

7 

, (2g) 

d[ P ] 

d τ
= 

k 7 E 7 [ S 7 ] 

[ S 7 ] + K 

M 

7 

. (2h) 

Most of the terms in the governing equations (2) are stan-

ard Michaelis–Menten reaction velocities, for which we obtain
he relevant kinetic parameters from the references indicated in

able 2 . The two modified Michaelis–Menten terms we include

re for reactions (1a) and (1d) , which describe different types of

nhibition. In Kresze and Ronft (1981a ), it is shown that acetyl-

oA has an inhibitory effect on (1a) which is uncompetitive with

yruvate. Therefore, for this reaction velocity we use the standard

orm for uncompetitive inhibition ( Yung-Chi and Prusoff, 1973 ).

n Middleton (1972) , it is shown that acetoacetyl-CoA has an in-

ibitory effect on (1d) which is competitive with acetyl-CoA, and

e therefore take this reaction velocity to have the standard form

or competitive inhibition, as stated in Middleton (1972) and Yung-

hi and Prusoff (1973) . The parameter A represents the total loss

f acetyl-CoA to other metabolic pathways, for example, the citric

cid cycle or fatty acid biosynthesis, and we assume that this oc-

urs with first-order kinetics. While this parameter is difficult to

easure experimentally, we will bypass this issue by considering

 distinguished limit in the dimensionless system when we per-

orm an asymptotic analysis. The parameters E i , where i = 1 , . . . , 7 ,

enote the enzyme concentrations for the reactions they control. 

We use initial conditions that correspond to the scenario where

yruvate is instantaneously introduced to a system containing all

f the relevant enzymes, but none of the intermediate metabolites.

hat is, we use [ S 1 ](0) = S 0 , [ S 2 ](0) = [ S 3 ](0) = [ S 4 ](0) = [ S 5 ](0) =
 S 6 ](0) = [ S 7 ](0) = [ P ](0) = 0 . Here, S 0 represents the initial or

ypical level of pyruvate present in the system. As any given

etabolite may already be present in the real-world system, our

pproach to the initial conditions is a modelling choice. That is,

e choose to reduce the number of uncertain parameters in the

ystem in order to facilitate a more simplified analysis of the sys-

em. 

To nondimensionalize the system variables, we scale each di-

ensional metabolite concentration with S 0 , the initial concentra-

ion of pyruvate. Additionally, we scale time with S 0 /( k 1 E 1 ), the

haracteristic time of the first reaction, which occurs between

yruvate and acetyl-CoA. We summarise these scalings in Table 1 .
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To form dimensionless parameters, we first note that estimates of

the kinetic parameters can vary significantly in different environ-

ments ( Table 2 ). Given the uncertainty in the parameters, we seek

to understand how the system behaves for different values of these

parameters; we seek asymptotic solutions in terms of the system

parameters, allowing us to explicitly determine how a variation in

parameter values affects the system. We can explore how the sys-

tem behaves as these parameters vary within an order of magni-

tude by first scaling each rate constant with the rate constant of

the first reaction, each Michaelis constant with the initial pyruvate

concentration, and each enzyme concentration with concentration

of the first enzyme. Then, we use the typical dimensional values

in Table 2 to introduce an artificial small dimensionless parameter

ε = 0 . 01 into the system, and write each dimensionless parameter

as c ε j , where c is an O (1) parameter (between 0.1 and 10), and j is

an integer. The resultant dimensionless parameters in our system

are given in Table 2 , and this approach allows us to interrogate

the system using an asymptotic analysis (see, for example, Hinch,

1991; Kevorkian and Cole, 2013; O’Malley, Jr., 2012 ). Although, as

is always the case with an asymptotic analysis, there may theo-

retically be an issue in equating terms with the same powers of

ε when extreme O (1) parameters are multiplied together, we will

show that our asymptotic and numerical results show excellent

agreement, and thus the approach is reliable for this system. 

Therefore, we nondimensionalize using the dimensionless vari-

ables defined in Table 1 and, using the dimensionless kinetic pa-

rameters defined in Table 2 , we obtain the dimensionless system 

d S 1 
d t 

= − ε ̄K 

i 
1 S 1 

ε ̄K 

i 
1 

(
S 1 + K̄ 

M 

1 

)
+ S 1 S 2 

, (3a)

d S 2 
d t 

= 

ε ̄K 

i 
1 S 1 

ε ̄K 

i 
1 

(
S 1 + K̄ 

M 

1 

)
+ S 1 S 2 

− k̄ 2 S 2 

ε 
(
S 2 + K̄ 

M 

2 

) + 

k̄ −2 S 3 

ε 
(
S 3 + ε ̄K 

M 

−2 

) − Ā S 2 ,

(3b)

d S 3 
d t 

= 

k̄ 2 S 2 

ε 
(
S 2 + K̄ 

M 

2 

) − k̄ −2 S 3 

ε 
(
S 3 + ε ̄K 

M 

−2 

)
− k̄ 3 ̄K 

i 
3 S 2 S 3 

K̄ 

i 
3 
S 2 S 3 + K̄ 

M 

3 ,a 
S 3 

(
S 3 + ε ̄K 

i 
3 

)
+ ε ̄K 

i 
3 
K̄ 

M 

3 ,b 
S 2 

, (3c)

d S 4 
d t 

= 

k̄ 3 ̄K 

i 
3 S 2 S 3 

K̄ 

i 
3 
S 2 S 3 + K̄ 

M 

3 ,a 
S 3 

(
S 3 + ε ̄K 

i 
3 

)
+ ε ̄K 

i 
3 
K̄ 

M 

3 ,b 
S 2 

− k̄ 4 S 4 

S 4 + ε ̄K 

M 

4 

, (3d)

d S 5 
d t 

= 

k̄ 4 S 4 

S 4 + ε ̄K 

M 

4 

− k̄ 5 S 5 

S 5 + K̄ 

M 

5 

, (3e)

d S 6 
d t 

= 

k̄ 5 S 5 

S 5 + K̄ 

M 

5 

− k̄ 6 S 6 

S 6 + K̄ 

M 

6 

, (3f)

d S 7 
d t 

= 

k̄ 6 S 6 

S 6 + K̄ 

M 

6 

− k̄ 7 S 7 

S 7 + K̄ 

M 

7 

, (3g)

d P 

d t 
= 

k̄ 7 S 7 

S 7 + K̄ 

M 

7 

. (3h)

In forming the dimensionless variables, we have used the

physically plausible value of S 0 = 1 mM . Finally, the initial con-

ditions become S 1 (0) = 1 , S 2 (0) = S 3 (0) = S 4 (0) = S 5 (0) = S 6 (0) =
S 7 (0) = P (0) = 0 . 

We solve this system for two cases. The first case is where

(3a) does not hold and we instead impose S 1 ( t ) ≡ 1. This corre-

sponds to the scenario where pyruvate is continuously replenished
nd held at a constant value. The second case is where (3a) does

old, and we will show that the two systems are equivalent for

 = O (1) . In both cases, we are interested in determining how to

aximise the production of IDP whilst minimizing the levels of

MG-CoA, linked to the inhibition of cell growth. 

. Solutions 

.1. Numerical results 

We solve the system presented in §2 numerically, using ode15s

n MATLAB with a relative tolerance of 10 −14 . We use the param-

ter values given in Table 2 for the continuous replenishment of

yruvate ( Fig. 2 ) and the no replenishment of pyruvate ( Fig. 3 )

ases. In each case, we are also able to model the over-expression

f an enzyme by increasing the dimensionless turnover numbers

the parameters denoted by a lower-case k with a subscript) given

n Table 2 . 

Although the dynamics for each case are different, we can ob-

erve general trends. Most notably, we see that increasing E 3 in-

reases both the maximum levels of HMG-CoA and of IDP pro-

uction, whereas increasing E 4 decreases the maximum levels of

MG-CoA but has a negligible affect on IDP production. Compar-

ng the continuously and never replenished pyruvate cases, we see

hat the initial dynamics appear to be similar between cases for

he same parameter values (until t ≈ 2 for HMG-CoA and t ≈ 12 for

DP), but the dynamics diverge after a longer time. In the contin-

ous replenishment case, the concentration of HMG-CoA and the

roduction rate of IDP tends to a constant value whereas, in the

o replenishment case, the concentration of HMG-CoA increases

o a maximum level before decreasing, and the concentration of

DP tends to a constant value. To understand these phenomena in

ore detail, and to determine how we can increase IDP production

hilst minimizing the maximum levels of (cell growth inhibiting)

MG-CoA in terms of the parameter values, we now perform an

symptotic analysis. 

.2. Asymptotic results 

.2.1. Continuous replenishment of pyruvate 

Here, we consider the system (3b–h), and impose S̄ 1 (t) ≡ 1 . As

he sink reaction (1c) is an amalgamation of all sinks of acetyl-

oA ( S 2 ), it is difficult to obtain accurate estimates of Ā . We pro-

eed by assuming the distinguished limit Ā = O (1) , and we discuss

he further limit Ā = O (1 /ε) in Appendix A . In pursuing an asymp-

otic analysis (see, for example, Hinch, 1991; Kevorkian and Cole,

013; O’Malley, Jr., 2012 ) for small ε, we make the following scal-

ngs: (S 2 , S 5 , S 6 , S 7 , P ) = ε 1 / 2 ( ̄S 2 , S̄ 5 , S̄ 6 , S̄ 7 , P̄ ) , (S 3 , S 4 ) = ε 3 / 2 ( ̄S 3 , S̄ 4 )
nd we obtain the t = O (1) governing equations 

 

d ̄S 2 
d t 

= 

ε ̄K 

i 
1 S̄ 1 

ε 1 / 2 K̄ 

i 
1 

(
S̄ 1 + K̄ 

M 

1 

)
+ S̄ 1 ̄S 2 

− k̄ 2 ̄S 2 

ε 1 / 2 S̄ 2 + K̄ 

M 

2 

+ 

k̄ −2 ̄S 3 

ε 1 / 2 S̄ 3 + K̄ 

M 

−2 

− ε ̄A ̄S 2 , (4a)

 

2 d ̄S 3 
d t 

= 

k̄ 2 ̄S 2 

ε 1 / 2 S̄ 2 + K̄ 

M 

2 

− k̄ −2 ̄S 3 

ε 1 / 2 S̄ 3 + K̄ 

M 

−2 

− ε ̄k 3 ̄K 

i 
3 S̄ 2 ̄S 3 

ε 1 / 2 K̄ 

i 
3 
S̄ 2 ̄S 3 + ε ̄K 

M 

3 ,a 
S̄ 3 

(
ε 1 / 2 S̄ 3 + K̄ 

i 
3 

)
+ K̄ 

i 
3 
K̄ 

M 

3 ,b 
S̄ 2 

, (4b)

 

d ̄S 4 
d t 

= 

k̄ 3 ̄K 

i 
3 S̄ 2 ̄S 3 

ε 1 / 2 K̄ 

i 
3 
S̄ 2 ̄S 3 + ε ̄K 

M 

3 ,a 
S̄ 3 

(
ε 1 / 2 S̄ 3 + ̄K 

i 
3 

)
+ ̄K 

i 
3 
K̄ 

M 

3 ,b 
S̄ 2 

− k̄ 4 ̄S 4 

ε 1 / 2 S̄ 4 + ̄K 

M 

4 

, 

(4c)
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Fig. 2. The numerically determined concentrations of (a) HMG-CoA and (b) IDP in the continuous replenishment of pyruvate case. The solid black lines denote the solutions 

using the reference parameter values given in Table 2 with E i = E j for i � = j , and the dashed lines denote the solutions when a particular enzyme is over-expressed. The 

solutions when E 2 , E 5 , E 6 , or E 7 are doubled are near identical to the reference concentration in (a). The solutions when E 2 , E 4 , or E 5 are doubled are near identical to the 

reference concentration in (b), and the solutions when E 6 or E 7 are doubled are near identical to each other. 

Fig. 3. The numerically determined concentrations of (a) HMG-CoA and (b) IDP in the no replenishment of pyruvate case. The solid black lines denote the solutions using 

the parameter values given in Table 2 with E i = E j for i � = j , and the dashed lines denote the solutions when a particular enzyme is over-expressed. The solutions when E 2 , E 5 , 

E 6 , or E 7 are doubled are near identical to the reference concentration in (a). The solutions when E 2 , E 4 , or E 5 are doubled are near identical to the reference concentration 

in (b), and the solutions when E 6 or E 7 are doubled are near identical to each other. We see that the solutions in this no replenishment of pyruvate case are very similar to 

the solutions in the continuous replenishment of pyruvate case until t ≈ 2 for HMG-CoA and until t ≈ 12 for IDP. 

w  

(

S

S

S

S

w  

a  

t  

(

 

o  

v  

m  

g

P

H  

f  
d ̄S 5 
d t 

= 

k̄ 4 ̄S 4 

ε 1 / 2 S̄ 4 + K̄ 

M 

4 

− k̄ 5 ̄S 5 

ε 1 / 2 S̄ 5 + K̄ 

M 

5 

, (4d) 

d ̄S 6 
d t 

= 

k̄ 5 ̄S 5 

ε 1 / 2 S̄ 5 + K̄ 

M 

5 

− k̄ 6 ̄S 6 

ε 1 / 2 S̄ 6 + K̄ 

M 

6 

, (4e) 

d ̄S 7 
d t 

= 

k̄ 6 ̄S 6 

ε 1 / 2 S̄ 6 + K̄ 

M 

6 

− k̄ 7 ̄S 7 

ε 1 / 2 S̄ 7 + K̄ 

M 

7 

, (4f) 

d ̄P 

d t 
= 

k̄ 7 ̄S 7 

ε 1 / 2 S̄ 7 + K̄ 

M 

7 

. (4g) 

The leading-order version of (4) is given by 

d ̄S 2 
d t 

= 

K̄ 

i 
1 

S̄ 2 
− v 3 ̄S 3 − Ā ̄S 2 , 0 = v 2 ̄S 2 − v −2 ̄S 3 , 0 = v 3 ̄S 3 − v 4 ̄S 4 , 

d ̄S 5 
d t 

= v 4 ̄S 4 − v 5 ̄S 5 , 
d ̄S 6 
d t 

= v 5 ̄S 5 − v 6 ̄S 6 , 
d ̄S 7 
d t 

= v 6 ̄S 6 − v 7 ̄S 7 , 

d ̄P 

d t 
= v 7 ̄S 7 , (5) 

here v j = k j /K 

M 

j 
for j ∈ { 2 , −2 , 4 , 5 , 6 , 7 } , and v 3 = k̄ 3 / ̄K 

M 

3 ,b 
, and

5) is solved by 

¯
 2 = 

( 

K̄ i 1 

(
1 − e −2 αt 

)
α

) 1 / 2 

, S̄ 3 = 

v 2 
v −2 

S̄ 2 , S̄ 4 = 

v 2 v 3 
v −2 v 4 

S̄ 2 , 
¯
 5 = 

v 2 v 3 
v −2 

∫ t 

0 

e v 5 (s −t) S̄ 2 (s ) d s, 

¯
 6 = 

v 2 v 3 v 5 
v −2 

∫ t 

0 

e v 5 (s −t) − e v 6 (s −t) 

v 6 − v 5 
S̄ 2 (s ) d s, 

¯
 7 = 

v 2 v 3 v 5 v 6 
v −2 

∫ t 

0 

( v 7 − v 6 ) e v 5 (s −t) − ( v 7 − v 5 ) e v 6 (s −t) + ( v 6 − v 5 ) e v 7 (s −t) 

( v 7 − v 6 ) ( v 7 − v 5 ) ( v 6 − v 5 ) 
S̄ 2 (s ) d s, 

P̄ = 

v 2 v 3 v 5 v 6 v 7 
v −2 

×
∫ t 

0 

v 7 − v 6 
v 5 

(
1 − e v 5 (s −t) 

)
− v 7 − v 5 

v 6 

(
1 − e v 6 (s −t) 

)
+ 

v 6 − v 5 
v 7 

(
1 − e v 7 (s −t) 

)
( v 7 − v 6 ) ( v 7 − v 5 ) ( v 6 − v 5 ) 

S̄ 2 (s ) d s. 

(6) 

here α = Ā + v 2 v 3 / v −2 . We see that these asymptotic solutions

gree well with the numerical ones, except at early time where

here is an additional asymptotic region that we do not consider

 Fig. 4 ). 

Although the leading-order solution for P̄ , given in (6) , depends

n parameters from almost all of the reactions, the dependence on

 5 , v 6 , and v 7 is significantly reduced as t → ∞ , and we may deter-

ine that the leading-order long-time behaviour in this regime is

iven by 

 ̄∼ v 2 v 3 
v −2 

(
K̄ 

i 
1 

α

)1 / 2 

t as t → ∞ . (7) 

ence, the reactions involving acetyl-CoA are the most important

or the production of IDP. We can see that the numerical results
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Fig. 4. The numerical and asymptotic solutions for the metabolite concentrations in the continuous replenishment of pyruvate case. The solid light lines denote the numerical 

solutions, and the dashed darker lines denote the asymptotic solutions given in (6) . We see good agreement between the numerical and asymptotic solutions for t = O (1) , 

and the system attains its steady state solution in this region. 
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[  
shown in Fig. 4 b agree with the analytic result that P̄ tends to

a linear function of time. We may also deduce the leading-order

long-time behaviour of HMG-CoA in the form 

S̄ 4 → 

v 2 v 3 
v −2 v 4 

(
K̄ 

i 
1 

α

)1 / 2 

as t → ∞ . (8)

In dimensional terms, the long-time behaviour of the isopen-

tenyl diphosphate (IDP) concentration is 

[ P ] ∼ ωE 3 

(
E 1 k 1 K 

i 
1 

A + ωE 3 

)1 / 2 

τ as τ → ∞ , (9a)

and the maximum level of HMG-CoA present in the system is 

[ S 4 ] ∼
ωE 3 K 

M 

4 

k 4 E 4 

(
E 1 k 1 K 

i 
1 

A + ωE 3 

)1 / 2 

, (9b)

where 

ω = 

k 2 k 3 K 

M 

−2 

k −2 K 

M 

2 
K 

M 

3 ,b 

. (9c)

From the explicit results (9), we see that the long-time pro-

duction of IDP depends on the enzyme concentrations E 1 and E 3 ,

whereas the maximum concentration of HMG-CoA depends on the

enzyme concentrations E 1 , E 3 , and E 4 . Recalling that our goal is

to maximize IDP whilst minimizing HMG-CoA, and noting that the

dependence on E 1 and E 3 is the same for both metabolites of in-

terest, the only way our goal can be achieved by varying enzyme

concentration is to significantly increase E 4 , so that it compen-

sates for any increase in E 1 or E 3 . That is, our model suggests

that we should overexpress HMG-CoA reductase, the enzyme that

catalyses the reaction from HMG-CoA to mevalonate. Importantly,

we are able to deduce that this is the most significant leading-

order effect, and this explicit result is possible due to our asymp-

totic analysis. The significance of this reaction is in agreement with

Pitera et al. (2007) , where it was shown that over-expression of

HMG-CoA reductase alleviated the inhibition of cell growth, bene-

fiting IDP production. Increasing E 3 , the enzyme that catalyses the

reaction from acetoacetyl-CoA and acetyl-CoA to HMG-CoA would

increase the levels of IDP produced by a single cell, but would also

produce more HMG-CoA, which would reduce the number of cells

in the system (though this is not formally taken into account by

our model). The same is true of increasing E 1 , the enzyme that

catalyses the reaction from pyruvate to acetyl-CoA, and decreasing

A , any enzyme that catalyses reactions from acetyl-CoA to sinks of

acetyl-CoA. Finally, we note that these results all agree with the

numerical results in Fig. 2 . 

w

.2.2. No replenishment of pyruvate 

We now consider the case where pyruvate can be depleted.

ote that this case, unlike the previous, is singularly perturbed on

he long timescale. From (3a) , we must also consider the governing

quation 

d ̄S 1 
d t 

= − ε 1 / 2 K̄ 

i 
1 S̄ 1 

ε 1 / 2 K̄ 

i 
1 

(
S̄ 1 + K̄ 

M 

1 

)
+ S̄ 1 ̄S 2 

, (10)

nstead of imposing S̄ 1 (t) ≡ 1 . By seeking a power series represen-

ation for S̄ 1 in terms of the small parameter ε1/2 , and using the

olution ( 6 a) for S̄ 2 , we obtain the following asymptotic solution

o (10) for t = O (1) : 

¯
 1 (t) ∼ 1 −

(
ε ̄K 

i 
1 

α

)1 / 2 (
αt + log 

{ 

1 + 

[
1 − e −2 αt 

]1 / 2 
} )

+ O (ε) . 

(11)

mportantly, we find that S̄ 1 (t) ∼ 1 + O (ε 1 / 2 ) for t = O (1) , and

hus the no replenishment case is equivalent to the continuous re-

lenishment case at leading order for t = O (1) . 

As suggested by (11) , the O (1) decay of pyruvate occurs over the

imescale t = O (ε −1 / 2 ) . Further, as the dominant balances over this

imescale do not change, the solution (11) allows us to deduce that

he depletion of pyruvate occurs when 

 

∗ = 1 / (εαK̄ 

i 
1 ) 

1 / 2 + O (1) . (12)

For completion, we show the dynamics of this depletion, where

he levels of pyruvate become exponentially small, in Appendix B .

sing the depletion time (12) in the long-time IDP solution (7) and

everting back to the original unscaled version of IDP, we deter-

ine that the total amount of IDP produced in the no replenish-

ent of pyruvate case is 

lim 

→∞ 

P = 

v 2 v 3 
αv −2 

+ O (ε 1 / 2 ) . (13)

urther, we may deduce that the maximum level of HMG-CoA in

he system is again given by (8) . In dimensional terms, the long-

ime behaviour of the isopentenyl diphosphate (IDP) concentration

s 

 P ] ∼ ωS 0 E 3 
A + ωE 3 

as τ → ∞ , (14)

nd the maximum level of HMG-CoA present in the system is 

 S 4 ] ∼
ωE 3 K 

M 

4 

k 4 E 4 

(
E 1 k 1 K 

i 
1 

A + ωE 3 

)1 / 2 

, (15)

here ω is defined in (9 c ). 
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Fig. 5. Experimental results for (a) mevalonate production by C. necator H16/pBBR1JW3 (pBBR1:: araC /P BAD - mvaES ) after 24 hours of growth in 1% (w/v) fructose minimal 

medium (FMM) in response to the following L -arabinose concentrations: 0.01% (w/v - grey bar); 0.02% (w/v - dark grey bar); and 0.2% (w/v - light grey bar). As a negative 

control, mevalonate production was assessed also with the C. necator H16/pBBR1-USERcassette1 strain (empty vector), that does not harbour the mvaE and mvaS genes. (b) 

SDS-PAGE of pre- (lane 1) and post-induction protein extracts of C. necator H16/pBBR1JW3. Expression of MvaE (86 KDa) and MvaS (42 KDa) was assessed following induction 

with 0.01% (lane 2); 0.02% (lane 3); and 0.2% (lane 4) L -arabinose. While MvaE expression levels increased with increasing L -arabinose concentrations, production of MvaS 

appeared to remain constant. 

Fig. 6. Schematic showing how overexpression of enzymes can affect IDP production in the cases of pyruvate being (a) continuously replenished and (b) never replenished. 

The green arrows denote that overexpressing the enzyme corresponding to that reaction results in greater production of IDP with diminishing returns. A dashed or dotted 

arrow denotes whether these diminishing returns are unbounded or bounded, respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Hence, our main conclusions from the continuous replenish-

ent case are still valid for this case. For this no-replenishment-of-

yruvate case, we are also able to further determine that a lower

alue of K 

i 
1 
, perhaps achievable by introducing heterologous en-

ymes for the reaction (1a) , would decrease the maximum amount

f HMG-CoA present whilst having no significant effect on the total

DP produced. 

. Experimental validation 

To validate the predictions made in this model, we carried

ut in vivo experiments in Cupriavidus necator H16, a gram-

egative bacterium previously known as Ralstonia eutropha. C.

ecator is a facultative chemolithoautotrophic microorganism of

elevant biotechnological interest since it can be exploited as a

acterial chassis for the production of chemicals. As proof of con-
ept, we sought to introduce the upper part of the mevalonate

athway, leading to the production of isoprenoid precursors, into C.

ecator . To this end, C. necator H16 was transformed with a plas-

id (pBBR1JW3) carrying the mvaE and mvaS genes from E. fae-

alis of the L -arabinose inducible promoter P BAD . These two genes

ode for the enzymes Acetyl-CoA acetyltransferase/HMG-CoA re-

uctase (MvaE) and Hydroxymethylglutaryl-CoA synthase (MvaS),

espectively. MvaE is a bifunctional enzyme that catalyses two re-

ctions, from acetyl-CoA to acetoacetyl-CoA and from HMG-CoA

o mevalonate, while MvaS converts acetoacetyl-CoA and acetyl-

oA to HMG-CoA. In our model, increasing the expression of MvaE

orresponds to increasing E 2 and E 4 , whereas increasing the ex-

ression of MvaS corresponds to increasing E 3 (a schematic of the

athway is shown in Fig. 1 ). This plasmid provides a path from

yruvate to mevalonate ( S to S ) within the modified C. necator . 
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Fig. 7. Schematic showing how overexpression of enzymes can affect levels of HMG-CoA. A green/red arrow denotes that overexpressing the enzyme corresponding to that 

reaction results in greater/lesser amounts of HMG-CoA, and a dashed arrow denotes that over-expression results in unbounded but diminishing returns. The results are the 

same for the cases of pyruvate being continuously and never replenished. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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4.1. Setting up of bacterial cultures for mevalonate production 

Single colonies of C. necator H16/pBBR1-USERcassette1 and C.

necator H16/pBBR1JW3 (pBBR1:: araC /P BAD - mvaES ) were used to in-

oculate 5ml of LB solution with 300μg/ml kanamycin (in 50ml

tubes) and grown overnight at 30 °C with shaking (200 rpm). The

following morning, the optical density (OD 600 ) of the cultures was

measured and normalised to OD 600 = 0 . 2 in 100ml of LB solution

with 300μg/ml kanamycin (in 500ml flasks). The bacterial cultures

were then incubated at 30 °C with shaking (200 rpm) until they

reached an OD 600 of around 0.6 - 0.7. At this point, 1ml samples

were collected from each culture, centrifuged at 140 0 0 rpm for one

minute and the cell pellets were stored at -20 °C to be used as

pre-induction protein samples for SDS-PAGE. In addition, 1ml of 1%

(w/v); 2% (w/v); or 20% (w/v) L -arabinose solutions were added to

the corresponding cultures, thus obtaining L -arabinose final con-

centrations of 0.01%; 0.02%; and 0.2%, respectively. Following 18

hours of incubation at 30 °C with shaking (200 rpm), the OD 600 of

the cultures was measured. The bacterial cultures were then cen-

trifuged (80 0 0 rpm for five minutes), concentrated to OD 600 = 15

in 1% fructose minimal medium (FMM) –NH 4 Cl with 300μg/ml

kanamycin and transferred to 250ml flasks. After 24 hours of incu-

bation at 30 °C with shaking (20 0 rpm), 50 0μl samples were taken

from the cultures and centrifuged (140 0 0 rpm for one minute). Su-

pernatants were then analysed by HPLC to quantify the mevalonate

titres produced by C. necator H16/pBBR1JW3 in response to the dif-

ferent L -arabinose concentrations taken into account. 

4.2. Model comparison 

We can use our model to predict the behaviour of the

shorter pathway from pyruvate to mevalonate, by taking the limit

k̄ 5 , ̄k 6 , ̄k 7 → 0 . In this case, the results for [ S 4 ] remain the same

and, in dimensional terms, the long-time results for [ S 5 ] are 

[ S 5 ] ∼ ωE 3 

(
E 1 k 1 K 

i 
1 

A + ωE 3 

)1 / 2 

τ as τ → ∞ , (16)

for continuous replenishment of pyruvate and 

[ S 5 ] → 

ωS 0 E 3 
A + ωE 3 

as τ → ∞ , (17)

for no replenishment of pyruvate, where ω =
k 2 k 3 K 

M 

−2 / (k −2 K 

M 

2 K 

M 

3 ,b 
) , as previously defined in (9c) . All vari-

ables are defined in §2 . These are the same results our model

predicts for [ P ], so our previous predictions for maximizing IDP

while minimizing HMG-CoA will also be our current predictions

for maximizing mevalonate while minimizing HMG-CoA in this

experiment. 

HPLC data show that increasing the concentration of the in-

ducer L -arabinose leads to significant increments in the amount of

mevalonate produced after 24 hours of growth in the presence of
ructose as a carbon source ( Fig. 5 a). From the three levels of L -

rabinose we considered, there appear to be diminishing returns

n the effectiveness of increasing L -arabinose. From an SDS-PAGE,

e see an increase in the expression of MvaE as the levels of L -

rabinose are increased ( Fig. 5 b). However, production of MvaS ap-

ears to be constant as the levels of L -arabinose are increased. In

ur model, this corresponds to increasing E 2 and E 4 while keep-

ng E 3 (and all other enzyme levels) constant. As discussed above,

ur model predicts that this will decrease the maximum levels of

MG-CoA in the system, and thus produce more IDP. Hence, our

odel is verified by these experimental results. 

. Conclusions 

We developed and solved a mathematical model for the kinetics

f the mevalonate pathway, derived using generalised Michaelis–

enten kinetics and including the effect of a sink from acetyl-CoA

nto other metabolic pathways. We considered two extreme cases,

amely where the pyruvate was continuously and never replen-

shed. We used asymptotic analysis to gain physical insight into the

ystem behaviour, allowing us to evaluate the effect of upregulat-

ng different reactions without resorting to an expensive parameter

weep. The system we considered here has eight dependent vari-

bles with 20 kinetic parameters. Our asymptotic analysis enabled

s to give analytic expressions for each dependent variable in the

ontinuous replenishment case, and to reduce the entire system to

umerically solving a coupled nonlinear system of two dependent

ariables with one parameter in the never replenished case. We

hen validated our model by performing experiments that agreed

ith our predictions. 

The main experimental goal is to maximise IDP production,

hilst minimizing the maximum levels of HMG-CoA, a metabo-

ite that is linked to the inhibition of cell growth due to its in-

ibition of fatty acid biosynthesis ( Kizer et al., 2008 ). In terms of

ver-expressing enzymes, we see that over-expressing E 3 , the en-

yme that catalyses the reaction from acetoacetyl-CoA and acetyl-

oA to HMG-CoA will have a positive effect on both IDP produc-

ion and maximum levels of HMG-CoA. Thus, over-expressing this

nzyme by itself will not have significant effects. However, we ad-

itionally note that over-expressing E 4 , the enzyme that catalyses

he reaction from HMG-CoA to mevalonate, will decrease the lev-

ls of HMG-CoA without having a significant effect on IDP pro-

uction. Therefore, over-expressing both E 3 and E 4 should have a

uch larger effect on IDP production than just over-expressing E 3 .

he importance of the reaction from HMG-CoA to mevalonate has

een previously noted by experiments ( Pitera et al., 2007 ). We also

ote that increasing E 1 has a positive effect on both IDP production

or continuously replenished pyruvate, and on the maximum levels

f HMG-CoA. Thus, as for E 3 , this effect can be amplified by also

ver-expressing E 4 at the same time. We illustrate these results in

igs. 6 and 7 . 
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Our results also suggest that the reactions between acetyl-CoA

nd acetoacetyl-CoA can have a significant effect on both IDP pro-

uction and maximum levels of HMG-CoA. However, this effect

annot be achieved by over- or under-expressing E 2 , the enzyme

hat catalyses this reaction, as the enzyme catalyses the reaction in

oth directions. We see that this positive effect can be attained by

sing an enzyme that strongly favours the forward reaction. That

s, an enzyme with a large ratio of k 2 K 

M 

−2 /k −2 K 

M 

2 . The final reaction

hat plays an important role at leading order is the reaction from

cetyl-CoA to a sink, which has a negative leading-order effect on

oth IDP production and the maximum levels of HMG-CoA. Al-

hough we consider the dimensionless sink coefficient to be of O (1)

n our main analysis, we also show in Appendix A that a large sink

oefficient does not significantly affect the system behaviour. How-

ver, we note that the importance of acetyl-CoA to other metabolic

athways represented by this sink, such as the citric acid cycle,

eans that there are likely to be negative effects to the cell if this

eaction is significantly altered. Our results suggest that the reac-

ions and enzymes we have mentioned are the only significant re-

ctions at leading order, and we predict that the over-expression

f other enzymes in the pathway will not have a significant effect

n either IDP production or on the maximum levels of HMG-CoA. 

In the case where pyruvate was never replenished, we found

hat the depletion of pyruvate occurred slowly enough that, for

ntermediate time, our system reproduced the steady-state be-

aviour we would eventually expect from the continuously replen-

shed pyruvate case. However, whilst the system was initially ro-

ust to this slow depletion, we additionally calculated the point at

hich the low levels of pyruvate affected the entire system, then

alculated the dynamics of this depletion. This required the use of

he method of matched asymptotic expansions with logarithmic

atching terms involving the small variable to track metabolite

oncentrations up to the first correction order over two timescales,

hus allowing us to obtain the leading-order depletion at the third

nd final timescale. 

In our experiments, we were able to introduce a pathway from

yruvate to mevalonate into the bacterium C. necator . This was

chieved by transforming C. necator with a plasmid harbouring the

. faecalis mvaE and mvaS genes under the control of a promoter

nduced by the presence of L -arabinose (P BAD ). The proteins MvaE

nd MvaS, respectively encoded by these two genes, are responsi-

le for the conversion of acetyl-CoA to mevalonate. A protein ex-

ression analysis showed that production of MvaE increased as the

evels of L -arabinose present in the cultivation medium were in-

reased. On the other hand, expression of MvaS appeared to be

ndependent of L -arabinose concentration. In any case, the effect

f increasing MvaE expression was to produce more mevalonate,

n experimental result that agreed with the theoretical predictions

rom our model. We note that our model could be verified fur-

her by directly measuring the levels of HMG-CoA. However, as

MG-CoA is not secreted by the cell and is likely to be unstable,

irect measurement is significantly more technical; as carried out

n Pitera et al. (2007) , the experiments would have to be repeated

hile rapidly quenching the cellular metabolism, before examining

he endo-metabolites using mass spectrometry. 

In the derivation of this model, we chose initial conditions that

odelled the instantaneous addition of pyruvate to a well-mixed

olution of enzymes. These conditions were chosen for mathemat-

cal convenience and are likely to differ significantly from the con-

itions within a cell producing isopentenyl-diphosphate. However,

s the systems we have considered both tend to stable steady

tates, this difference is unlikely to be a practical issue for the long

ime results, although it would affect the initial transients. 

Finally, we note that this work highlights how a simple mathe-

atical model can be used to predict the biologically relevant be-

aviour of a system. Moreover, this work shows how asymptotic
nalysis can play an important role in reducing the computational

omplexity of a derived system and be used to overcome uncer-

ainty issues with parameter values. We hope that the predictions

rom our model can help to build a more efficient path to biologi-

al discovery. 
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ppendix A. Large Ā limit 

There is another distinguished limit in the system (3) when Ā =
 (1 /ε) . We briefly summarise the system behaviour in this limit

or t = O (1) . The leading-order system (5) is mainly unchanged,

part from the first equation for S̄ 2 , which becomes 

ε ̄K 

i 
1 S 1 

ε 1 / 2 K̄ 

i 
1 

(
S 1 + K̄ 

M 

1 

)
+ S 1 S 2 

= ε ̄A S 2 , (A.1) 

here we now have S 2 = O (ε 1 / 2 ) , providing an asymptotic balance

etween the two terms. Rearranging (A.1) for S 2 in terms of S 1 , we

btain 

 2 = 

ε 1 / 2 

2 

⎡ 

⎣ 

{ (
K̄ 

i 
1 (S 1 + K̄ 

M 

1 ) 

S 1 

)2 

+ 

4 ̄K 

i 
1 

ε ̄A 

} 1 / 2 

−
K̄ 

i 
1 

(
S 1 + K̄ 

M 

1 

)
S 1 

⎤ 

⎦ . 

(A.2) 

or the continuous-replenishment case we have S 1 ( t ) ≡ 1, and for

he no-replenishment case the governing equation for S 1 is given

y (10) . Finally, focusing on the continuous-replenishment case, we

ote that we can re-write (7) , the long-time production of IDP, as 

 ̄∼
(v 2 v 3 

v −2 

t 

)
lim 

t→∞ 

S 2 (t) as t → ∞ . (A.3) 

hus, from (A.2) we see that the long-time production of IDP gains

ome further dependence on the kinetic properties of E 1 in the

imit of large Ā , but retains the same qualitative behaviour. 

ppendix B. Dynamics of pyruvate depletion 

In this appendix, we further investigate the dynamics of pyru-

ate depletion. We only investigate S̄ 1 and S̄ 2 here, as the leading-

rder versions of the remaining metabolites can be obtained by

uitably rescaling the solutions ( 6 b–g) for the timescales we

resent in this appendix. 

To obtain the leading-order solutions during the important

epletion timescale, we require the long-time behaviour of the

 ( ε1/2 ) correction to S̄ 2 at t = O (1) . To this end, we may use the

eading-order solution (6) to write the asymptotic expansion 

¯
 2 ∼

( 

K̄ 

i 
1 

(
1 − e −2 αt 

)
α

) 1 / 2 

+ ε 1 / 2 K̄ 

i 
1 s 2 (t) as ε → 0 , (B.1) 

here s 2 (t) = O (1) is the first correction term for S̄ 2 . We combine

4a,b), (11) , and (B.1) to obtain 

1 

α

d s 2 
d t 

+ 

(
2 − e −2 αt 

1 − e −2 αt 

)
s 2 = 

2 β

1 − e −2 αt 
+ 2 γ

(
1 − e −2 αt 

)
, (B.2a) 
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Fig. B.1. The solutions to the full and reduced systems for the concentrations of S 1 and S 2 in the no replenishment of pyruvate case. We show (a) A linear plot (b) A log-lin 

plot. The solid light lines denote the numerical solutions to the full problem, and the dashed darker lines denote the solutions to the reduced problem given in (B.8). We 

see good agreement between the numerical and asymptotic solutions apart from at early time, as we expect. 
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where 

β = − K̄ 

M 

1 + 1 

2 

, (B.2b)

γ = 

v 2 v 3 
2 α2 v −2 

(
1 

K̄ 

M 

2 

− v 2 
k̄ −2 

+ 

v 2 v 3 
v −2 ̄k 3 

)
. (B.2c)

Solving (B.2a) in the long-time limit, we deduce that 

s 2 ∼ β + γ + exponentially small terms as t → ∞ , (B.3)

and thus we are able to determine the long-time behaviour 

S̄ 2 ∼
(

K̄ 

i 
1 

α

)1 / 2 

+ ε 1 / 2 K̄ 

i 
1 ( β + γ ) as t → ∞ . (B.4)

The O (1) depletion of pyruvate occurs over the timescale t =
O (ε −1 / 2 ) , and we investigate this using the scaling t = T /ε 1 / 2 ,
where T = O (1) . Writing S̄ 1 and S̄ 2 as the asymptotic expansions 

S̄ 1 ∼ S̄ (0) 
1 

+ ε 1 / 2 S̄ (1) 
1 

, S̄ 2 ∼ S̄ (0) 
2 

+ ε 1 / 2 S̄ (1) 
2 

as ε → 0 , (B.5)

the appropriate governing equations, obtained from (10) and (4a,b),

are 

d ̄S (0) 
1 

d T 
= − K̄ 

i 
1 

S̄ (0) 
2 

, (B.6a)

d ̄S (1) 
1 

d T 
= 

K̄ 

i 
1 (

S̄ (0) 
2 

)2 

(
S̄ (1) 

2 
+ K̄ 

i 
1 

(
1 + 

K̄ 

M 

1 

S̄ (0) 
1 

))
, (B.6b)

0 = 

K̄ 

i 
1 

S̄ (0) 
2 

− αS̄ (0) 
2 

, (B.6c)

d ̄S (0) 
2 

d T 
= −2 α

(
S̄ (1) 

2 
+ K̄ 

i 
1 

(
1 

2 

(
1 + 

K̄ 

M 

1 

S̄ (0) 
1 

)
− γ

))
, (B.6d)

with matching conditions, valid when T → 0 + , 

S̄ (0) 
1 

∼ 1 −
(
αK̄ 

i 
1 

)1 / 2 
T , S̄ (1) 

1 
∼ −

(
K̄ 

i 
1 

α

)1 / 2 

log 2 , 

S̄ (0) 
2 

∼
(

K̄ 

i 
1 

α

)1 / 2 

, S̄ (1) 
2 

∼ K̄ 

i 
1 ( β + γ ) , (B.6e)

obtained using Van Dyke’s matching rule ( van Dyke, 1975 ) on the

 = O (1) results (11) and (B.4) . 
The system (B.6) is thus solved by 

¯
 

(0) 
1 

= 1 −
(
αK̄ 

i 
1 

)1 / 2 
T , (B.7a)

¯
 

(1) 
1 

= αK̄ 

i 
1 

(
γ + 

1 

2 

)
T −

K̄ 

M 

1 

(
αK̄ 

i 
1 

)1 / 2 

2 

log 

(
1 −

(
αK̄ 

i 
1 

)1 / 2 
T 

)

−
(

K̄ 

i 
1 

α

)1 / 2 

log 2 , (B.7b)

¯
 

(0) 
2 

= 

(
K̄ 

i 
1 

α

)1 / 2 

, (B.7c)

¯
 

(1) 
2 

= K̄ 

i 
1 

⎛ 

⎝ β + γ −
(
αK̄ 

i 
1 

)1 / 2 
T 

2 

(
1 −

(
αK̄ 

i 
1 

)1 / 2 
T 

)
⎞ 

⎠ . (B.7d)

The most significant asymptotic regime of interest for the

epletion dynamics occurs when S̄ 1 = O (ε 1 / 2 ) , which results in

he depletion of several metabolites in the system. This re-

ion occurs when t = 1 / (εαK̄ 

i 
1 
) 1 / 2 + ̂

 t /α (equivalently, when T =
 / (αK̄ 

i 
1 
) 1 / 2 + ε 1 / 2 ( ̂ t /α) ), where ˆ t = O (1) . We additionally scale

( ̄S 1 , S̄ 2 ) = ( ̄K 

i 
1 
/α) 1 / 2 (ε 1 / 2 ˆ S 1 ( ̂ t ) , ̂  S 2 ( ̂ t )) . Substituting these scalings

nto (10) and (4a,b) results in the leading-order long-time equa-

ions 

d ̂

 S 1 

d ̂

 t 
= −

ˆ S 1 

αK̄ 

M 

1 
+ 

ˆ S 1 ̂  S 2 
, (B.8a)

d ̂

 S 2 

d ̂

 t 
= 

ˆ S 1 

αK̄ 

M 

1 
+ 

ˆ S 1 ̂  S 2 
− ˆ S 2 . (B.8b)

The leading-order matching conditions as ˆ t → −∞ are ˆ S 1 ∼ −t̂ 

nd 

ˆ S 2 → 1 , and the remaining variables in the system are still

iven by ( 6 c-h). In practice, we find that this leading-order system

s sensitive to the O ( ε1/2 ) matching condition for ˆ S 1 as ˆ t → −∞ .

e can deduce this directly by determining the behaviour of ˆ S 1 as
ˆ 
 → −∞ from the system (B.8). That is, we deduce that 

ˆ 
 1 ∼ −ˆ t − (αK̄ 

M 

1 / 2) log (−ˆ t ) + C as ˆ t → −∞ . (B.9a)

e may determine C by matching the solution to S̄ 1 up to O ( ε1/2 )

hen t = O (ε −1 / 2 ) , given in (B.7a,b). From this matching, we de-

uce that 
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 = − log 2 + 

1 
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(
v 2 v 3 
αv −2 

(
1 

K̄ 

M 

2 

− v 2 
k −2 

+ 

v 2 v 3 
k 3 v −2 

)
+ α

)

− αK̄ 

M 

1 

4 

log 

(
ε ̄K 

i 
1 

α

)
+ O (ε 1 / 2 ) . (B.9b) 

Using (B.9) as the matching condition for ˆ S 1 , we may numer-

cally solve (B.8) to obtain the depletion dynamics for ˆ S 1 and 

ˆ S 2 ,

hen use the latter solution in ( 6 b–g) to deduce the depletion

ynamics for the remaining metabolites. We see excellent agree-

ent between these asymptotically determined solutions and the

ull numerical solutions ( Fig. B.1 ). 

As the system (B.8) is governed by two coupled autonomous

onlinear equations, we further note that we are able to reduce

hese to a single nonlinear ordinary differential equation by divid-

ng one equation by the other and seeking a solution to S̄ 2 ( ̄S 1 ) .

lthough this first-order differential equation can be transformed

nto a linear second-order differential equation with solutions in-

olving modified Bessel functions, reintroducing t into this system

s nontrivial, and the solutions do not provide any insight into the

nderlying system behaviour. Therefore, we do not consider this

oute further. 
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