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Abstract�

 In this work is presented the growth model for Au films grown on a carbon substrate at 

room temperature by using as building blocks Au nanoparticles (NPs) with 1.4 nm mean size 

generated via remote cluster beam synthesis and soft landing on the substrate. The key results 

highlighted in this work are that 1) the deposited nanoparticles coalesce at substrate level in such 

a way that the film growth is 3D, 2) newly formed nanoparticles at substrate level are 

predominantly magic number clusters and 3) coalescensce takes place as soon as two 

neighboring nanopartciles come closer than a critical distance. The film growth was investigated 

by TEM as a function of Au load, in the range 0-1.2 �g/cm2. Two distinct regimes are identified: 

the "landing regime" and the "coalescence regime". During the latter the film growth is 3D with 

a dynamic scaling exponent z of 2.13. Particular attention was devoted to the study of the 

evolution of the NP population from the moment they are generated with the cluster beam 
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generator to the moment they land on the substrate and coalesce with other NPs. Our results 

show that 1) the NPs generated by the cluster beam are heterogeneous in size and are made by 

more than 95% by Au Magic numbers , mainly Au20 and Au55 and 2) kinetic processes 

(coalescence) at substrate level is capable of producing NPs populations made of larger Au 

magic numbers containing up to several thousands of Au atoms. Experimental and simulation 

results provide insight into the coalescence mechanism and provide strong evidence that the NPs 

coalesce when the nearest neighbor distance is below a critical mark. The critical distance is at 

its minimum 0.4-0.5 nm and it is still unclear whether it is constant or not although the best 

matching simulation results seem to point to a superlinear dependence from the NP size 

difference between two neighboring candidate coalescing NPs. The coalescence phenomenon 

investigated in this work pinpoints the unique self-organization properties of these small Au NPs 

in creating films with a stable edge-to-edge mean nearest neighbor distance of the order of 1.4 

nm.. 

 

Keywords: nanoparticles, coalescence, cluster beam, film growth, nearest neighbor. 
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1 Introduction�

 

The synthesis and reactivity of Au nanoparticles (NPs) is receiving substantial attention due 

to their important physicochemical properties and their potential applications in chemistry, 

medicine, sensor technology and nanoelectronics [1,2,3,4]. The catalytic properties of Au NP, in 

particular, have been a topic of continuing research over the past three decades [5,6,7,8,9,10,11]. Au 

has been shown to be catalytically active for a wide range of important reactions including the 

low temperature CO oxidation [12], the selective oxidation of alkenes [9,13,14], hydrogen peroxide 

formation from O2 and H2 [15], cross coupling [16,17] and hydrogenation reactions [18].The size 

dependent properties of Au NPs [19] has led to the detailed investigation of cluster formation and 

stability. In this respect, a substantial experimental and theoretical effort has been devoted to 

understand the underlying properties which lead to stable Au clusters. Of particular interest have 

been the energetically stable clusters derived from Au magic numbers [20,21,22]. These atomic 

arrangements are typically formed by the completion of a geometrically perfect structure or by 

the closing of an electronic shell [23]. Critically, the chemical properties of nanosized clusters 

depend strongly on both their electronic and physical structure [20]. Therefore, understanding of 

the underlying mechanism that controls the formation and growth of Au clusters and particularly 

of magic Au clusters is of major importance both from a fundamental and technical point of 

view.   

The techniques used to fabricate Au NPs layers can be divided in two main classes which 

rely on i) the deposition of Au thin films or ii) the deposition of pre-formed NPs. The latter is 

typically achieved by cluster beam generators [24,25,26,27] or by using colloidal NP systems [28] 
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while the former is achieved by sputtering [29], pulsed laser deposition [30], thermal and e-beam 

evaporation [31], molecular beam epitaxy [32], electrochemical [33] methods. The main drawback 

in the fabrication of Au NPs through the growth of thin Au films is the poor control over the NPs 

size distribution. Furthermore, the NP formation is found to depend strongly on the nature of the 

substrate and the specific substrate - adsorbate interactions which dominate the kinetics of the 

overall growth process. [34,35]. Au NP formation through the deposition of Au thin films has been 

often found to follow the Wolmer-Weber [29] growth mode, leading to the formation of 3D Au 

nanoislands with irregular or hemispherical shapes. [36,37,38,39]. More spherically shaped Au NPs 

have been obtained after rapid thermal annealing (RTA) (Wolmer-Weber growth associated with 

ripening) [34,39] . The thermal treatment of the film, however, is not always desirable or possible 

as it increases the thermal budget of the sample and introduces the risk of Au contamination of 

neighboring materials/structures. Contrary to this, deposition of pre-formed NPs using cluster 

beam generators, as the present work demonstrates, provides superior control over the NPs size 

distribution, is a room temperature process and leads to more spherically shaped NPs. 

The properties of cluster beam generated NPs films have been recently investigated in terms 

of their mechanical[40,], antimicrobial[41,42], optical[43,] and electrical[44] characteristics. 

Cavaliere et al. [42] used supersonic cluster beam deposition (SCBD) to deposit antimicrobial Ag 

nanoparticle films on soda lime glass with high control over the density and the thickness of the 

film. The Ag films were found to have stable oxidation state and morphology for prolonged 

periods of time. Peli et al. [40] aslo used SCBD to deposit Ag NPs on sapphire and studied the 

resulting film morphology, composition, and mechanical properties in the range of 10 � 50 nm. 

The obtained films were composed of crystallites of Ag NPs with 6 nm average size and inter 

NPs voids. Interestingly the authors studied the photoacoustic nanometrology of the deposited 
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films and found that they can perform very well as hypersonic acoustic cavities up to and beyond 

the 100 GHz range. Benetti et al [41] used SCBD to study the formation of bi-elemental Ag-Ti 

antimicrobial films. The Ag-Ti films were obtained by an one-step gas-phase deposition process 

which formed bi-elemental Janus type particles on the substrate. The resulting films were 

composed of Ag nano-crystals embedded in amorphous TiO2 via a cluster-in-cluster mixing 

phase. Minnai et al [43] fabricated stretchable nanocomposite films with mechanically tunable 

surface plasmon resonance. The films were produced by implantation in a Polydimethylsiloxane 

substrate of neutral gold nanoparticles aerodynamically accelerated in a supersonic expansion. 

Borghi et al. [44] investigated the mechanical properties of the same gold-polydimethylsiloxane 

nanocomposite for flexible electronic applications, demonstrating a tunable Young�s modulus 

depending solely on the amount of metal clusters implanted in the elastomeric matrix..  

Regarding the film growth characteristics and how NPs on the substrate interact with each 

other the literature is still scarce. An interesting example is represented by the work of Celardo et 

al. [45] who used femtosecond laser ablation deposition in air at ambient conditions to study the 

fractal nanostructures of titanium dioxide, TiO2, on a variety of substrates. Based on the 

experimental data and on Monte Carlo simulations the authors have found that the nanostructures 

are formed after landing of the ablated material on the surface by a diffusion mechanism. For 

what concerns metallic NPs, examples are represented by the work of Majumdar et al. [46], 

Divece et al. [47] and Pedersen et al. [48]. Majumdar et al. studied the surface morphology of thin 

films grown by deposition of  3.4 nm Cu NPs onto Si substrates. The authors found that the soft-

landed NPs nucleate upon impact to form nanoclusters, which further coalesce with each other to 

form larger clusters. Divece et al. examined the evolution of Au NPs with annealing time at 200 

oC on amorphous carbon surfaces. This was done for two different Au NPs populations co-
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deposited on a carbon substrate by combining the cluster beam generator to a mass selection 

device. The clusters produced by this method were Au330 (1.9 nm diameter and 3 1011 cm-2 

density) and Au10000 (6.7 nm diameter and 3 1010 cm-2 density) Interestingly, the size of the Au330 

clusters was found to be smaller than the one expected from the spherical cluster approximation, 

suggesting that small Au NPs tend to be faceted. Subsequent annealing studies at temperatures as 

low as 200 C show that Au330 NPs are more mobile and coalesce with the bigger Au10000. 

Pedersen et al. investigated the conductivity of monodisperse 6.5 nm Ag NPs deposited by 

combining the cluster beam generator to a mass selection device for increasing nominal areal 

density. The authors show that Ag NPs naturally coalesce as soon as the nearest neighbor 

distance (edge-to-edge) becomes smaller than 3.5 nm and ascribe this effect to spontaneous 

charge transfer between neighboring NPs. This limit distance also serves as the border value that 

separates highly conductive percolation regime from the highly resistive tunneling regime.  

The results presented in this work are aimed at understanding the Au film growth kinetics of  

sub-2 nm Au NPs soft landing on an amorphous carbon film. Carbon surfaces have unique 

physicochemical properties which makes them attractive for the study of molecular and 

nanocluster self-assembly. The low cost of carbon and its conductivity properties makes it a 

desirable material for a variety of applications including industrial scale electrodes, molecular 

electronics, fuel cell components, bio- and chemical sensors and high surface area supports for 

industrial catalysts [49]. Furthermore, in the case of Au NPs deposition, the amorphous carbon 

substrate ensures that the NPs remain stable as it has also been observed for graphene substrates 

[50]. Particular attention is devoted to the study of the evolution of the NP population from the 

moment the NPs are generated by the cluster beam generator to the moment they land on the 

substrate surface and coalesce with other NPs. This approach allowed the identification of 
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several Au magic numbers, some created directly by the cluster beam generator (e.g. Au55) and 

others formed through kinetic processes (coalescence) taking place on the substrate upon NP 

deposition (Au561). This is the first report on the growth of Au magic numbers in the 1.5-3.5 nm 

range by the coalescence of soft-landing clusters fabricated at room temperature by using cluster 

beam synthesis.  

2 Experimental�

The NP deposition was performed using a special dc sputtering chamber (NanoGen, Mantis 

deposition Ltd) attached, through a small aperture, to the main chamber where the sample was 

located as shown in Figure 1, more details can be found elsewhere [51]. The substrates used in 

this experiment were carbon films on copper transmission electron microscopy (TEM) grids used 

as received (C film of 5-6 nm on Cu grid from Electron Microscopy Sciences, type CF200-Cu). 

The TEM grids substrates were placed into the main chamber 50 cm away from the cluster beam 

aperture (diameter of 5mm) and kept at room temperature during depositions.  A pure Au target 

(diameter 2�, thickness 1/8�) was used at a sputtering power of 30 W with an Ar flow of 75 

sccm. The DC magnetron head was cooled via a continuous flow of water at 18 C. The pressure 

inside the main chamber was around 2 10-3 mBar while the estimated pressure within the 

aggregation chamber of the cluster beam generator was in the range 10-1-10-2 mBar. By varying 

the deposition time it was possible to vary the NP film load in the range 0-1 �g/cm2 and fabricate 

in such a way 4 different samples, A to D, with increasing NP load as shown in Table 1. A fifth 

sample with a very small NP load to avoid any coalescence effect at substrate level, named 

�short deposition�, was also prepared in order to investigate the size distribution of the NPs 

generated by the cluster beam. As will become clear in the next section, as a result of the above 
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conditions the NP densities were in the range 1012-1013 cm-2. For clarity we should remind that 

the film load is related to the equivalent film thickness (equivalent to that of a 

uniform/atomically flat thin film) and to the NP film properties according to the following 

equalities: 

)()(
1

NPVolNPVol
A

thicknessload
i

i ´´=´=´= å srrr    (1) 

where " is the density of the material, A is the area of the substrate where the NPs are being 

deposited, Vol indicates the volume, <> is the mean value operator and # is the areal density of 

the NPs. The first equality holds for any thin film while the subsequent 2 are specialized for the 

case of NP films. For example, A 1 nm thick Au thin film corresponds to a load of 1,93 �g/cm2. 

A FEI CM20 TEM operating at an accelerating voltage of 200kV was utilized for TEM 

study of the samples. NPs' shape factors and size distributions (diameter) have been extracted 

from the TEM images by analyzing the area of each NP. NPs' coverages have been calculated 

from the TEM images as the ratio between the total area of all NPs appearing in the image and 

the imaged area. Note that the TEM images presented in this manuscript are only a  small 

representative sample of all the TEM images (at different magnification levels) that have been 

acquired and analyzed in order to validate the above analyses. 
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Figure 1. Schematic of the cluster beam used in this work to fabricate Au NPs at room 

temperature. 

 

Table 1. The samples considered in this work, fabricated by varying the deposition time 

(the corresponding NP load values are also shown)   

Sample short deposition A B C D 

Deposition time (min) 2 25 50 75 100 

NPs Load ( g/cm2, Au) 0.01 0.209 0.532 0.810 1.231 

 

3 Results 

Figure 2 shows TEM plane view images of the as prepared samples A-D. The statistical 

analysis of the lateral size distributions, shown in the insets, suggests that the average NP size 

increases substantially with load while the NP areal density remains relatively unchanged. 

Contrary to this, the size dispersion appears to increase with increasing Au load. These 

observations are graphically summarized in Figure 3a. The NP density (black line) increases 

from sample A to sample B (maximum) and then decreases for samples C and D. The NP lateral 

size (red line) also increases - here it would seem that a linear relation with the load fits well the 

data points but as we will show later the situation is more complex than that. After extrapolating 

the data to 0, it is also possible to infer the average diameter of the NPs generated from the 
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cluster beam which is estimated to be around 1.3-1.4 nm. Figure 3b shows the NP film coverage 

of the substrate as a function of Au load. The NP film coverage was calculated directly from the 

TEM images and is defined as the ratio of the area occupied by the NPs to the total area of the 

imaged region. The results show that the NP film coverage initially increases in a linear fashion 

with increasing Au load, and then saturates at a coverage of 0.23-0.24. Interestingly, the TEM 

images show that for all samples the NPs are always in very good approximation circular and 

well separated from one another i.e. it is very hard to find two NPs in contact to each other.  

Clearly, the NP density of the four samples presented up to this point is relatively high 

and therefore it is highly probable that already at sample A condition, some particles have 

coalesced with others to produce larger particles. For this reason and in order to establish the size 

characteristics of the Au NPs generated by the cluster beam, we have also carried out an 

additional deposition experiment which aimed to produce a very low Au NP density on the 

sample. This was achieved by utilizing the same conditions used for the previous four samples 

with the exception of the deposition time which was reduced to 2 min and led to a NP load of 

approximately 0.01 �g/cm2 From this point onwards we will refer to this sample as �short 

deposition�. Due to the very low areal NP density in this sample, the analysis required the 

acquisition of several TEM images in randomly chosen locations on the substrate, see Figure 4a-

b. The Au NPs produced by the cluster beam generator were found to be predominantly of two 

sizes (Figure 4c): 0.9±0.1 nm and 1.3±0.1 nm in diameter. It is worth noticing that the mean size 

of the distribution was found to be 1.40 nm, in excellent agreement, considering the experimental 

errors potentially involved, with the average diameter of the NPs generated from the cluster 

beam that was estimated previously from Figure 3a extrapolating the data to 0 load. 
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Figure 2. Plan view TEM images and NPs distribution (bin size of 0.5 nm) for the four 

samples considered in this work. a) A (0.209 �g/cm2), b) B (0.532 �g/cm2), c) C (0.810 

�g/cm2) d) D (1.231 �g/cm2). The bar corresponds to 20 nm, the imaged area is 176 nm x 

176 nm . 
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Figure 3. a) Density and NP size plots as a function of Au loading. b) fraction of the surface 

of the sample covered by the Au NP film as a function of the load. The coverage increases 

linearly with the load nearly up to sample B and then shows a saturating behavior in C and 

D. (All data have been extracted from the TEM images shown in Figure 2) 
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Figure 4. Results concerning Au NPs deposited at very low areal density (�short!

deposition�): a), TEM images showing Au NPs of 0.8-0.9 nm b) TEM images showing Au 

NPs of 1.3 nm, c) Au NP diameter distribution (bin size of 0.1 nm) with the above two sizes 

clearly dominating over the others.  
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4 Discussion 

4.1 NP films growth kinetics 

The results presented in Figure 3a seem to support the existence of two distinct regimes 

during the Au NP film growth that we will refer to as: "landing regime" and "coalescence 

regime". The landing regime dominates the very early stages of NP deposition (i.e. load say < 

0.1 �g/cm2 in such a way that the NP density is less than 1 1012 cm-2); the dominant nanocluster 

population on the substrate are Au NPs, as generated from the cluster beam generator, which 

land on the substrate in such a way that they are well isolated from other NPs and so they don�t 

undergo any coalescence process at substrate level. On the other hand, the coalescence regime 

refers to a later stage in this process (i.e. load say > 0.5 �g/cm2) that dominates when the NP 

density on the substrate is high enough in such a way that the NPs being deposited on the sample 

interact with the preexisting NPs and their coalescence is the dominant phenomenon taking 

place. Having in mind the above classification in two regimes, we could attempt here below to 

describe qualitatively what is happening in our samples. In the landing regime we can deduce 

that the mean NP diameter is constant and the NPs density varies linearly with the load. We have 

already shown in one of our previous works [52] that with small NPs and at low NPs densities, 

say <1012 cm-2, the NP density would vary linearly with the load (or deposition time). 

Furthermore, as it will become clear later in this work, both our theoretical model and simulation 

results support the above statements. As the load approaches 0.209 �g/cm2 (sample A), a small 

fraction of NPs has already started coalescing with other NPs. This can be due to (i) the 

increased probability of an incoming NP hitting an existing NP on the substrate surface or/and 

(ii) the diminished distance between neighboring NPs. The appearance of coalescence at this 

point causes the mean NP size to increase while the NP density, although is still increasing, it 
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does so at a smaller rate (A-B region). As the Au load increases further, the coalescence 

phenomena become more prominent. As the Au load reaches 0.532 �g/cm2 (sample B) the 

nanoparticle density goes through a maximum indicating that NP coalescence from this point 

onward is the key process governing the film growth.  In this regime the NP diameter increases 

while  the density decreases with  increasing load (samples B-D). Interestingly, results that go 

along the lines of those discussed here were reported by Shyjumon et al. for the case of Ti 

nanoparticles on Si substrates [53]. 

Figure 3b shows a plot of the surface coverage as function of Au NP load where it is 

identifiable an initial linear behavior and a subsequent saturating behavior. In order to derive 

some useful insights from the surface coverage data we should take into account that i) the NP 

coverage, in the presence of coalescence processes, is a measure of the 2D lateral growth and ii) 

the load is an indirect measure of the volume of the Au deposited on the substrate. This means 

effectively that a linear dependency of the coverage vs Au NP load would indicate either a 

landing regime (no coalescence, NP diameter constant, NP density increasing linearly with load) 

or a coalescence regime with 2D lateral growth (NP diameter increasing with load, NP density 

either constant or decreasing with load). Conversely, any saturating behavior of the coverage 

with the load would indicate some coalescence with 3D growth (lateral + vertical growth). The 

experimental coverage data of the Au NPs seem to support the idea of an initial landing regime 

followed by a coalescence regime. Indeed up to a Au load of 0.532 �g/cm2 (sample B) the 

coverage grows nearly linearly, which denotes a dominant landing regime (we can exclude 

lateral 2D growth at this early stage since the NP density nearly doubles when the load is 

doubled). In marked contrast, the coverage stays almost constant at approximately 0.23  between 

samples B and D, indicating a dominant coalescence regime with the 3D growth of the NPs.  
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It is well established that the relation between the feature size of the considered 

nanostructure and the film height (or load in this case) is given by the following equation: 

zthicknesssize

1

>µ<          (2) 

with z being the dynamic scaling exponent (usually >1) (see Ref[29] and references therein). In 

order to provide further evidence in support of the existence of two growth regimes, we present 

in Figure 5 the log-log plot of the average nanocluster size vs. the load. We should remind that 

the load is proportional to the thickness of the film according to eq. (1). In other words the above 

mentioned log-log plot provides a direct way to highlight any power-like relation, as eq. (2), 

existing between the average nanocluster size and the load or thickness of the film. Two distinct 

growth regimes are indeed observed: the first one concerns the region up to sample B, and the 

second one concerns the region between samples B-D where the 1/z exponent is 0.47±0.01 

(z=2.13). Regarding the former, taking into account that at very low load (�short deposition�) the 

mean NP diameter is around 1.4 nm, the red dashed curved has been drawn on the plot in Figure 

5 as an educated guess of the actual function representing the mean NP diameter vs load. This 

shows that at the very early stages of the deposition the 1/z exponent in eq. (2) should be 0 and 

then it should steadily increase attaining the value of 0.47 observed in the coalescence regime, as 

the load approaches the conditions used for sample B and then up to D. In order to stress the key 

differences between the B-D region and the one before sample B, in Figure 5 we have also drawn 

a straight line between A-B which would correspond to a 1/z exponent of 0.22. According to our 

educated guess curve, the 1/z exponent varies steadily in the landing regime so the above value 

should be regarded as the average 1/z exponent between A and B. It will soon become clear later 

in this work that our modeling and simulation results support the results shown in Figure 5. 
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 The existing growth data/models in the literature all refer to the case of Au atoms being 

deposited on a substrate. For example, Ruffino et al. [29], by studying the RT film growth of Au 

atoms evaporated onto Si, have shown that, on a 2D surface, conservative systems (systems that 

conserve the number of nanoparticles on the substrate) should show z=4 (1/z=0.25) while non-

conservative systems should present z in the range 1.2-1.7 (1/z = [0.59, 0.83]). The same authors 

were also able to produce evidence for the existence of four different growth regimes of the Au 

nanoclusters, each with a characteristic scaling exponent: 1) nucleation, 2) lateral growth, 3) 

coalescence and 4) vertical growth. Karoutsos et al [54] , by studying the RT film growth of 

sputtered Au onto oxidized Si substrates, reports a 1/z value of 0.41 concluding that the film 

growth mechanism is related to the diffusion of Au atoms. Ramalingam et al [55] by studying the 

growth of sputtered Pt on alumina substrates report results which agree with an initial nucleation 

model followed by a subsequent coalescence regime. They also provide a plot for the NP density 

as a function of film thickness which is in excellent qualitative agreement with the one shown in 

Figure 3a. Similar evidence is provided by Iwamoto et al. [56] and Zhang et al [57]. Particularly 

the latter work, shows data concerning the evolution of nanocluster density and average 

nanocluster size as functions of the load that are in excellent qualitative agreement with the data 

presented herein.  

 However, it is worth noting that the aforementioned works, involve the deposition of Au 

atoms on the substrate via evaporation or sputtering. In this work the situation is very different as 

pre-formed NPs (clusters of many Au atoms) are deposited on the substrate.  The scaling law 

represented by equation (2) involves quantities that are intrinsically independent from the 

building block being deposited, be it atom or nanocluster, as they refer generally to the average 

lateral size/diameter of the structures observed/formed on the substrate and the thickness of the 
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deposited film. In this framework, it does make sense to apply such scaling law also in our case, 

as we did in Figure 5. The question we would like to address now is though, how can we explain 

the fact that the 1/z exponent in our case goes from 0 up to 0.47? what type of processes are 

taking place at substrate level to make this possible?  

4.2 Coalescence�model�for�landed�nanoparticles�

To properly address those questions we should take into consideration several parameters 

like i) the shape of the landing NPs and ii) the shape of the NPs formed through coalescence and 

iii) the kind of coalescence processes taking place on the substrate.  

4.2.1 Type�of�coalescence�processes�

the coalescence processes that could take place at substrate level are obviously many. For 

instance, the most basic process is the one represented by a NP landing on the substrate where it 

interacts with nothing else. Such process steadily increases the NP density without changing the 

NP size distribution. We define this process as a 1-0 process (read 1 to 0). The next simpler one 

is the one involving 1 oncoming NP and 1 NP on the substrate e.g. 1-1 processes (read 1 to 1). 

This process will produce 1 new NP but leaving the count of NP on the substrate unchanged (the 

NP density would remain constant). 1-2 processes would require the involvement of 1 oncoming 

NP and 2 NPs on the substrate, creating 1 new NP but actually resulting in the removal of 1 NP 

from the count on the substrate. Note that a 1-2 process and any 1-many process, doesn�t require 

the interaction at exactly the same time of 1 oncoming particle and 2 or more NPs on the 

substrate but could be imagined also as a succession of 1-1 processes: 1-2 is equivalent to 1-1 

followed by the interaction of the newly formed NP with another on the substrate. Someone 

could go on with 1-3, 1-4 etc. processes but we should also keep in mind that the probability of 

such processes may well be different (smaller generally) from the one of the simpler 1-1 or 1-2 
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processes. From the above arguments it becomes clear that 1-n processes (n>1) are those that are 

responsible for decreasing the density of NPs on the substrate.  

4.2.2 � NP�shape�and�relation�to�film�growth�regime��

Our TEM observations show that the Au NPs on the samples discussed in this work are 

very circular in plane view (the detailed analysis of the shape of the NPs is discussed in detail in 

the supporting information, section 3) which would indicate that their actual shape can only be 

a sphere, an oblate spheroid or a disk. It would seem reasonable at this point to speculate that 

initially the NPs are spherical and they remain so in the first stages of the growth (especially 

because NPs with lateral sizes as small as 1 nm or few nm as in this work have been shown to 

have spherical structures as their most stable configurations, see supporting information section 

4 and references therein); as they coalesce/grow further they would slowly tend to degenerate 

into oblate spheroids; as these spheroids grow larger they would tend finally to assume a disk-

like shape and would grow mainly laterally. The case of a coalescence process where the 

resulting NP is spherical could be regarded as the ideal case of a 3D growth scenario, the case of 

a coalescence process where the resulting NP grows only laterally and thus has a disk-like shape 

could be regarded as the ideal case of a 2D lateral growth while the case of a coalescence process 

where the resulting NP is an oblate spheroid could be regarded as an intermediate situation 

between the previous two. Here below we analyze the two limit growth cases of spherical and 

disk-like NPs.  

4.2.3 Model�for�spherical�NPs�(3D�growth)�and�disk�like�NPs�(2D�growth)�

Assuming that the NPs are spherical at every stage of the film growth (3D growth) it is 

clear that in presence of only 1-0 processes, the thickness of the film would increase with 

increasing film thickness or load while the mean diameter of the NP would remain constant (the 
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exponent in eq.(2) would be 0). In presence of only 1-1 processes, Figure 6a, the value of the 

exponent in eq.(2) could be calculated by considering a situation where N identical oncoming 

NPs interact with N identical NPs on the substrate (equal diameter 0D ) in 1-1 processes to 

produce N new NPs. The diameter of the new NPs and the film thickness would be given by (the 

volume of the new NP is V1=V0+V0=2 V0 èD1
3=2 D0

3) 

ïî

ï
í
ì

´=

=

2

2

01

3

01

thicknessthickness

DD
        (3) 

which at the n-th step would read 

( )
ïî

ï
í
ì

´=

´=
n

n

n

n

thicknessthickness

DD

2

2

0

3

0        (4) 

The above parametric equation provides, through few substitutions, the relation between 

the diameter of the NPs and the thickness of the film in the case of 1-1 processes, and it turns out 

that the exponent of equation (2) would be equal to 1/3 in this case. We could imagine to repeat 

this procedure for 1-2 or 1-3 processes and also do the same under the assumption that the NPs 

are not spherical but disc-like at every stage of the growth, see Figure 6b (2D lateral growth). 

Equations similar to equation (4) can be found also for NP density and coverage as shown in the 

supporting information section 1 (see also Figure S1). The expected 1/z exponents related to 

equation (2) are presented in Table 2, together with the exponents for the similar power-like 

relations concerning NP density and coverage. More details about the derivation of these 

parametric equations are provided in the supporting information section 1. 

4.2.4 Experiment�vs�Model�
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From this analysis it becomes clear that the data shown in Figure 5 are compatible with 

the scenario of spherical NPs (3D growth).  This conclusion can be supported by the following 

observations (concerning film thicknesses, or loads, in the range between samples B-D): (i) the 

NP density decreases, which means that only 1-n processes with n=1,2,3� dominate in this 

regime, (ii) the NP film coverage shows a saturating behaviour, (iii) the mean NP diameter 

grows in a power-like fashion with exponent 0.47. Considering that the 1-1 process would have 

an exponent of 0.333 for spherical NPs (3D growth) or 0.5 for disk-like NPs (2D growth), 

observation (iii) could either suggest 3D growth with dominating 1-1 processes and few 1-2, 1-3 

processes (to account for the exponent mismatch) or a 2D growth with only 1-1 processes. The 

hypothesis of 2D growth though is unrealistic according to observation (ii) as because 1-1 

processes in a 2D growth regime cannot account for the saturating behavior of the coverage. On 

the contrary, a 3D growth regime, dominated by 1-1 processes, with few 1-2, 1-3, 1-n processes 

would explain both (i) the decreasing NP density and (ii) the saturation of the NP coverage for 

increasing Au NP load. The former is explained by recalling that 1-2, 1-3, 1-n processes induce a 

net decrease of the number of NPs in the sample (see also Figure S1 in the supporting 

information section 1). The latter instead can be explained by combining the effect of two 

contributions:  (i) when coalescence starts we move from dominating 1-0 processes to 

dominating 1-1 processes and the NP coverage growth rate would decrease from 1 dec/dec 

(linear coverage vs thickness relation) to 2/3 dec/dec (sublinear coverage vs thickness relation 

that would lead to a plateau-like situation); (ii) in the coalescence regime there will be few 1-2, 

1-3, 1-n processes that contribute to further decrease the coverage (if were dominating would 

exponentially reduce the NP coverage as shown in Figure S1 in the supporting information 

section 1).  
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The experimental results presented so far fit well a 3D growth kinetic model where the 

actual processes dominating the coalescence regime in the region between samples B-D are 

mainly 1-1 processes with a small amount of 1-2 or 1-3. On the other hand, during the initial 

"landing regime" up to sample B, the dominating process is the 1-0 (1/z exponent equal to 0) 

with 1-1 and higher processes becoming more and more probable as the conditions of sample B 

are approached (1/z exponent slowly increasing from 0 toward 0.47) providing support in this 

way to the educated guess represented by the red dashed curve in Figure 5.     

  

Figure 5. log-log! plot! of! the! Au! NPs�!mean! diameter! as! a! function! of! the! load! (or! film!

thickness) showing the existence of a two phase growth process. The B-D data points are 

well fitted by a straight line. The region before B presents a different trend. The red dashed 

curve represents an educated guess of the actual function that could join our data points, 

this is supported by our theoretical modeling and simulation work in the manuscript. To 

further stress the difference between the two regions we have drown a straight line between 

A and B which requires a 1/z exponent equal to 0.22.   
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Figure 6. schematic representation of the 1-1 process for a) spherical NPs (3D growth), b) 

disk-like NPs (2D lateral growth). Note that the disk-like assumption represents a limit 

idealized condition that simplifies the analysis for the 2D lateral growth scenario but it does 

not imply nor requires that the NPs generated by the cluster beam are also disk-like; 

actually! the! shape! of! the! NPs! doesn�t! really! matter! in! this! case! while! the! only! true!

requirement is that the NPs conserve their height constant throughout all stages of the 

growth (at least during the very first stages of growth as those studied in this work)  
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Table 2. Values of the 1/z exponent in equation (2) and the exponent for any power like 

relation existing between NP density or coverage with the film thickness under the 

assumption of either spherical or disk-like NPs for several coalescence processes that may 

take place at substrate level: 1-0 (i.e. no coalescence just NP deposition), 1-1 (1 oncoming 

NP coalesces with 1 NP on the substrate), 1-2 (1 oncoming NP coalesces with 2 NPs on the 

substrate) etc. If the relation is not power-like but rather exponential, as indicated in some 

cases here below, the + and � signs indicate whether the exponential function is monotonic 

increasing or decreasing respectively.  

process 

NP diameter vs thickness NP density vs thickness 

NP coverage vs 

thickness 

3D growth 

(Spherical NPs) 

2D growth (Disk-

like NPs) 

3D growth 2D growth 3D growth 

2D 

growth 

1-0 0 0 1 1 1 1 

1-1 333.0
3

1
»  0.5 0 0 666.0

3

2
»  1 

1-2 +exponential +exponential 

-

exponential 

-

exponential 

-

exponential 

0 

1-3 +exponential +exponential 

-

exponential 

-

exponential 

-

exponential 

0 

�

4.3 Magic�numbers�

 

 The experimental NP size distributions presented earlier show several clear sharp peaks 

when we look at their fine structure, which could be related to the appearance of more stable NPs 

i.e. magic number clusters. In order to correlate the NP diameters observed in this work with Au 

magic numbers, we gathered from the literature relevant data about Au clusters with a magic 

number of atoms spanning the range 13-40000, that was then used to create an interpolating 
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function able to correlate Au NP diameters with Au cluster size in atoms. This relation was then 

used to identify Au magic numbers in the experimental distributions of NP diameters found in 

this work. The full details of this procedure are discussed in the supporting information section 

4 and the result of this identification process is shown in Figure 7 where we present for each 

sample the identified peaks, their relative intensity (calculated as the % ratio between the counts 

"under" the peak and the total number of counts) and the position of relevant Au Magic numbers 

for peak matching purposes. All identified peaks match reasonably well an Au magic number. 

The main remark we should make at this point is that from this analysis it is clear that more than 

95% of NPs generated by the cluster beam (short deposition sample) correspond to stable Au 

magic numbers and coalescence at substrate level is responsible for the creation of Au magic 

numbers much larger than those generated by the cluster beam. The analysis presented in Figure 

7 suggests that coalescence is actually responsible for the evolution of the relative intensity of 

every peak as the NP load increases. Au20 is very intense in the short deposition sample but its 

intensity quickly drops to 0 as we approach the conditions of sample B.  A similar behavior is 

observed for Au55 and in a less dramatic way also for Au92, Au147, Au181(Au200). Apparently 

Au307 represents a border case as its intensity initially increases from A to B and then decreases 

slightly in C and D. The identified clusters above 307 all seem to boost their intensities as we 

move from A to D. Characteristic example is Au561 which is a faint peak in sample A, 

representing just the 3% of the total NP population, and it grows to more than 22% in sample D.  

We would like to remark that interestingly all the identified magic clusters match the 

geometrical shell closure of those polyhedra that are quasi-spherical e.g. dodecahedron, 

decahedron, etc. This result provides further support to the idea of a 3D growth of the NP film as 

the NPs are spherical at all stages of the film growth process (at least up to the conditions used 
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for sample D). More importantly, the results summarized in Figure 7 provide, to our knowledge, 

the first experimental evidence that magic number clusters are formed at substrate level through 

the coalescence of smaller NPs. 

  

Figure 7. Summary of identified peaks. The vertical lines in the top row represent 

identified magic number clusters that are shown in this graph to facilitate the peak 

identification process. The identified magic numbers in our samples are indicated next to 

the corresponding peak at its first occurrence as we move from "short deposition" to 

sample D. The black thick lines are guides to the eye aimed at indicating peaks 

corresponding to the same magic numbers over different samples. The peaks marked with 

a D correspond to known decahedron shell closures. See supporting information for more 

details 

4.4 Nearest�neighbor�analysis-Coalescence�mechanism�

Au NPs may coalesce with other neighboring NPs when the nearest neighbor distance 

(NN) is relatively small. The entire process that we call coalescence, especially for the case of 

spherical Au NPs, could be divided into three sub-processes: (i) attractive forces induce the NPs 

to come in close proximity and in contact eventually, (ii) an increasingly thicker bridge of Au 

atoms is formed between the two NPs that have become a single entity, (iii) Au atoms on the 

newly formed NP redistribute in order to minimize the configurational energy [58]. While (ii) and 

(iii) could be regarded as belonging to the broad research field relating to Au magic numbers and 
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Au nanocluster stability (see supporting information, section 4), process (i) is of particular 

interest because 1) the literature is quite scarce yet on this matter and 2) the mechanisms 

responsible for this process to occur could be quite diverse [58].Regarding the latter point, some 

examples could be: Electrostatic forces generated by charge transfer [48], electrostatic forces 

generated by dipole moments interaction mediated by plasmons [59,60], London, van der Waals, 

Casimir and oscmotic forces [61,62,63]. Generally speaking process (i) should require the 

involvement of two forces, a long range one and a short range one. By taking into consideration 

the fact that in cluster beam deposition the speed of the landing nanoparticles can be of the order 

of tens or hundreds m/s[64,65], someone could anticipate that the nanoparticles upon landing 

would have enough excess kinetic energy to allow them to slightly move around the landing site 

until this energy is fully dissipated by friction. In this working scenario process (i) could 

originate simply by short range forces.  Although it is beyond the scope of this work to determine 

the mechanism originating process (i), regardless of the physical process several reports in the 

literature seem suggesting that depending on NP system, substrate, etc, there is a critical 

minimum nearest neighbor distance (NNc) such that anything below that critical value will 

coalesce [48,58,61]. 

NN analysis of the TEM images discussed in this work (see supporting information 

section 2 for the full analysis) highlights the unique self-organization properties of such small Au 

NPs in creating films that in the coalescence regime show stable edge-to-edge NN characteristics 

with 1) maximum NN of 4.1 nm, 2) mean NN of 1.4 nm, 3) minimum or critical NN, or simply 

NNc, of 0.5-0.4 nm  (Figure 8a). There are two remarkable results that is worth noticing. Firstly, 

in the coalescence regime the mean NN distance is 1.4 nm which is equal to the mean NP size 
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generated by the cluster beam. Secondly, an NNc of 0.5 nm is in good agreement with a recent 

work on Au NPs deposited on carbon substrates by Neng et al. [58]. Lastly, it is meaningful to 

note that Au NP films like those in this work seem to posses quite unique self-organization 

properties (see also [66]) that have not been observed with other metallic NP films made out of 

materials other than Au (like Ni, Ti, Si, Pt, etc) also fabricated via cluster beam deposition (see 

Figure S12-S14 in the supporting information section 3). 

4.4.1 Simulation�results��

In order to gain insight into the coalescence phenomenon, we have developed a 

simulation program of the deposition process of the Au NPs generated by our cluster beam 

generator using Mathematica. The simulation is based on the following five simple assumptions: 

1) the film growth is 3D, 2) the NPs being deposited have a size distribution that is the one 

obtained experimentally from the "short deposition" sample, 3) the NPs travel in straight line 

with an approach angle of 45° respect to the substrate, 4) the NPs in absence of any external 

force would stop on the point they land on the substrate, 5) NPs closer than a certain critical 

distance NNc would coalesce. It is worth noting that given the innate complexity of the 

phenomena presented in this work, some of the above assumptions should be regarded as 

simplifying, zero-order, approximations that allow us to get an initial insight into the coalescence 

processes taking place. We recognize that an in depth simulation of the process would be well 

beyond the scope of this work. Someone could for example discuss the situation where 

assumption 4 is dropped and we assume that all landing nanoparticles travel a certain distance 

over the substrate before coming to a stop. Another even more realistic assumption could be to 

relate the travelled distance to the momentum of the landing particle (relate the distance to the 

mass of a NP, if we assume that all particles have the same speed at landing). The comparison of 
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the experimental and simulation results has been done using as reference the (macroscopic) 

behaviour observed for NP density, NP coverage and NP mean diameter vs film load. It should 

be remarked that this simulation tool has been constructed to test few simple scenarios only, as a 

full detailed modeling of all possible phenomena would have been beyond the scope of this 

work.       

The first simulated scenario is the one with NNc constant and equal to 0.4 nm with no 

other process taking place (Figure 9a-c, black curve).  This condition failed to reproduce the 

experimental results, especially the part concerning the coalescence regime (samples B-D). 

Remarkably, the simulation results improved drastically by keeping NNc constant as above and 

adding into the simulation a random walk of the NPs at substrate level with width of 0.05 nm, 

see Figure 9a-c red curve. The addition of mobility of the NPs at substrate level seems not only 

to capture the experimental results in the landing regime (A-B) but to some extent also those in 

the coalescence regime (B-D) and definitely provides a huge improvement over the situation 

with no random walk. The addition of some sort of mobility of the NPs in our simulation is 

strongly supported by existing literature. According to Jensen et al [67] and references therein, 

small gold nanoclusters on carbon substrates move on the substrate in a Brownian-like fashion 

with diffusion coefficients from 10--8 cm2/s down to 10-15 cm2/s. The third and last simulated 

scenario was the one where the condition of a constant NNc is dropped and NNc is actually a 

fitting function that depends on some parameters relevant to the deposition process. Among the 

different NNc functions tested, the one that provided the best match is a parabolic function of the 

size difference between the size of a given NP and the size of its nearest neighbor one (NN NP), 

as shown in eq. 5: 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Coalescence of cluster beam generated sub-2 nm bare Au nanoparticles and analysis of Au film growth parameters 

30 

 

( )
NPsizeNNNPsize

nmnmNNc

_

2.04.04.0 21

-=D

D´+D´+=D -

      (5) 

where "NPsize" is the diameter of the NP just landed on the substrate and "NN_NPsize" is the 

diameter of the NN NP to the one just landed. In Figure 9d is shown a plot of this function while 

in Figure 9e-f are shown two snapshots of the simulation corresponding to the conditions of 

sample B and D respectively. While it is unrealistic at this stage to say whether this scenario has 

a physical meaning or not, it is worth comparing Eq. 5 with the corresponding NN and � values 

extracted from the experimental data as shown in Figure 9d. The solid black line representing 

NNc from eq.5 clearly has experimental data points above and below it. Ideally, if eq.5 is 

physically meaningful, the experimental data points should all lie above the solid black curve 

which doesn�t seem the case here but it is remarkable to note that there are just ~80 data points 

out of 935 (8%) that actually lie below the line represented by eq. 5.     

 These simulation results indicate that a constant NNc of 0.4 nm with the addition of 

mobility of the NPs at substrate level could be the right direction to go in order to fully model the 

film growth and coalescence processes in these films. It is though noticeable the complexity of 

what happens in the coalescence regime, demonstrated on one hand by the discrepancy between 

the above simulation result and the experimental data (Figure 9a-c red curve) and on the other 

hand by the fact that in order to fully capture the experimental results NNc should not be kept 

constant but should be a function of some NP film parameters. We could speculate that the latter 

could be the indication that attractive forces with an innate non-linear nature and with a strong 

dependence from the NPs size may be at the heart of the growth and coalescence processes in 

these films [48,59-63].   
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Figure 8. Evolution with the NP load of the min, max and mean NN distance (edge to edge). 

Remarkably, the maximum NN is larger in sample A (landing regime) than in the other 

samples B-D (coalescence regime) while the minimum NN observed is always around 0.4-

0.5 nm.   
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Figure 9. a)-c) Comparison between simulation results (solid lines) and experimental data 

(square symbols) for the major macroscopic parameters characterizing the film growth: a) 
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NP density, b) mean NP size and c) NP coverage. The simulation results represented by the 

solid lines are obtained by: keeping NNc constant at 0.4 nm (black curve), assuming NNc 

constant and introducing random walk with constant width at 0.05 nm (red curve), best 

match using eq.5 (green curve). In d) is shown the graph of eq.5, the function relating the 

critical NN distance NNc with the size difference of two nearest neighbor NPs that was 

chosen in order to achieve the excellent match between experimental data and simulations 

(green line in a-c). Experimental data is also shown for comparison purposes. According to 

the definition of eq.5 given in the text, the region under the black curve should be a 

forbidden region for our system; it is remarkable that only 8% of all experimental data 

points fall in this region. e)-f) simulation snapshot at sample B and D conditions, 

respectively, using the best matching simulation conditions (imaged area of 150 nm side) 

 

Conclusions�

In this work was presented the film growth study of cluster beam generated Au NPs with 

1.3-1.4 nm average diameter soft landing at room temperature on a carbon substrate and with 

areal densities approaching 1013 cm-2. The growth of Au nanoclusters through the coalescence of 

Au NPs soft-landing on the substrate was investigated by TEM analysis of samples at increasing 

Au load, in the range 0-1.2 �g/cm2. The evolution of the nanoparticle lateral size and the nearest 

neighbor distance at increasing NP load values support very well the argument of an initial 

"landing regime" (samples A-B) followed by a coalescence regime (samples B-D). The film 

growth during the coalescence regime is 3D with a dynamic scaling exponent z of 2.13.  The 

statistical analysis of the TEM images revealed on the one hand that the cluster beam generator 

produces a population of NPs that is clearly dominated by the gold cluster with magic number 20 

and 55 and on the other hand that upon deposition on the substrate, the NPs coalesce with 

neighboring ones allowing for the appearance of Au clusters with larger magic numbers e.g. 561 

at expenses of the smaller clusters.  Experimental and simulation results provided insight into the 

coalescence mechanism and provided strong evidence that the NPs investigated in this work 

coalesce when the nearest neighbor distance is below a critical mark. The critical distance is at 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Coalescence of cluster beam generated sub-2 nm bare Au nanoparticles and analysis of Au film growth parameters 

34 

 

its minimum 0.4-0.5 nm. It is still unclear whether it is constant or not although the best 

matching simulation results seem to point to a superlinear dependence from the NP size 

difference between two neighboring candidate coalescing NPs..    
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