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ABSTRACT

Novel Phosphors for Solid State Lighting
by

Joshua D. Furman

Solid state white light emitting diode lighting devices outperform conventional
light sources in terms of lifetime, durability, and lumens per watt. However, the
capital contribution is still to high to encourage widespread adoption. Further-
more, the colour from today’s devices is unsuitable for general room illumina-
tion and thus new phosphor materials are needed. This dissertation will exam-
ine the synthesis of inorganic nanoparticles and the possibility of using hybrid
inorganic-organic frameworks in the search for new lighting phosphors. Nanopar-
ticles of the oxide compound yttrium aluminium garnet were synthesized using
an emulsion technique, though it was found that the high temperature processing
needed for good optical properties was not compatible with maintaining nano-
sized particles. In terms of hybrid framework phosphors, several aspects of this
new area have been explored. The mechanical and optical properties of a dense
cerium oxalate formate hybrid framework compound have been investigated. Its
strength was found to be nearly as great as some classical ceramic compounds, and
clearly robust enough for device applications. While the photoluminescence of the
cerium oxalate formate was not suitable for solid state lighting, the impressive me-
chanical properties evaluated are expected to be valid for a wide range of dense
inorganic-organic frameworks. A novel approach to solid state lighting phosphors
was introduced by using ligand-based photoluminescence in hybrid frameworks.
Novel frameworks were prepared using 9,10-anthraquinone-2,3-dicarboxylic acid
in combination with calcium, manganese, nickel, and zinc. These compounds
show excellent photoluminescent emission for use in solid state lighting applica-
tions, although the luminescence is quenched at room temperature due to dynamic
effects. The excitation, while reaching the blue part of the spectrum, falls just short
of what is needed for use today’s devices. To address these issues, a second class
of novel framework compounds was prepared using 9-fluorenone-2,7-dicarboxylic
acid in combination with calcium, strontium, barium, cadmium, and manganese.
They are more rigid structures and show good luminescence at room tempera-
ture with a photoluminescent excitation spectrum extending further into the blue
than the anthraquinones. Additionally, quantum yield in the calcium fluorenone
is nearly double that of its parent ligand, suggesting that there is an enhancement
in luminescent properties as a result its inclusion in a framework structure. An ex-
planation for the differences in efficiency between seemingly similar compounds
are drawn from their compositions, crystal structures, photoluminescence, and
specific heat properties. Finally, some structural and chemical targets for future
hybrid phosphor development are identified based on the relationships identified
in this work.
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Aims of research

The goal of this thesis was the development of new phosphor materials for solid

state lighting. More specifically, to develop new compounds which could be used

to efficiently convert the blue light available from GaN-based light emitting diodes

into lower energy wavelengths of the visible spectrum, resulting in white light

output. Applicability was considered both in terms of phosphor brightness and

device-level implications.

Chapter 1 describes the history of phosphors and luminescent materials, and

gives some examples of oxide phosphor materials and the mechanisms of excita-

tion and emission. This is followed by an introduction to inorganic-organic hybrid

framework materials, a class of materials distinctly different from oxides that will

be used to develop the luminescent materials described later in Chapters 5 and 6.

Finally, some precedent for trying to make hybrid materials is described at the end

of Chapter 1.

Chapter 2 outlines the experimental techniques that were used repeatedly

throughout this research. For instance, hydrothermal reactions, which are used

to synthesize the hybrid materials, and single crystal X-ray diffraction, which has

been used to solve the crystal structure of novel compounds. Throughout the chap-

ters that follow, more specific methods are described for individual experiments.
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Chapter 3 concerns the use of nanoparticles made from a well known inorganic

phosphor system, cerium-doped yttrium aluminum garnet. There have been con-

flicting reports about the benefits and difficulties of using nanoscale particles of

phosphor materials in light emitting diodes (LEDs), as opposed to the more com-

mon 1-50µm size used commercially today. It is thought that they might reduce

light scattering and increase the total efficiency of a device. Small particles were

synthesized by an emulsion route and characterized by temperature dependent lu-

minescence measurements and synchrotron pair distribution function, a real-space

local-structure analysis.

The work described in Chapter 4 began as an attempt to make phosphors

from hybrid materials of rare earth metals and oxalic acid. While it was found

that they were not particularly impressive as luminescent materials, they made an

ideal case for studying the nearly unexplored mechanical properties of inorganic-

organic frameworks. If these materials are to be used in commercial devices, their

strength and hardness becomes important for processing and product lifetime.

Chapter 5 introduces four novel inorganic-organic hybrid framework com-

pounds. The were prepared hydrothermally from filled shelled metals and the

ligand 9,10-anthraquinone-2,3-dicarboxylic acid. The luminescence of these com-

pounds at low temperature, while not useful for device applications, is important

in explaining some of the behavior seen for the framework compounds.

The final experimental section, Chapter 6, describes what is probably the most

interesting set of materials in this thesis. The crystal structure and lumines-

cent properties of five novel framework compounds containing 9-fluorenone-2,7-

dicarboxylic acid in combination with calcium, strontium, barium, and cadmium

are presented. An attempt is made to explain the differences between the light-

emitting properties of each of each compound using crystallographic, chemical,

2



and specific heat measurements.

Seventy years of development in oxide phosphors has only given some limited

design criteria in identifying high efficiency phosphor materials from simply their

crystal structure and chemical composition. At the end of this work, some initial

design targets for developing new frameworks using inorganic-organic framework

phosphor materials are proposed, describing which chemical and structural pa-

rameters most critical and which are less important.
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Chapter 1

Introduction

1.1 Materials for light conversion

Solid state lighting in the form of white light emitting diodes (LEDs) is poised

to replace incandescent and mercury-containing fluorescent lighting in the near

future [1, 2]. Incandescent lights are already facing bans in many countries.

Today’s commercial solid state devices use a GaN-based emitter in combination

with a yellow-emitting phosphor, typically Ce3+-doped yttrium aluminium garnet

(YAG:Ce) [3–5]. Figure 1.1 shows a typical cross-section of a phosphor-based LED

device. The reflective cup, which directs the light out of the device, is filled with

a polymer encapsulant to contain the phosphor particles. This combination of

blue and yellow light is relatively inexpensive and efficient but shows poor colour-

rendering properties. Consequently, there has been an extensive search in the

past decade for new phosphor materials with broad emission spectra in the the

green, yellow, and red [6]. The vast majority of these newly reported compounds

have been rare-earth doped oxides [7–11] and nitrides [12, 13]. Ideally, a solid

state lighting phosphor will be excited in the blue or near-UV and emit in the
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Reflective Cup

Figure 1.1: Schematic of a phosphor-converted white LED device. A GaN-based
emitter (purple) is surrounded by phosphor particles (yellow) and placed in a
reflective cup to focus the light output.

green-to-red regions to create a broad spectrum white light similar to blackbody

radiation [14]. The thermal stability of colour and intensity are also critical as the

temperatures at the emitter can reach over 100◦C [15].

Quantifying the quality of a light source in terms of colour can be difficult as

many factors need to be taken into account. The colour itself is often described

by a point on a chromaticity diagram like the one in Figure 1.2. However, sim-

ply identifying the emitted colour does not fully describe how a light source will

perform in practice, since the specific mixing of colours that leads to that final

emission colour is also important. The colour rendering index, or CRI, is a scale

from 0 to 100 that quantifies how well colours are represented when the incident

light reflects from an object’s surface. It is formally defined as the “effect of an

illuminant on the colour appearance of objects by conscious or subconscious compar-

ison with their colour under a reference illuminant” [16]. Sunlight, which comes

6



Figure 1.2: LEFT: Chromaticity diagram used to describe the colour of light by
the x and y coordinates. RIGHT: Methods to produce white light employed in
phosphor-converted white LEDs.

from a very high temperature black-body radiation source with a colour tempera-

ture around 6000 K, is taken as a reference light source and given the value 100.

Blackbody radiation is given by Planck’s law such that the spectral radiance I at

wavelength ν and temperature T is:

I (T, ν) =
2hν3

c2

1

e
hν
kT − 1

(1.1)

The temperature of a blackbody radiation source defines its colour temperature.

A light source is then characterized by comparing its accuracy in colour represen-

tation to a blackbody source of the same colour temperature. Incandescent lamps

achieve a CRI of 100 by definition, while traditional fluorescent tubes are between

60 and 80, and the yellowish sodium vapour street lights can be as low as 20 [17].

Today’s common commercially available white LEDs have a CRI around 70 [18],

which is generally unsuitable for general room lighting. This system of charac-
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terization obviously has some shortcomings, particularly in that normalizing for

colour temperature belies its importance in real world performance. For instance,

a 60 watt incandescent lamp and sunlight both have a CRI of 100 but signifi-

cantly different colour temperatures, whereas a fluorescent and an incandescent

might have the same colour temperature but significantly different colour render-

ing characteristics. Nevertheless, the CRI is the current standard and is useful as

a means of comparison between different types of largely similar light sources,

especially when it is reported along with colour temperature [19]. Although the

CRI’s of the compounds described herein have not been measured, the complexity

in defining so-called “white” light is indicative of the difficulty in creating it from

non-blackbody sources.

The light from LEDs is nearly monochromatic, typically centred at 465 nm or

shorter for a GaN-based emitter. The emission spectra from YAG:Ce is centred

at 550 nm, resulting in a blue-tinged white light from devices. The total output

spectra from a white LED device, along with a fluorescent tube lamp and sunlight

are shown in Figure 1.3. The next generation of white LEDs is expected to use a

blue emitter in combination with red and green phosphors or a near-UV emitter in

combination with red, green, and blue phosphors. The use of multiple phosphors

allows the colour temperature of the white light to be tuned and thus the colour

rendering to be increased [14, 20]. The possibility of improved colour rendering

by the use of red and green phosphors in place of a yellow phosphor has already

been well demonstrated at the lab scale [12]. However, this approach introduces

its own problems, particularly in that the behaviour of each individual phosphor

material must be invariant with temperature and time.

Increasing the total light output requires optimization of the emitter, device

geometry, packaging materials, and phosphor efficiency. The brightness of a phos-

8



Figure 1.3: TOP: Emission spectra of daylight sun showing broad emission. MID-
DLE: A fluorescent tube showing multiple sharp emission peaks. BOTTOM: YAG:Ce
converted white LED, showing a 465 nm blue emission peak from the emitter and
a broad yellow emission from the phosphor layer. Both the fluorescent and LED
lights have been designed to try and fill the space indicated by the sunlight spectra
as well as possible [21].
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phor is best characterized by the quantum yield (QY), which is the ratio of ab-

sorbed to emitted photons. The temperature-dependent quantum yield is diffi-

cult to measure directly but can be extracted from emission spectra taken at a

range of temperatures, scaled to a measurement of QY at room temperature. The

temperature-dependent QY is very important for device considerations as the oper-

ating temperature of phosphor materials can reach 100◦C and thermal quenching

of photoluminescence at these temperatures can be significant.

1.2 Luminescence

Luminescence is the process of light emission as an excited atom returns to its

ground state. In 1600, Vincenzo Cascariolo reportedly discovered a deposit of the

mineral Baryte (BaSO4) in the hills outside Bologna. An amateur alchemist, he

managed to purify it into a phosphorescent powder which glowed long after being

exposed to light and he called it lapis solaris, meaning stone of the sun, or Bologna

Stone [22]. Cascariolo’s Bologna stone is generally thought to be the first phos-

phor prepared in Europe, though reports many centuries older from Japan make

reference to glowing inks prepared from seashells and sulfurous volcanic rocks,

which likely would have contained calcium and magnesium sulfates [23]. Lumi-

nescent processes are generally divided into fluorescence and phosphorescence.

Fluorescence describes a spin-allowed transition and thus occurs relatively rapidly,

with decay times typically on the order of nanoseconds [24]. It was first formally

described in George Stokes’ optical investigations on the mineral fluorspar (CaF2),

from which fluorescence draws its name. Phosphorescence, taking its name from

the element phosphorus, describes a typically slower, spin-forbidden transitions

with decay times typically on the order of milliseconds, though occasionally up to

10



minutes or hours. Generally speaking, the faster fluorescent emissions are more

efficient because the short lifetimes of the excited states provide less opportunity

non-radiative deactivation.

The method of excitation is also important in defining luminescence. If the

excited states are created by incident photons, as is used in white LED devices, it

is referred to as photoluminescence. Electroluminescence is the process through

which semiconductor LED devices generate their light. Typically, charge is directly

injected into a junction of hole-doped and electron-doped materials. Conduction

band electrons enter the junction from the electron doped region and valence

band holes enter from the hole-doped region. The subsequent recombination of

these electron-hole pairs results in the emission of a photon with a wavelength

equal to that of the semiconductor bandgap. GaN-based blue LEDs, which are

used as the basis for photoluminescent phosphor converted white LEDs, undergo

electroluminescence. Chemoluminescence occurs on the recombination of excited

states formed by chemical reactions and is known for its use in glo-sticks. The

closely related bioluminescence refers to chemical reactions in living organisms

such as algae, fireflies, and deep-sea fishes.

In the phosphors used for solid state lighting, electron–hole pairs are excited by

an incident photon from the highest occupied molecular orbital (HOMO), or the

top of the valence band in an extended solid. The electron moves to the bottom

of the lowest unoccupied molecular orbital (LUMO), or bottom of the conduction

band, by a non-radiative process known as internal conversion, and then returns

to the ground state by emitting a photon. This often results in a wide range of exci-

tation wavelengths above a threshold energy, but a well-defined emission peak. A

Jablonski diagram, named after the polish physicist Aleksander Jabłoński, is used

in spectroscopy to draw simplified transitions between accessible energy levels.
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Figure 1.4: Jablonski diagram of photoexcitation and radiative emission from an
intermediate state. Solid lines represent radiative processes and dotted lines rep-
resent non-radiative.

Figure 1.4 shows a simplified Jablonski diagram for photoexcitation, followed by

non-radiative decay to an intermediate state, and then emission of a lower energy

photon as the electron returns to the ground state. The change in colour is referred

to as the Stoke’s shift, named after physicist George G. Stokes. It arises from a dif-

ference in the transition energy between an excitation up from the lowest ground

state and a recombination down from the lowest excited state when momentum

is held constant, as explained by the Franck-Condon principle and is illustrated in

Figure 1.5. The figure shows the ground state energy levels E0 and an excited state

E1 in a simple system, plotted as energy versus q, labelled nuclear coordinates or

configuration coordinates. The parameter q for a simple 2-body system indicates

the interatomic separation.
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Figure 1.5: The Franck-Condon principle explains the Stoke’s shift (q01) between
excitation (blue) and emission (green) wavelengths. Plotted as Energy versus
nuclear or configurational coordinates q

1.2.1 Inorganic phosphors

The development of inorganic phosphor materials for devices began along with

lighting technology, dating as far back as 1856 in combination with a mercury

discharge tube [23]. Edison patented a calcium tungstate phosphor based fluo-

rescent tube light in 1896, only 17 years after he filed his first carbon filament

lamp patent (although it was 94 years after Davy’s first report of an incandes-
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cent lamp) [25]. These also quickly found use in cathode ray tubes for oscillo-

scopes, radar screens, and black and white televisions. As technology advanced

forward, phosphors with sharp, well-defined emission spectra that were excitable

by cathode ray were needed for colour televisions. Simultaneously, broadly emit-

ting phosphors that could be excited by mercury discharge tubes at 254 nm were

developed for fluorescent tube lighting. When blue-emitting GaN LEDs went into

production in 1993, there was a resurgence in phosphor development, searching

for broad emitting phosphors that were excited near 430 nm. With solid state light

available at the highest energy of the visible spectrum, phosphors could then be

used to create white light from an LED.

Fluorescence in inorganic materials can be achieved in several ways. The sim-

plest arrangement is where luminescent impurities are doped into a host lattice.

These activator ions intrinsically contain all of the required energy levels for ra-

diative processes and the host lattice serves to isolate the activator ions [26]. As

optically active ions are brought together, cross-relaxation between excitons leads

to non-radiative decay and a decrease of luminescence in what is known as concen-

tration quenching [27]. For example, the Eu3+ ion is well known to emit red light

and can be excited directly in the UV, but Eu(III) oxide does not show any lumines-

cence. Re-absorption of emitted light by the activators can also occur and reduce

efficiency when the excitation and emission spectra display significant overlap.

Often, luminescent intensity is observed to increase to a maximum with a doping

doping between 1% and 10% in an oxide lattice, beyond which further doping

leads to a decrease in intensity.

The emission colour from activator ions depends on their electronic structure.

For most of the rare earth ions, where the f → f transitions responsible for lumi-

nescence are not involved in chemical bonding, the emission peaks are sharp and
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generally do not change based on the host lattice. This is the case for red emitting

Eu3+ and green emitting Tb3+, which makes them useful for display applications.

Figure 1.6 shows the energy levels available to the trivalent lanthanides with many

of the visible transitions marked with coloured arrows [28].

When f → d transitions are involved, such as for Ce3+ and Eu2+, the tran-

sitions become dependent on the crystal field of the activator ion and the peaks

are generally broader, which makes them useful for lighting applications where

blackbody radiation is being approximated [29, 30]. Figure 1.7 shows the crystal

field splitting for cubic trivalent cerium. The emission colour from the 5d1 → 4f 1

transition is dependent upon the field strength ∆ and other factors, and the band

is broadened by the Russell-Saunders splitting of the 2F ground state [31]. By

changing the coordination arrangement and distances around the cerium ions,

the emission colour can be tuned from the UV down to the red. The compound

used in most commercial white LEDs is based on yttrium aluminium garnet doped

with trivalent cerium (YAG:Ce), which produces an efficient yellow emission in

this way. Both the absorption and emission processes occur on the cerium ion and

the lattice serves to dilute the cerium ions, preventing concentration quenching.

The crystal field around the cerium ions is such that the emission is shifted to a

530 nm maximum. Photoluminescent excitation and emission spectra are shown

in Figure 1.8. The luminescent behaviour of YAG:Ce and nanoparticles of the same

compound will be described in detail in Chapter 3.

Another rare earth ion that shows the broad emission spectra that is desirable

for lighting applications is divalent europium. Although none of the compounds

described in this thesis use this emission mechanism, it is an important approach

for solid state lighting. Figure 1.9 shows a simplified diagram of the crystal field

splitting for Eu2+. A UV-emitting f → f transition indicated by the purple line, and
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Figure 1.7: Crystal field splitting in Ce+3 is indicated by ∆, which allows for tuning
of of the optical emission wavelength. Adapted from Gundiah et al [29].

the coloured emissions with decreasing transition energy are selectively present

depending on the ligand field strength. Ligand field splitting, which accounts for

the broad emission bands, is not shown. A blue emitting phosphor used in many

fluorescent light applications, BaMgAl10O17:Eu2+ (BAM:Eu), uses the spin-allowed

4f → 5d transition of divalent europium to both absorb and emit light.

For some activator ions, the emission may be intense and of the desired colour

but the incident photon absorption is either too weak or occurs at the wrong

wavelength. In this case, a sensitizer ion may be co-doped along with the ac-

tivator ions. The incident photons are then absorbed by the sensitizer and the

energy is transferred to the activators, either by exciton migration or charge trans-
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Figure 1.8: Photoluminescent excitation and emission spectra for YAG:Ce.
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2
, the transitions to which are both labelled in the emission spectra. Excita-

tions peaks are transitions from the 4f ground state to various 5d levels, the most
intense, labelled peak indicates the lowest 5d level.

fer bands, where a lower energy photon is then emitted. When BAM is co-doped

with Eu2+ and Mn2+ (BAM:Eu,Mn), nearly all of the energy absorbed by the sensi-

tizing europium is transferred to the manganese activator ions. High spin divalent

manganese generally produces a broad green emission from its d → d transition.

While BAM:Eu can be excited by wavelengths as long as 425 nm, BAM:Mn is only

excited much further into the UV. The co-doping allows for blue excitation of the

green manganese luminescence. Figure 1.10 shows the photoluminescent excita-

tion and emission of BAM:Eu,Mn with europium fixed at 15% and x amount of
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Figure 1.9: Simplified Eu2+ energy diagram showing how the crystal field depen-
dent 5d bands impact the emission colour from 5d→ 4f transitions. Adopted from
[26].

manganese [32].

The host lattice itself can be a sensitizer, absorbing the incident photons and

transfer the energy to the activator ions. This process is commonly found in molyb-

date, vanadate [33], and tungstate phosphors [7]. For example, in the red-emitted

europium-doped yttrium vanadate YVO4:Eu3+, the vanadate groups of the lattice

act as sensitizers and the energy is transferred to the europium activator ions. Fig-

ure 1.11 from Gundiah et al. shows the photoluminescent excitation and emission

behaviour of YVO4:Eu3+ that has been co-sensitized with Bi3+ [33].
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Figure 1.10: Photoluminescent excitation and emission spectra of BAM:15% Eu,
x% Mn. As the manganese content increases, the energy absorbed by the sensitiz-
ing europium ions in transferred to the activating manganese ions, resulting in a
near-UV excited green emission. λex=370 nm, λem=514 nm. From Ke et al. [32].
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Figure 1.11: Photoluminescent excitation and emission of YVO4:Eu3+ at various
levels of bismuth co-doping (x). λex=365 nm. λem=611 nm. From Gundiah et
al. [33].
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1.2.2 Fluorescence and phosphorescence

In the most general terms, luminescence is the process in which an electron re-

turns from an excited state to a ground state and emits a photon. If that process is

spin-allowed, such that the spin quantum number of the electron does not need to

change after it reaches the ground state to avoid violating the Pauli exclusion prin-

ciple, then the process is known as fluorescence. If the process is spin-forbidden,

the recombination occurs at a slower rate and this is known as phosphorescence.

It is important to note that while spin-forbidden, the process does still occur. Fig-

ure 1.12 shows a simplified example of singlet and triplet states for a two-electron

system. In the ground state S0, both electrons sit in the same orbital with op-

posite spins, thus a total spin equal to 0. Some incident energy promotes one

of those electrons into an excited state, which is labelled S1, or the first excited

singlet state. If this electron then returned to the ground state by emitting a pho-

ton, that process would be labelled fluorescence. Photons of higher energy can

also be absorbed into the system, promoting an electron into a higher excited

state, i.e. S2, S3. This will typically return by the non-radiative process known

as internal conversion to the lowest excited state before (potentially) emitting a

photon on the transition from excited to ground state. Alternatively, while in S1,

a non-radiative process called spin-orbit coupling can change the spin of one of

those excited state electrons. This intersystem crossing, where an electron spin is

changed, takes place by coupling with phonon lattice energy. In the excited triplet

state T1, the total spin is equal to 1. To return from the triplet excited state T1 to

the ground state is a slower process than S1 →S0 because it involves another in-

tersystem crossing to return to an antiparallel spin state with total spin equal to 0.

Generally, the T1 state is of lower energy than S0, resulting in red-shifted lumines-

cence. This lower energy is, in part, due to the increased separation between the
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Figure 1.12: Two-electron system showing the LEFT: ground state S0, where both
electrons exist in the same orbital with spins +1/2 and -1/2, MIDDLE: Singlet
excited state S0, where incident energy has promoted one of the ground state
electrons into a higher energy orbital, without an change in spin, and RIGHT: the
triplet excited state T1, where spin-orbit coupling has changed the spin of one of
the excited states, moving it into a lower energy triplet state.

spins of the same orientation and thus decreased Coulomb interaction. The direct

excitation into the triplet state from the ground state S0 →T1, however, is statis-

tically unfavourable such that it is only observed under very special experimental

conditions.

In the accessible energy levels of an molecule is a highest energy orbital occu-

pied by electrons in the ground state, called the HOMO (highest occupied molecu-

lar orbital) and a lowest unoccupied level, known as the LUMO. The energy of the

so-called HOMO–LUMO gap is lowest energy by which a photon will be absorbed

into the system, such that as described above the position of the LUMO generally

corresponds to the energy of the first excited state, such that: This is in a way

comparable to the band-gap in extended network solids.

∆E = EHOMO − ELUMO (1.2)
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wherein if

hνabsorbed > ∆ (1.3)

then

S0 → S1 (1.4)

Because triplet state phosphorescence is a slower process than fluorescence,

and requires phonon energy for the intersystem crossings, the two types of lu-

minescence can be separated experimentally by using either ultrafast laser exci-

tations, or by measuring at low temperatures. Additionally, while for inorganic

compounds the phosphorescent lifetimes are often reported as being on the order

of milliseconds up to minutes and hours, organic phosphorescence can easily be in

the same nanosecond range as fluorescence because the phonon energies required

to move in and out of the triplet states are reduced.

1.2.3 Coordination compound phosphors

In coordination compound phosphors, where an organic ligand is bound to an op-

tically active metal ion, several mechanisms can apply. A first route, called Ligand

to Metal Charge Transfer (LMCT), is where the ligand is excited by incident light

and then transfers energy to an emitting metal ion. LMCT photoluminescence is

often referred to as the antenna effect since the strongly absorbing ligand acts as

a receiving antenna for the bound metal ion, as illustrated in Figure 1.13 [34].

A second route, Metal to Ligand Charge Transfer (MLCT), is where the metal

ion acts as an absorber and the organic is luminescent. For instance, tris(2,2-

bipyridyl)ruthenium(II) (RuBPY), shown in Figure 1.14, uses the ruthenium ion

to harvest light and transfer it to the light emitting emitting 2,2’-bipyridyl. Deriva-

tives of RuBPY are used in some organic LEDs. A third way of introducing lu-
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Figure 1.13: Jablonski diagram of the antenna effect in ligand to metal charge
transfer (LMCT). Adopted from Sabbatini et al. [34].

minescent elements to a hybrid compound is by including luminescent organic

species. These compounds show visible luminescence as a result of their intrinsic

HOMO–LUMO gap, rather than any donor/acceptor states introduced by dopants.

While the luminescence is intrinsic to the organic materials, the specific nature

of the emission and excitation are sensitive to the presence of metals and other,

non-luminescent, organic species.
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Figure 1.14: MLCT compound tris(2,2-bipyridyl)ruthenium(II) (RuBPY)

1.3 Inorganic-organic hybrid frameworks

The field of hybrid framework research has grown rapidly in the past two decades,

resulting in the discovery of materials that exhibit a wide range of structural di-

versity [35] and physical phenomena [36–39]. They are known alternatively as

metal organic frameworks (MOFs), coordination polymers, and inorganic-organic

hybrids, but all refer to the same general structure type. The class of materials

is most generally defined as displaying bonding between metal atoms by organic

ligands with infinite connectivity in at least one dimension. They are, in a way, a

partly organic extension of the purely inorganic zeolite structure type [40–42].

Nearly all of these compounds are prepared hydrothermally or solvothermally

from mixtures of organic acids and metal salts, which results in an enormous

array of topologies and chemical compositions. Hydrothermal synthesis has the

additional benefit of often yielding crystal products suitable for structure determi-

nation by single crystal X-ray diffraction.

The most studied and well known inorganic-organic framework, MOF-5 [43],

is a cubic arrangement of zinc octahedra connected by 1,4-benzene dicarboxylate
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ligands. Figure 1.15 shows the cubic topology of the structure and the atomic

structure. Extensive explorations for porous framework materials to be used in

gas storage and catalysis like MOF-5 [38, 44] have been carried out, but for this

thesis the properties of dense framework structures are more applicable. These

non-porous compounds tend to show greater thermal and chemical stability than

their porous counterparts. Since density and connectivity tend to increase with

the synthesis temperature, dense structures also tend to be less hydrated or anhy-

drous, which contributes to their thermal stability. The work of Forster et al. on

cobalt succinates showed that five unique phases could be formed from the same

starting mixture simply by varying the temperature of the reaction [45]. When

a mixture of cobalt hydroxide and succinic acid in water was heated at 60◦C, a

1-dimensional chain structure formed with 4 water molecules per metal atom.

Heating to 250◦C lead to a 3-dimensional anhydrous structure. That phase shows

stability in air up to 320◦C [46]. These structures, along with a two dimensional

phase formed at 150◦C are shown in Figure 1.16.

Framework structures show a remarkable range of structural diversity. The

work of Kam et al. on magnesium tartrates described 9 novel structures formed

from magnesium and the DL-, D-, and meso- forms of tartaric acid [47]. Fig-

ure 1.17 shows two examples from that work, a 3-dimensional anhydrous struc-

ture synthesized at 200◦C, and a 1-dimensional chain structure with three water

molecules per magnesium that was synthesized at 125◦C. The structures reported

follow the same general trend of higher dimensionality, higher density, and lower

hydration as the synthesis temperature was increased.
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Figure 1.15: TOP: Atomic structure of zinc benzenedicarboxylate (MOF-5) with
zinc tetrahedra in blue, oxygen in red, carbon in black, and the pore space repre-
sented by the yellow sphere. BOTTOM: Topological cubic network of MOF-5. From
[38]
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Figure 1.16: LEFT: 1-dimensional chain structure of cobalt succinate formed at
60◦C. CENTRE: 2-dimensional structure of cobalt succinate formed hydrothermally
at 150◦C from the same starting mixture. RIGHT: 3-dimensional dense anhydrous
structure formed at 250◦C. From [45].

Figure 1.17: ]

LEFT: 3-dimensional anhydrous framework structure Mg(meso-tartrate). RIGHT:
1-dimensional structure Mg(meso-tartrate)(H2O)2·H2O. From [47].
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1.4 Hybrid frameworks as phosphors

Much research has been carried out on purely organic luminescent materials for

use in organic LEDs (OLEDs) and other applications, but they tend to be highly

sensitive to moisture and temperature. Inorganic phosphor materials can show

high quantum yields, but also often require high temperature processing and ex-

pensive starting materials. Presented here is an intermediate approach to phos-

phors for solid state lighting, combining some of the properties of both inorganic

and organic systems in a single structure. These hybrid frameworks are typically

more temperature and moisture stable than organic materials and may have cer-

tain advantages over purely inorganic systems. It is thought that hybrids may be

more compatible with the polymer encapsulants used in LED device packaging

because of their organic content. Also, because hybrids are formed hydrother-

mally, they can be synthesized at significantly lower temperatures than inorganic

phosphors, which avoids the environmentally unfriendly solvents used in organic

synthesis and may make nanoparticles more accessible. Small particles should

increase device efficiency by reducing light scattering and more evenly covering

the emitter chip. Circularly polarized luminescence has also been reported from

framework structures containing chiral ligands [48]. Finally, highly luminescent

phosphor materials can be made without the use of rare earth or other exotic

and expensive metals. The compounds that will be described in Chapters 5 and

6 contain only carbon, oxygen, hydrogen, and common metals like calcium and

zinc.

A review by Allendorf et al. profiled hybrid structures for luminescence, list-

ing potential applications as sensors, scintillators, and non-linear optical materi-

als [49]. Solid state lighting was not discussed as a potential application, probably
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Figure 1.18: Zinc-stilbene dicarboxylic acid luminescent framework. RIGHT: Crys-
tal structure. LEFT: Thermogravimetric analysis, showing stability in air up to
approximately 250◦C. From [50].

because very few luminescent inorganic-organic papers give details of the excita-

tion and quantum yield data that is a critical parameter for lighting efficiency.

From the same research group, a zinc-stilbene framework was reported in 2007

by Bauer et al. [50]. Shown in Figure 1.18, the compound is a 2-dimensional net-

work of tri-nuclear zinc units linked by trans-stilbene dicarboxylic acid. Because

the system is anhydrous, it is stable in air up to around 250◦C. This would make it

a good system for lighting applications, but the photoluminescent emission from

the compound is centred near 440 nm, almost the same as the light colour avail-

able in from GaN LEDs.

The luminescent processes outlined in Section 1.2 were first described for 0-

dimensional coordination compounds. These can be thought of as the molecular

analogues of extended inorganic-organic frameworks, or alternatively, coordina-

tion compounds are the monomers that form extended coordination polymers. Co-

ordination compounds have been studied for decades and find uses in biological
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systems, organic LEDs, and sensors [51]. It is expected that the LMCT, MLCT, and

direct excitation processes known in molecular coordination complexes should oc-

cur similarly in multidimensional hybrids.

Ligand-based emission, where closed-shell metals act to stabilize an intrinsi-

cally luminescent organic, is less commonly reported. This is the process occurring

in the zinc-stilbene system mentioned above. A few hybrid structures showing this

type of ligand-centred luminescence have been described in the literature [52–

60], but all of them report excitation wavelengths in the far UV and emission

wavelengths in the near UV and blue. Since a large portion of the emission lies

out of the visible range, such materials are clearly not suitable for solid state light-

ing applications. It is expected that placing organic chromophores in a covalently

bonded and highly ordered extended framework structure will give rigidity to the

organic molecules. This should lead to higher luminescent efficiencies than those

found for a hydrogen bonded crystal or cross-linked polymer of the same chro-

mophore.
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Chapter 2

Experimental Methods

Specific synthesis procedures will be discussed in subsequent chapters, but some

common techniques and general procedures that occur throughout are outlined

here.

2.1 Hydrothermal Synthesis

The inorganic-organic framework compounds described in this thesis are prepared

under hydrothermal conditions. Stainless steel 23 mL autoclaves with a polyte-

trafluoroethylene (PTFE) liner are used, as shown in Figure 2.1. They are closed

systems of fixed volume inside of which an aqueous mixture or slurry is heated.

This allows for aqueous mixtures to be heated above 100◦C as the autogenous

pressure increases the boiling point of the water. The reaction space is thus ex-

tended beyond what would otherwise be the upper limit for reactions at ambient

pressure. At these elevated temperatures, many organic species become water

soluble and the water itself becomes more reactive. Because it is a solvent based

reaction, single crystals suitable for X-ray diffraction are often produced. The
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Figure 2.1: Sketch of Parr Acid Digestion Bomb, showing the PTFE liner in
gray and the stainless steel pressure enclosure in hatched lines. Image from
www.parrinst.com.

maximum reaction temperature is limited by the PTFE liners used to 250◦C, above

which significant creep occurs, and a maximum pressure limit of 122 atm. An au-

toclave half full with 6M HCl at 250◦ produces only 62 atm, only half the limit, but

chemical reactions which release vapour can also contribute. A pressure release

rupture value allows for relatively safe over-limit protection. In practice for hybrid

framework synthesis, reaction temperatures usually limited by the decomposition

temperatures of the organic reagents.

In this work, a typical hydrothermal reaction mixture includes 1 mmol of a

metal salt and 1 charge balancing equivalent of an organic acid in 5 mL of water,

heated for 2 days at a temperature between 100◦C and 250◦C. Other additions to

the reaction mixture included acids and bases to adjust pH, and co-solvents such as

dimethyl formamide and isopropanol. The main variables in the reaction include

metal source, time, temperature, pH, fill volume, reactant stoichiometry and total

concentration. Solid products were recovered by vacuum filtration and washed
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with water and acetone to remove any excess reagents. In the case of very small

particles, products were recovered by centrifuge. Some exploratory reactions were

also carried out by microwave rather than conventional heating.

2.2 Diffraction in periodic structures

Diffraction of light can occur in periodic structures due to constructive and de-

structive interference. Bragg’s law defines the scattering angles where construc-

tive interference of monochromatic light will occur after interacting with a crystal

lattice such that:

nλ = 2dsinθ (2.1)

where n is a positive integer, λ is the wavelength of the incident light, d is the

periodic interval between lattice planes, and θ is the angle between the incident

light and the lattice plane. To probe the structure of crystalline materials, X-ray

light is often used, as its wavelength is on the order of the inter-atomic spacings.

The basic repeating unit of a periodic crystal is the unit cell, typically defined

by lattice vectors a,b,c, or as a solid with edge lengths a, b, and c, and angles α, β,

and γ. Planes in a periodic crystal are defined in terms of their miller indices hkl,

which are independent of Cartesian coordinates and instead dependent upon the

unit cell dimensions. For the simple case of a cubic structure, where a = b = c and

α = β = γ = 90◦, the spacing d for between adjacent planes with the indices hkl

is equal to:

dhkl =
a√

h2 + k2 + l2
(2.2)
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and more generally:
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hkl = 1 (2.3)

This allows the conversion from the Cartesian a, b, c parameters to internal coor-

dinates.

The lattice is also often described in reciprocal space, which is defined as a

transform of the real space lattice. New lattice vectors a∗, b∗, and c∗ are defined

by cross-products of the scattering vectors such that:

a∗ =
b× c

a · (b× c)
(2.4)

b∗ =
c× a

a · (b× c)
(2.5)

c∗ =
a× b

a · (b× c)
(2.6)

This construction is useful because the positions of the diffracted intensity are

defined most directly in reciprocal space.

The constructive interference in Bragg diffraction occurs because of the path

length travelled by the incident light to multiple planes with the same hkl value

is equal to some integer multiple of its plane spacing d. Thus knowing the basic

repeating unit cell of a structure allows one to calculate all of the incident light

angles at which constructive interference should occur by calculating the d spac-

ings for all possible hkl planes. This only predicts the position of the Bragg peaks

in a scattering experiment, however. The intensity of the scattering is determined

by the contents of the unit cell. For X-ray scattering, where the interaction with

the material occurs in the electron shells, the number of electrons on an atom de-
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termines how strongly the incident light will be diffracted. For instance, lead and

bismuth will scatter many more X-rays than carbon and nitrogen. Thus if the hkl

plane contains mostly light atoms, its diffracted intensity will be less than that of

a plane containing heavy atoms. This scattering factor of an atom is defined as fj

The structure factor F , which determines the scattering intensity from a plane, is

defined as the sum of the products of the scattering factor and their phase factors:

F =
∑
j

(fj × phasefactor) (2.7)

Fhkl = |F |eiφ =
∑

fje
2πi(hx+ky+jz) (2.8)

where φ is the phase of the scattered intensity and xyz are defined in Cartesian

coordinates. It can be seen from this relationship that intensity decreases as hkl

increases, and that it is linearly dependent upon the scattering factors fj. Intensity

can further be reduced by symmetry within the unit cell, which results in partial

or total destructive interference where there should otherwise be Bragg scattering.

This is known as a systematic absence and can be used to determine crystal sym-

metry in an unknown system. Finally, the observed intensity is subject to a number

of instrumental and thermal corrections. This is summarized by the equation:

Ihkl = sLpF 2
hkl (2.9)

where for a reflection hkl, its intensity given by I is the product of a scale factor

s, a geometrical correction L, a polarization correction p, and its structure factor

Fhkl.
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2.3 Single crystal X-ray diffraction

The atomic structures of novel compounds were determined by single crystal X-

ray diffraction. This is a technique in which a single crystal, typically with a

size between 0.1 mm and 1 mm, is exposed to a focused, monochromatic X-rays.

The beam interacts with the electron shells of the constituent atoms and a small

amount of it is diffracted in a predictable, well defined direction as described

above. Figure 2.3 shows a representative diffraction image with well defined

spots. The position of each spot reflects the plane spacing d as defined by its hkl

value. For powder diffraction, these spots would be extended into rings, retain-

ing d-spacing information but losing specific hkl identity. This diffracted intensity,

is collected on a 2-dimensional charge-coupled device (CCD) mounted on a go-

niometer that rotates through ω. Multiple data sets are collected by rotating the

crystal in φ and then moving the CCD through the same ω range. A typical single

crystal instrument is shown in Figure 2.2, with the X-ray source at right, crystal at

centre and detector at left.

A unit cell is determined computationally using SAINT [61] using peaks that

are identified in the CCD exposure. The reciprocal lattice vectors are computed

relating to each peak, differences vectors are generated from those lattice vectors.

The most frequently occurring difference vectors are assumed to be the lattice ba-

sis vectors, and this is used to define an orientation matrix that translates between

the physical position of the crystal on the instrument and the crystallographic axes.

Based on these values, the positions of expected hkl peaks can be calculated and

improved by iterative least squares refinement. Once a suitable unit cell is deter-

mined, the intensities measured by the CCD exposures are assigned to hkl reflec-

tions. This is performed by constructing a box in reciprocal space where a peak in

38



Figure 2.2: Photograph of a typical single crystal diffraction instrument, with the
source shown at right and the detector left. The position of the detector is rotated
around the goiniometer to collect a hemisphere of data.

scattering intensity should exist based on the unit cell and integrating the counts

from the ccd over that area, subtracting out for background intensity. These in-

tensities are adjusted empirically for absorption effects using SADABS [62], which

corrects for the path length differences through a non-spherical crystal. This step

is performed by calculating what the expected intensities should be for each peak

and then comparing them to the range that is observed. Trends in the error of

observed intensity are correlated to the position of the crystal on the instrument,

resulting in a list of corrected hkl and intensity values. A space group, which de-

scribes the symmetry of the unit cell contents is then determined by identifying

systematic absences in those hkl intensities.

The so called “phase problem” in diffraction arises because that transformation

requires knowledge of both the amplitude and phase of the scattered wave. In the

scattering factor (Equation 2.8), the scattering includes an amplitude and a phase
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Figure 2.3: A single ccd frame of single crystal diffraction shows bright spots
(white) on a diffuse background (red). d-spacing is measured radially from a
point at the centre of the left edge

component. The CCD cannot measure this phase angle, however, and instead the

data collected is related to the structure factor squared, where no phase informa-

tion is retained. In these systems, the phase problem is overcome by a largely

brute force computational method. Using “direct methods,” as implemented by

SHELX [63], random phases are assigned to each intensity value and a recipro-

cal space map of points is calculated by Fourier transform. Direct methods works

well where most of the atoms are of similar scattering factor and are relatively

evenly distributed throughout the unit cell [64]. The measured values of |Fhkl|2

are normalized by the scattering power of the atoms f to form normalized factors

Ehkl:

|Ehkl|2 =
|Fhkl|2

ε
∑

n f
2
n

(2.10)
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where ε is a normalization factor dependent upon the laue group symmetry of the

structure. The Sayer probability relationship is used where S(hkl) is the sign of

Ehkl:

S(hkl) ≈ S(h′, k′, l′) · S(h− h′, k − k′, l − l′) (2.11)

using ≈ to mean “probably equal” to the product of the sign of some normalized

factor Eh′k′l′ and the sign of those indicides subtracted from hkl. This “probably

equal” goes as:

P =
1

2
+

1

2
tanh

(
1

N
Ehkl · Eh′k′l′ · Eh−h′,k−k′,l−l′

)
(2.12)

Thus the signs of the first few strong reflections are randomly assigned and then

the signs of the rest of the peaks are assigned according to these rules. The ran-

dom sets are repeated and evaluated based on self-consistency of the subsequent

assignments.

The initial structure solution is then refined by a least squares method. The

Fourier transform is generated of the atomic model to create a reciprocal space

map. This map is subtracted from the observed data, resulting in a difference

map. Large residual peaks can be assigned to atoms based on chemical knowledge

of the system, and the position of all of the atoms is refined iteratively using small

steps to reduce the any residual differences between the observed and calculated.

An atomic displacement parameter U is also refined for each value, modelling

the spread in peak shape from the theoretical delta function due to thermal and

other atomic motion. U is defined as the mean-squared displacement in Å. For

high resolution data, the atomic displacement can be defined anisotropically as 6

tensors Uij where i and j = 1,2,3.

The quality of the refinement is determined by the residual error that is de-

41



scribed as R1:

R1 =

∑
||Fo| − |Fc||∑
|Fo|

(2.13)

where Fo are the observed structure factors and Fc are the calculated. In practice,

a weighted parameter based on F 2 is used, wR2:

wR2 = sqrt
∑

[w(F 2
o − F 2

c )2]/
∑

[w(F 2
o )2] (2.14)

where w is a weighting parameter. The goodness of fit (GooF) is also calculated

as:

GooF =

√∑
[w(F 2

o − F 2
c )2]

n− p
(2.15)

where n is the number of hkl reflections and p is the number of refined parameters

in the model and ideally approaches 1 when the error becomes small.

The model for least squares refinement contains position and atomic displace-

ment parameters for each atom. However, restraints are sometimes added to the

least squares refinement to keep some of the atoms in chemically relevant posi-

tions if they are not in statistically stable positions. For instance, hydrogen atoms,

which diffract very weakly and cannot always be located in the residual diffrac-

tion data, are often restrained by setting a fixed distance and/or angle from a

neighbouring atom.

2.4 Powder X-ray diffraction and Rietveld analysis

X-ray diffraction experiments can also be performed on finely ground powders.

While this typically does not provide enough information to determine an un-

known crystal structure, it tends to outperform single crystal experiments in terms
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of impurity phase identification, refinement of lattice parameters, and atomic posi-

tions. This is in large part because the resolution of peak positions can be improved

over that shown in Figure 2.3, the statistical error resulting from identifying the

orientation of a single crystal is removed, and absorption effects from differing

path lengths through the crystal are eliminated. The spots that would be collected

for a single crystal instead become rings, and a trace in d space along those rings

lead to a intensity/d-space powder diffractogram. In practice, intensity/2θ is typi-

cally plotted. In a sample of finely ground powder, it is assumed that if there is a

set of Bragg planes that could be oriented to diffract at that incident angle of light,

then some sample of crystallites will be correctly oriented. As before, the peak

positions are determined by the unit cell dimensions and the peak heights are de-

termined by crystallographic symmetry and atomic scattering factors. The peak

shape profiles for powder diffraction data can be carefully measured and used to

reveal chemical information about the sample. Theoretically, Bragg scattering at

0 K should result in delta function peaks. These peaks are broadened by thermal

motion, instrumental parameters, lattice defects, lattice strain, and crystallite size.

Rietveld refinement is a total pattern matching means of evaluating and im-

proving a crystal model to powder diffraction data. A peak position, height, and

shape is calculated for each hkl reflection given the starting unit cell, atomic po-

sition data, crystal symmetry, and a peak shape function. An intensity correction

parameter Kph is used such that:

Kph =
EphAhOphMpL

Vp
(2.16)

where Eph is an extinction correction which takes into account how deeply the

incident light penetrates the sample, Ah is an absorption correction, taking into

account absorption of X-rays by the sample, Oph is preferred orientation which
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corrects for any systematic ordering of the crystallites, Mp is the reflection multi-

plicity and L is an angle dependent intensity correction that is dependent upon the

light source, and Vp is the unit cell volume. The peak shape profile in this work is

modelled empirically as the sum of a Gaussian and a Lorentzian with both angle-

dependent and angle-independent parameters, known as a pseudo-Voigt function.

The intensity at a given angle 2θ around an hkl peak with intensity Ihkl will be:

I(2θ) = Ihkl · [ηL(2θ − 2θo) + (1− η)G(2θ − 2θo)] (2.17)

where 2θo is the position of the expected hkl peak, and L and G are Lorentzian and

Gaussian functions.

The peak shapes for all of the hkl values and a background function are thus

calculated and refined in a least squares manner, as described above, to the mea-

sured intensity values. Individual parameters in the model are alternatively al-

lowed to refine or are fixed until some convergence is reached. The least squares

refinement proceeds based on a minimization function M , based on the difference

between observed and expected intensities and residual error is reported as χ2

where:

M =
∑

w(Io − Ic)2 (2.18)

χ2 =
M

Nobs −Nvar

(2.19)

where Io is the observed intensity, Ic is the calculated intensity, w is a weighting

parameter, Nobs is the total number of observations, or data points, Nvar is the

number of parameters being refined in the model, and M is the minimization

function. For a powder diffraction Rietveld experiments where χ2 is defined in

this way, the values approach 1 from above and anything below 5 is considered to

be a very good fit.
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2.5 Synchrotron single crystal diffraction

Typical lab sources for single crystal diffraction are X-ray tubes with copper or

molybdenum targets. The molybdenum Kα1 and Kα2 lines together provide

0.7107 Å X-rays which are generally preferred to the longer wavelength CuKα for

large unit cells as it moves the spots closer together. However, the X-ray flux from

these lab sources is limited and thus long counting times and high quality crys-

tals must be used. Beamline 11.3.1 on the Advanced Light Source at Lawrence

Berkeley National Laboratory provides high brightness X-rays for single crystal

diffraction. The endstation of the beamline is a commercial goiniometer and CCD

detector, much the same as a lab source diffractometer, but the X-ray tube is re-

placed with a synchrotron ring. The beamline provides a flux of 1 × 1011 pho-

tons/s/0.01%BW at 10 keV, at a wavelength of 0.77490 Å, about five orders of

magnitude brighter than a typical lab X-ray source. Figure 2.4 shows the aver-

age spectral brightness of lab and synchrotron sources with the lab source marked

with a blue dot and the synchrotron marked with a red dot. Light comes off the

ring and is passed through a Si(111) monochromator, then focused using a toroidal

mirror, passed through a beryllium window and through a final set of focusing slits

before reaching the sample. These high brightness, highly monochromatic X-rays

allow for samples with an edge lengths as short as 10µm to be analysed where a

standard lab source would require crystal edge lengths longer than 100µm. The

very sharp X-ray spectra also allows for structures to be more successfully deter-

mined from crystals with imperfections or twinning since the split peaks can be

resolved.
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2.6 Synchrotron X-ray powder diffraction

Powder diffraction data to confirm bulk phase homogeneity was collected for some

samples at the Argonne National Laboratory Advanced Photon Source beamline

11-BM and on a Bruker D8 advance with a copper source. The synchrotron beam-

line uses a bending magnet operating at 7 GeV and the final incident energy is

between 15 and 35 keV, corresponding to a wavelength of 1.0 to 0.34 Å. Each run

is calibrated using a cerium standard to determine wavelength and peak shape

profiles. The beam is passed through a Si(111) monochromator and two focusing

mirrors before reaching the sample. Detection of diffracted intensity is performed

by 12 Si(111) analyser crystals with LaCl3 scintillation detectors, enabling high

speed collection of data without loss of resolution or quality. This high peak re-

solving power makes small impurity phases visible that might otherwise be hidden

underneath overlapping peaks or mistaken for mis-assigned intensity.
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Figure 2.4: Average spectral brightness of lab and synchrotron X-ray sources. A
typical Mo lab source is marked in blue, the brightness of ALS 11.3.1 is marked in
red, and the brightness of 11-BM in green. From http://www.slac.stanford.edu/.
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2.7 Photoluminescence spectroscopy

One of the primary considerations for the evaluation of phosphor materials is the

wavelengths of light at which they can be excited, and the wavelength light that

they emit. This is measured with a photoluminescence spectrometer, or PL, and

the data consists of two sets: the excitation and the emission. A photolumines-

cence excitation spectra is a measure of what wavelengths of light can be used to

generate a single emission frequency, and what the intensity of that emission is.

Similarly, a photoluminescence emission spectra contains the wavelengths of light

and their emission that are generated by excitation with a single wavelength.

The instrument used in these experiments uses a broad spectrum white light

source, typically a xenon lamp. The light from this lamp is passed through a

diffraction grating monochromator (M1) to select a single wavelength from the

white. This single colour is then passed through slits to control the amount of

light reaching the sample. Finely ground powder samples were mounted behind

a quartz window that is transparent within the range of wavelengths investigated.

After light reaches the sample, some of it is reflected and some will be (poten-

tially) converted to the photoluminescence emission colour. This is passed again

through a set of slits, a second monochromator (M2) to select the emission colour

to be studied, and collected by a photomultiplier tube (PMT). The PMT converts

the incident light flux to a voltage that can then be measured. Thus the path of

the light goes from the lamp→M1→slits→sample→slits→M2→PMT. Harmonics

of the incident light are naturally generated by the diffraction gratings, and thus a

long-pass filter is sometimes inserted before the PMT if needed.

Thus for each data point there is an excitation wavelength, set by M1, an

emission wavelength, set by M2, and a intensity as measured by the PMT. In
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practice, to collect an emission spectra, the incident monochromator M1 is fixed

at a single wavelength and M2 is swept through a range of wavelengths, while for

an excitation scan, the M2 is fixed and M1 is swept through a range of excitation

wavelengths.

2.8 Time-dependent photoluminescence spec-

troscopy

The methods explained above for PL spectroscopy are steady-state measurements

and take no consideration of the rates in which these excitation and emission

processes occur. Time-dependent measurements, for instance to show the rate

of radiative decay, can be measured using fast laser pulses and highly sensitive

detectors. For instance, the photoluminescence decay curves that will be described

in detail in section 3.2.4, used excitation pulses of approximately 100 fs and a PMT

system sensitive to single photon events. Monitoring these decay rates can give

information about how many radiative recombination pathways exist, and the

speed of those recombinations.

Time correlated single photon counting (TCSPC) is an experimental approach

that allows the monitoring of fluorescent decay at sub-nanosecond resolution. A

laser pulse of several hundred femptoseconds is used to excite a luminescent sam-

ple. Collecting the actual luminescence decay would be rather difficult experimen-

tally, and this is overcome by a digital counting technique. For each laser pulse

cycle, a single emitted photon is collected. The time from the laser pulse to the col-

lection of a photon is measured. This excitation cycle is repeated millions of times

and a histogram of collection events is created, binned by time. The method relies
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on the fact that the probability distribution of individual photons is equivalent to

the actual time distribution photon emission from the sample. Consequently, the

histogram is equivalent to, and can be used as, a intensity versus time plot. In

TCSPC, resolution is limited by the peak widths of the excitation, detector, and

electronic system time jitter such that:

τmin =
1

10

√
FWHM2

source + FWHM2
detector + FWHM2

jitter (2.20)

When only a single radiative decay process is involved, the emission intensity

decreases mono-exponentially according to:

It = Ioe
−t
τ (2.21)

where It and Io are the intensities of the emission at time t and at initial time

to, respectively, and τ is the lifetime of the luminescence. The lifetime τ is the

time when the population of the excited state has decreased to 1
e

(∼37%). If

there are two processes involved, the emission intensity decreases bi-exponentially

according to:

It = I1e
−t
τ1 + I2e

−t
τ2 (2.22)

where I1 and I2 are the intensities of the emissions of the different processes at

to, and τ1 and τ2 are the lifetimes of each process, and so on for multiple pathway

systems.

Excited states return to the ground state by both radiative and non-radiative

processes, thus two decay rates τnon−rad and τrad can be considered such that:

1

τtotal
=

1

τnon−rad
+

1

τrad
(2.23)
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2.9 Thermogravimetric analysis

Thermogravimetric analysis monitors the weight loss of a sample as its heat is

slowly increased. The system consists of a microbalance inside of a furnace. For

hybrid materials, this provides an gauge of sample purity as the mass of the per-

centage weight loss for the final decomposition product can be readily calculated

and compared to the measured value. Typically a mixed metal-organic system will

decompose in an oxidizing environment to the most stable oxide of that metal. Ad-

ditionally, by heating slowly, the temperature at which adsorbed and bound water

molecules are removed from the sample can be identified and quantified, and the

specific decomposition temperature of the organic components can be identified

as well.
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Chapter 3

Inorganic phosphor nanoparticles

3.1 Introduction

Yttrium aluminium garnet, Y3Al5O12, doped with 2% Ce3+ (YAG:Ce) converts blue

and UV incident light into a broad yellow emission around 550 nm. The compound

was first synthesized in 1967 by Blasse at Philips Eindhoven for use in colour

televisions [3, 4]. Bright phosphors with short lifetimes, excitable using electrons

from a cathode ray tube, were needed for the new screens. Conveniently, its

high brightness when excited in the blue make the compound useful for white

LED devices wherein a blue emitting LED is combined with a phosphor layer to

generate white light. The compound has been retuned slightly by other small

chemical additions to optimize it for solid state lighting applications and it is the

phosphor material found in most commercially available white LEDs today. The

emitting ion, Ce3+ has a 4f 1 configuration with a doublet F ground state (2F 5
2

and

2F 7
2
). The Ce3+ transition from an excited 5d level to the 2F ground states account

for the luminescence and the split ground state results in broadened emission

at room temperature [65], ideal for lighting applications. A typical excitation
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Figure 3.1: 5d → 4f 1 emission processes in Ce3+ shown with increasing ligand
field splitting. The 4f1 level is shielded from most interactions and thus stays
at a constant level, while the splitting between the Eg and t2g of the 5d level is
sensitive to the local environment. The 4f1 splitting is omitted for clarity. Adapted
from Le Toquin and Cheetham [13].

and emission spectra for YAG:Ce is shown in Figure 3.2. This transition is both

spin and parity allowed, resulting in short decay times and high brightness. The

participation of the 5d energy levels makes the transition sensitive to the crystal

field environment [13], and to the symmetry at the Y3+ site [29] of the host lattice.

This results in a tunable emission colour of the Ce3+ ion from the UV to the red.

The colour tunability of the Ce3+ ion is shown in Figure 3.1. Figure 3.2, shown

earlier in Chapter 1 and again here, is a typical emission and excitation spectra for

bulk YAG:Ce. It can been seen that the excitation spectra aligns closely with the

440 nm emission from GaN blue LEDs and a broad yellow emission is provided.
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Figure 3.2: photoluminescence excitation and emission spectra for YAG:Ce.
λex=460 nm, λem=530 nm. The 4f ground state is split into a doublet of 2F 5

2
and

2F 7
2
, the transitions to which are both labeled in the emission spectra. Excitations

peaks are transitions from the 4f ground state to various 5d levels.

3.1.1 Nanoparticles of phosphors

Presently used lighting phosphors have diameters in the micron range and are

typically obtained by spray-pyrolysis [66], sol-gel routes [67], and conventional

ceramic methods. Some studies have suggested that the use of phosphors with a

diameter smaller than a few hundred nanometres would significantly reduce back-

scattering and improve light extraction from LED devices [68–70]. It has also been

suggested that reducing particle size will aid in using the phosphor layer more ef-

ficiently, as illustrated by Figure 3.3. Conversely, other publications have shown

that in practice, reducing particle size leads to a reduction in luminescent effi-

ciency [71]. While it is possible that using smaller phosphor particles will increase
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Figure 3.3: TOP: Schematic and cross-section electron micrograph of coarsely
milled phosphor particles. BOTTOM: Schematic and micrograph showing how
reduced particle size helps in forming a conformal phosphor layer over the emitter.
From www.lumileds.com.

total package efficiency, this requires maintaining the bulk luminescent efficiency

in the nanoparticles. In an attempt to clarify some of these discrepancies, a study

has been performed on YAG:Ce nanoparticles.

There have been many reported synthetic routes to phosphor nanoparticles.

Wang and Li prepared BaAl12O19 phosphors by reverse microemulsion using poly-

oxyethylene octylphenol as a surfactant with cyclohexane and water [72]. Zhou,

Shi, and Gong prepared the SrY2O4:Eu3+ phosphor using the same surfactant sys-

tem [73]. The network forming characteristics of silica gels have been used to form

nanoparticles of silicate phosphors such as Zn2SiO4:Mn2+ [74]. Lou et al. used a

surfactant assisted gel growth with tetraethyl orthosilicate (TEOS) to form zinc

silicates hydrothermally with a particle size near 100 nm [75]. Wan et al. applied

an amine to a precipitation route followed by reaction under mild hydrothermal

conditions to achieve luminescent nanoparticles of the same compound at 220◦C

without further calcination [76].
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There are comparatively fewer reports on the synthesis of nanoparticles of

YAG:Ce, largely because it requires high calcination temperatures, typically above

1500◦C, to achieve highly emissive samples. Nevertheless the number has in-

creased significantly since this work began several years ago due to rising interest

in the field [77–82]. Chatterjee et al. prepared ∼10µm spheres of YAG using

an emulsion of Span80 and cyclohexane [83]. Caponetti et al. used the surfac-

tant cetyl trimethylammonium bromide (CTAB) in a water/CTAB/1-butanol/n-

heptane emulsion to produce YAG:Nd particles ∼20 nm in size [84]. Prepara-

tions of YAG:Ce nanoparticles by microwave synthesis [85], sonochemical [86],

sol-gel [87, 88], co-precipitation [89], and solvothermal [90] methods have also

been reported. A novel salted sol-gel and salted sol-gel combustion method

was recently reported by Jia [69] in which high yields of dispersible YAG:Ce,

Sr4Al14O25:Eu2+,Dy3+ and BaMgAl10O17:Eu2+ were achieved with sintering tem-

peratures 400◦C to 500◦C lower than the reported conventional solid state meth-

ods. The degree to which the particles have sintered together during calcination,

while critical to gaining the benefits of using nanoparticles, is often not addressed,

nor is the quantum efficiency of the luminescence.

The problem that often arises in the processing of inorganic nanoparticles of

phosphors is that the temperatures needed to achieve efficient luminescence also

lead to particle sintering and ripening. A recent study of YAG:Ce nanoparticles

by Su et al. observed an incomplete garnet structure at the surface by high res-

olution transmission electron microscopy. The proposed that this provides traps

for the excited 5d electrons, lengthening the decay rate of the excited state and

thus quenches radiative emission [91]. Another study on the luminescence of

Y2SiO5:Ce3+ similarly described a change in the radiative lifetime of the cerium

ion due to the perturbed electric field at the surface [92]. Jia et al. [93] reported
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that the intensity of the photoluminescence emission increased as the nanopar-

ticle phosphor calcination temperature increased. This increase was ascribed to

increased crystallinity and subsequent elimination of emission-quenching defects.

The low photoluminescence intensity observed in nanoscale samples by Wang et

al. [70] was attributed to defects on the crystallite surface and the presence of

amorphous phases. In all of these examples the increasing concentration of de-

fects in nanoparticles, both from the increased surface area and from the lower

processing temperatures required to prevent sintering, resulted in decreased effi-

ciency.

3.1.2 Emulsion synthesis

An emulsion-based method was used to prepare YAG:Ce nanoparticles in this re-

search. Inverse emulsion syntheses, alternatively referred to as microemulsions,

miniemulsions, and nanoemulsions, use surfactants to stabilize aqueous droplets

in a non-polar phase [94]. Boutonnet et al. published one of the earliest reports

in 1982 on the use of a microemulsion to control the morphology of metal par-

ticles reduced from a solution of metal salts [95]. Specifically, emulsions of wa-

ter/cetyl trimethylammonium bromide/octanol and water/pentaethylene glycol

dodecyl ether/hexane were used with salts of platinum, palladium, rhodium, and

iridium dissolved in the aqueous phase. Solvent to surfactant ratios were used

such that the aqueous phase was surrounded by the hydrocarbon, and thus each

droplet of water could independently nucleate metal particles upon reduction with

hydrazine or bubbling hydrogen. Using this method they were able to prepare 2

to 5 nm metal particles. Thorough reviews from the Landfester group [96, 97]

and a more recent work from Eastoe et al. [98] described the wide range of ap-

plications of emulsion methods, from inorganics to metals to polymers, and the
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Figure 3.4: LEFT: Ternary phase diagram of the water/hexanol/CTAB system. L1,
close to 100% water, indicates the standard emulsion region, while L2, close to
100% hexanol, indicates the inverse emulsion region. RIGHT: Illustration of an
inverse emulsion, showing regions of blue aqueous reactants stabilized by orange
surfactants in a gray continuous phase [96].

conditions required for the formation of a stable emulsion. In practice, emulsions

are typically formed by mixing an aqueous sol of metal nitrates with a solvent and

surfactant dispersion. Initially the mixture is biphasic and by applying some form

of mixing such as stirring or sonication, self-assembled aggregates form if the ratio

of components allows it. A ternary phase diagram showing different regions in the

water/hexanol/CTAB system and an illustration of a reverse emulsion are shown

in Figure 3.4.

The mechanisms seen in the formation and agglomeration of emulsions were

well described in a review by Uskokovic and Drofenik [99]. Most important to

our work is that a reagent can be added that diffuses through the continuous

phase but only reacts with the dispersed phase. Reactions can then be carried

out in the hydrophilic regions of the self-assembled domains. This allows each

suspended water droplet in the oil phase to act as an independent reactor and
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presumably nucleate an individual particle. Because the droplets are continually

colliding, mixing, and reforming, the produced particle size is typically larger than

the colloidal dispersion. Nevertheless, it can result in nanoscale particles with a

good degree of monodispersity under the proper conditions.

3.1.3 YAG structure

YAG:Ce crystallizes in a cubic garnet structure with space group Ia3̄d and cell

edge length 11.99 Å. There is one 8-coordinate Y3+ site and two crystallograph-

ically distinct Al3+ sites, one octahedral and the other tetrahedral. The Ce3+

dopants displace yttrium atoms and a maximum in emission intensity is seen from

approximately 2% substitution, increasing beyond which leads to concentration

quenching via cross-relaxation between cerium atoms. Figure 3.5 shows the crys-

tal structure of YAG, and the individual networks of its constituent metal sites.
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Figure 3.5: Multiple views of the Y3Al5O12 crystal structure in Ia3̄d. TOP LEFT: all
atoms, TOP RIGHT: the aluminium tetrahedra, BOTTOM LEFT: aluminium octahe-
dra, BOTTOM RIGHT: the yttrium polyhedra.

3.2 Experimental methods

3.2.1 YAG:Ce nanoparticle synthesis

Y3Al5O12:2%Ce3+ nanoparticles were synthesized by an emulsion-based method,

which is a relatively inexpensive and versatile approach that is scalable, avoids

the equipment requirements of spray-based approaches, and can give parti-

cles of a uniform morphology. The aqueous phase was prepared by dissolving

Y(NO3)3·(H2O)6, Al(NO3)3·(H2O)9, and Ce(NO3)3·(H2O)6 in a 1:1.67:0.02 molar

ratio to form a 0.1 M solution. The pH of the solution was raised to ∼3 using

ammonium hydroxide. The continuous phase consisted of a 20:1 volume ratio of

cyclohexane and sorbitan monooleate (sold commercially as Span80). The two

solutions were combined and placed in an ultrasonic bath for 90 minutes, forming
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a white, milky emulsion. This was then refluxed in air at 90◦C while stirring for

48 h. The emulsion remained stable throughout the reflux. The particles were

hydrolyzed by the addition of tetraethyl ammonium hydroxide under vigorous

stirring until the pH reached ∼11. A colour change from white to yellow was also

observable when the hydrolysis was complete. At this point, the particles were

still suspended, but readily separated by centrifugation at 3000 rpm for 15 min.

They were washed several times with H2O and ethanol to remove unreacted start-

ing materials and remaining solvent, then dried in vacuum at room temperature.

The products were calcined in air at temperatures between 700◦C and 1300◦C for

2 h. Several experimental parameters were varied in the course of this study. The

continuous solvent phase was replaced with n-hexane and octane. The ratio of sur-

factant to solvent was changed from 1:40 to 3:40. The temperature of the reflux

was varied between 60◦C and 90◦C, and duration varied from 0 to 72 h. Finally,

the hydrolysis of the suspended particles was performed using different bases such

as NH4OH and triethylamine in place of the tetraethylammonium hydroxide.

3.2.2 Pair distribution function

The pair distribution function (PDF) is a total scattering method of analysing the

short and medium range order of crystalline and semi-crystalline materials using

data from diffraction experiments [100]. Data contained in both the Bragg peaks

and diffuse scattering is extracted from high-Q diffraction data and converted from

reciprocal space to real space. In this case, data is considered as intensity versus Q

(Å−1), where Q is the scattering vector and mathematically related to the incident

angle θ described earlier for powder diffraction by:

Q =
4πsin (θ)

λ
(3.1)
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Because both the Bragg peaks and the diffuse reflections are used, the intensity

data is carefully corrected for instrumental parameters. Diffraction data is col-

lected for empty sample holders and for a known standard of CeO2 to use as a

baseline in these corrections. Beyond the instrument parameters, corrections are

also made for multiple scattering events and attenuation The extracted data is

normalized to generate the structure factors S(Q) and a sine fourier transform

is made of the to create a real-space histogram of atom-atom distances, labelled

G(r), to which a structural model is refined. G(r) is defined as:

G(r) = 4πr[ρ(r)− ρ0] (3.2)

=
2

π

∫ ∞
0

Q[S(Q)− 1]sin(Qr)dQ (3.3)

where Q is the scattering vector and r is the atom-atom pair length in Å. In prac-

tice the integral is not calculated to infinity, but either some reasonably long length

such that all the data under consideration is modeled, or a purposefully shorter

one to model small particles. The calculated model from a structure, Gc, is com-

puted as:

Gc(r) =
1

r

∑
i

∑
j

(
bibj

< b >2
δ(r − rij)

)
− 4πrρo (3.4)

For this reason, the fitting has been referred to as “real-space Rietveld” [101]. For

these nanoparticles, synchrotron X-ray powder diffraction data were collected in

transmission mode at room temperature on beamline 11-ID-B of the Advanced

Photon Source, Argonne National Laboratory. Powder samples were loaded into

polyaniline tubes, sealed with glass wool and placed vertically in a sample holder

in the path of the beam at room temperature, with an experimental set-up similar

to that described by Chupas et al [102]. Scattering data were collected with an

image plate system (MAR345) and sample-to-detector distances of 970 mm and
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305 mm using high energy X-rays (∼90 KeV). Data for Rietveld analysis (970 mm)

were collected using single 30 to 100 s exposures, and data for PDF analysis

(305 mm) were collected in three exposures of 10 to 60 s. The image plate data

were processed using the program FIT2D [103]. The Rietveld method [104] was

used to refine the structures and for quantitative phase analysis using the programs

XND [105] and the GSAS-EXPGUI [106, 107] suite. The PDF, G(r) [108, 109],

was extracted with the program PDFGetX2 [110], using a maximum momentum

transfer of Q = 20 Å−1. Full structure profile refinements with the PDF data were

carried out in the program PDFFIT2 and PDFgui [111]. A bulk cubic ceria stan-

dard provided an effective wavelength of λ ≈ 0.1368 Å for refinements as well as

instrument parameters for PDF analysis.

Correlated motion of atom-atom pairs also has an impact on the peak shapes in

extracted pair distribution functions. The more closely correlated the atoms, the

sharper the PDF peak, in a way similar to, but more complex than thermal atomic

displacement effects. This generally makes the correlated motion peak impact

dependent upon r, but it also can be used to reveal local structure information.

The calculated Gc above is convolved with a gaussian distribution that includes a

correlated motion term Qσ, isotropic atomic displacement parameters, as well as

a scale factor.

3.2.3 Optical characterization

Photoluminescence measurements were carried out at room temperature using a

Perkin Elmer LS55 fluorescence spectrometer.

Emission quantum yield (QY) measurements were performed on finely ground

powder samples mounted in silicone resin on optical quartz substrates. A Lab-
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sphere integrating sphere with excitation light from a Spectraphysics Beamlok

2060 line tuneable CW argon-ion (Ar+) laser at 363 nm was used to illuminate

the samples. The experimental setup is similar to the one described in a paper by

Greenham et al [112]. The light exiting the sphere passed through appropriate

coloured glass or interference filters. Emission was detected using a Newport UV-

818 calibrated Si photodiode, amplified with a Stanford Research Systems SR570

and measured using a Keithley 195 digital multimeter.

3.2.4 Time resolved luminescence

Fluorescence lifetime measurements were performed using the Time Correlated

Single Photon Counting (TCSPC) technique [113]. Excitation pulses of approxi-

mately 100 fs with a wavelength tunable from 360-470 nm were generated using a

frequency doubling β-barium borate crystal in combination with a Spectra-Physics

Tsunami mode-locked Ti-sapphire laser. The laser repetition rate was reduced to 2

MHz using an acousto-optical pulse picker to avoid chromophore saturation. The

TCSPC system was equipped with a Hamamatsu R3809U-51 ultrafast microchan-

nel plate photomultiplier tube detector and a Becker & Hickl SPC-630 counting

module, providing a response time ≤50 ps. The triggering signal for the TCSPC

board was generated by sending a fraction of the laser beam to a Si photodiode.

The fluorescence spectrum was monitored using a Roper Scientific PIXIS-400B

CCD camera equipped with an Acton Research SP300 monochromator and an ALP

long-pass filter. Fluorescence transients were not deconvolved from the instrument

response function since their characteristic time constants were much longer than

the width of the system response to the excitation pulse. Variable temperature

measurements were performed using a liquid nitrogen cryostat with temperature

controller down to 77 K or a heating stage up to 500 K.
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3.3 Results

Samples of Y3Al5O12:2%Ce3+ (YAG:Ce) were prepared for synchrotron X-ray anal-

ysis. Precursors were prepared using an emulsion of water, cyclohexane and

Span80, and calcined at 700, 1000, and 1300◦C. A bulk sample was made by

a traditional ceramics route, calcined at 1600◦C, for comparison.

The relationship between the calcining conditions and the photoluminescence

intensity was explored in a series of experiments from which electron micrographs

are shown in Figure 3.6. Shown in the leftmost micrograph, the precursor was

heated to 700◦C for 2 h. The individual particles were approximately 40 nm in

diameter and did not appear to be fused together. However, heating to 700◦C did

not develop the crystalline garnet phase and showed no photoluminescence. The

centre micrograph image shows the same precursor heated to 1000◦C for 2 h and

suggests that the particle size is still quite small, although the degree of sintering

was not readily identifiable. The sample showed a weak yellow luminescence un-

der UV illumination. In the rightmost image, the precursor was heated to 1300◦C

for 24 h and displayed a bright yellow luminescence under UV illumination. This

heating, however, resulted in extensive condensation and sintering of the particles.

photoluminescence emission spectra at λex=460 nm for products of the three

calcination temperatures are shown in Figure 3.8. A comparison of the excita-

tion and emission spectra for the 1300◦C sample and the bulk sample is shown in

Figure 3.7. The emission spectra show an rise in brightness with calcination tem-

perature, increasing from almost no emission after heating to 700◦C to a strong

intensity from the 1300◦C and bulk samples. While the relative intensities in the

plot are qualitative, the trend is nevertheless apparent. Quantum efficiency was

measured at 42% for the 1300◦C and 74% for the bulk samples. Noise on these
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Figure 3.6: LEFT Scanning electron micrographs after heating to 700◦C, show-
ing no photoluminescence, CENTRE: 1000◦C, which showed weak colour, RIGHT

1300◦C heating, which showed intense yellow luminescence.

spectra is largely attributable to scaling and sample preparation effects as the data

was not collected in an integrating sphere and so scattering effects become signif-

icant.
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Figure 3.7: TOP: photoluminescence excitation and emission spectra for the emul-
sion prepared YAG:Ce nanoparticles calcined at 1300◦C. BOTTOM: High tempera-
ture bulk preparation, showing that the luminescent behaviour is preserved in the
nanoparticle samples. The apparent extra excitation peak at 380 nm and emission
shoulder at 600 nm are present in the bulk phase as well and are obscured by
scaling artefacts.
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Figure 3.8: photoluminescence emission spectra of the same samples at
λex =460 nm, showing the increase in intensity with increasing calcination tem-
perature. A high temperature bulk sample is included for comparison
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3.3.1 Rietveld refinement using synchrotron data

To better analyse the structural disorder and impurity phases, high resolution X-

ray diffraction data were collected. Synchrotron X-ray powder diffraction data

shown in Figure 3.9 were collected at the Advanced Photon Source at Argonne

National Laboratory. The highly monochromatic incident beam had a wavelength

of λ=0.13697(2) nm, determined by refinement of a CeO2 standard. The short

wavelength, sharply defined X-rays, and high flux allows highly accurate phase pu-

rity and structural information to be obtained. The powder diffraction data were

analysed by the Rietveld method using both XND [105] and GSAS [106, 107] soft-

ware packages. With the availability of such high quality data, it became apparent

that there were significant impurity phases in all of the samples. In addition to the

garnet structure, samples were found to contain the monoclinic Y4Al2O9 (YAM), a

hexagonal perovskite YAlO3 (hex-YAP), and CeO2 (ceria). Figures 3.10, 3.11, and

3.12 show the refinements and constituent phase contributions for the 1000◦C,

1300◦C, and bulk samples, respectively. There is a small but unidentified impurity

phase in the bulk sample which can mainly been observed in peaks between 2◦ and

2.5◦ 2θ. Table 3.1 summarizes the phases present and the relative amounts as de-

termined by GSAS quantitative Rietveld analysis, wherein relative phase amounts

are calculated by the scale factors applied to the gaussian profiles of the structure

fitting. The increase in grain size, as indicated by the decreased Scherrer broad-

ening, is shown in Figure 3.13, which details the (521) and (440) peaks. The

increase in lattice parameter with calcination temperature is also evident in this

plot, as the peaks shift to higher angles, and is listed for the garnet phase in Table

3.1.
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Figure 3.9: Synchrotron X-ray diffractograms at λ=0.136 nm of the 700◦C,
1000◦C, 1300◦C, and bulk YAG samples. The 700◦C sample is amorphous, and
a sharpening of the peaks can be seen between the 1000◦C and the 1300◦C sam-
ple.
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Figure 3.10: Impurity phase identification and Rietveld refinement of the emulsion
prepared YAG sample calcined at 1000◦C using synchrotron X-rays at λ=0.136 nm.
The blue line indicates the total calculated pattern, and below it are the constituent
phases and their contributions. YAM is monoclinic Y4Al2O9, hex-YAP is hexagonal
perovskite YAlO3

72



1 2 3 4 5 6 7 8 9 10
2θ (°)

YAG

YAM

CeO2

Diff

Figure 3.11: Impurity phase identification and Rietveld refinement of the emulsion
prepared YAG sample calcined at 1300◦C using synchrotron X-rays at λ=0.136 nm.
The blue line indicates the total calculated pattern, and below it are the constituent
phases and their contributions.
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Figure 3.12: Impurity phase identification and Rietveld refinement of the bulk YAG
sample calcined at 1600◦C using synchrotron X-rays at λ=0.136 nm. The blue line
indicates the total calculated pattern, and below it are the constituent phases and
their contributions.
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Figure 3.13: Detail of YAG:Ce synchrotron X-ray diffraction and Rietveld refine-
ment showing peak broadening of the (521) and (440) reflections
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Table 3.1: Relative phase contributions in the emulsion prepared YAG:Ce and lat-
tice parameter of the garnet phase, as determined by GSAS Rietveld refinements.
Lattice parameters for impurity phases are not reported.

Sample Phase Lattice Parameter (Å) Contribution (%)

700◦C Amorphous n/a

1000◦C
YAG 12.0209(7) 78.86(4)
YAM – 11.14(33)
hex-YAP – 10.00(19)

1300◦C
YAG 12.0013(4) 85.45(8)
YAM – 13.58(19)
CeO2 – 0.97(4)

Bulk
YAG 11.9989(3) 98.94(1)
CeO2 – 1.06(6)

3.3.2 PDF analysis

The synchrotron X-ray data were further analysed by the PDF method. The ex-

perimentally determined G(r) spectra are given in Figure 3.14 along with PDF

refinements of the 1000◦C, 1300◦C and bulk YAG:Ce samples to 20 Å in r. In the

PDF refinements, impurity phases were included as fractions (determined via Ri-

etveld analysis) and their parameters were not refined. For the cubic YAG phase

refinements, the lattice parameter a, the isotropic atomic displacement parameter

(constrained for each element to be equivalent among all the phases), and the x,

y, and z oxygen positions of the cubic phase were refined. In addition, a scale fac-

tor refinement and a peak broadening parameter (Qσ) accounting for correlated

motion were applied. It was found that the low-r range of the experimental PDF

is more poorly fitted than the high-r range. A closer look at the atom-atom pairs
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Figure 3.14: TOP: Long range pair distribution functions extracted from syn-
chrotron powder diffraction data, showing the reduced correlation length for the
lower temperature preparations. BOTTOM: Short range experimental pair distribut
ion functions (solid circles) and fits (lines) to the top three data sets, with differ-
ence spectra shown below. Only raw data is given for the 700◦C sample data set,
though it can been sesen that the first two bond distances in the 700◦C sample
match those for the more crystalline samples.
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Table 3.2: Structural parameters and bond distances from synchrotron PDF refine-
ment of Ia3d YAG phase

Bulk 1300◦C 1000◦C

Qσ 0.85(5) 0.780(4) 0.73(5)
a (Å) 11.989(1) 11.996(1) 12.018(2)
x(O) 0.280(1) 0.279(1) 0.280(2)
y(O) 0.102(1) 0.102(1) 0.104(1)
z(O) 0.200(1) 0.1993(9) 0.0041(4)
Uiso(Y) (Å2) 0.0025(2) 0.0027(2) 0.0041(4)
Uiso(Al) (Å2) 0.0068(7) 0.0069(6) 0.008(1)
Uiso(O) (Å2) 0.011(1) 0.012(1) 0.017(3)
dY–O (Å) (4×)2.30(2) (4×)2.30(2) (4×)2.32(3)

(4×)2.43(1) (4×)2.43(1) (4×)2.45(2)
dAl1–O (Å) (6×)1.911(2) (6×)1.90(2) (6×)1.89(3)
dAl2–O (Å) (4×)1.78(2) (4×)1.78(2) (4×)1.79(3)
Rwp (%) 11.94 12.22 17.77

in the correlations shows the distances poorly captured belong to metal-oxygen

distances. Results from the PDF fits and calculated bond lengths are given in Table

3.2. Figure 3.15 shows that the isotropic atomic displacement parameter (Uiso) in-

creased at lower calcination temperatures, suggesting an increasingly disordered

lattice. The decreasing crystallinity is also reflected in the decreasing Qσ.
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Figure 3.15: TOP: Decreasing isotropic atomic displacement parameter Uiso. BOT-
TOM: Increasing fitting parameter Qσ, suggesting disorder at lower temperature
calcinations.

3.3.3 Luminescent lifetimes

The top of Figure 3.16 shows the intensity decay measured for the emission of

the bulk YAG:Ce preparation and for the YAG:Ce nanoparticles at room temper-

ature after a 450 nm laser excitation pulse. The best fit model to the data was

a bi-exponential, allowing us to determine the corresponding lifetimes of each

decay. The fast process, τ1, was 6.29 ns for the bulk and 5.18 ns in the 1300◦C

nanoparticles. The slow process, τ2, was 58.07 ns for the bulk and 53.36 ns in the

nanoparticles. For the bulk YAG:Ce sample the contribution of the fast process is

small (∼5%) and the lifetime of the slow process is very close to the 67 ns previ-

ously reported by Zych et al. [114], while for the nanoparticles the contribution
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of the fast process becomes more significant, around 20%.

We have performed time-resolved experiments at different temperatures to es-

tablish the effect of thermal quenching on lifetime and quantum efficiency. As the

intensity at initial time Io is proportional to the quantum efficiency, we were able

to determine the temperature dependence using measurements at initial time to.

The centre of Figure 3.16 shows that the quantum efficiency for the bulk YAG:Ce

diminishes from 74% at room temperature to 56% at 473 K. A similar behaviour

can be observed for the YAG:Ce nanoparticles in the same temperature range, its

quantum efficiency diminishing from 42% to 34%.

The lifetimes of each process measured by the bi-exponential fitting at different

temperatures for these samples are shown in the bottom of Figure 3.16. It can be

seen that the behaviours are very similar for the lifetime of the fast component

τ1. In the case of the slow process, the lifetime of the YAG:Ce nanoparticles drops

slightly at temperatures above 350 K.
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Figure 3.16: TOP: Room temperature emission intensity decay, CENTRE: temper-
ature dependent absolute quantum efficiency, and BOTTOM: temperature depen-
dent luminescent lifetime for YAG:Ce nanoparticles prepared at 1300◦C (squares)
and bulk YAG:Ce (circles).
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3.4 Summary

The difficulties in producing highly efficient yet nanoscale particles of YAG:Ce

highlight one of the problems with tuning particle size for inorganic phosphors.

While the theoretical benefits of a perfectly phase pure, highly crystalline particle

of a phosphor compound with dimensions that would reduce backscattering and

improve device processability are apparent, they are much more difficult to imple-

ment experimentally. While there certainly have been many reports of nanosized

phosphor materials, their efficiency (when reported) is never up to the perfor-

mance of their bulk counterparts. In our own YAG:Ce preparations, relatively high

efficiency was obtained by emulsion-templating with a calcination temperature

300◦C lower than the bulk oxide preparation and in a single heating step, which

represents a large energy savings on its own. Unfortunately it seems that the calci-

nation conditions required for highly efficient luminescence also lead to sintering

of the particles.

Several important conclusions were reached with Rietveld and PDF refinement

with synchrotron powder diffraction data in combination with the quantum effi-

ciency and lifetime measurements. First, the high resolution synchrotron X-ray

data revealed that additional phases, not detected with laboratory X-rays, are

present in the nanoparticle samples calcined at 1000◦C and 1300◦C. These ad-

ditional phases no doubt account in part for the loss of photoluminescence effi-

ciency. Second, the PDF results indicate that the order within the garnet phase

is lower for the nanoparticles as compared to the bulk sample, which again con-

tributes to the lower efficiency. Third, photoluminescence efficiency and lifetime

measurements indicate lower quantum efficiency for the nanoparticles and thus

more non-radiative decay mechanisms.
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It is clear that all of these factors influence the photoluminescence performance

of the YAG nanoparticles.

The research described in this chapter was carried out in collaboration with

Katherine Page, who was responsible for the PDF refinements, Gautam Gun-

diah, who assisted with the synthesis and microscopy, and Nancy Pizzaro, who

performed many of the luminescence measurements. It has been published in

Chemical Physics Letters as: J. D. Furman, K. Page, N. Pizzaro, G. Gundiah,

and A. K. Cheetham. “Local structure and time resolved luminescence of emul-

sion prepared YAG nanoparticles.” Chem. Phys. Lett., 465, 67 (2008). [DOI:

10.1016/j.cplett.2008.09.045].
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Chapter 4

photoluminescence and mechanical

properties of rare earth-based

inorganic-organic frameworks

4.1 Introduction

The rest of this thesis concerns our attempts to make phosphors for solid state

lighting using hybrid inorganic-organic framework materials. In this chapter we

investigate the possibility of using rare earth-based hybrids as phosphors. It will be

shown that while their excitation and emission spectra make them unsuitable for

use in devices, the mechanical properties of dense frameworks are well within the

range required for device applications. The use of hybrid materials was also moti-

vated by the possibility of making nanoparticles of these materials. While nanopar-

ticles of these compounds were not synthesized, it is expected that it should be

much easier to overcome the crystallinity issues that arose for the YAG:Ce particles

because the frameworks are already solution processed under mild conditions.
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Figure 4.1: Sketch of oxalic acid

Rare earth elements and the dicarboxylate ligand oxalic acid, shown in Fig-

ure 4.1, were combined in attempt to make dense, anhydrous framework phos-

phors. The oxalate anion was selected as a ligand as its lack of C–H bonding and

high temperature stability should make a wide range of reaction conditions ac-

cessible. Also, the lack of C–O and C–H bonding has been suggested to improve

phosphor performance as the resonant vibrations of the bonds couple to excited

luminescent ions, providing non-radiative recombination pathways. Anhydrous

framework structures can show remarkable thermal stability, typically displaying

no weight loss in thermogravimetric measurements up to 400◦C, often exceeding

the thermal stability of the ligand as a free acid. The O–H bonds in water are also

known to reduce luminescent efficiency, particularly when the water molecules

coordinate to the metal ions. It was hoped that an anhydrous oxalate phosphor

would benefit from both the high stability and limited vibration modes of the ox-

alate anion as well as the overall stability of that has been seen in other anhydrous

frameworks.

In the course of this work it became apparent that no high efficiency phos-

phors with lighting applications were likely to be found in the rare-earth oxalate

family of crystal structures. Excitation of rare-earth containing phosphors only
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showed directed metal excitation without any lattice contribution because the an-

tenna effect of the oxalic acid is too far into the UV to be useful for LEDs. Figure

4.2 shows the UV excitation and emission of a cerium-doped lanthanum oxlalate

formate La1−xCex(HCOO)3. Additionally, obtaining anhydrous frameworks based

Figure 4.2: Excitation and emission spectra for cerium-doped lanthanum formate
La1−xCex(HCOO)3, shown for x=2% and 5% with λex=340 nm and λem=375 nm.
Both the excitation and emission are too far into the UV to be useful for solid state
lighting applications [115].

on oxalic acid proved to be difficult if not impossible. An example of green Tb3+

luminescence from a (Tb/La)-oxalate decahydrate solid solution series with the

formula LaxTb1−x(C2O4)·10H2O [116] is shown in Figure 4.3 for x=0, 0.1, 0.2,

0.5, and 1. The emission in this case comes from direct excitation of the terbium

ions in the lattice, and its intensity rises with increasing terbium substitution. Ex-

citation transitions in the terbium sample correspond to the 7F6 →5 L6 centred at

330 nm and the 7F6 →5 D3 centred near 380nm. The three prominent luminescent
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peaks at 490 nm, 550 nm, and 575 nm correspond to the 5D4 →7 F6, 5D4 →7 F5,

and 5D4 →7 F4 transitions, respectively. The inset shows the excitation spectra,

which does not have a useful excitation range for white LEDs applications. Inter-

estingly, however, no concentration quenching was seen for these samples and the

maximum emission intensity came from the pure terbium compound.
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Figure 4.3: Emission spectra from (Tb/La) oxalate up to 100% terbium. Inset:
Excitation spectra for 100% terbium oxalate. λex=330 nm and λem=550 nm.

Nevertheless, some routes to large single crystals of known materials were

found, namely a mixed ligand cerium oxalate formate with the formula

Ce(C2O4)(HCO3). This compound was previously reported by Trombe et al. [117]

and serendipitously rediscovered in this work. Well faceted, relatively large crys-
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tals were synthesized hydrothermally, with edge lengths up to 500µm, making

them ideal for a study of the mechanical properties of hybrid framework materi-

als. The structure is highly anisotropic and crystallographically aligned with the

crystal facets, which allowed for probing of how the bonding arrangement down

a crystal axis effected its mechanical properties.

The luminescence of the anhydrous cerium oxalate formate, the mechanical

properties of which will be discussed later in this chapter, was investigated by

photoluminescence spectroscopy. However, no emission was observed for exci-

tations at any wavelength although a UV emission was expected. This might be

because the signal was simply too weak to be detected, or because the stokes shift

was so small that the emission could not be resolved from the excitation. Either

way, the luminescent properties of this compound were clearly not suitable for use

as a solid state lighting phosphor. However, we continued to test the mechani-

cal properties of the compound in order to ascertain whether inorganic-organic

frameworks as a class would be sufficiently robust for applications in lighting.

4.1.1 Known oxalate framework structures

The known lanthanide oxalates from lanthanum to erbium all crystallize in a

monoclinic decahydrate with the formula M2(C2O4)3·10H2O [118]. The struc-

ture shows a 2-dimensional honeycomb structure of six-membered rings, as was

described for the lanthanum oxalate decahydrate by Huang et al. [116]. This 2-

D honeycomb structure is also seen with other oxalate frameworks such as zinc

and tin [119]. Figure 4.4 shows a sheet of gadolinium(III) oxalate decahydrate

(Gd2(C2O4)3·10H2O) along with the isostructural tin oxalate.

Similar reported hybrid structures with oxalate ligands have been reported
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Figure 4.4: LEFT: Gadolinium oxalate decahydrate (Gd2(C2O4)3·10H2O), viewed
down the b axis showing the honeycomb structure. The water in the pores is
omitted for clarity. RIGHT: isostructural tin oxalate hydrate from Natarajan et
al. [119].

with mixed metal ions. The Louër group has prepared a mixed oxalate hydrate

structure with a [MM’(C2O4)4]−2 framework that is charge balanced by interstitial

K+ or Cd2+ ions [120]. The structure, shown in Figure 4.5, shows a honeycomb

structure in the (111) plane with alternating metal sites around the 6-membered

ring and open sites in the pores that are filled by either the small potassium and

cadmium cations or water. In their work, and those they cited, structures were

reported for [MM’(C2O4)4]2− charge compensated with K+, Cd2+, Ca2+, Sr2+, and

NH+
4 , where M and M’ were various combinations of Y, Cd, Zr, Ca, In, Sr, Mn, U, Bi,

and Er [121–127]. Those preparations were all carried out at room temperature

and resulted in hydrated compounds. These structure types were not investigated

in this work because their porosity generally leads to lower thermal and chemical

stability than needed for solid state lighting phosphors.

Reports of dense, anhydrous, inorganic-organic framework oxalates are rare
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Figure 4.5: the (a) c-axis projection and (b) (111) plane of the [MM’(C2O4)4]−2

structure reported by Louër et al. [120]. The A and B sites filling the pores are
occupied either by the small charge compensating cations or water molecules.

but a few exist. A strontium oxalate compound was grown hydrothermally at

240◦C as reported by Price et al. [128]. The strontium cations are 8 coordinated

by oxygen and form edge sharing polyhedra chains linked by oxalate ligands. An-

other similar anhydrous structure from the Louër group was an anhydrous β-Cd

oxalate [129]. The compound was prepared hydrothermally at 150◦C from cad-

mium nitrate and potassium oxalate, and contains MO6 octahedra chains linked by

oxalate ions. Trifa et al. prepared anhydrous barium strontium oxalate crystals by

very slow evaporation at room temperature [130]; it adopts a structure of chains

formed by bidentate oxalate ligands which then connected into a 3-dimensional

structure via monodentate oxalates. Evaporation of the crystals took over a year,

however, which makes it not a particularly attractive method.

Reports of several anhydrous oxalates structures have come from thermal de-

composition of hydrated forms. This typically requires structure solution from

powder diffraction, a difficult and sometimes impracticable method depending on
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the complexity of the crystal structure. For example, Christensen et al. reported

two partially solved anhydrous barium oxalate structures in 2002 from powder

diffraction data of a thermally decomposed hydrated oxalate [131].

All of these anhydrous structures, however, involve divalent metal cations. The

luminescent rare earth species investigated here almost always assume a 3+ state,

with the notable exception of Eu2+, which is difficult to stabilize in an aqueous re-

action. In the course of this research it became apparent that obtaining anhydrous

trivalent lanthanide oxalates was out of reach and that combining the stability

benefits of an anhydrous oxalate system with rare earth luminescent ions was not

going to be possible.

4.1.2 Mechanical properties

Very little is known about the mechanical properties of inorganic-organic hybrid

frameworks. Hybrids have mostly been studied in the past for their porosity, where

mechanical strength is not a property of primary concern. However, as the poten-

tial applications of hybrid framework materials moves into optical and electronic

devices, it becomes critical to understand their mechanical stiffness and hardness.

Measuring hardness and Young’s modulus on sub-millimetre crystals proposes

some practical problems as all of the measurements being considered are orders

of magnitude smaller than the traditional metallurgical samples for which these

tests were originally developed. One cannot, for example, clamp both ends of a

sample in a tensometer and measure the extension versus applied load. However,

advances in indentation techniques have been scaled down to provide sub-micron

resolution and thus allow for so-called “nanoindentation” experiments. In these

tests, a small indentation is made in a sample using a tip with known geometry and
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elastic properties, and the displacement depth and applied pressure are measured.

From this data, the material’s modulus and hardness can be extracted.

The parameter of primary concern is the Young’s modulus (E). This is the

measurement of a material’s stiffness while it undergoes elastic deformation and

is typically reported in gigapascals (GPa). Hardness (H) is a measurement of

resistance to plastic deformation. When measuring polycrystalline samples, a test

at one length scale does not necessarily translate to others because the effects

of grain size and boundaries become more significant as displacements increase.

However when testing single crystals, a measurement at any length scale should

be accurate or nearly accurate at all length scales. Furthermore, any potential

device applications would likely involve stresses on the order of what is tested by

nanoindentation.

There have been a few reports published on nanoporous framework mate-

rials [132–135], but none on dense hybrid structures until the recent publica-

tion of Tan, Furman and Cheetham [136] on the cerium oxalate formate de-

scribed herein, and another work from the Cheetham group by Tan, Merrill, Or-

ton and Cheetham [137] studying copper phosphonoacetate polymorphs. Both

of these studies provided highly anisotropic crystal structures which led to highly

anisotropic and impressive mechanical properties.

4.2 Experimental methods

4.2.1 Synthesis of cerium oxalate formate

Ce(C2O4)(HCO2) was prepared by hydrothermal synthesis. The synthesis was

modified from that reported by Romero et al. [117] to yield larger crystals. A
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mixture of 0.15 mmol Ce(OH)4 and 1 mmol oxalic acid in 10 mL deionized water

was sealed in a 23 mL PTFE-lined auto clave. The autoclave was heated at 200◦C

for 5 days. During heating, a portion of oxalic acid decomposed to formic acid and

the cerium(IV) was reduced to cerium(III) by the acidic solution. The final prod-

ucts, consisting of colourless block crystals (≈200×50×45µm), were recovered

by filtration, washed with water and ethanol, and then dried in air.

4.2.2 Single crystal structure and orientation

Single crystal X-ray diffraction was carried out to confirm the crystal structure of

Ce(C2O4)(HCO2) and to index the primary crystal facets. A representative single-

crystal was selected under a cross-polarizing microscope and glued onto a glass

fibre using epoxy. The crystal structure determination was performed on a Bruker

single crystal diffractometer at Southampton University using a Nonius FR591 ro-

tating anode source with a molybdenum target (λ = 0.71073 Å) and a KappaCCD

detector with graphite monochromator. A hemisphere of intensity data were col-

lected at 120 K. An empirical correction on the basis of symmetry equivalent re-

flections was applied using the SADABS program. The structure was solved by

direct methods using SHELXTL and difference Fourier syntheses. The hydrogen

atoms were found in the Fourier difference map and constrained to chemically

reasonable positions. Crystal faces were identified using Bruker Face Indexing.

4.2.3 Nanoindentation testing

The mechanical properties of cerium oxalate formate were evaluated using an

MTS NanoindenterXP at the Gordon Laboratory of the University of Cambridge.

The instrument is held in an isolation cabinet, protecting it from thermal and
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acoustic interference. This device is equipped with a continuous stiffness mea-

surement attachment which allows for multiple measurements during a single in-

dentation. It has a maximum depth of 2µm with a resolution of 0.01 nm and

with 50 nN load resolution. Two indenting tips were used on the nanoindenter.

A diamond 3-sided pyramid Berkovich tip which provides a sharp tip radius of

approximately 100 nm was used to measure sample modulus and hardness. A

spherical diamond indenter, with a much larger tip radius of ≈10µm, was used

to examine the plastic deformation regime as it delays the sample yielding, the

point at which the transition to from elastic to plastic deformation takes place.

Amorphous silica (E=72 GPa, H=9 GPa) was used as a calibration standard for all

experiments.

High quality, untwinned single crystals were selected using a cross-polarizing

light microscope and cold mounted in epoxy. Controlling surface roughness is

extremely important for indentation experiments as the radius of the Berkovich tip

is on the order of, or smaller than, some crystal surface features. To overcome this,

the samples were polished using progressively finer diamond slurries and then

finally colloidal silica. AFM of the surfaces after polishing revealed an average

(RMS) roughness of less than 10 nm. Multiple crystals were mounted for each

crystal face to collect a wide range of data, especially since each individual crystal

could only be tested on a single crystal facet. An optical micrograph of an indented

sample is shown in Figure 4.6. A schematic of tip loading and unloading with some

elastic recovery given by hmax − hf is shown in Figure 4.7. Modulus and hardness

were measured for multiple samples on each crystal face by applying the small

dynamic force of a 2 nm sinusoid at 45 Hz over a constant loading rate of 0.05 s−1

to a total displacement of 500 nm.

Young’s modulus (E), a measurement of stiffness, is defined as the ratio be-

95



Figure 4.6: Optical micrograph of a resin mounted single crystal polished to show
the (001) face after indenting to a depth of 500 nm with a Berkovich tip

Figure 4.7: LEFT: Schematic of tip indentation at maximum loading, RIGHT: after
unloading, showing height of elastic recovery hf
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tween stress and strain. Using the dynamic measurement method described, the

modulus as a function of the penetration depth can be calculated from the mea-

sured elastic contact stiffness (S). This is known as the reduced modulus Er:

Er =

√
π

2β

S√
Ac

(4.1)

where Ac is the contact area of the tip as determined by the calibration standards

and β is a constant dependent on the tip geometry, equal to 1 for a spherical tip

and 1.034 for the Berkovich tip. The sample modulus E is extracted from Er using

the method of Oliver and Pharr [138, 139]:

Er =

[(
1− ν2

s

E

)
+

(
1− ν2

i

Ei

)]−1

(4.2)

where Ei and νi are the elastic modulus and Poisson’s ratio of the indenter. For

the diamond tips used, Ei=1141 GPa and νi=0.07.

Hardness was calculated from the ratio of applied load P to the contact area

Ac:

H =
P

Ac
(4.3)

where Ac is calculated from the tip geometry as it was for the modulus calcula-

tions, taking into account the tip penetration depth and the elastic recovery:

hc = hmax − 0.75
P

S
(4.4)

The elastic work (Welas) and plastic work (Wplas) combine to make the total

work (Wtotal). The total work is calculated as the integrated area under the loading
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Figure 4.8: Representative load–displacement curves showing (a) the integration
of total work and (b) the unloading hysteresis leading to the calculation of the
elastic work

curve as a function of depth, P (h), as shown in Figure 4.8, thus:

Wtot =

∫ hmax

0

P (h)dh (4.5)

Welas =

∫ hmax

hf

P (h)dh (4.6)

Wplas = Wtot −Welas (4.7)

(4.8)

Using a spherical indenter, the indentation stress Pm is represented by the ap-

plied pressure divided by the area:

Pm =
P

πa2
(4.9)

where a is the contact radius. Pm is linearly proportional to strain in the elastic
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regime:

Pm =

(
4Er
3π

)( a
R

)
(4.10)

where R is the tip radius and Er is the reduced modulus from above. This elastic

regime applies under low strain levels prior to the yield pressure Py.

Standard AFM measurements were made after indenting using a Veeco Dimen-

sion V in tapping mode. Scans were made 512×512 resolution with the gain and

proportional gain set to 4 and 40, respectively. An amplitude setpoint of 310 mV

was applied and the scan rate was set at 0.4 Hz.

4.3 Results

4.3.1 Structure of cerium oxalate formate

Cerium oxalate formate with composition Ce(C2O4)(HCO2) was prepared hy-

drothermally. It was found that this structure has previously been reported by

J. C. Trombe [117]. The synthesis includes only oxalic acid as a ligand, a portion

of which is decomposed in-situ to form formic acid after the breaking of the C–C

bond. The FTIR and TGA data of this compound (Figure 4.9) suggested that it was

anhydrous. The TGA shows no mass loss up to 450◦C and the FTIR shows no O–H

bond vibrations at 3600 cm−1. The presence of an FTIR peak at 1427 cm−1 sug-

gested that some of the oxalic acid may have decomposed to formic acid. This was

confirmed by single crystal X-ray diffraction which revealed the structure shown

in 4.10. Details of the structure refinement are given in Table 4.1.

The inorganic connectivity in the cerium oxalate formate compound is 1-

dimensional and the organic connectivity is 2-dimensional. The zig-zag 1-D in-
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Figure 4.9: TOP: Thermogravimetric analysis of cerium oxalate formate, BOTTOM:
FTIR spectra. The TGA data shows that the compound is stable to nearly 400◦C
and is likely anhydrous. This is supported by the lack of vibrational coupling
around 3400 cm−1 in the FTIR data, although the peak at 1427 cm−1 suggests the
presence of formic acid along with oxalic acid.
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Table 4.1: Summary of single crystal diffraction data for structures cerium oxalate
formate

Cerium Oxalate Formate

Formula Ce(C2O4)(HCO2)
MW (g/mol) 271.95
System Orthorhombic
Space Group Pnm21

a (Å) 7.3963(5)
b (Å) 10.885(1)
c (Å) 6.7901(5)
V (Å3) 546.66(7)
Z 4
µ (mm−1) 8.480
ρ (g·cm−2) 3.395
Measurement Temp (K) 120 K
Radiation Source MoKα
Radiation λ (Å) 0.71073
Scan Mode Omega
Absorption Correction SADABS
Solution Method SHELX, |F |2
2θ Range (◦) 3.54–35.98
data/restraints/parameters 5551/1/52
R1/wR2 [I>2σ(I)] 1.71%/4.32%
R1/wR2 (all data) 1.74%/4.44%
Goodness of Fit 1.079

Dimensionality 2-dimensional
Hydration Anhydrous
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organic chain is built from face sharing 9-coordinate CeO9 polyhedra. The chains

form along the 〈100〉 direction. The formate anions bridge the chains to form

sheets along the 〈010〉 direction. The oxalate anions then bridge the sheets along

the 〈001〉 direction, completing the 2-D organic connectivity and the 3-D frame-

work structure. The crystal habit of the compound are long rectangular prisms

where the two long faces are the (100) and (010) planes and the short end is the

(001) face, as shown in Figure 4.11. Detailed images of the bonds present with re-

spect to the three crystallographic facets are shown in Figures 4.12, 4.13, and 4.14

with the faces drawn in and the uninvolved atoms omitted to further illustrate the

anisotropy of the indentation directions (see below).

Figure 4.10: Anhydrous cerium oxalate formate structure. LEFT: Oxalate lig-
ands connect nine coordinated edge sharing lanthanum polyhedra in one direction
while in the other direction, RIGHT: formate ligands complete the coordination of
the metal cations and link the chains to form a 2-D sheet.
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Figure 4.11: Typical crystal habit of cerium oxalate formate, showing rectangular
prism shape and crystallographic faces as determined by single crystal diffraction

Figure 4.12: Bonding arrangements showing the (001) facet indentation direction
dominated by oxalate bonding in cerium oxalate formate
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Figure 4.13: Bonding arrangements showing the (010) facet indentation direction
dominated by formate bonding in cerium oxalate formate

Figure 4.14: Bonding arrangements showing the (100) facet indentation direction
dominated by inorganic metal-oxygen-metal bonding in cerium oxalate formate
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4.3.2 Mechanical properties

Young’s modulus and hardness were determined for cerium oxalate formate on

each crystallographic facet and distinct properties were observed for each direc-

tion, as seen in Figure 4.15. Each data point is representative of 10 to 20 in-

dentations. Table 4.2 shows the Young’s modulus (E) and hardness (H) aver-

aged for all of the penetration depths from 50 nm to 500 nm. The ratio of the

average elastic moduli for the three orthogonal orientations was found to be

E(001):E(010):E(100)= 1.82:1.00:1.20, indicating a difference in stiffness be-

tween the (010) and (001) planes of 82%. Thus when indented down the ox-

alate chains, a much greater stiffness (78 GPa) is measured than along the (010)

formate ligands (43 GPa) or the (100) inorganic chains (52 GPa). The bidentate

oxalate ligands can be very stiff, but not when loaded orthogonal to the back-

bone. The monodentate formate ligands do not have bonding parallel to the

direction of loading but rather following the bond angle of the carboxylic acid

group, leading to the lowest measured stiffness. The inorganic chains show a stiff-

ness slightly higher than the formic acid but much less that than that of the oxalic

acid chain. This was initially surprising, considering the other report from the

Cheetham group on copper phosphonoacetates [137] showed the highest modu-

lus along the metal-organic-metal inorganic chains. However, in that structure the

copper atoms were tetrahedrally and octahedrally coordinated, which is a much

more rigid and well defined polyhedra structure than the 9-coordinate polyhedra

of the cerium. Also, the inorganic chains in this cerium structure show a metal-

oxygen-metal bond angle of 132◦ unlike the nearly 180◦ bonding of the oxalate

chains.
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Figure 4.15: Loading and unloading of cerium oxalate formate for (001), (010),
and (100) faces using sharp Berkovich tip, showing distinct behaviour for each
direction. Inset: Young’s modulus as a function of penetration

Table 4.2: Averaged anisotropic Young’s modulus, hardness, and yield pressure
for measurements from penetration depths of 50 nm to 500 nm for cerium oxalate
formate

Crystal facet (001) (010) (100)
Primary structural element Oxalate Formate Inorganic Chains

Young’s modulus E (GPa) 78.2 ± 2.5 43.0 ± 1.4 51.8 ± 2.8
Hardness H (GPa) 4.55 ± 0.14 3.94 ± 0.06 4.11 ± 0.07
Yield Pressure Py (GPa) 2 1.2 1.4

106



Figure 4.16: Loading and unloading of cerium oxalate formate for (001), (010),
and (100) faces using spherical tip, showing distinct behaviour for each direction.
Inset: stress–strain curves with yield pressure Py indicated. Note the continued
rise in stress for the (001) direction after the elastic-plastic transition, indicative
of strain hardening behaviour.
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4.3.3 Plastic deformation

Measurements of the plastic deformation characteristics of cerium oxalate formate

were made using a spherical indenter rather than the pyramidal Berkovich tip.

The strain field from this geometry is less localized, delaying the onset of plastic

deformation and thus giving a better view of the elastic-plastic transition. Repre-

sentative loading and unloading curves are shown in Figure 4.16, with the inset

showing the calculated stress–strain curves. In the stress–strain curves, the yield

pressure (Py) is defined as the critical stress marking the onset of plastic deforma-

tion. This was the highest for the (001)-oriented facet probing along the length of

the oxalate ligand, again showing that the mechanical properties are the strongest

against yielding along the C–C backbone of the oxalate anion. As shown in Table

4.2, Py,(001) > Py,(100) > Py,(010). The percent of elastic work was calculated to be

91.7%, 72.3%, and 54.4% for the (010), (100), and (001) facet, respectively, at

500 nm indentation height, as shown in Table 4.3

In the stress–strain behaviour there is evidence of strain hardening but only

in the (001) direction. The behaviour in that plane shows a power law response

following Pm ∝
(
a
R

)n where n is the strain exponent. This same behaviour is as-

sociated with dislocation entanglement in more fully characterized systems. Con-

Table 4.3: Elastic work for each crystal facet in cerium oxalate formate

Crystal Facet Elastic Work Total Work Percentage Elastic Work
Wel (nJ) Wtot (nJ) Wel

Wtot
× 100%

(010) 7.36 8.03 91.7%
(100) 6.19 8.56 82.3%
(001) 7.12 13.1 54.4%
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versely, almost purely elastic behaviour is seen for the (100) and (010) facets,

most likely because there are less dislocation interactions along these directions.

This explanation is supported by atomic force microscopy (AFM) of the residual

indents following experiments using a Berkovich tip. Pile-up is a mechanical de-

formation phenomenon in which the height a material at just outside the border of

the indenter rises up above the initial height as material is displaced. Pile-up gen-

erally reduces the accuracy of indentation measurements, but here the anisotropic

pile-up behaviours give insight into the materials properties. In Figure 4.17, it can

been seen that the least pile-up occurs for the (001) face, which is consistent with

strain hardening. The (010) and (100) planes, whose stress–strain curves suggest

a lesser extent of strain hardening in the plastic regime, show a large amount of

pile-up. However, these images also show some cracking, indicated by the large

peaks in several of the height profiles and larged raised areas in the images, that

make this evaluation more difficult.
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001

010

100

Figure 4.17: Representative AFM topologies and height profiles of residual
Berkovich indents for the (001), (010), and (100) facets, (TOP, MIDDLE, BOTTOM,
respectively). The red, blue, and green lines follow the trace across the crystal
indent as shown in the (001) inset. Note the (010) and (100) images are rotated
slightly anti-clockwise.
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4.4 Summary

The oxalate formate system is a good model for studying the mechanical behaviour

of inorganic-organic hybrids due do its relative structural simplicity. For a class

of a compounds where the most common space group is P 1̄, the orthorhombic

setting provides relatively high symmetry. The small ligand with multiple bonding

arrangements can lead to a wide variety of interesting structures.

While the oxalate and oxalate/formate structures were not particularly exciting

as luminescent materials, they provide useful insight into the physical properties

of this class of materials, a nearly unexplored field at the time of this research.

Understanding the mechanical properties of hybrid frameworks becomes impor-

tant if they are to become device materials, as consideration must be given to

processing constraints and device lifetime behaviour. The structural anisotropy

of the oxalate formate, crystal habit alignment with atomic moieties, and ability

to grow relatively large high quality single crystals make structure-property rela-

tionships easier to identify. Large anisotropies in the Young’s modulus, hardness,

and plastic deformation characteristic were found between the crystal facets of

cerium oxalate formate crystals. Particularly, it was shown that indenting along the

oxalate-dominated direction resulted in comparatively high modulus and hardness

measurements. In that direction, strain hardening behaviour indicative of dislo-

cation entanglement occurs, while in the other crystal directions, the deformation

occurs without hardening [109, 140]. From these measurements it was shown

that ligand behaviour and alignment with crystal faces can be very important in

predicting mechanical properties and that the inorganic chains in a compound

are not necessarily the stiffest element. This is not without precedent given the

extremely impressive mechanical properties that have been reported for carbon
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nanotubes, such as tensile moduli along the length of the tube on the order of

1000 GPa, where the carbon–carbon bonding is very carefully constructed [141].

The data points collected for these materials, as well as some other hybrid

framework materials which have been studied since the time this work was car-

ried out [136, 137, 142, 143], are plotted on an Ashby plot of Elastic modu-

lus/hardness in Figure 4.18. The impressive strength of the oxalate-formate struc-

tures is apparent here; nearly approaching the values of zirconia and other classi-

cal ceramic materials. It is also the strongest of all the hybrid frameworks studied

to date. As a consequence of this work, we can confidently conclude that dense

inorganic-organic frameworks can exhibit mechanical properties that are comfort-

ably within the range required for a wide range of device applications, including

solid state lighting.
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Figure 4.18: Ashby plot showing the elasticity and plasticity of various framework
materials with respect to classical metals, ceramics, and polymers. The data points
for the cerium oxalate formate show very high strength, approaching nearly that
of zirconia. The more porous frameworks show lower moduli and hardness, as
expected.
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The research described in this chapter was carried out in collaboration with

Jin-Chong Tan who performed the mechanical testing and analysis. It has been

published in the Journal of the American Chemical Society as: J. C. Tan and J. D.

Furman and A. K. Cheetham. “Relating Mechanical Properties and Chemical Bond-

ing in an Inorganic-Organic Framework Material: A Single-Crystal Nanoindenta-

tion Study.” J. Am. Chem. Soc., 131, 14252 (2009). [DOI: 10.1021/ja9060307].
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Chapter 5

Anthraquinone dicarboxylic acid

frameworks

5.1 Introduction

In the previous chapter, the photoluminescence and mechanical properties of a

dense cerium oxalate formate framework were evaluated for use in solid state

lighting devices. It became apparent in the course of that research that lumines-

cent quenching from coordinated water molecules was a major problem. Addi-

tionally, achieving blue excitation in an antenna compound requires an organic

molecule that is larger than those that typically forms highly stable framework

framework structures. Broad emission spectra in the green and red, available

mainly by incorporating Ce3+ and Eu2+, are difficult to realize in an inorganic-

organic structure because the ligand field strength needed to shift trivalent cerium

emission into the visible range is not available and the divalent state of europium

is not stable under aqueous reaction conditions. A new approach is taken here, by

moving both the photoluminescence excitation and emission processes onto the
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ligand. It is shown that by including an intrinsically luminescent organic molecule

in an inorganic-organic structure, its thermal and chemical stability, as well as its

luminescent efficiency, might be increased. Luminescent quenching from coordi-

nated water molecules providing non-radiative relaxation pathways is eliminated,

or at least reduced, because the photoluminescence is moved away from the metal

ions. Furthermore, we shall show that the broad emissions needed for can be

achieved in a hybrid framework system.

Creating new framework phosphor materials with ligand-based luminescence

requires the selection of commercially available ligands with suitable character-

istics or synthesizing new organic molecules. Polycyclic organics such as naph-

thalene and anthracene are known to show photoluminescence properties, but

the synthesis of dicarboxylic acid derivatives is complicated by limited solubility

and production of side products. The ligand anthraquinone-2,3-dicarboxylic acid,

shown in Figure 5.1 is a commercially available derivative of anthracene. The 9

and 10 positions of the fused polycyclic anthracene are substituted with ketone

groups and dicarboxylic acid groups are attached at the 2 and 3 positions. The

structure can also be viewed as 1,4-benzoquinone fused between molecules of

benzene and phthalic acid. This molecule was selected as a potential luminescent

ligand as it was thought that the electron withdrawing ketone groups in the cen-

tre fused ring would shrink the HOMO–LUMO gap as compared to anthraquinone

and thus red–shift the emission spectra from the typical blue/violet seen for an-

thracene compounds [144]. Prior to this work, no framework structures have been

published using the anthraquinone-2,3-dicarboxylic acid ligand.

The ortho arrangement of the dicarboxylic acid groups in this ligand is gener-

ally not ideal for synthesizing hybrid frameworks with 3-dimensional connectivity.

Higher connectivity is desired because it is typically accompanied by higher ther-
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Figure 5.1: Anthraquinone-2,3-dicarboxylic acid (H2AQDC).

mal stability and structural rigidity. While the 2,3-dicarboxlate ligand is available

commercially, the 2,6- and 2,7- species are not. Attempts were made to synthesize

those ligands so that a direct comparison between anthraquinone ligands with dif-

ferent binding modes could be made, but the compounds could not be obtained

with sufficient purity.

Yamanashi et al. studied the luminescence of anthraquinone at 77 K and at

room temperature in various solvents [145]. They observed three strong emission

peaks, located approximately at 450 nm, 500 nm, and 540 nm, when excited in the

UV at low temperatures. The position of these peaks shifts slightly depending on

the solvent. Scott and Watson reported on the relative intensities of the lumines-

cent emission peaks in anthraquinone [146]. Their conclusions were in agreement

with earlier work by Drott and Dearman [147], who assign the visible fluorescent

emissions to singlet π–π∗ transitions. They also assigned an n–π∗ phosphorescent

transition in the system. They consider anthraquinone as essentially behaving like

two weakly interacting ortho-substituted benzene molecules from a luminescence

standpoint, and the two lower energy emissions are assigned to two excited dipole

states of benzene. The optical properties of the ligand shown in Figure 5.1 have

not been reported.

Four new structures containing anthraquinone dicarboxylic acid (AQDC) and

117



calcium, zinc, manganese, and nickel are presented here. Their crystal structures,

luminescent behaviour, and thermogravimetric analysis are presented.

5.2 Experimental methods

5.2.1 Synthesis

2,3-anthraquinone dicarboxylic acid was obtained from TCI America. All other

chemicals and reagents were obtained from Sigma-Aldrich and used without fur-

ther purification. Compounds were prepared by combining 0.02 mmol of H2AQDC

with 0.02 mmol metal acetate (metal: Ca, Mn, Ni, Zn) in 5 mL H2O in a sealed

glass pressure vessel and heated at 90◦C for 2 days. Crystals were recovered by

filtration while hot to prevent recrystallization of unreacted ligand on cooling, and

washed in water and acetone. Synthesis of compounds containing other metals,

particularly the remaining alkaline earth metals magnesium, strontium, and bar-

ium, and d10 cadmium, were attempted but crystal structures were not obtained.

5.2.2 Structure of anthraquinone frameworks

Structures were determined using single crystal X-ray diffraction. Data were col-

lected on a Siemens SMART-CCD diffractometer at UCSB equipped with a normal

focus, 2.4 kW sealed tube X-ray source (MoKα radiation, λ = 0.71073 Å) operat-

ing at 45 kV and 30 mA. Suitable single crystals were selected under a polarizing

microscope and glued to a glass fibre and a hemisphere of intensity data was

collected at room temperature. Data were integrated with Bruker Saint version

6.02 [61]. SADABS [62] was used to perform an empirical absorption correct and
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structures were then solved by direct methods and difference Fourier synthesis and

were refined against |F |2 using the SHELXL software package [63]. All extinction

coefficients refined to within three esd’s of zero and were therefore removed from

the refinements. Non-hydrogen atoms were refined anisotropically. Riding hydro-

gen atoms were assigned to the carbon atoms on the AQDC ligands. Hydrogen

atoms on the water molecules were found in the Fourier difference map and were

refined isotropically. Hydrogen atoms were restrained to chemically appropriate

positions, resulting in increased residual error. Room temperature powder X-ray

diffraction data were obtained via the mail-in service of Argonne National Labo-

ratory’s Advanced Photon Source beamline 11-BM in order to to determine bulk

phase purity. Structure models were refined using the Rietveld method as imple-

mented in GSAS and EXPGUI to fit the collected patterns [106].

5.2.3 Material properties

Thermogravimetric analysis was carried on on a Mettler 851e in air. Samples were

loaded into alumina crucibles and heated at 10◦C per minute to 800◦C. Lumines-

cence measurements were carried out using a standard Acton spectrophotometer

with samples dispersed in acetone, contained in NMR tubes, and cooled in an op-

tically transparent dewar of liquid nitrogen to 77 K. UV-visible absorption spectra

were collected using a Shimadzu UV3600 spectrometer fitted with an integrating

sphere. Samples were blended 20:1 by weight in BaSO4 and measured in diffuse

reflectance mode.
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Table 5.1: Summary of anthraquinone framework compounds

CaAQDC MnAQDC NiAQDC ZnAQDC

Formula CaC16H14O10 MnC16H14O10 NiC16H20O15 ZnC16H14O10

Space Group P 1̄ P 1̄ P21/c P 1̄
Bound Water 2 2 5 2
Pore Water 2 2 2 2
Inorg. Dimen. 0-D 0-D 0-D 0-D
Organic Dimen. 2-D 2-D 0-D 1-D
π-π dist. 3.65 Å 3.48 Å 3.58 Å 3.46 Å

5.3 Results

5.3.1 Crystal structures

Results of the single crystal diffraction experiment are shown in Table 5.2 and the

key features are summarized in Table 5.1. The dimensionality of the structures

is described in terms of both the inorganic connectivity, where metal–oxygen–

metal bonds give rise to an extended structure, and organic connectivity, where

bonding through the ligands gives rise to the extended structure, as described

in Cheetham et al.[35]. This is also given as a shorthand IxOy where x is the

inorganic dimensionality and y is the organic dimensionality, and x + y is the

overall dimensionality of the structure. The crystal structure of the parent ligand

has not been reported in the literature and attempts to recrystallize X-ray quality

samples were unfortunately unsuccessful. The calcium containing structure, ab-

breviated CaAQDC, formed with the composition Ca(AQDC)(H2O)2·2H2O, where

the AQDC anion is C16H6O2−
6 . The asymmetric unit of CaAQDC consists of a single

2,3-anthraquinone molecule bound to a 7-coordinate calcium cation, as shown in

Figure 5.2. The CaO7 polyhedron is completed by oxygen atoms from adjacent
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AQDC ligands and two bound water molecules. Two zeolitic water molecules sit

in the pore space. The Ca polyhedra form edge-sharing dimers (Ca-Ca distance

3.88 Å) that are bridged by the carboxylic acid groups to form a 2-dimensional

sheet, as seen in Figure 5.3. The ligands then extend outward from this sheet and

are interdigitated with those from the adjacent sheet, π-stacked at a separation of

3.65 Å, as seen in Figure 5.4. The manganese containing compound, abbreviated

MnAQDC, formed with the composition Mn(AQDC)(H2O)2·2H2O and is isostruc-

tural to CaAQDC, although the π stacking is reduced to 3.48 Å due to the increased

cation size.

The nickel containing compound, abbreviated NiAQDC, formed with the com-

position Ni(AQDC)(H2O)5·2H2O. The basic unit of NiAQDC consists of a 2,3-

anthraquinone ligand with a unidentate bond through one of its carboxylic acid

oxygen atoms to a NiO6 octahedron, as shown in Figure 5.5. The octahedron

is completed by 5 bound H2O molecules. Each asymmetric unit consists of two

isolated ligand-metal complexes along with 4 zeolitic water molecules. The com-

pound is molecular and the extended structure is formed by a network of hydro-

gen bonding between the bound water polyhedra and π-stacking of the ligands at

a separation of 3.58 Å, as seen in Figure 5.9.

The zinc containing compound, abbreviated ZnAQDC, formed with the com-

position Zn(AQDC)(H2O)2·2H2O. The asymmetric unit of ZnAQDC is similar to

that of CaAQDC, although in this case the local coordination of the ZnO5 trigo-

nal bipyramid polyhedra is completed by oxygen atoms from two adjacent ligands

and two axially bound water molecules, as seen in Figure 5.7. A 1-dimension rib-

bon of ZnO5 dimers (Zn-Zn distance 3.924 Å, Figure 5.8) is formed by carboxylate

group bridging of the metal centres. A hydrogen-bonded extended network, seen

in Figure 5.9, is formed by π-stacking between the ligands of adjacent ribbons at
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Figure 5.2: Asymmetric unit of CaAQDC and isostructural MnAQDC

a separation of 3.46 Å.

The equivalent isotropic atomic displacement parameters for the carbon atoms

of the ligand were extracted from the single crystal structure data and plotted as

a function of their separation from the metal cation in Figure 5.10. These can

be seen as an estimate of the thermal vibrations in the system. This plot shows

a steep increase in mean squared displacement on moving away from the bound

metal atoms. In addition, the anisotropic nature of that displacement, shown in

Figure 5.11, indicates that the ligands librate as a rigid body around an axis formed

by the metal centres.
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Figure 5.3: Calcium sheets in CaAQDC and MnAQDC, showing isolated edge shar-
ing MO7 dimers, bridged by carboxylic acid groups. Hydrogen atoms are omitted
for clarity.
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Figure 5.4: Extended structure of CaAQDC and MnAQDC

Figure 5.5: Asymmetric unit of NiAQDC
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Figure 5.6: Extended structure of NiAQDC

Figure 5.7: Asymmetric unit of ZnAQDC
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Figure 5.8: 1-D ribbon structure of ZnAQDC

Figure 5.9: Extended structure of ZnAQDC
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Figure 5.10: Equivalent isotropic atomic displacement parameters of the carbon
atoms in anthraquinone containing frameworks plotted as a function of their dis-
tance from the associated metal atom. Note the large increase in displacement
parameters moving away from the bound metal site, suggesting the presence of
large thermal vibrations in the system.
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Figure 5.11: Anisotropic displacement parameters for a portion of the CaAQDC
structure, showing the increase in displacement perpendicular to the ligand back-
bone on increasing distance from the metal ions. Ellipsoids plotted at 50% proba-
bility.

5.3.2 Powder diffraction

High resolution powder diffraction spectra were collected at Argonne National

Laboratory beamline 11-BM to verify bulk homogeneity in the prepared samples.

The high flux and sharp wavelength distribution reveal impurity phases that would

be otherwise invisible using a standard laboratory source X-ray diffractometer.

Data for CaAQDC, MnAQDC and NiAQDC were collected using synchrotron radi-

ation with a wavelength (λ) of 0.458 Å. Data for ZnAQDC were collected using

0.413 Å synchrotron radiation. Plots of the collected data and refined structures

are shown in Figures 5.12, 5.13, 5.14, and 5.15. A summary of the refined crys-

tal parameters and refinement statistics is shown in Table 5.3. These refinements

indicate that the compounds have excellent phase purity.
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Figure 5.12: Synchrotron powder diffraction data for CaAQDC and Rietveld re-
finement of the model initially determined by single crystal experiment.
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Figure 5.13: Synchrotron powder diffraction data for MnAQDC and Rietveld re-
finement of the model initially determined by single crystal experiment.
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Figure 5.14: Synchrotron powder diffraction data for NiAQDC and Rietveld re-
finement of the model initially determined by single crystal experiment.
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Figure 5.15: Synchrotron powder diffraction data for ZnAQDC and Rietveld re-
finement of the model initially determined by single crystal experiment.
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Table 5.3: Structure and refinement parameters from synchrotron powder X-ray
diffraction data

Compound CaAQDC MnAQDC NiAQDC ZnAQDC

Formula C16H14CaO10 C16H14MnO10 C16H20NiO13 C16H14O10Zn
Crystal System triclinic triclinic monoclinic triclinic
Space Group P 1̄ P 1̄ P21/c P 1̄

a (Å) 5.80099(6) 5.80099(6) 16.30970(15) 7.654318(10)
b (Å) 7.48853(6) 7.48853(6) 7.41339(5) 7.865764(12)
c (Å) 18.53285(17) 18.53285(17) 16.19017(15) 15.096604(20)
α (◦) 89.7232(11) 89.7232(11) 90.0 91.41250(10)
β (◦) 85.1458(9) 85.1458(9) 106.1139(7) 95.76910(10)
γ (◦) 83.5310(8) 83.5310(8) 90.0 115.10700(10)
Volume (Å3) 797.080(10) 797.080(10) 1880.649(23) 816.5880(10)
Observations 49149 49199 48199 48501
Variables 21 85 24 20
wRp 11.55% 10.75% 9.31% 9.87%
Rp 9.73% 9.09% 8.03% 8.04%
χ2 2.223 1.403 1.468 1.607
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5.3.3 Luminescence

No measurable luminescence was observed at room temperature for any samples

due to thermal quenching. Solid state luminescence measurements were therefore

carried out at 77 K on the diprotonated ligand H2AQDC, and on the framework

compounds CaAQDC, MnAQDC, and ZnAQDC, as shown in Figure 5.16. When

cooled to 77 K and excited at λ=365 nm, the ligand H2AQDC shows broad emis-

sion with peaks at 469 nm, 508 nm, 556 nm, and 608 nm. The excitation spectrum,

collected at 520 nm, shows a maxima at 335 nm, decreases slowly beginning at

370 nm, and then sharply at 440 nm. The calcium-containing CaAQDC shows sig-

nificantly broader peaks that spread into a very broad emission centred at 530 nm.

To the eye the sample appeared a greenish-white colour. The excitation spectrum

is nearly constant from 300 nm up to a steep decrease that begins at 435 nm, just

short of what is needed for today’s solid state lighting devices. The excitation

spectra of ZnAQDC and MnAQDC are similar to that of H2AQDC with strong ab-

sorption in the 300 nm to 350 nm range. The ZnAQDC emission shows several

resolved peaks, blue-shifted approximately 40 nm from those of the H2AQDC. For

the MnAQDC sample, a broad, red/near-IR peak with a maximum at 715 nm was

observed. Visually the manganese-containing sample appears a dim red, as most

of its luminescence is beyond the range of the eye and for the part that does over-

lap with the visible spectrum our sensitivity is limited. The origin of this significant

red-shift was not confidently determined, and the features of the luminescence in

all samples were difficult to interpret due to the limited comparison points in the

literature. It is possible that the red/IR luminescence in the manganese occurs as

a result of eximer emission on the ligand or from the metal following a ligand to

metal charge transfer (LMCT) process. Brillante et al. described pressure sensi-

tive eximer emission in crystals of pure anthraquinone, which displayed a broad
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emission near the wavelengths seen for MnAQDC. They showed that the eximer

character increased as the molecules were brought closer together by increasing

external pressure. The MnAQDC luminescence origin could potentially be probed

more directly through some ultra-fast time-dependent measurements, as eximer

emission should have a much different time relationship than LMCT. The lumines-

cence of the nickel-containing NiAQDC structure is quenched by the paramagnetic

state of the d8 metal centres.
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Figure 5.16: photoluminescence excitation and emission spectra for AQDC
compounds, λex=365 nm, λem=520 nm for all except for the MnAQDC, where
λem=700 nm. Dotted red line is the UV-Vis absorption.
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The UV-Vis absorption spectrum of H2AQDC, shown in Figure 5.16 as a red

dashed line, is nearly identical to the photoluminescence excitation spectra. For

MnAQDC and ZnAQDC the UV absorption intensity exceeds that of the lumines-

cent excitation spectra, suggesting a non-ideal photoluminescence mechanism. In

the calcium containing structure, however, the drop-off in excitation intensity oc-

curs at at wavelength that exceeds that of the UV absorption drop-off, extending

from 375 nm to 440 nm. While the excitation is nearly flat band for that entire

range, it drops off too far into the UV to be used by the current GaN based blue

emitters, which rely on the 430 nm to 480 nm excitation range of YAG:Ce.

Further characterization of the luminescence was carried out by collecting

emission spectra at temperatures from 77 K up to room temperature, as shown

in Figure 5.17. Because the samples did not luminesce at room temperature, no

absolute quantum efficiency measurements could be made. As a means of quanti-

fying the thermal quenching and developing a relative quantum efficiency with re-

spect to temperature, the integrated intensity of the variable temperature emission

spectra were calculated and adjusted such that the intensity at room temperature

was 0, as seen in Figure 5.18. This plot shows mostly similar quenching behaviour

for all of the samples, with the most pronounced drop-off observed for ZnAQDC.
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Figure 5.17: Variable temperature photoluminescence emission for AQDC com-
pounds, λex=365 nm.
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Figure 5.18: Integrated intensity of the luminescent emission from AQDC com-
pounds, representing the relative quantum efficiency with respect to temperature.
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5.3.4 Thermal analysis

Thermogravimetric analysis conducted in air is shown in Figure 5.19. Results were

consistent in all samples with the degree of hydration determined by single-crystal

diffraction. The ligand H2AQDC shows a small degradation step at 250◦C and

then a full decomposition with zero residue at 375◦C. It is significantly less stable

than the hybrid framework structures. The isostructural CaAQDC and MnAQDC

both show a few unresolved dehydration steps from 20◦C to 150◦C. The CaAQDC

structure is then stable on heating to 480◦C where it undergoes a weight loss

on conversion to CaCO3. A second decomposition step beginning at 650◦C in-

dicates a conversion to calcium(II) oxide. The decomposition steps in MnAQDC

are overlapping and a broad weight loss beginning at 400◦C and ending at 525◦C

indicates a conversion to manganese(II) oxide. An initial dehydration occurs in

ZnAQDC between 20◦C and 100◦C. A broad decomposition step from 350◦C to

520◦C ending at 19% of the initial mass indicates a transformation to zinc(II) ox-

ide. NiAQDC similarly goes through dehydration steps up to 150◦C, followed by a

decomposition between 380◦C and 450◦C to nickel(II) oxide. Decomposition data

is summarized in Table 5.4.
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Figure 5.19: Thermogravimetric analysis of H2AQDC, CaAQDC, MnAQDC, Ni-
AQDC, and ZnAQDC as labeled.

Table 5.4: Thermogravimetric analysis of anthraquinone frameworks

Compound Initial
Mass
(g·mol−1)

Final
Mass
Percent
(%)

Observed
final
mass
(g·mol−1)

Decomp-
osition
product

Ideal
decom-
position
mass
(g·mol−1)

Error
(%)

H2AQDC 268.23 0 0 None 0 0
CaAQDC 406.35 15.0 60.95 CaO 56.08 8.7
MnAQDC 421.21 17.5 73.71 MnO 70.94 3.9
NiAQDC 479.03 17.6 84.31 NiO 74.69 12.8
ZnAQDC 431.64 18.8 81.15 ZnO 81.41 0.3
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5.4 Summary

The closed-shell Zn2+ and Ca2+ frameworks show a bright luminescence from the

ligand, but it is only visible when the samples are cooled to low temperatures. At

liquid nitrogen temperatures, the thermal quenching from the vibrational states in

the ligand is reduced and radiative recombination is possible. This is consistent

with the large thermal vibrations seen in the structure due to the polycyclic ligand

backbone being bound to the cations only at one end (Figure 5.11). These large

thermal motions should result in increased phonon scattering and be the cause

of the luminescence quenching at room temperature. One might expect greater

stability from a more para binding ligand rather than the ortho AQDC.

In spite of the fact that these compounds do not show photoluminescence at

room temperature, the observations, particularly for CaAQDC, demonstrate that

ligand-based luminescence can be tuned towards the requirements for solid state

lighting applications. The system shows an excitation spectra extending far into

the visible range, from 300 nm to 435 nm. In addition, the emission spectra is ex-

tremely broad with a FWHM of approximately 150 nm, covering nearly the whole

visible range and approximately double that of YAG:Ce. Figure 5.20 shows the

excitation and emission spectra of CaAQDC in comparison to YAG:Ce.

In the thermogravimetric analysis, enhanced thermal stability of the organic

ligand within the framework structure was observed in comparison with that of

the free acid. In the calcium-containing structure the ligand is stable within the

structure to 575◦C, approximately 200◦C higher than in H2AQDC. This shows the

potential benefits of including intrinsically luminescent organic compounds within

a hybrid framework rather than simply as an organic crystal or in a polymer.

In summary, several new blue-excited photoluminescence hybrid frameworks
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have been described. Unfortunately, the thermal quenching in this system is such

that the luminescence is only seen at low temperatures. This makes these com-

pounds ultimately unsuitable for any sort of device application. They are, never-

theless, a good model compound from which much can be learned about the be-

haviour and design characteristics of ligand-based luminescence in hybrid frame-

works. As the optical properties of more and more framework compounds are

investigated, the structural and chemical parameters that are important for highly

efficient photoluminescence will become apparent. From this study we can see

that having a large degree of vibrational motion results in severe thermal quench-

ing. In the following chapter, a different ligand will be used for ligand-based

emission that will improve upon these results.

The research described in this chapter was carried out in collaboration with

Min Tang who assisted with the synthesis, and Alexander Mikhailovsky who per-

formed some of the optical characterization. A manuscript is currently being pre-

pared for publication.
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Figure 5.20: TOP: Excitation and emission spectra of CaAQDC, BOTTOM: Excita-
tion and emission for YAG:Ce. Note the increased width of both spectra for the
anthraquinone structure.
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Chapter 6

Fluorenone-based luminescent

frameworks

6.1 Introduction

In the previous chapter, novel framework materials using ligand-centred lumines-

cence were introduced as an approach to developing new phosphors for solid state

lighting. The calcium anthraquinone displayed excellent excitation and emission

spectra, but the temperature dependence of the luminescence made it unsuitable

for device applications. It was suggested that this thermal quenching could be tied

to the flexibility of the ligand and that moving to a more linear-bonding ligand

may improve properties. In this chapter, new phosphor materials using the intrin-

sic luminescence of the 9-fluorenone-2,7-dicarboxylic acid, a para-binding ligand,

is investigated. This ligand is shown in Figure 6.1 along with the anthraquinone

dicarboxylate used in Chapter 5 for comparison.

The fluorene molecule is well known for its use in optical materials, typically
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Figure 6.1: TOP: 9-fluorenone-2,7-dicarboxylic acid. BOTTOM: anthraquinone-
2,3-dicarboxylic acid

as an organic backbone in larger molecular compounds and polymers [148]. It

consists of a pentene ring with a benzene fused on either side, forming a 6–5–6

polyaromatic chain. 9-Fluorenone-2,7-dicarboxylic acid (H2FDC) is a commer-

cially available fluorene derivative that has a ketone group at the 9- position of

fluorene on the pentene ring and carboxylic acids at the 2- and 7- positions. This

results in a nearly linear bonding arrangement similar to that provided by the com-

mon framework ligands terephthalic acid and oxalic acid. This ligand also shows

yellow luminescence under blue and UV excitation. On account of these structural

and optical properties, H2FDC was considered a good candidate for developing
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inorganic-organic hybrid phosphors for solid state lighting.

Five novel framework structures containing the FDC ligand and calcium, stron-

tium, barium, manganese or cadmium are described below. Except for the man-

ganese structure, they all show blue-excited photoluminescence.

6.2 Experimental methods

6.2.1 Synthesis

9-fluorenone-2,7-dicarboxylic acid was obtained from Trans World Chemicals and

used without further purification. All other reagents were obtained from Sigma-

Aldrich. Hydrothermal reactions were carried out in 23mL PTFE lined Parr brand

autoclaves using deionized water.

6.2.2 Preparation of Na2FDC

Preliminary reactions with H2FDC showed limited solubility in water, even at hy-

drothermal temperatures. To obtain single crystals of the CaFDC, it was necessary

to first make the sodium salt of the ligand, which shows high solubility in water.

The other fluorenone frameworks were all synthesized using H2FDC.

The sodium salt of FDC (Na2FDC) was prepared by combining equimolar

amounts of NaOH and H2FDC in water. The solution was stirred overnight and

evaporated to dryness on a hot plate. The crude product was refluxed in ethanol

for 1 h, separated by filtration, and dried in vacuo. The sodium salt shows high

water solubility at room temperature whereas the acid was only sparingly soluble

in water. Its provided single crystals of CaFDC, although in very low yield.
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6.2.3 Preparation of CaFDC

Ca(FDC)(H2O)2 CaFDC was prepared from 0.05 mmol of calcium acetate,

0.05 mmol Na2FDC, and 5 mL H2O. The mixture was stirred, sealed in an auto-

clave, and heated to 150◦C for 2 days before cooling to room temperature. Tiny

yellow needle crystals were recovered by filtration and washed with water and

acetone. Phase pure powders in greater yield were prepared by reacting 0.1 mmol

calcium acetate, 0.1 mmol H2FDC, and 0.25 mL 1M sodium hydroxide in 10 mL

H2O hydrothermally at 175◦C for 2 days.

6.2.4 Preparation of SrFDC

Sr(FDC)(H2O)5·2H2O SrFDC was prepared from 0.05 mmol strontium acetate,

0.05 mmol H2FDC, 0.05 mmol imidazole, and 5 mL H2O. The mixture was stirred,

sealed in an autoclave, and heated to 180◦C for 2 days before cooling to room

temperature. Small yellow plate crystals were recovered by filtration. Although

imidazole was not incorporated into the structure, its presence was required to ob-

tain single crystal products. Phase pure powders in greater yield were prepared by

reacting 0.1 mmol strontium acetate, 0.1 mmol H2FDC, and 0.25 mL 1M sodium

hydroxide in 10 mL H2O hydrothermally at 175◦C for 2 days.

6.2.5 Preparation of BaFDC

Ba(FDC)(H2O) BaFDC was prepared from 0.1 mmol barium acetate, 0.1 mmol

H2FDC, 0.18 mL 1M sodium hydroxide, and 5 mL H2O. The mixture was stirred,

sealed in an autoclave, and heated to 180◦C for 2 days before cooling to room

temperature. Small yellow plate crystals were recovered by filtration. Phase pure
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powders were prepared by reacting 0.1 mmol barium acetate, 0.05 mmol H2FDC,

and 0.18 mL 0.5 M potassium hydroxide in 10 mL H2O hydrothermally at 180◦C

for 2 days.

6.2.6 Preparation of CdFDC

Cd(FDC)(H2O)2·2H2O CdFDC was prepared from 0.05 mmol cadmium acetate,

0.05 mmol H2FDC, 0.09 mL 0.5 M potassium hydroxide, and 5 mL H2O. The mix-

ture was stirred, sealed in an autoclave, and heated to 180◦C for 2 days before

cooling to room temperature. Small yellow plate crystals were recovered by fil-

tration. Phase pure powders were prepared by reacting 0.1 mmol cadmium ac-

etate, 0.05 mmol H2FDC, and 0.18 mL 0.5 M potassium hydroxide in 10 mL H2O

hydrothermally at 180◦C for 2 days.

6.2.7 Preparation of MnFDC

Mn(FDC)(H2O)2 MnFDC was prepared from 0.05 mmol manganese acetate,

0.05 mmol H2FDC, and 5 mL H2O. The mixture was stirred, sealed in an auto-

clave, and heated to 200◦C for 2 days before cooling to room temperature. Small

yellow needle crystals were recovered by filtration. The reaction products were

phase pure.

6.2.8 Structure determination

All structures were determined using single crystal X-ray diffraction. Data col-

lection for CaFDC, BaFDC, CdFDC, and MnFDC, was performed at beamline

11.3.1 on the Advanced Light Source at Lawrence Berkeley National Laboratory
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(λ=0.7749 Å). A crystal was mounted on a Kaptan loop using paratone-N oil and

placed in a N2 cryostream at 100 K. Data were collected using a Bruker D8 go-

niometer and APEX2 detector. Data integration and corrections for Lorentz and

polarization effects were performed using Bruker SAINT version 7.56a [61]. SAD-

ABS was used to perform an absorption correction [62]. The high brightness syn-

chrotron source allowed for the analysis of very small crystals. For samples BaFDC

and MnFDC, a true single crystal could not be found and so data was collected on

a twin. CELL NOW was used to determine that the orientation matrices and the

domains were related by a 180◦ rotation around the reciprocal axis (001) [149].

The integration was performed with both matrices. TWINABS was used to pro-

duce a merged reflection file, for structure solution and initial refinement, and a

split reflection file for for final structure refinement. These computational soft-

ware methods allowed for the correct crystallographic cell to be identified and the

intensity from the twinned reflections to be correctly assigned.

Data were collected for SrFDC on a Siemens SMART-CCD diffractometer at

UCSB equipped with a normal focus, 2.4 kW sealed tube X-ray source (MoKα ra-

diation, λ = 0.7107 Å) operating at 45 kV and 30 mA and integrated with Bruker

Saint version 6.02 [61]. Suitable single crystals were selected under a polarizing

microscope and glued to a glass fibre and a hemisphere of intensity data was col-

lected at room temperature. SADABS was used to perform an absorption correct

and structures were then solved by direct methods and difference Fourier synthesis

and were refined against |F |2 using the SHELXL software package [62, 63].

Details of the structure determination are shown in Table 6.2. For all diffrac-

tion experiments, extinction coefficients refined to within three esd’s of zero and

were therefore removed from the refinement. Non-hydrogen atoms were refined

anisotropically. Riding hydrogens were assigned to the carbon atoms on the FDC
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ligands. Hydrogen atoms on the water molecules were found in the Fourier differ-

ence map and were refined isotropically. Where necessary, hydrogen atoms were

restrained to chemically appropriate positions, resulting in increased residual er-

ror.

Powder diffraction data were collected at the Advanced Photon Source syn-

chrotron X-ray beamline 11-BM at λ=0.5892 Å for CaFDC and MnFDC. Data for

SrFDC, BaFDC and CdFDC were collected on a Bruker D8 with CuKα source. Mod-

els were refined to the data using GSAS and EXPGUI [106, 107] to confirm purity

of the bulk sample.

Room temperature photoluminescence spectra were collected on a Perkin-

Elmer LS55 spectrometer using finely ground powders mounted behind a quartz

window. Quantum yield data were collected on solid samples mounted on quartz

slides in silicone resin. The samples were placed within an integrating sphere

and excited with a 405 nm laser. Temperature dependent emission spectra were

collected using the same 405 nm excitation and a LN2 cooled cryostat or resistive

heating stage in combination with an Acton Research spectrometer. Thermal anal-

ysis was carried out a Mettler 851e in air, heating in alumina crucibles at 10◦C per

minute to 1000◦C. Luminescent lifetime measurements were carried out in the

same method described in Section 3.2.4 using laser excitation at 400 nm.

6.2.9 Heat capacity measurements

In addition to standard structural and optical characterization, specific heat mea-

surements were carried out to evaluate vibrational modes in the materials as an

attempt to explain differences in quantum yield between the compounds. Mea-

surements of the fluorenone compound heat capacities were carried out on a
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Quantum Design Physical Properties Measurement System (PPMS) using a 2-τ

relaxation technique [150]. Powder samples were mixed 1:1 by weight with sil-

ver powder, finely ground, and cold pressed into rectangular pellets which were

then cut down to approximately 3 mm×3 mm×0.5 mm. The addition of the silver

raises the thermal conductivity of the overall sample, increasing sensitivity [151].

Pellets are attached to a calorimeter using the thermally conductive Apiezon N

grease. The contribution to the specific heat from the silver and grease are mea-

sured separately and subtracted. The sample holder contains both a resistance

heater and a thermocouple. A power pulse is delivered to the heater for a fixed

amount of time and the temperature change caused by delivering that heat to the

sample is measured. The system temperature is lowered and allowed to stabilize

between pulses, in this case from 80 K down to 2 K. The behaviour of the tempera-

ture relaxation and contributions from the instrument are modelled internally and

converted to specific heat.

6.3 Theory of specific heat measurements

Specific heat relates the total energy of a system (U) to the temperature (T) by:

∂U

∂T
=

∫
CpdT (6.1)

It is related to the extrinsic property of heat capacity, the amount of heat needed to

raise the temperature of a material by some amount. The specific heat is sensitive

to changes in pressure, volume, magnetic field, and others, and so experimentally

these parameters are selectively held constant and a value is often reported as

the heat capacity at constant pressure Cp or at constant volume Cv in units of
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J·mol−1·K−1.

The partition function Z in statistical mechanics encodes how probabilities are

divided, or partitioned, between microstates of a system:

Z =
∑
i

e
−εi
kBT (6.2)

where i are all the states of a system and εi is the energy at that state. This allows

the rotational, electronic, magnetic, and lattice contributions to Z to be separated

such that:

Z = Zrotation · Zelectronic · Zmagnetic · Zlattice (6.3)

And when combined with Equation 6.1 above, it is found that:

Cv = Cv,rotation + Cv,electronic + Cv,magnetic + Cv,lattice (6.4)

Thus contributions to the specific heat by individual processes can be simply sub-

tracted out of the total value. This is particularly useful in measurements, where

the contribution of a sample holder or thermal grease can be removed as a base-

line.

In 1819, Dulong and Petit introduced a rule stating that all solid elements at

room temperature have the molar heat capacity 3R, or 24.9 J·K−1. This can be

derived using classical oscillators with energy kBT , moving with 3 degrees of free-

dom. However, an understanding the relationship of specific heat to temperature

was not clear until the application of quantum theory [152]. The 1907 Einstein

model treated each atom in a lattice as a single harmonic oscillator with quantized

frequencies. This models the energy as localized vibrations rather than collective

phonon vibrations. These vibrations can exist down to low temperatures, whereas
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classical collective modes cannot [153]. Thus the total energy in a system U can

be derived as the sum of the quantized oscillators:

Utot = 3
∑
i

ni

(
i+

1

2

)
hν (6.5)

where i is the ith energy level, ni is the number of moles, h is Plank’s constant

and the multiplier 3 arises from the three degrees of freedom in the x, y, and z

directions. Extracting the heat capacity from this total energy approximation gives

a relatively good match to measured values, approaching Dulong-Petit behaviour

at high temperature and decreasing to 0 at 0 K. There was still, however, a slight

mismatch between empirical data and the theoretical model at low temperatures.

Debye further refined Einstein’s approach by constraining the range of frequen-

cies available to the oscillators. The upper limit is set by the interatomic distances

and the distribution increases parabolically per unit volume. This refinement of

the model gives a very close fit to empirical data for many well behaved systems,

and more closely follows the increase in specific heat with temperature than the

Einstein model, as shown in Figure 6.2. The characteristic Debye temperature, θD,

indicates the cross-over point from low temperature quantized behaviour, where

the atoms vibrate independently, to the high temperature classical region, where

vibrations are coupled through the lattice. The Debye frequency ωD is given as:

ωD =

(
6π2sN

V

)1/3(
1

c3
L

+
1

c3
T

)−1/3

(6.6)

where s is the number of atoms per formula unit, N is the number of molecules

per mole, V is the volume of the crystal, and cL and cT are the velocities of the

longitudinal and transverse phonons [154]. This relates to the debye temperature
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θD by:

θD =
h̄ωD
kB

(6.7)

The specific heat then follows the function:

Cv = 9Rs

(
T

θD

)3 ∫ xD

0

x4exdx

(ex − 1)2 (6.8)

where:

x =
h̄ω

kbT
(6.9)

xD =
h̄ωD
kbT

(6.10)

In practice, the integral in Equation 6.8 is approximated by an odd-series taylor

expansion such that:

Cv = β3T
3 + β5T

5 + β7T
7 . . . (6.11)

The cubic term of that expansion, β3, can be used to extract the Debye temperature

from the low temperature limit of the integral above, such that:

Cv =
12π4

5

(
Rs

θ3
D

)
T 3 = β3T

3 (6.12)

θD =

(
12π4

5

Rs

β3

)1/3

(6.13)

The specific heat decreases sharply at low temperature as individual degrees

of freedom are effectively “frozen” out of the vibration modes available to the

atoms. While we are not considering the luminescence of materials at these low

temperatures, the behaviour of the phonons provides insight into lattice dynamics

at all temperatures.
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Figure 6.2: Specific heat as described by the Dulong-Petit law (dotted red), Debye
model (green), and Einstein model (dashed blue), showing convergence at high
temperature. The Einstein model deviates from the expected behaviour shown in
the Debye model at low temperatures [152].
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6.4 Results

6.4.1 Structures

Five new compounds were discovered and their structures were determined by

single crystal X-ray diffraction. Interestingly, none of the compounds are isostruc-

tural, despite containing the same ligand and cations from the same groups. Table

6.1 summarizes the structures that will be described here, and it is given in detail

in Table 6.2. The π-stacking behaviour of all the structures is shown in Figure

6.15. The crystal structure of the free ligand is not reported in the literature and

attempts to recrystallize the ligand for structure determination were unfortunately

unsuccessful.

The structure of CaFDC (Figure 6.3) consists of isolated CaO6 octahedra linked

through FDC ligands as seen in Figure 6.4. Each octahedron connects to four FDC

ligand oxygen atoms and two coordinating water molecules, while each dicar-

boxylic acid oxygen atom of the FDC ligand is bound to a different metal. The octa-

hedra arrange in sheets which are pillared by FDC ligands to form a 3-dimensional

structure. The ligands are π-stacked with their ketone groups aligned at a sepa-

Table 6.1: Summary of fluorenone framework compounds

CaFDC SrFDC BaFDC CdFDC MnFDC

Formula CaC15O7H10 Sr2C30O17H26 BaC15O6H8 CdC15O8H12 MnC15O7H10

Space Group P21 P 1̄ P1 P21/c C2/c
Bound Water 2 2 1

2 1 2 2
Pore Water 0 1 0 1 0
Inorg. Dimen. 0-D 1-D 2-D 0-D 0-D
M-O-M Dimen. 3-D 2-D 1-D 2-D 3-D
π-π 3.41 Å 3.38 Å 3.30 Å 3.33 Å 3.39 Å
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Figure 6.3: Asymmetric unit of CaFDC.

Figure 6.4: LEFT: Sheet of isolated CaO octahedra of CaFDC with hydrogen atoms
omitted for clarity viewed down the c axis, RIGHT: The extended structure viewed
down the a axis.
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Figure 6.5: Asymmetric unit of SrFDC.

ration of 3.41 Å.

The structure of Sr(FDC)(H2O)5·2H2O (Figure 6.5) consists of edge-sharing

SrO8 polyhedra that form 1-dimensional chains (Figure 6.6a). These chains are

linked in-plane by the carboxylic acid groups of the FDC ligand to form a sheet,

and the sheets are in turn bridged by the FDC to form an extended 3-dimensional

framework, seen in Figure 6.6. The strontium atoms in the chains are arranged

in pairs of two Sr1 atoms followed by two Sr2 atoms, with atom-atom distances

of Sr1-Sr1 4.5681(11) Å, Sr1-Sr2 3.9935(10) Å, and Sr2-Sr2 4.0965(10) Å. The

Sr1 polyhedra are completed by 2 coordinating water molecules, 3 bridging wa-

ter molecules, and 3 oxygen atoms from ligand carboxylic acid groups. The Sr2

polyhedra consists of 1 coordinating water, 1 bridging water, and 6 oxygen atoms

from the ligand. Two unbound water molecules sit in the pore space. One of the

four oxygen atoms from the two dicarboxylic acid grounds on each FDC ligand is

uncoordinated. The ligands π-stack less perfectly than those of CaFDC, with the

ketone groups alternating in direction and a separation of 3.38 Å.
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Figure 6.6: LEFT: 1-Dimensional edge sharing SrO8 chains in SrFDC, hydrogen
and carbon atoms omitted for clarity. RIGHT: Extended structure of SrFDC.

The asymmetric unit of Ba(FDC)(H2O) [BaFDC] consists of two Ba atoms and

two FDC units, similar to that of CaFDC (Figure 6.7). The structure crystallized

in non-centrosymmetric triclinic space group P1. Both metal sites form a BaO7

polyhedron, where one oxygen atom is from a bound H2O. The O5 and O8 car-

boxylic acid oxygen molecules on the FDC units bridge Ba1 to Ba2 such that the

each Ba1 is surrounded by three Ba2 and each Ba2 is surrounded by 3 Ba1. For

both Ba1 and Ba2, one neighbouring polyhedra is edge sharing with a Ba-Ba dis-

tance 4.3277(5) Å while the other two are corner sharing with a Ba-Ba distances

of 4.4593(5) Å and 4.1745(4) Å. Thus an inorganic 2-D sheet is formed with a

distorted honeycomb structure of 6-membered rings, shown in Figure 6.8. The

extended 3-D structure is formed by pillaring of the inorganic sheets with the FDC

ligand units, as shown in Figure 6.9. The fluorenone ligands are π-stacked at a

separation of 3.30 Å.

The asymmetric unit of Cd(FDC)(H2O)2·2H2O [CdFDC] consists of a single

FDC ligand with bidentate bonding to a cadmium (Figure 6.10), along with a

single pore space water molecule. The compound crystallized in monoclinic space

group P21/c. The metal site sits at the centre of a CdO7 polyhedra where two of
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Figure 6.7: Asymmetric unit of BaFDC.

Figure 6.8: 2-Dimensional inorganic sheet of BaFDC.
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Figure 6.9: Extended 3-Dimensional structure of BaFDC, showing the linking of
inorganic sheets by ligand units.

those oxygens are bound H2O molecules. While both carboxylic acid groups are

bidentate bonded to Cd1, the oxygen O4 is also bonded to an adjacent cadmium,

resulting in an extended 2-D sheet structure, shown in Figure 6.11, with the pore

space water molecule omitted for clarity. The extended structure is composed of

these 2-dimensional sheets stacked in an ABAB fashion, as shown in Figure 6.12,

with the FDC ligands π–stacked at a separation of 3.33 Å and rotated slightly out

of parallel.

The asymmetric unit of Mn(FDC)(H2O)2 [MnFDC] consists of half of a FDC

ligand, one Mn atom and one bound water molecule. The higher symmetry mon-

oclinic space group C2/c has an inversion centre through the ketone group of

the ligand such that the structure can be seen as folded over on itself through

that plane. Each oxygen of the carboxylic acid groups bonds to a single octahe-

dral manganese atom, where the coordination is completed by two bound water

molecules and adjacent ligands. A three dimensional structure is formed by sheets

of isolated polyhedra connected by FDC in the a direction. The FDC are π–stacked
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Figure 6.10: Asymmetric unit of CdFDC.

Figure 6.11: 2-Dimensional inorganic sheet of CdFDC, pore waters omitted for
clarity.
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Figure 6.12: Extended structure of CdFDC, with alternating layers shown in blue
and yellow.

at a separation of 3.39 with their ketone groups alternating in orientation.

Figures 6.16, 6.17, 6.18, 6.19 and 6.20 show Rietveld refinements of the struc-

tures determined by single crystal to the powder X-ray diffraction data. Data for

CaFDC and MnFDC were collected at the Advanced Photon Source synchrotron

X-ray beamline 11-BM at λ=0.5892 Å. Data for SrFDC, BaFDC, and CdFDC were

collected on a Bruker D8 with CuKα. Unit cell parameters and refinement statistics

are summarized in Table 6.3. The fitting statistics of these compounds are slightly

elevated, particularly CaFDC, indicating that there may be some small impurity

phases present.
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Figure 6.13: Asymmetric unit of MnFDC.

Figure 6.14: Extended structure of MnFDC.
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Figure 6.15: Adjacent ligand pairs for the luminescent fluorenone containing
frameworks. The spacing between the layers and angle between the planes formed
by them are nearly the same for all. The degree of skew as measured by the ketone
group pointing direction shows some variability.
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Figure 6.16: Synchrotron X-ray powder diffraction spectra (APS 11-BM,
λ=0.7749 Å) of bulk sample of CaFDC and Rietveld refinement of model deter-
mined by single crystal diffraction (χ2=10.560).
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Figure 6.17: X-ray powder diffraction spectra of bulk sample of SrFDC and Ri-
etveld refinement of model determined by single crystal diffraction (χ2=5.046).
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Figure 6.18: X-ray powder diffraction spectra of bulk sample of BaFDC and Ri-
etveld refinement of model determined by single crystal diffraction (χ2=5.592).
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Figure 6.19: X-ray powder diffraction spectra of bulk sample of CdFDC and Ri-
etveld refinement of model determined by single crystal diffraction (χ2=4.430).
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Figure 6.20: X-ray powder diffraction spectra of bulk sample of MnFDC and Ri-
etveld refinement of model determined by single crystal diffraction (χ2=4.329).
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Table 6.3: Summary of refined Rietveld models to powder diffraction data

CaFDC SrFDC BaFDC CdFDC MnFDC

Formula CaC15O7H10 Sr2C30O17H26 BaC15O6H8 CdC15O8H12 MnC15O7H10

SG P21 P 1̄ P1 P21/c C2/c

a (Å) 7.5515(4) 8.5904(4) 6.7996(17) 7.7388(21) 26.89540(22)
b (Å) 6.6325(3) 11.8583(6) 7.2493(21) 28.502(6) 7.21464(6)
c (Å) 27.962(1) 15.6506(7) 14.274(4) 6.7446(16) 6.99755(5)
α (◦) 90 72.484(4) 82.836(33) 90.00 90.00
β (◦) 97.49(1) 78.663(4) 83.848(31) 105.286(23) 97.4052(11)
γ (◦) 90 85.464(4) 67.018(19) 90.00 90.00
V (Å3) 1388.5(1) 1490.37(8) 641.36(22) 1435.0(4) 1346.484(15)
χ2 10.560 5.048 5.592 4.430 4.329
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6.4.2 Room temperature luminescence

The excitation curve of the parent ligand H2FDC (Figure 6.21), measured at

λem=500 nm, shows strong peaks near 390 nm and 440 nm and then decreases

sharply. The accompanying emission curve, measured at λex=440 nm, shows a

broad emission centred at 515 nm. Room temperature excitation and emission

curves of H2FDC, CaFDC, SrFDC, BaFDC, and CdFDC show broad emission that

is yellow for the ligand itself, and shifted slightly for each framework structure.

MnFDC did not show visible photoluminescence, presumably due to the param-

agnatism of the Mn2+ cation and thus the lone pair electrons interacting with

the fluorenone π-electron system. The excitation curve of CaFDC (Figure 6.22),

measured under the same conditions, is mostly constant into the blue and drops

sharply at 460 nm. The emission curve, measured at λex=440 nm, peaks at 503 nm

with a long tail into the red. Similarly, the excitation of SrFDC (Figure 6.23) drops

sharply at 460 nm and the emission peaks at 526 nm. The excitation spectra for

BaFDC (Figure 6.24), measured at λem=535 nm, peaks at 400 nm and 445 nm.

The emission spectra, measured at λex=365 nm, has a maximum at 517 nm. The

excitation spectra for CdFDC (Figure 6.25), measured at λem=535 nm, peaks at

394 nm, 450 nm, 468 nm. The emission spectra, measured at λex=365 nm, has a

maximum at 428 nm. These emission spectra overlayed on a single graph (Fig-

ure 6.26) show a consistent peak shape, blue-shifted from the H2FDC emission for

CaFDC and red-shifted for the other structures.

This luminescence of the fluorenone chromophore comes from a triplet state

in the π electron system. Thus the emission colour is determined by the spacing

between the ground state and the triplet state. There is a general trend in the

red-shifting of the emission color with atomic mass, and thus it is likely that the

increasing atomic size of the cation is leading to a lowering of the triplet state
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Figure 6.21: photoluminescence excitation and emission spectra for the free ligand
H2FDC, λex =365 nm, λem =440 nm.

energy by way of increasing the configurational coordinate value of the stokes

shift, and thus a red-shifted emission color is observed.
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Figure 6.22: photoluminescence excitation and emission spectra for CaFDC,
λex =440 nm, λem =500 nm.
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Figure 6.23: photoluminescence excitation and emission spectra for SrFDC,
λex =440 nm, λem =500 nm.
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Figure 6.24: photoluminescence excitation and emission spectra for BaFDC,
λex =365 nm, λem =535 nm.
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Figure 6.25: photoluminescence excitation and emission spectra for CdFDC,
λex =365 nm, λem =535 nm.
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Figure 6.26: Normalized photoluminescence emission spectra for all fluorenone
compounds. The CaFDC is blue shifted from the H2FDC emission and all of the
others are red shifted. λex=365 nm.
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6.4.3 Temperature dependent luminescence

Temperature dependent emission spectra for H2FDC and the luminescent fluo-

renone frameworks are shown in Figures 6.27 through 6.31. Samples were all

measured down to 77 K, although the maximum temperature varied slightly due

to sample stability. An inverse-S type curve is expected for thermal quenching of

luminescent states. H2FDC and CaFDC exhibit this quite clearly, while the other

compounds may but the decay occurs over a wider range than the compound is

otherwise chemically stable.

The room temperature quantum yield (QY) of CaFDC was measured at 7.4%,

SrFDC at 2.8%, BaFDC at 2.8% and CdFDC at 2.6%, and the ligand H2FDC at

2.4%. These were performed as a single measurement and so the error is not

calculated, but the system is considered to have an error less that 5%. Moreover,

while the absolute value of the quantum yield may have some inaccuracy, the

relative values are significant. From this it can be said that the QY of the SrFDC,

BaFDC, CdFDC, and H2FDC are statistically similar, while the efficiency of the

CaFDC is increased. The extracted temperature dependent QY data is shown in

Figure 6.32. Notably, at 77 K the QY is of CaFDC is 15%, approximately double its

value at room temperature.
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Figure 6.27: Temperature dependent emission spectra (λex =405 nm) of H2FDC,
increasing in temperature from 77 K (blue) to 383 K (red).
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Figure 6.28: Temperature dependent emission spectra (λex =405 nm) of CaFDC,
increasing in temperature from 77 K (blue) to 383 K (red).
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Figure 6.29: Temperature dependent emission spectra (λex =405 nm) of SrFDC,
increasing in temperature from 77 K (blue) to 383 K (red).
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Figure 6.30: Temperature dependent emission spectra (λex =405 nm) of BaFDC,
increasing in temperature from 77 K (blue) to 295 K (red). High temperature data
was omitted for clarity due to an emission colour shift.
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Figure 6.31: Temperature dependent emission spectra (λex =405 nm) of CdFDC,
increasing in temperature from 77 K (blue) to 493 K (red).
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Figure 6.32: Temperature dependent QY of fluorenone compounds.
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6.4.4 Luminescent lifetimes

The luminescent decay for compounds CaFDC, SrFDC, BaFDC, and CdFDC were

measured and are shown in Figures 6.33. Laser excitation was used at 400 nm and

the emission wavelength was monitored at the maximum of the emission peak, as

listed in the figures. The data are fitted to a double exponential decay as shown in

the red line in the plots and summarized in Table 6.4 according to:

It = I1e
−t
τ1 + I2e

−t
τ2 (6.14)

where I1 and I2 are the intensities of the emissions of the different processes at to,

and their ratio gives the contribution of each process to the radiative deactivation.

τ1 and τ2 are the lifetimes of each process. The RMS error in the curve fitting is

also listed. For the BaFDC, the sensitivity of the detection system was limited for

such rapid decay and so the first 2 ns were omitted from the curve fitting. Fitting

the full data resulted in the nearly the same coefficients, but with a large RMS

error value. For comparison, the decay constant for YAG:Ce is typically on the

order of 50 ns, depending on the crystallinity of the sample [155, 156].

Table 6.4: Summary of luminescent lifetime decay exponentials for FDC com-
pounds

Compound I1 (a.u.) I2 (a.u.) τ1 (ns) τ2 (ns) I1
I2

fitting RMS

CaFDC 10230 5339 11.4 3.3 1.92 8.27%
SrFDC 10850 3820 12.4 4.3 2.84 6.78%
BaFDC 4169 11854 7.2 2.0 0.35 13.55%
CdFDC 8061 7138 11.7 2.8 1.13 11.81%
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Figure 6.33: Luminescent lifetime for all fluorenone framework compounds.
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6.4.5 Thermal analysis

Thermogravimetric analysis (TGA) was carried out in air for the fluorenone sam-

ples up to 1000◦C, at which point they decomposed to their constituent oxides or

carbonates, depending on the metal species. The decomposition products are sum-

marized in Table 6.5. Thermal gravimetric analysis in air of CaFDC (Figure 6.35)

shows removal of the two water molecules in two steps near 115◦C and 200◦C.

An anhydrous phase is then present on heating until 560◦C, where the compound

decomposes to calcium carbonate and then finally to calcium oxide at 713◦C. Anal-

ysis of SrFDC (Figure 6.36) shows dehydration steps ending at at 127◦C and 270◦C

corresponding to a loss of 3.5 water molecules to an anhydrous structure that is

stable to 400◦C. Decomposition to strontium carbonate is completed at 560◦C, and

a final decomposition to strontium oxide occurs between 800◦C and 960◦C. BaFDC

(Figure 6.37) shows multiple small dehydration steps corresponding to a loss of 1

water molecule, followed by a large weight loss step starting at 430◦C and ending

at 557◦C, where the compound decomposes to barium carbonate. CdFDC (Figure

6.38) shows dehydration steps up to 150◦C corresponding to the loss of 3 water

molecules, as expected from the formula, and then a large weight loss starting

at 350◦C and ending at 500◦C where the compound decomposes to cadmium ox-

ide. MnFDC (Figure 6.39) shows a dehydration step between 120◦C and 220◦C

corresponding to a loss of two water molecules, followed by decomposition and

oxidation to manganese dioxide between 420◦C and 510◦C.
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Table 6.5: Thermogravimetric analysis of fluorenone frameworks

Compound Initial
Mass
(g·mol−1)

Final
Mass
Percent
(%)

Observed
final
mass
(g·mol−1)

Decomp-
osition
product

Ideal
decom-
position
mass
(g·mol−1)

Error
(%)

CaFDC 342.31 16.5 56.5 CaO2 56.1 0.7
SrFDC 416.88 25.5 106.3 SrO 103.6 2.6
BaFDC 421.55 43.2 182.3 BaCO3 197.3 7.6
CdFDC 432.65 31.4 135.8 CdO 128.4 5.7
MnFDC 357.17 24.3 86.8 MnO2 88.69 0.2
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Figure 6.34: Thermogravimetric analysis of H2FDC in air.
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Figure 6.35: Thermogravimetric analysis of CaFDC in air.
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Figure 6.36: Thermogravimetric analysis of SrFDC in air.
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Figure 6.37: Thermogravimetric analysis of BaFDC in air.
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Figure 6.38: Thermogravimetric analysis of CdFDC in air.
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Figure 6.39: Thermogravimetric analysis of MnFDC in air.

6.4.6 Specific heat

The specific heat, as measured, is shown in Figure 6.40 and the calculations to

extract the characteristic Debye temperatures are shown in Figure 6.41. They are

summarized in Table 6.6, which lists the coefficients for fitting of Equation 6.8

to a 4 term taylor expansion, as described in Section 6.3. Figure 6.42 shows the

specific heat plotted as Cp/T 3 against T/θD as a semi-log plot [157]. This plot

helps to reveal deviations from the expected Debye behaviour [151] The data

for H2FDC is anomalous and has been omitted, because considering continuous

lattice vibrations in a system without an extended covalent network is funda-

mentally different. This is not unexpected as the work of Talon et al. showed

a large deviation from expected Debye behaviour for molecular solids as com-

pared to amorphous and crystalline extended network solids. The behaviour of

the fluorenone-containing frameworks shows no sharp peaks or discontinuities

that would indicate a first or second order phase transition. They do all show a
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Table 6.6: Summary of fitting functions for heat capacity data with formula AT +
BT 3 + CT 5 +DT 7, Debye temperature θD, and RMS error of the fit.

Compound A B C D θD RMS Error
H2FDC 0.0268584 0.00479257 -2.39301e-5 7.57669e-8 225 K 12.4%
CaFDC 0 0.00189032 -1.08458e-6 9.13224e-9 324 K 8.43%
SrFDC 0 0.00262637 2.00472e-7 -8.61947e-9 381 K 3.70%
BaFDC 0 0.00612649 -5.428e-6 -2.67416e-9 267 K 1.47%
CdFDC 0 0.0261431 1.17412e-6 -1.42275e-8 299 K 3.70%

broad peak at around 10 K. The increased value of Cp/T 3 at low temperature for

BaFDC as compared to the calcium-containing framework suggests that increased

collective vibrations present in the lattice may be quenching the luminescent pro-

cesses by providing non-radiative recombination pathways as compared to the

more localized vibrations in CaFDC. Similarly, the work of Ramos et al. showed

higher values in the Cp/T 3 curves for glasses as compared to crystalline solids of

the same composition [158]. Furthermore, the lowest Debye temperature in the

framework structures was extracted for BaFDC, suggesting a lower temperature

crossover to collective vibrations in the lattice. This may explain why, despite the

broad structural and chemical similarity of the BaFDC and CaFDC samples, the

luminescence of the barium compound is so reduced.
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Figure 6.40: Heat capacity of ligand H2FDC and fluorenone frameworks.
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6.4.7 Bonding modes

The bonding modes of the carboxylic acid groups to the metal atoms for the five

fluorenone containing structures are shown in Figures 6.43 through 6.48. Because

the structures of CaFDC and SrFDC were determined and the luminescent proper-

ties of those compounds were studied earlier in the course of this thesis than the

final three compounds, it was initially believed that the increased QY of CaFDC

may have been explained by increased rigidity in the structure with respect to

both SrFDC and H2FDC. For CaFDC, each oxygen of the dicarboxylic acid groups

is bound to a single calcium atom, while one of every four dicarboxylate oxygen

atoms in SrFDC is unbound and “loose” to vibrate in a way that might quench

luminescence. The H2FDC is a hydrogen-bonded molecular crystal with presum-

ably all unbound oxygen atoms, although a specific crystal structure has not been

published and efforts to recrystallized samples for X-ray were unsuccessful. With

the addition of the BaFDC and CdFDC, the relationship becomes less clear. By this

analysis one would expect that the highly bonding bonded BaFDC, shown in Fig-

ure 6.46, would lead to the highest QY. However, measurements revealed that it

is approximately the same as SrFDC and H2FDC. While it is certainly possible that

the bonding arrangements of the ligands to the metals impact the luminescence,

the specific nature of that relationship is not clear. Pairs of adjacent ligands are

shown in Figure 6.15, where it can be seen that no significant differences exist in

the interligand spacing and angles. The skew of the ketone groups does change

between samples but not in any way that shows a trend with the luminescence

data.
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Figure 6.43: Bonding mode of CaFDC

Figure 6.44: First bonding mode of SrFDC

Figure 6.45: Second bonding mode of SrFDC
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Figure 6.46: Bonding mode of BaFDC

Figure 6.47: Bonding mode of CdFDC

Figure 6.48: Bonding mode of MnFDC
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6.5 Discussion

Five new fluorenone frameworks have been discoved. They represent a new ap-

proach to the development of solid state lighting phosphors as they show many

of the properties required for the application, in a previously unexplored class of

materials. The CaFDC compound is remarkable in that it contains only calcium,

carbon, oxygen, and hydrogen and is synthesized in water at mild temperatures.

Cerium doped YAG, for comparison, is synthesized by a high temperature ceram-

ics route using rare earth elements. Luminescent molecules like fluorenone and its

derivatives have long been used in strictly organic applications where it has been

cross-linked into polymers [159] and combined into OLEDs [160]. Other classes of

inorganic-organic framework structures have been used with both metal centred

and antenna type structures with potential applications in sensors and scintilla-

tors. This is the first reported example of a ligand-centred luminescent framework

that, in terms of excitation and emission spectra, meets most of the requirements

for solid state lighting. It is also the first report of frameworks based upon this

ligand. The photoluminescence of these compounds can be excited in the near UV

and blue, between 380 nm and 460 nm, and gives broad emissions that peak be-

tween 500 nm and 535 nm. The tunability of that peak is provided by changing the

metal cation. That control is essential for high performance phosphor materials.

Figure 6.49 shows the excitation and emission spectra of CaFDC in comparison to

YAG:Ce, similar to the comparison made in Figure 5.20 in the previous chapter

for CaAQDC. With a FWHMs around 100 nm, the emission broadness of CaFDC is

slightly larger than that of Ce3+:YAG phosphors.

It was suggested in the beginning of Chapter 5 that by placing an organic

chromophore into a framework structure, its luminescence could be enhanced by
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Figure 6.49: TOP: Excitation and emission spectra of CaFDC, BOTTOM: Excita-
tion and emission for YAG:Ce. Note the increased band width for the fluorenone
structure.

virtue of increased structural rigidity. In the CaFDC, this is clearly evident in the

doubling of quantum efficiency as compared to the parent ligand. The behaviour

of the other frameworks is more complex, as they show photoluminescence effi-

ciencies closer to that of the H2FDC. It is proposed that the inclusion of the organic

chromophore in a rigid framework network is indeed beneficial in all of the frame-

work structures, and that there are peculiarities in the SrFDC, BaFDC, and CdFDC

cases that quench the enhanced luminescence.

Even though the structures are broadly related and have similar compositions,

certain details in dimensionality, hydration, and coordination are quite different.
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A lack of structural rigidity in SrFDC comes from an one of the four carboxylate

group oxygen atoms on each ligand being unbound, as shown in Figure 6.44 and

6.45, as well as pore space waters. This “loose” C–O bond can provide vibrational

routes to recombination and quench photoemission. The O–H vibrations on the

pore space water near the luminescent chromophore also provide non-radiative

routes to the ground state. BaFDC forms with the nearly the composition and

degree of hydration as the calcium structure, however it shows much lower ef-

ficiency. The large contribution to the lattice specific heat and the significantly

shorter lifetime indicate that some rapid process is present, likely based in oscilla-

tions of the edge and corner sharing barium polyhedra, that quenches the excited

states before they are able to radiatively recombine. Moreover, the low Debye

temperature of BaFDC (267 K as opposed to 324 K for CaFDC) indicates that the

phonon modes in this compound are more collective than they are localized. For

efficient luminescence in this model, the excited states should be as localized as

possible to reduce cross-relaxation between the ligands. Interestingly, SrFDC ac-

tually shows the highest Debye temperature at 381 K, but since the quenching

mechanism is thought to reside in the light carbon and oxygen atoms rather than

a heavy cation, the contributions of those oscillations to the lattice specific heat are

smaller. The cadmium structure, CdFDC, shows only 2-dimensional connectivity

with some pore space water, both of which provide routes to non-radiative recom-

bination. The lower dimensionality of this structure is less rigid and allows for

more thermal vibrations to quench luminescence. The behaviour of MnFDC, with

its paramagnetic d5 metal centers, is indicative of the importance of using filled

outer shell cations to prevent electronic processes on the metal from quenching

organic luminescence. For CaFDC, however, there is no pore space water, isolated

metal atoms, and symmetrically bound chromophore groups, resulting in efficient
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photoluminescence.

Organic and polymer systems generally show a reduction in quantum yield

with increasing π-stacking. It has been reported in the literature that increased π-

stacking leads to a reduction in quantum yield for conjugated polymers because of

increased aggregate formation and thus increased non-radiative cross-relaxation

between ligands [161–163]. The theoretical analysis of Cornil et al. considered

cofacial dimers of stilbene molecules and found that with an interchain distance

below 5Å the molecular orbitals of the dimer pair begin to delocalize with a chain

spacing below 5Å. [164]. It would appear that this is not the case for these frame-

work systems as the most perfect π-stacking in terms of alignment is seen in the

calcium structure, which is also the brightest. However, the average separation

distances show a downward trend with cation size, from 3.41 Å for CaFDC to

3.38 Å for SrFDC to 3.30 Å for BaFDC and 3.33 Å for CdFDC. Moreover, we do not

expect to see the dimerization that is possible for purely organic systems because

the chromophores are so tightly held in place. Similarly, Chen et al. described two

unique Zn(II)-norfloxin networks where the more π-stacked arrangement showed

nearly double the QY of the tilted structure [165]. It is believed that in the fluo-

renone frameworks the contributions to structural rigidity from the π-π bonding

outweighs any electronic interactions and that the slightly larger separation in

CaFDC provides just enough electronic isolation that the cross-relaxation effects

are reduced.

Another trend that is apparent in these compounds is increasing inorganic di-

mensionality with increasing cation size. The alkali earth compounds CaFDC,

SrFDC, and BaFDC showed 0-, 1-, and 2-dimensional inorganic connectivity, re-

spectively. This trend was recently highlighted in work by Eduardo Falcão et al.

[166] using a thiazolothiazoledicarboxylate ligand, where the inorganic connec-
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tivity increased from isolated magnesium polyhedra to calcium dimers to stron-

tium chains to a barium 2-dimensional sheet. For those compounds it was pro-

posed that the increasing cation size allows for more bound water molecules to

act as bridges rather than just capping ligands. This is apparent for the stron-

tium structure, where bridging waters help form the inorganic chains. It is not,

however, the case for the barium structure, where all of the M–O–M linkages

are by carboxylic acid groups. Nevertheless, the increasing inorganic connectiv-

ity appears to be detrimental to luminescent efficiency, likely due to metal–metal

oscillations quenching excited states on the organic chromophore. This suggests

that small cations will lead to isolated metal polyhedra, which in turn may lead to

brighter phosphors.

6.6 Summary

For a previously unexplored approach to phosphor development for solid state

lighting, the fluorenone-containing compounds described here show remarkably

applicable photoluminescence excitation and emission properties. While they do

fall short in terms of the brightness and temperature dependent behaviour re-

quirements that are essential for commercial viability of a phosphor, the CaFDC

excitation and emission exceeds the performance of YAG:Ce by giving broader

emission. Its excitation requires light about 10 nm further into the blue, but it also

allows for a much wider range of UV and blue excitation as compared to YAG:Ce.

With the knowledge gained here, it is now possible to propose some design

criteria for framework phosphors. Isolating metal cations in a 3-dimensional net-

work, thus an I0O3 network, is the most important, will most likely be achieved by

using small cations. Increasing π-π stacking separation and reducing pore-space
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water also impact performance. The intrinsic quantum efficiency of the parent

ligand chromophore is also a critical design consideration. These compounds, and

the anthraquinones from the previous chapter, clearly suggest that this approach

to the development of new luminescent materials warrants further study and that

with proper combinations of metal, ligand, and structure, highly stable and emis-

sive compounds may well be accessible.

The research described in this chapter was carried out in collaboration

with Brent Melot, who performed the heat capacity measurements, Simon Teat

who assisted with the synchrotron X-ray single crystal crystallography, Alexan-

der Mikhailovsky who performed many of the optical measurements, and Alina

Warner who assisted with some of the synthesis. The structure and luminescence

of CaFDC and SrFDC have been published in Chemistry of Materials as: J. D. Fur-

man, A. Y. Warner, S. J. Teat, A. A. Mikhailovsky and A. K. Cheetham. “Tunable,

ligand-based emission from inorganic-organic frameworks: A new approach to

phosphors for solid state lighting and other applications.” Chem. Mater., 22, 2255-

2260 (2010). [DOI: 10.1021/cm9030733]. A manuscript describing the structure

of BaFDC, CdFDC, and MnFDC, and luminescent properties of all five compounds

has been published as: J. D. Furman, B. C. Melot, S. J. Teat, A. A. Mikhailovsky

and A. K. Cheetham. “Towards enhanced ligand-centered photoluminescence in

inorganic-organic frameworks for solid state lighting.” Phys. Chem. Chem. Phys.,

2010 [In Press].
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Chapter 7

Conclusions and future work

In the 17 years since the commercialization of the first bright blue LEDs, the po-

tential benefits of illumination by solid state devices have captivated researchers

studying everything from physics to political science. While initial developments

have been promising and the increases in output light efficiency have come con-

tinuously over the years, two large barriers still remain: colour quality and power

limitations. This work addresses the colour available from devices.

The benefits of using oxide nanoparticle phosphors were investigated in Chap-

ter 3 for YAG:Ce. It was found that the structural disorder present in nanoparticles

as a result of the lower temperature processing needed to avoid sintering led to

reduced quantum yield. This outweighed any scattering reduction that small phos-

phor particles might provide. While it has not been shown, nanoparticles of the

hybrid frameworks should be much more easily synthesized as their processing is

already in water at low temperatures. It is possible that reduced scattering benefits

could be realized in those compounds without loss of quantum yield.

The physical robustness of dense inorganic-organic framework compounds was

shown in Chapter 4 for cerium oxalate formate. While it turned out to not be a
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useful compound for phosphor applications, it was an ideal system for studying

the mechanical properties of this class of materials. It was shown to be nearly as

strong as classical ceramic materials and is certainly suitable for use in solid state

device applications.

Novel phosphor materials, utilizing unique ligand-based luminescence in hy-

brid frameworks, were introduced in the anthraquinones of Chapter 5 and the

fluorenones of Chapter 6. This approach to solid state lighting phosphors is with-

out precedent. There have been evaluations of ligand-based luminescence from

hybrid frameworks reported, but all are excited much too far into the UV for use

in GaN-based devices. The anthraquinone and fluorenone frameworks both meet

most of the criteria for solid state lighting applications. The excitation and emis-

sion of YAG:Ce, CaAQDC, and CaFDC are shown in Figure 7.1. A vertical blue

band indicates the excitation with of a typical 450 nm GaN-based LED, showing

that the CaFDC is suitable for excitation at this wavelength, while the CaAQDC

is not. The width of the excitation band in the CaFDC is slightly larger than the

width for YAG:Ce, and CaAQDC is significantly larger. As the next generation

of LED emitters moves further into the UV, the blue-shifted excitation and very

broad emission of the CaAQDC may be highly applicable. Moreover, the CaAQDC

spectrum was collected at 77 K because of thermal quenching. Low temperatures

typically sharpen emission profiles and so it is likely that if the CaAQDC emission

could be stabilized at room temperature, its would be nearly white in colour.

Most remarkable in both of these framework structures, however, is that they

contain only calcium, carbon, oxygen, and hydrogen, and they are prepared in

water under mild hydrothermal conditions. By comparison, YAG:Ce is prepared

from rare earth oxides at more than 1600◦C, often requiring long calcination times

and controlled atmospheres.
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Figure 7.1: Comparison of excitation and emission for TOP: YAG:Ce, MIDDLE:
CaAQDC, and BOTTOM: CaFDC. The vertical blue band shows a typical emission
width for a 450 nm blue LED emitter. The CaAQDC excitation is too far into the
UV, but the CaFDC is well suited for this excitation.
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The quantum yield enhancement seen in the calcium fluorenone with respect

to its parent ligand shows that placing an organic chromophore in a framework

structure can significantly enhance its luminescence. The CaFDC showed 15%

QY at 77 K while H2FDC showed only 7%. The ligand-based inorganic-organic

framework approach also provides precise colour tunability by simply changing

the metal cation. In the fluorenone framework compounds, the emission peak lo-

cations change only about 7 nm with each cation change. Additionally, placing the

organic ligands in a framework structure increased their thermal stability. For ex-

ample, anthraquinone dicarboxylic acid was shown to decompose at 375◦C, while

the ligand within the CaAQDC structure is stable to 480◦C.

One of the great benefits of the hybrid framework systems is the nearly lim-

itless extent of ligand, metal, and structure combinations available. From the

structure and luminescence of the compounds described here, some important

design criteria for further work in ligand-based luminescence can be developed.

The most important consideration is the rigidity of the ligand in the structure. It

was seen for the anthraquinones that the ortho bonding arrangement lead to large

thermal vibrations and luminescence quenching. The lack of rigidity from the

unbound oxygen atoms in SrFDC and the 2-dimensional CdFDC also reduced effi-

ciency. The second parameter is the isolation of the metal centres. The increased

inorganic connectivity in the BaFDC resulting in what appears to be a rigid struc-

ture showing reduced luminescence. We know from this and previous work that

smaller cations in structures tend to result in lower inorganic connectivity, and so

small metal cations such as magnesium and calcium should outperform strontium

and barium. A third parameter is the degree of hydration, with particular con-

cern for pore space water. The O–H bonds of water molecules can quench excited

states, and since the pore waters are closer to the chromophores, they tend to have
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more influence. Finally, the π-stacking and separation appear to have an impact

on luminescent efficiency, though the details of this interaction are not yet clear.

Already it is apparent that nearly ideal excitation and emission spectra are

available from hybrid framework phosphors. It is also clear that including organic

chromophores in a framework structure can enhance their quantum efficiency and

tune their emission color. Finally, the thermal behaviour of all of these compounds

showed that the decomposition temperature of the ligand is increased by its in-

clusion in a hybrid network. If a single compound could incorporate all of these

criteria outlined above using a ligand of higher intrinsic quantum efficiency, the

conditions for a commercialized phosphor may be achievable.
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Chapter 8

Appendix

8.1 Cerium oxalate formate structure details

Figure 8.1: Asymmetric unit with atom numbers for cerium oxalate formate.
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Table 8.1: Crystal data and structure refinement for cerium oxalate formate.
Parameter Value

Empirical formula C3HO6Ce
Formula weight 273.16 g·mol−1

Collection Temperature 120(2) K
Wavelength 0.71073Å
Crystal system Orthorhombic
Space Group Pnm21
Unit cell dimensions

a 7.3963(5)Å
b 10.885(1)Å
c 6.7901(5)Å
α 90◦

β 90◦

γ 90◦

Volume 546.66(7)Å3

Z 4
Calculated density 3.395 g/m3

Absorption coefficient 8.480 mm−1

F(000) 500
Crystal size 0.7×0.2×0.2 mm
Theta range for data collection 4.11◦ to 27.46◦

Limiting indices −9 ≤ h ≤ 8, −8 ≤ k ≤ 7, −14 ≤ l ≤ 12
Reflections collected / unique 3243 / 1113 [R(int) = 0.0297]
Data Completeness 97.4%
Absorption correction Semi-empirical by equivalents
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 1113 / 1 / 46
Goodness-of-fit on F 2 1.079
Final R indices [I>2sigma(I)] R1 = 0.0171, wR2 = 0.0432
R indices (all data) R1 = 0.0174, wR2 = 0.0444
Absolute structure parameter 0.52(7)
Largest diff. peak and hole 0.805 and -0.737 e·Å−3

Table 8.2: Crystal coordinates [Å] and equivalent isotropic displacement parame-
ters [Å2] for cerium oxalate formate. Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

x y z Ueq

C(1) 0.6284(4) 0.8721(4) 0.4605(16) 0.0114(7)
H(1) 0.7580 0.8757 0.4598 0.014
C(2) 0.0961(9) 0.9551(10) 0.1934(5) 0.0059(13)
C(3) 0.0851(9) 0.9505(10) 0.7384(5) 0.0077(14)
O(1) 0.5452(3) 1.0371(3) 0.4632(9) 0.0099(4)
O(4) 0.4216(8) 1.3488(7) 0.5937(4) 0.0052(13)
O(6) 0.4196(9) 1.3611(7) 0.3380(4) 0.0100(15)
O(3) 0.2302(7) 0.9861(7) 0.2497(5) 0.0095(12)
O(2) 0.5548(3) 0.7069(3) 0.4588(9) 0.0128(5)
O(5) 0.2306(7) 0.9721(8) 0.6705(4) 0.0106(12)
Ce(1) 0.210526(18) 1.12998(2) 0.4638(3) 0.00462(9)
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Table 8.3: Anisotropic displacement parameters [Å2] for cerium oxalate formate.
The anisotropic displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+
2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Ce(1) 0.00426(13) 0.00472(12) 0.00489(12) 0.0003(2) 0.0000(3) -0.00043(4)

Table 8.4: Symmetry operations used in the following tables for cerium oxalate
formate.

Operation

#1 ‘x,y,z’
#2 ‘-x,-y,z+1/2’
#3 ‘-x+1/2,y+1/2,z+1/2’
#4 ‘x+1/2,-y+1/2,z’

Table 8.5: Bond Lengths [Å] for cerium oxalate formate.
Angle Symm. op. atom 1 Symm. op. atom 3

C(1)-O(1) 1.269(3)
C(1)-H(1) 0.9500
C(2)-O(3) 1.175(8)
C(2)-O(4) 1.301(8) 3
C(2)-C(3) 1.551(4) 2
C(3)-O(6) 1.235(8) 3
C(3)-O(5) 1.303(8)
C(3)-C(2) 1.551(4) 2

O(1)-Ce(1) 2.531(2)
O(1)-Ce(1) 2.551(2) 4
O(4)-C(2) 1.301(8) 3
O(4)-Ce(1) 2.545(6) 4
O(4)-Ce(1) 2.558(6)
O(6)-C(3) 1.235(8) 3
O(6)-Ce(1) 2.530(6) 4
O(6)-Ce(1) 2.575(6)
O(3)-Ce(1) 2.515(7)
O(2)-Ce(1) 2.543(2) 4
O(5)-Ce(1) 2.480(7)
Ce(1)-O(6) 2.530(6) 4
Ce(1)-O(2) 2.543(2) 4
Ce(1)-O(4) 2.545(6) 4
Ce(1)-O(1) 2.551(2) 4
Ce(1)-Ce(1) 4.00560(11) 4
Ce(1)-Ce(1) 4.00560(11) 4
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Table 8.6: Bond Angles [◦] for cerium oxalate formate.
Angle Symm. op. atom 1 Symm. op. atom 3

O(3)-C(2)-C(3) 118.7(5) 2
O(4)-C(2)-C(3) 113.6(4) 3 2
O(6)-C(3)-O(5) 124.7(7) 3
O(6)-C(3)-C(2) 116.7(5) 3 2
O(5)-C(3)-C(2) 118.5(4) 2
C(1)-O(1)-Ce(1) 133.05(18)
C(1)-O(1)-Ce(1) 122.90(18) 4
Ce(1)-O(1)-Ce(1) 104.03(7) 4
C(2)-O(4)-Ce(1) 120.6(5) 3 4
C(2)-O(4)-Ce(1) 135.4(5) 3
Ce(1)-O(4)-Ce(1) 103.44(18) 4
C(3)-O(6)-Ce(1) 118.8(5) 3 4
C(3)-O(6)-Ce(1) 137.7(5) 3
Ce(1)-O(6)-Ce(1) 103.4(2) 4
C(2)-O(3)-Ce(1) 119.9(5)
C(1)-O(2)-Ce(1) 127.43(19) 4
C(3)-O(5)-Ce(1) 120.5(4)
O(5)-Ce(1)-O(3) 131.38(8)
O(5)-Ce(1)-O(6) 123.03(17) 4
O(3)-Ce(1)-O(6) 64.02(18) 4
O(5)-Ce(1)-O(1) 80.7(2)
O(3)-Ce(1)-O(1) 81.2(2)
O(6)-Ce(1)-O(1) 145.2(2) 4
O(5)-Ce(1)-O(2) 70.3(2) 4
O(3)-Ce(1)-O(2) 70.2(2) 4
O(6)-Ce(1)-O(2) 68.37(15) 4 4
O(1)-Ce(1)-O(2) 102.35(7) 4
O(5)-Ce(1)-O(4) 64.92(17) 4
O(3)-Ce(1)-O(4) 125.28(16) 4
O(6)-Ce(1)-O(4) 66.08(7) 4 4
O(1)-Ce(1)-O(4) 145.2(2) 4
O(2)-Ce(1)-O(4) 71.85(16) 4 4
O(5)-Ce(1)-O(1) 114.1(2) 4
O(3)-Ce(1)-O(1) 111.4(2) 4
O(6)-Ce(1)-O(1) 65.01(17) 4 4
O(1)-Ce(1)-O(1) 132.68(6) 4
O(2)-Ce(1)-O(1) 124.95(7) 4 4
O(4)-Ce(1)-O(1) 63.69(17) 4 4
O(5)-Ce(1)-O(4) 73.55(17)
O(3)-Ce(1)-O(4) 133.91(17)
O(6)-Ce(1)-O(4) 142.31(18) 4
O(1)-Ce(1)-O(4) 63.80(18)
O(2)-Ce(1)-O(4) 143.0(2) 4
O(4)-Ce(1)-O(4) 99.64(16) 4
O(1)-Ce(1)-O(4) 77.35(16) 4
O(5)-Ce(1)-O(6) 134.51(18)
O(3)-Ce(1)-O(6) 73.29(17)
O(6)-Ce(1)-O(6) 101.69(18) 4
O(1)-Ce(1)-O(6) 64.65(18)
O(2)-Ce(1)-O(6) 142.8(2) 4
O(4)-Ce(1)-O(6) 138.84(19) 4
O(1)-Ce(1)-O(6) 75.44(17) 4
O(4)-Ce(1)-O(6) 65.25(8)
O(5)-Ce(1)-Ce(1) 96.85(12) 4
O(3)-Ce(1)-Ce(1) 95.94(11) 4
O(6)-Ce(1)-Ce(1) 139.57(12) 4 4
O(1)-Ce(1)-Ce(1) 38.16(4) 4
O(2)-Ce(1)-Ce(1) 140.50(5) 4 4
O(4)-Ce(1)-Ce(1) 137.59(12) 4 4
O(1)-Ce(1)-Ce(1) 94.53(5) 4 4
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Table 8.7: Continued: Bond Angles [◦] for cerium oxalate formate.
Angle Symm. op. atom 1 Symm. op. atom 3

O(4)-Ce(1)-Ce(1) 38.17(12) 4
O(6)-Ce(1)-Ce(1) 37.92(14) 4
O(5)-Ce(1)-Ce(1) 103.16(11) 4
O(3)-Ce(1)-Ce(1) 102.02(11) 4
O(6)-Ce(1)-Ce(1) 38.71(13) 4 4
O(1)-Ce(1)-Ce(1) 170.49(4) 4
O(2)-Ce(1)-Ce(1) 87.16(5) 4 4
O(4)-Ce(1)-Ce(1) 38.39(12) 4 4
O(1)-Ce(1)-Ce(1) 37.81(5) 4 4
O(4)-Ce(1)-Ce(1) 108.66(12) 4
O(6)-Ce(1)-Ce(1) 107.44(13) 4
Ce(1)-Ce(1)-Ce(1) 132.332(7) 4 4
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8.2 CaAQDC structure details

Figure 8.2: Asymmetric unit with atom numbers for CaAQDC.
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Table 8.8: Crystal data and structure refinement for CaAQDC.
Parameter Value

Empirical formula C16H14O10Ca
Formula weight 406.35 g·mol−1

Collection Temperature 293(2) K
Wavelength 0.71073Å
Crystal system Triclinic
Space Group P 1̄
Unit cell dimensions

a 5.960(2)Å
b 7.634(3)Å
c 18.603(7)Å
α 90.145(6)◦

β 95.804(6)◦

γ 97.105(6)◦

Volume 835.5(6)Å3

Z 2
Calculated density 1.615 g/m3

Absorption coefficient 0.433 mm−1

F(000) 420
Crystal size 0.5×0.3×0.3 mm
Theta range for data collection 2.89◦ to 26.02◦

Limiting indices −7 ≤ h ≤ 7, −9 ≤ k ≤ 9, −22 ≤ l ≤ 13
Reflections collected / unique 6129 / 3224 [R(int) = 0.0684]
Data Completeness 97.5%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.878 and 0.856
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 3224 / 24 / 268
Goodness-of-fit on F 2 0.912
Final R indices [I>2sigma(I)] R1 = 0.0509, wR2 = 0.0915
R indices (all data) R1 = 0.0885, wR2 = 0.1015
Largest diff. peak and hole 0.366 and -0.387 e·Å−3
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Table 8.9: Crystal coordinates [Å] and equivalent isotropic displacement parame-
ters [Å2] for CaAQDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Ca(1) 0.01213(10) 0.26769(7) 1.04132(3) 0.01654(18)
C(1) 0.6884(5) 0.3306(4) 0.78485(17) 0.0226(7)
H(1) 0.8315 0.3957 0.7927 0.027
C(2) 0.5723(5) 0.2767(3) 0.84306(16) 0.0170(7)
C(3) 0.3530(5) 0.1825(4) 0.83117(17) 0.0180(7)
C(4) 0.2585(5) 0.1416(4) 0.76142(17) 0.0231(7)
H(4) 0.1142 0.0785 0.7536 0.028
C(5) 0.3768(5) 0.1938(4) 0.70275(17) 0.0240(7)
C(6) 0.2704(6) 0.1454(4) 0.62827(18) 0.0316(8)
C(7) 0.3997(6) 0.2041(4) 0.56716(18) 0.0315(8)
C(8) 0.3061(6) 0.1657(5) 0.49654(19) 0.0404(9)
H(8) 0.1591 0.1075 0.4879 0.049
C(9) 0.4297(7) 0.2134(5) 0.4390(2) 0.0505(11)
H(9) 0.3654 0.1874 0.3920 0.061
C(10) 0.6455(8) 0.2985(5) 0.4511(2) 0.0537(12)
H(10) 0.7287 0.3284 0.4123 0.064
C(11) 0.7407(7) 0.3403(5) 0.5206(2) 0.0463(10)
H(11) 0.8872 0.3997 0.5283 0.056
C(12) 0.6196(6) 0.2944(4) 0.57910(18) 0.0320(8)
C(13) 0.7244(6) 0.3457(5) 0.65262(19) 0.0350(9)
C(14) 0.5935(5) 0.2885(4) 0.71416(17) 0.0244(8)
C(15) 0.6889(5) 0.3018(4) 0.91869(17) 0.0168(7)
C(16) 0.2163(5) 0.1346(4) 0.89378(16) 0.0176(7)
O(1) 0.0841(4) 0.0587(4) 0.61889(14) 0.0555(8)
O(2) 0.9125(4) 0.4300(4) 0.66229(14) 0.0578(8)
O(3) 0.6881(3) 0.1670(2) 0.95728(11) 0.0231(5)
O(4) 0.7935(3) 0.4496(2) 0.93883(11) 0.0232(5)
O(5) 0.2042(3) 0.2595(3) 0.93706(11) 0.0261(5)
O(6) 0.1237(3) -0.0191(3) 0.89812(12) 0.0290(6)
O(7) -0.2439(4) 0.3960(3) 1.10960(14) 0.0285(6)

H(7A) -0.251(5) 0.497(4) 1.0962(17) 0.034
H(7B) -0.214(5) 0.385(4) 1.1575(19) 0.034
O(8) 0.3471(4) 0.1697(3) 1.09909(13) 0.0292(6)

H(8A) 0.472(6) 0.228(4) 1.0913(18) 0.035
H(8B) 0.350(6) 0.073(4) 1.0879(18) 0.035
O(9) 0.2223(7) 0.6670(5) 0.7472(2) 0.0962(16)

H(9A) 0.161(9) 0.582(7) 0.716(3) 0.115
H(9B) 0.348(9) 0.692(8) 0.744(3) 0.115
O(10) 0.6948(8) 0.8097(6) 0.7490(2) 0.0966(14)

H(10A) 0.690(10) 0.831(8) 0.790(3) 0.116
H(10B) 0.825(9) 0.765(8) 0.753(3) 0.116
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Table 8.10: Anisotropic displacement parameters [Å2] for CaAQDC. The
anisotropic displacement factor exponent takes the form −2π2[h2a∗2U11 + ... +
2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Ca(1) 0.0188(3) 0.0138(3) 0.0161(4) -0.0009(2) 0.0016(3) -0.0014(2)
C(1) 0.0214(17) 0.0228(16) 0.022(2) 0.0011(14) 0.0020(15) -0.0035(13)
C(2) 0.0194(16) 0.0149(14) 0.0163(18) -0.0005(13) 0.0025(14) -0.0004(12)
C(3) 0.0210(17) 0.0146(14) 0.0180(19) -0.0006(13) 0.0032(14) 0.0001(12)
C(4) 0.0187(17) 0.0261(17) 0.022(2) -0.0023(14) -0.0020(15) -0.0054(13)
C(5) 0.0258(18) 0.0289(17) 0.0158(19) -0.0040(14) 0.0012(15) -0.0016(14)
C(6) 0.037(2) 0.0362(19) 0.019(2) -0.0021(16) 0.0017(17) -0.0041(17)
C(7) 0.039(2) 0.0349(19) 0.019(2) -0.0044(16) 0.0003(17) 0.0000(16)
C(8) 0.049(2) 0.047(2) 0.022(2) -0.0017(18) -0.0033(19) -0.0008(18)
C(9) 0.074(3) 0.058(3) 0.018(2) 0.0016(19) 0.005(2) 0.003(2)

C(10) 0.074(3) 0.062(3) 0.024(2) 0.006(2) 0.020(2) -0.006(2)
C(11) 0.054(3) 0.061(3) 0.021(2) 0.0003(19) 0.012(2) -0.008(2)
C(12) 0.044(2) 0.0335(19) 0.017(2) 0.0007(15) 0.0055(17) -0.0016(17)
C(13) 0.037(2) 0.044(2) 0.022(2) 0.0006(17) 0.0054(17) -0.0042(18)
C(14) 0.0295(19) 0.0265(17) 0.0156(19) -0.0011(14) 0.0017(15) -0.0027(14)
C(15) 0.0114(16) 0.0189(16) 0.0199(19) 0.0000(14) 0.0013(13) 0.0014(12)
C(16) 0.0116(15) 0.0232(16) 0.0170(18) 0.0059(14) -0.0032(13) 0.0014(13)
O(1) 0.0434(17) 0.084(2) 0.0285(17) -0.0115(14) -0.0019(13) -0.0285(16)
O(2) 0.0439(17) 0.086(2) 0.0336(18) -0.0059(15) 0.0104(14) -0.0361(15)
O(3) 0.0278(12) 0.0184(11) 0.0212(13) 0.0041(10) -0.0024(10) -0.0009(9)
O(4) 0.0251(12) 0.0179(11) 0.0237(14) -0.0039(9) -0.0013(10) -0.0057(9)
O(5) 0.0305(13) 0.0268(12) 0.0214(14) -0.0045(10) 0.0079(10) 0.0014(10)
O(6) 0.0313(13) 0.0207(12) 0.0332(15) 0.0072(10) 0.0042(11) -0.0054(10)
O(7) 0.0368(14) 0.0213(12) 0.0284(15) 0.0012(12) 0.0095(12) 0.0022(11)
O(8) 0.0237(13) 0.0200(12) 0.0416(17) -0.0012(11) -0.0010(12) -0.0026(10)
O(9) 0.150(4) 0.081(3) 0.041(2) -0.0071(18) -0.004(3) -0.041(3)
O(10) 0.128(4) 0.113(3) 0.045(2) -0.001(2) 0.010(3) 0.000(3)

Table 8.11: Symmetry operations used in the following tables for CaAQDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,-y,-z’
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Table 8.12: Bond Lengths [Å] for CaAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ca(1)-O(4) 2.329(2) 2
Ca(1)-O(5) 2.354(2)
Ca(1)-O(8) 2.374(2)
Ca(1)-O(7) 2.378(2)
Ca(1)-O(3) 2.405(2) 1
Ca(1)-O(4) 2.687(2) 1
Ca(1)-C(15) 2.867(3) 1
Ca(1)-Ca(1) 3.8826(17) 2
Ca(1)-Ca(1) 4.3434(19) 2
Ca(1)-H(7A) 2.75(3)
Ca(1)-H(8B) 2.72(3)

C(1)-C(2) 1.380(4)
C(1)-C(14) 1.398(4)
C(1)-H(1) 0.9300
C(2)-C(3) 1.408(4)

C(2)-C(15) 1.506(4)
C(3)-C(4) 1.380(4)

C(3)-C(16) 1.508(4)
C(4)-C(5) 1.391(4)
C(4)-H(4) 0.9300
C(5)-C(14) 1.396(4)
C(5)-C(6) 1.490(4)
C(6)-O(1) 1.217(4)
C(6)-C(7) 1.477(5)
C(7)-C(8) 1.390(5)

C(7)-C(12) 1.399(5)
C(8)-C(9) 1.384(5)
C(8)-H(8) 0.9300
C(9)-C(10) 1.364(5)
C(9)-H(9) 0.9300

C(10)-C(11) 1.377(5)
C(10)-H(10) 0.9300
C(11)-C(12) 1.388(5)
C(11)-H(11) 0.9300
C(12)-C(13) 1.476(5)
C(13)-O(2) 1.218(4)
C(13)-C(14) 1.486(4)
C(15)-O(3) 1.256(3)
C(15)-O(4) 1.257(3)
C(15)-Ca(1) 2.867(3) 1
C(16)-O(6) 1.240(3)
C(16)-O(5) 1.260(3)
O(3)-Ca(1) 2.405(2) 1
O(4)-Ca(1) 2.329(2) 2
O(4)-Ca(1) 2.687(2) 1
O(6)-Ca(1) 2.311(2) 2
O(7)-H(7A) 0.82(3)
O(7)-H(7B) 0.90(3)
O(8)-H(8A) 0.84(3)
O(8)-H(8B) 0.77(3)
O(9)-H(9A) 0.88(5)
O(9)-H(9B) 0.76(5)

O(10)-H(10A) 0.78(5)
O(10)-H(10B) 0.88(5)
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Table 8.13: Bond Angles [◦] for CaAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(4)-Ca(1)-O(8) 85.18(8) 2
O(5)-Ca(1)-O(8) 83.50(8)
O(6)-Ca(1)-O(7) 81.33(8) 2
O(4)-Ca(1)-O(7) 79.80(8) 2
O(5)-Ca(1)-O(7) 150.30(8)
O(8)-Ca(1)-O(7) 120.75(9)
O(6)-Ca(1)-O(3) 81.54(8) 2 1
O(4)-Ca(1)-O(3) 129.78(7) 2 1
O(5)-Ca(1)-O(3) 82.27(8) 1
O(8)-Ca(1)-O(3) 140.81(8) 1
O(7)-Ca(1)-O(3) 86.89(8) 1
O(6)-Ca(1)-O(4) 129.09(8) 2 1
O(4)-Ca(1)-O(4) 78.82(8) 2 1
O(5)-Ca(1)-O(4) 72.68(7) 1
O(8)-Ca(1)-O(4) 151.99(8) 1
O(7)-Ca(1)-O(4) 78.99(8) 1
O(3)-Ca(1)-O(4) 51.06(6) 1 1
O(6)-Ca(1)-C(15) 106.75(8) 2 1
O(4)-Ca(1)-C(15) 104.60(8) 2 1
O(5)-Ca(1)-C(15) 72.43(8) 1
O(8)-Ca(1)-C(15) 153.06(8) 1
O(7)-Ca(1)-C(15) 85.96(9) 1
O(3)-Ca(1)-C(15) 25.70(7) 1 1
O(4)-Ca(1)-C(15) 25.89(7) 1 1
O(6)-Ca(1)-Ca(1) 155.29(6) 2 2
O(4)-Ca(1)-Ca(1) 42.77(5) 2 2
O(5)-Ca(1)-Ca(1) 75.70(5) 2
O(8)-Ca(1)-Ca(1) 124.10(6) 2
O(7)-Ca(1)-Ca(1) 76.21(6) 2
O(3)-Ca(1)-Ca(1) 87.07(5) 1 2
O(4)-Ca(1)-Ca(1) 36.05(4) 1 2
C(15)-Ca(1)-Ca(1) 61.87(6) 1 2
O(6)-Ca(1)-Ca(1) 56.14(6) 2 2
O(4)-Ca(1)-Ca(1) 149.67(6) 2 2
O(5)-Ca(1)-Ca(1) 68.31(5) 2
O(8)-Ca(1)-Ca(1) 76.29(6) 2
O(7)-Ca(1)-Ca(1) 130.36(6) 2
O(3)-Ca(1)-Ca(1) 64.52(5) 1 2
O(4)-Ca(1)-Ca(1) 107.12(5) 1 2
C(15)-Ca(1)-Ca(1) 83.56(6) 1 2
Ca(1)-Ca(1)-Ca(1) 136.18(4) 2 2
O(6)-Ca(1)-H(7A) 97.6(7) 2
O(4)-Ca(1)-H(7A) 67.6(7) 2
O(5)-Ca(1)-H(7A) 134.8(7)
O(8)-Ca(1)-H(7A) 127.3(7)
O(7)-Ca(1)-H(7A) 16.4(6)
O(3)-Ca(1)-H(7A) 87.3(7) 1
O(4)-Ca(1)-H(7A) 66.7(7) 1
C(15)-Ca(1)-H(7A) 79.3(7) 1
Ca(1)-Ca(1)-H(7A) 59.9(7) 2
Ca(1)-Ca(1)-H(7A) 142.5(7) 2
O(6)-Ca(1)-H(8B) 68.2(7) 2
O(4)-Ca(1)-H(8B) 99.6(7) 2
O(5)-Ca(1)-H(8B) 78.9(7)
O(8)-Ca(1)-H(8B) 15.5(7)
O(7)-Ca(1)-H(8B) 129.0(7)
O(3)-Ca(1)-H(8B) 125.3(7) 1
O(4)-Ca(1)-H(8B) 151.6(7) 1
C(15)-Ca(1)-H(8B) 140.7(7) 1
Ca(1)-Ca(1)-H(8B) 135.1(7) 2

221



Table 8.14: Continued: Bond Angles [◦] for CaAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ca(1)-Ca(1)-H(8B) 60.8(7) 2
H(7A)-Ca(1)-H(8B) 139.2(10)

C(2)-C(1)-C(14) 120.8(3)
C(2)-C(1)-H(1) 119.6
C(14)-C(1)-H(1) 119.6
C(1)-C(2)-C(3) 119.7(3)

C(1)-C(2)-C(15) 120.0(3)
C(3)-C(2)-C(15) 120.0(3)
C(4)-C(3)-C(2) 119.6(3)

C(4)-C(3)-C(16) 119.9(3)
C(2)-C(3)-C(16) 120.5(3)
C(3)-C(4)-C(5) 120.7(3)
C(3)-C(4)-H(4) 119.6
C(5)-C(4)-H(4) 119.6
C(4)-C(5)-C(14) 119.9(3)
C(4)-C(5)-C(6) 119.2(3)

C(14)-C(5)-C(6) 120.9(3)
O(1)-C(6)-C(7) 121.7(3)
O(1)-C(6)-C(5) 120.5(3)
C(7)-C(6)-C(5) 117.8(3)

C(8)-C(7)-C(12) 118.9(3)
C(8)-C(7)-C(6) 120.1(3)

C(12)-C(7)-C(6) 121.0(3)
C(9)-C(8)-C(7) 120.5(4)
C(9)-C(8)-H(8) 119.7
C(7)-C(8)-H(8) 119.7
C(10)-C(9)-C(8) 120.2(4)
C(10)-C(9)-H(9) 119.9
C(8)-C(9)-H(9) 119.9

C(9)-C(10)-C(11) 120.3(4)
C(9)-C(10)-H(10) 119.8

C(11)-C(10)-H(10) 119.8
C(10)-C(11)-C(12) 120.5(4)
C(10)-C(11)-H(11) 119.8
C(12)-C(11)-H(11) 119.8
C(11)-C(12)-C(7) 119.5(3)
C(11)-C(12)-C(13) 119.0(3)
C(7)-C(12)-C(13) 121.5(3)
O(2)-C(13)-C(12) 121.0(3)
O(2)-C(13)-C(14) 121.4(3)
C(12)-C(13)-C(14) 117.6(3)
C(5)-C(14)-C(1) 119.2(3)

C(5)-C(14)-C(13) 121.2(3)
C(1)-C(14)-C(13) 119.5(3)
O(3)-C(15)-O(4) 123.1(3)
O(3)-C(15)-C(2) 116.7(2)
O(4)-C(15)-C(2) 120.0(3)
O(3)-C(15)-Ca(1) 56.10(15) 1
O(4)-C(15)-Ca(1) 69.02(16) 1
C(2)-C(15)-Ca(1) 159.36(18) 1
O(6)-C(16)-O(5) 125.7(3)
O(6)-C(16)-C(3) 118.9(3)
O(5)-C(16)-C(3) 115.4(3)
C(15)-O(3)-Ca(1) 98.20(17) 1
C(15)-O(4)-Ca(1) 171.8(2) 2
C(15)-O(4)-Ca(1) 85.09(17) 1
Ca(1)-O(4)-Ca(1) 101.18(8) 2 1
C(16)-O(5)-Ca(1) 130.90(19)
C(16)-O(6)-Ca(1) 154.7(2) 2
Ca(1)-O(7)-H(7A) 108(2)
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Table 8.15: Continued: Bond Angles [◦] for CaAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ca(1)-O(7)-H(7B) 113(2)
H(7A)-O(7)-H(7B) 115(3)
Ca(1)-O(8)-H(8A) 117(2)
Ca(1)-O(8)-H(8B) 109(3)
H(8A)-O(8)-H(8B) 108(3)
H(9A)-O(9)-H(9B) 112(6)

H(10A)-O(10)-H(10B) 97(6)
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8.3 MnAQDC structure details

Figure 8.3: Asymmetric unit with atom numbers for MnAQDC.
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Table 8.16: Crystal data and structure refinement for MnAQDC.
Parameter Value

Empirical formula C16H14O10Mn
Formula weight 421.21 g·mol−1

Collection Temperature 293(2) K
Wavelength 0.71073Å
Crystal system Triclinic
Space Group P 1̄
Unit cell dimensions

a 5.799(2)Å
b 7.477(3)Å
c 18.493(7)Å
α 89.639(6)◦

β 85.173(6)◦

γ 83.485(7)◦

Volume 793.8(5)Å3

Z 2
Calculated density 1.762 g/m3

Absorption coefficient 0.891 mm−1

F(000) 430
Crystal size 0.1×0.08×0.02 mm
Theta range for data collection 2.21◦ to 25.68◦

Limiting indices −7 ≤ h ≤ 7, −9 ≤ k ≤ 8, −22 ≤ l ≤ 22
Reflections collected / unique 6413 / 2965 [R(int) = 0.0777]
Data Completeness 98.8%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.982 and 0.918
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 2965 / 12 / 274
Goodness-of-fit on F 2 1.041
Final R indices [I>2sigma(I)] R1 = 0.0806, wR2 = 0.1826
R indices (all data) R1 = 0.1359, wR2 = 0.2093
Largest diff. peak and hole 1.242 and -0.554 e·Å−3
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Table 8.17: Crystal coordinates [Å] and equivalent isotropic displacement parame-
ters [Å2] for MnAQDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Mn(1) 0.48607(17) 0.75368(14) 1.04047(6) 0.0157(3)
C(1) -0.1858(12) 0.8437(10) 0.7845(4) 0.0238(17)
H(1) -0.3318 0.9100 0.7907 0.029
C(2) -0.0732(10) 0.7944(8) 0.8436(3) 0.0130(14)
C(3) 0.1443(11) 0.6930(9) 0.8355(4) 0.0167(15)
C(4) 0.2459(12) 0.6461(9) 0.7671(4) 0.0219(16)
H(4) 0.3920 0.5797 0.7617 0.026
C(5) 0.1272(12) 0.6992(10) 0.7050(4) 0.0232(16)
C(6) 0.2343(12) 0.6450(10) 0.6314(4) 0.0266(17)
C(7) 0.1067(13) 0.7054(10) 0.5682(4) 0.0274(18)
C(8) 0.2026(15) 0.6631(12) 0.4990(4) 0.040(2)
H(8) 0.3522 0.6031 0.4919 0.048
C(9) 0.0753(17) 0.7102(12) 0.4391(4) 0.044(2)
H(9) 0.1408 0.6829 0.3922 0.053
C(10) -0.1457(16) 0.7964(12) 0.4501(4) 0.044(2)
H(10) -0.2318 0.8257 0.4106 0.053
C(11) -0.2430(15) 0.8408(12) 0.5200(4) 0.040(2)
H(11) -0.3932 0.8998 0.5271 0.048
C(12) -0.1170(14) 0.7975(11) 0.5787(4) 0.0303(18)
C(13) -0.2257(12) 0.8534(10) 0.6513(4) 0.0284(18)
C(14) -0.0919(12) 0.7991(10) 0.7148(4) 0.0228(16)
C(15) -0.1978(11) 0.8308(9) 0.9189(4) 0.0208(16)
C(16) 0.2806(11) 0.6410(9) 0.9002(4) 0.0177(15)
O(1) -0.4161(9) 0.9432(9) 0.6593(3) 0.0493(17)
O(2) 0.4233(9) 0.5537(9) 0.6248(3) 0.0514(18)
O(3) -0.2845(8) 0.9862(7) 0.9338(3) 0.0301(13)
O(4) -0.2148(8) 0.6984(6) 0.9577(3) 0.0231(12)
O(5) 0.2932(8) 0.7686(6) 0.9444(2) 0.0220(11)
O(6) 0.3677(8) 0.4840(7) 0.9050(3) 0.0286(12)

H(7A) 0.741(14) 0.992(3) 1.095(4) 0.040(12)
H(7B) 0.718(13) 0.890(9) 1.1482(12) 0.040(12)
O(7) 0.7431(9) 0.8749(7) 1.1006(3) 0.0245(12)

H(8A) 0.056(10) 0.699(8) 1.067(3) 0.040(12)
H(8B) 0.164(12) 0.541(4) 1.077(4) 0.040(12)
O(8) 0.1720(8) 0.6512(7) 1.0946(3) 0.0281(13)

H(9A) 0.608(16) 0.882(13) 0.281(5) 0.12(5)
H(9B) 0.637(17) 0.728(9) 0.257(6) 0.09(5)
O(9) 0.7141(14) 0.8246(11) 0.2474(4) 0.064(2)

H(10A) 0.18(2) 0.564(5) 0.242(8) 0.14(6)
H(10B) 0.040(7) 0.69(2) 0.259(11) 0.24(10)
O(10) 0.1933(14) 0.6813(12) 0.2471(4) 0.065(2)
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Table 8.18: Anisotropic displacement parameters [Å2] for MnAQDC. The
anisotropic displacement factor exponent takes the form −2π2[h2a∗2U11 + ... +
2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Mn(1) 0.0152(6) 0.0141(6) 0.0174(6) -0.0010(4) -0.0031(4) 0.0017(4)
C(1) 0.017(4) 0.021(4) 0.032(4) -0.003(3) -0.005(3) 0.007(3)
C(2) 0.013(3) 0.011(3) 0.015(3) 0.002(3) -0.002(3) 0.002(3)
C(3) 0.018(3) 0.015(4) 0.017(4) -0.001(3) -0.001(3) -0.002(3)
C(4) 0.021(4) 0.016(4) 0.026(4) 0.003(3) 0.005(3) 0.006(3)
C(5) 0.030(4) 0.024(4) 0.017(4) 0.001(3) -0.003(3) -0.006(3)
C(6) 0.022(4) 0.026(4) 0.030(4) -0.003(3) 0.001(3) 0.002(3)
C(7) 0.030(4) 0.032(5) 0.020(4) 0.006(3) -0.005(3) 0.001(4)
C(8) 0.046(5) 0.053(6) 0.020(4) -0.002(4) 0.004(4) -0.011(4)
C(9) 0.064(6) 0.041(5) 0.023(5) 0.005(4) -0.001(4) 0.007(5)

C(10) 0.057(6) 0.050(6) 0.023(5) 0.004(4) -0.010(4) 0.007(5)
C(11) 0.037(5) 0.044(6) 0.038(5) 0.002(4) -0.008(4) 0.001(4)
C(12) 0.035(4) 0.035(5) 0.020(4) -0.001(3) -0.004(3) -0.001(4)
C(13) 0.021(4) 0.034(5) 0.028(4) -0.008(4) -0.004(3) 0.009(3)
C(14) 0.027(4) 0.023(4) 0.020(4) 0.001(3) -0.010(3) 0.000(3)
C(15) 0.012(3) 0.016(4) 0.033(4) -0.005(3) -0.006(3) 0.007(3)
C(16) 0.008(3) 0.021(4) 0.023(4) 0.007(3) -0.001(3) 0.001(3)
O(1) 0.034(3) 0.074(5) 0.033(3) -0.003(3) -0.009(3) 0.027(3)
O(2) 0.034(3) 0.080(5) 0.033(3) -0.008(3) -0.003(3) 0.026(3)
O(3) 0.017(3) 0.022(3) 0.048(3) -0.015(2) 0.003(2) 0.006(2)
O(4) 0.021(3) 0.022(3) 0.025(3) 0.000(2) 0.002(2) 0.001(2)
O(5) 0.025(3) 0.025(3) 0.018(3) -0.001(2) -0.009(2) -0.002(2)
O(6) 0.026(3) 0.024(3) 0.035(3) 0.004(2) -0.010(2) 0.004(2)
O(7) 0.030(3) 0.022(3) 0.022(3) 0.000(2) -0.007(2) 0.000(2)
O(8) 0.021(3) 0.025(3) 0.037(3) -0.002(2) 0.000(2) 0.004(2)
O(9) 0.085(5) 0.062(5) 0.038(4) -0.003(4) 0.004(4) 0.012(5)

O(10) 0.073(5) 0.074(6) 0.046(4) -0.009(4) -0.006(4) 0.000(4)

Table 8.19: Symmetry operations used in the following tables for MnAQDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,-y,-z’
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Table 8.20: Bond Lengths [Å] for MnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Mn(1)-O(5) 2.174(5)
Mn(1)-O(3) 2.185(5) 2
Mn(1)-O(7) 2.208(5)
Mn(1)-O(8) 2.215(5)
Mn(1)-O(4) 2.218(5) 1
C(1)-C(2) 1.348(9)

C(1)-C(14) 1.383(9)
C(1)-H(1) 0.9300
C(2)-C(3) 1.393(9)

C(2)-C(15) 1.526(9)
C(3)-C(4) 1.380(9)

C(3)-C(16) 1.513(9)
C(4)-C(5) 1.420(9)
C(4)-H(4) 0.9300
C(5)-C(14) 1.397(10)
C(5)-C(6) 1.486(10)
C(6)-O(2) 1.221(8)
C(6)-C(7) 1.477(10)
C(7)-C(8) 1.376(10)

C(7)-C(12) 1.397(10)
C(8)-C(9) 1.403(11)
C(8)-H(8) 0.9300
C(9)-C(10) 1.368(12)
C(9)-H(9) 0.9300

C(10)-C(11) 1.393(11)
C(10)-H(10) 0.9300
C(11)-C(12) 1.375(11)
C(11)-H(11) 0.9300
C(12)-C(13) 1.476(10)
C(13)-O(1) 1.224(8)
C(13)-C(14) 1.492(10)
C(15)-O(4) 1.227(8)
C(15)-O(3) 1.236(8)
C(16)-O(6) 1.229(8)
C(16)-O(5) 1.272(8)
O(3)-Mn(1) 2.185(5) 2
O(4)-Mn(1) 2.218(5) 1
O(6)-Mn(1) 2.162(5) 2
O(7)-H(7A) 0.88(2)
O(7)-H(7B) 0.89(2)
O(8)-H(8A) 0.91(2)
O(8)-H(8B) 0.89(2)
O(9)-H(9A) 0.90(2)
O(9)-H(9B) 0.90(2)

O(10)-H(10A) 0.89(2)
O(10)-H(10B) 0.89(2)

228



Table 8.21: Bond Angles [◦] for MnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(5)-Mn(1)-O(7) 145.88(19)
O(3)-Mn(1)-O(7) 81.38(19) 2
O(6)-Mn(1)-O(8) 77.69(19) 2
O(5)-Mn(1)-O(8) 84.82(19)
O(3)-Mn(1)-O(8) 82.25(19) 2
O(7)-Mn(1)-O(8) 122.9(2)
O(6)-Mn(1)-O(4) 86.14(18) 2 1
O(5)-Mn(1)-O(4) 81.69(18) 1
O(3)-Mn(1)-O(4) 127.04(19) 2 1
O(7)-Mn(1)-O(4) 83.24(18) 1
O(8)-Mn(1)-O(4) 145.60(19) 1
C(2)-C(1)-C(14) 122.3(6)
C(2)-C(1)-H(1) 118.9

C(14)-C(1)-H(1) 118.9
C(1)-C(2)-C(3) 119.9(6)
C(1)-C(2)-C(15) 119.4(6)
C(3)-C(2)-C(15) 120.3(6)
C(4)-C(3)-C(2) 120.0(6)
C(4)-C(3)-C(16) 118.4(6)
C(2)-C(3)-C(16) 121.5(6)
C(3)-C(4)-C(5) 119.9(6)
C(3)-C(4)-H(4) 120.0
C(5)-C(4)-H(4) 120.0
C(14)-C(5)-C(4) 118.7(6)
C(14)-C(5)-C(6) 121.3(6)
C(4)-C(5)-C(6) 119.9(6)
O(2)-C(6)-C(7) 122.1(7)
O(2)-C(6)-C(5) 119.7(7)
C(7)-C(6)-C(5) 118.2(6)
C(8)-C(7)-C(12) 119.8(7)
C(8)-C(7)-C(6) 120.2(7)
C(12)-C(7)-C(6) 119.9(6)
C(7)-C(8)-C(9) 120.2(8)
C(7)-C(8)-H(8) 119.9
C(9)-C(8)-H(8) 119.9
C(10)-C(9)-C(8) 119.5(8)
C(10)-C(9)-H(9) 120.3
C(8)-C(9)-H(9) 120.3

C(9)-C(10)-C(11) 120.5(8)
C(9)-C(10)-H(10) 119.7
C(11)-C(10)-H(10) 119.7
C(12)-C(11)-C(10) 120.0(8)
C(12)-C(11)-H(11) 120.0
C(10)-C(11)-H(11) 120.0
C(11)-C(12)-C(7) 119.9(7)

C(11)-C(12)-C(13) 117.7(7)
C(7)-C(12)-C(13) 122.4(7)
O(1)-C(13)-C(12) 121.7(7)
O(1)-C(13)-C(14) 121.0(6)
C(12)-C(13)-C(14) 117.3(6)

C(1)-C(14)-C(5) 119.2(6)
C(1)-C(14)-C(13) 120.3(6)
C(5)-C(14)-C(13) 120.5(6)
O(4)-C(15)-O(3) 125.9(7)
O(4)-C(15)-C(2) 115.9(6)
O(3)-C(15)-C(2) 118.1(6)
O(6)-C(16)-O(5) 126.8(6)
O(6)-C(16)-C(3) 118.3(6)
O(5)-C(16)-C(3) 114.9(6)

C(15)-O(3)-Mn(1) 171.8(5) 2
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Table 8.22: Continued: Bond Angles [◦] for for MnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(15)-O(4)-Mn(1) 109.9(4) 1
C(16)-O(5)-Mn(1) 126.5(4)
C(16)-O(6)-Mn(1) 156.0(5) 2
Mn(1)-O(7)-H(7A) 114(5)
Mn(1)-O(7)-H(7B) 120(5)
H(7A)-O(7)-H(7B) 90(4)
Mn(1)-O(8)-H(8A) 103(5)
Mn(1)-O(8)-H(8B) 108(5)
H(8A)-O(8)-H(8B) 91(4)
H(9A)-O(9)-H(9B) 85(4)

H(10A)-O(10)-H(10B) 86(4)
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8.4 NiAQDC structure details

Figure 8.4: Asymmetric unit with atom numbers for NiAQDC.
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Table 8.23: Crystal data and structure refinement for NiAQDC.
Parameter Value

Empirical formula C16H20O13Ni
Formula weight 479.03 g·mol−1

Collection Temperature 293(2) K
Wavelength 0.71073Å
Crystal system Monoclinic
Space Group P21/c
Unit cell dimensions

a 16.308(3)Å
b 7.4101(15)Å
c 16.183(3)Å
α 90◦

β 106.064(4)◦

γ 90◦

Volume 1879.2(7)Å3

Z 4
Calculated density 1.693 g/m3

Absorption coefficient 1.104 mm−1

F(000) 992
Crystal size 0.4×0.35×0.25 mm
Theta range for data collection 1.30◦ to 26.02◦

Limiting indices −20 ≤ h ≤ 20, −9 ≤ k ≤ 8, −19 ≤ l ≤ 19
Reflections collected / unique 13851 / 3675 [R(int) = 0.0809]
Data Completeness 99.7%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.758 and 0.648
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 3675 / 21 / 313
Goodness-of-fit on F 2 1.083
Final R indices [I>2sigma(I)] R1 = 0.0622, wR2 = 0.1284
R indices (all data) R1 = 0.1131, wR2 = 0.1587
Largest diff. peak and hole 0.625 and -0.509 e·Å−3

232



Table 8.24: Crystal coordinates [Å] and equivalent isotropic displacement parame-
ters [Å2] for NiAQDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

O(3) 0.3620(2) 1.0703(5) 0.5594(2) 0.0339(9)
C(6) -0.0149(3) 0.7478(8) 0.3714(3) 0.0266(12)
Ni(1) 0.41465(4) 1.08704(9) 0.28644(4) 0.0211(2)
C(1) 0.1960(3) 0.8873(7) 0.5244(3) 0.0228(12)
H(1) 0.2192 0.9086 0.5829 0.027
C(2) 0.2458(3) 0.9082(7) 0.4685(3) 0.0223(11)
C(3) 0.2102(3) 0.8826(7) 0.3801(3) 0.0217(11)
C(4) 0.1257(3) 0.8320(7) 0.3496(3) 0.0223(11)
H(4) 0.1022 0.8152 0.2909 0.027
C(5) 0.0751(3) 0.8057(7) 0.4051(3) 0.0218(12)
C(7) -0.0637(3) 0.7056(7) 0.4348(3) 0.0242(12)
C(8) -0.1458(3) 0.6364(7) 0.4058(4) 0.0297(13)
H(8) -0.1691 0.6108 0.3478 0.036
C(9) -0.1925(3) 0.6058(8) 0.4637(4) 0.0370(15)
H(9) -0.2477 0.5604 0.4442 0.044
C(10) -0.1584(3) 0.6419(8) 0.5503(4) 0.0366(15)
H(10) -0.1907 0.6222 0.5886 0.044
C(11) -0.0758(3) 0.7074(8) 0.5798(4) 0.0320(14)
H(11) -0.0522 0.7301 0.6381 0.038
C(12) -0.0284(3) 0.7389(7) 0.5218(3) 0.0219(11)
C(13) 0.0593(3) 0.8127(7) 0.5559(3) 0.0239(12)
C(14) 0.1112(3) 0.8343(7) 0.4934(3) 0.0217(11)
C(15) 0.3405(3) 0.9430(7) 0.5080(3) 0.0235(12)
C(16) 0.2631(3) 0.9131(7) 0.3180(3) 0.0223(11)
O(1) -0.0493(2) 0.7385(7) 0.2946(2) 0.0484(12)
O(2) 0.0881(2) 0.8531(6) 0.6308(2) 0.0399(11)
O(4) 0.3915(2) 0.8319(5) 0.4891(2) 0.0277(9)
O(5) 0.3129(2) 1.0467(5) 0.3335(2) 0.0245(8)
O(6) 0.2528(2) 0.8092(5) 0.2562(3) 0.0407(11)
O(7) 0.5246(2) 1.1090(5) 0.2472(3) 0.0307(9)

H(7A) 0.537(3) 1.171(6) 0.206(3) 0.037
H(7B) 0.556(3) 1.020(5) 0.236(3) 0.037
O(8) 0.3649(2) 0.9207(6) 0.1827(2) 0.0325(9)

H(8A) 0.384(3) 0.965(6) 0.142(3) 0.039
H(8B) 0.396(3) 0.825(4) 0.181(3) 0.039
O(9) 0.4747(2) 0.8762(5) 0.3663(2) 0.0236(8)

H(9A) 0.457(3) 0.880(7) 0.411(2) 0.028
H(9B) 0.5268(13) 0.889(7) 0.395(3) 0.028
O(10) 0.4699(2) 1.2703(5) 0.3803(2) 0.0311(9)

H(10A) 0.505(3) 1.247(7) 0.4305(19) 0.037
H(10B) 0.438(3) 1.334(7) 0.405(3) 0.037
O(11) 0.3562(2) 1.3107(5) 0.2178(2) 0.0283(9)

H(11A) 0.307(2) 1.347(7) 0.224(3) 0.034
H(11B) 0.335(3) 1.309(8) 0.1631(13) 0.034
O(12) 0.2201(2) 1.4402(6) 0.2615(3) 0.0405(10)

H(12A) 0.203(3) 1.550(4) 0.245(4) 0.049
H(12B) 0.1655(17) 1.407(7) 0.245(4) 0.049
O(13) 0.3566(4) 1.4826(9) 0.4210(5) 0.095(2)

H(13A) 0.385(6) 1.446(11) 0.475(3) 0.114
H(13B) 0.362(6) 1.592(5) 0.445(5) 0.114
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Table 8.25: Anisotropic displacement parameters [Å2] for NiAQDC. The
anisotropic displacement factor exponent takes the form −2π2[h2a∗2U11 + ... +
2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Ni(1) 0.0197(3) 0.0237(4) 0.0216(4) 0.0018(3) 0.0084(3) 0.0009(3)
C(1) 0.019(2) 0.028(3) 0.020(3) -0.003(2) 0.003(2) 0.001(2)
C(2) 0.016(2) 0.022(3) 0.026(3) -0.004(2) 0.002(2) 0.000(2)
C(3) 0.019(2) 0.024(3) 0.022(3) 0.001(2) 0.006(2) 0.002(2)
C(4) 0.019(2) 0.031(3) 0.016(3) 0.000(2) 0.004(2) -0.002(2)
C(5) 0.018(2) 0.023(3) 0.022(3) 0.000(2) 0.002(2) 0.001(2)
C(6) 0.022(3) 0.033(3) 0.024(3) -0.006(3) 0.005(2) -0.003(2)
C(7) 0.021(3) 0.027(3) 0.025(3) -0.001(2) 0.007(2) -0.001(2)
C(8) 0.026(3) 0.040(4) 0.025(3) -0.003(3) 0.010(2) -0.006(2)
C(9) 0.025(3) 0.040(4) 0.045(4) -0.003(3) 0.008(3) -0.010(3)
C(10) 0.026(3) 0.048(4) 0.040(4) 0.005(3) 0.016(3) -0.006(3)
C(11) 0.026(3) 0.047(4) 0.023(3) 0.002(3) 0.008(2) 0.004(3)
C(12) 0.017(2) 0.020(3) 0.029(3) 0.001(2) 0.007(2) 0.002(2)
C(13) 0.019(2) 0.032(3) 0.020(3) 0.002(2) 0.003(2) 0.000(2)
C(14) 0.019(2) 0.026(3) 0.021(3) 0.001(2) 0.007(2) 0.002(2)
C(15) 0.021(2) 0.035(3) 0.015(3) 0.001(3) 0.005(2) -0.001(2)
C(16) 0.019(2) 0.028(3) 0.020(3) 0.005(3) 0.006(2) -0.001(2)
O(1) 0.028(2) 0.095(4) 0.021(2) -0.005(2) 0.0060(18) -0.017(2)
O(2) 0.029(2) 0.067(3) 0.023(2) -0.007(2) 0.0075(18) -0.014(2)
O(3) 0.0202(18) 0.047(2) 0.034(2) -0.019(2) 0.0062(16) -0.0078(18)
O(4) 0.0182(17) 0.038(2) 0.027(2) 0.0031(18) 0.0062(16) 0.0058(16)
O(5) 0.0236(18) 0.026(2) 0.027(2) -0.0031(16) 0.0119(16) -0.0047(15)
O(6) 0.049(3) 0.046(3) 0.035(2) -0.017(2) 0.027(2) -0.024(2)
O(7) 0.030(2) 0.028(2) 0.040(2) 0.0080(19) 0.0214(18) 0.0029(17)
O(8) 0.032(2) 0.043(2) 0.024(2) -0.001(2) 0.0110(16) 0.0072(19)
O(9) 0.0191(17) 0.032(2) 0.0195(19) -0.0019(17) 0.0059(15) 0.0014(16)

O(10) 0.030(2) 0.035(2) 0.025(2) -0.0061(19) 0.0032(17) 0.0016(18)
O(11) 0.0252(19) 0.036(2) 0.025(2) 0.0085(19) 0.0097(17) 0.0088(17)
O(12) 0.032(2) 0.043(3) 0.047(3) 0.008(2) 0.013(2) 0.0079(19)
O(13) 0.071(4) 0.066(4) 0.146(6) -0.052(4) 0.027(4) 0.004(3)

Table 8.26: Symmetry operations used in the following tables for NiAQDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,y+1/2,-z+1/2’
#3 ‘-x,-y,-z’
#4 ‘x,-y-1/2,z-1/2’
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Table 8.27: Bond Lengths [Å] for NiAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(6)-O(1) 1.217(6)
C(6)-C(5) 1.481(7)
C(6)-C(7) 1.494(7)
Ni(1)-O(5) 2.031(3)

Ni(1)-O(10) 2.050(4)
Ni(1)-O(8) 2.060(4)
Ni(1)-O(7) 2.068(3)

Ni(1)-O(11) 2.074(4)
Ni(1)-O(9) 2.090(4)
C(1)-C(2) 1.382(7)

C(1)-C(14) 1.391(6)
C(1)-H(1) 0.9300
C(2)-C(3) 1.401(7)

C(2)-C(15) 1.521(6)
C(3)-C(4) 1.381(6)

C(3)-C(16) 1.512(6)
C(4)-C(5) 1.391(7)
C(4)-H(4) 0.9300
C(5)-C(14) 1.402(7)
C(7)-C(12) 1.388(7)
C(7)-C(8) 1.389(7)
C(8)-C(9) 1.380(7)
C(8)-H(8) 0.9300
C(9)-C(10) 1.383(8)
C(9)-H(9) 0.9300

C(10)-C(11) 1.386(7)
C(10)-H(10) 0.9300
C(11)-C(12) 1.390(7)
C(11)-H(11) 0.9300
C(12)-C(13) 1.488(7)
C(13)-O(2) 1.209(6)
C(13)-C(14) 1.496(7)
C(15)-O(4) 1.266(6)
C(16)-O(6) 1.236(6)
C(16)-O(5) 1.260(6)
O(7)-H(7A) 0.878(19)
O(7)-H(7B) 0.877(19)
O(8)-H(8A) 0.866(19)
O(8)-H(8B) 0.877(19)
O(9)-H(9A) 0.855(19)
O(9)-H(9B) 0.856(19)

O(10)-H(10A) 0.871(19)
O(10)-H(10B) 0.873(19)
O(11)-H(11A) 0.874(19)
O(11)-H(11B) 0.858(19)
O(12)-H(12A) 0.88(2)
O(12)-H(12B) 0.89(2)
O(13)-H(13A) 0.91(2)
O(13)-H(13B) 0.89(2)
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Table 8.28: Bond Angles [◦] for NiAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(5)-Ni(1)-O(8) 92.22(14)
O(10)-Ni(1)-O(8) 173.33(16)
O(5)-Ni(1)-O(7) 174.29(15)
O(10)-Ni(1)-O(7) 86.24(15)
O(8)-Ni(1)-O(7) 88.65(15)
O(5)-Ni(1)-O(11) 90.91(14)

O(10)-Ni(1)-O(11) 84.84(16)
O(8)-Ni(1)-O(11) 91.30(16)
O(7)-Ni(1)-O(11) 94.72(14)
O(5)-Ni(1)-O(9) 87.12(13)
O(10)-Ni(1)-O(9) 90.13(15)
O(8)-Ni(1)-O(9) 93.92(15)
O(7)-Ni(1)-O(9) 87.19(14)
O(11)-Ni(1)-O(9) 174.49(14)
C(2)-C(1)-C(14) 120.1(5)
C(2)-C(1)-H(1) 120.0
C(14)-C(1)-H(1) 120.0
C(1)-C(2)-C(3) 120.1(4)

C(1)-C(2)-C(15) 117.2(4)
C(3)-C(2)-C(15) 122.5(4)
C(4)-C(3)-C(2) 119.4(4)

C(4)-C(3)-C(16) 120.0(4)
C(2)-C(3)-C(16) 120.5(4)
C(3)-C(4)-C(5) 121.3(5)
C(3)-C(4)-H(4) 119.3
C(5)-C(4)-H(4) 119.3
C(4)-C(5)-C(14) 118.7(4)
C(4)-C(5)-C(6) 120.5(5)

C(14)-C(5)-C(6) 120.8(4)
C(12)-C(7)-C(8) 119.9(5)
C(12)-C(7)-C(6) 120.6(4)
C(8)-C(7)-C(6) 119.4(5)
C(9)-C(8)-C(7) 119.6(5)
C(9)-C(8)-H(8) 120.2
C(7)-C(8)-H(8) 120.2
C(8)-C(9)-C(10) 120.8(5)
C(8)-C(9)-H(9) 119.6
C(10)-C(9)-H(9) 119.6
C(9)-C(10)-C(11) 119.8(5)
C(9)-C(10)-H(10) 120.1

C(11)-C(10)-H(10) 120.1
C(10)-C(11)-C(12) 119.7(5)
C(10)-C(11)-H(11) 120.2
C(12)-C(11)-H(11) 120.2
C(7)-C(12)-C(11) 120.2(4)
C(7)-C(12)-C(13) 121.8(4)
C(11)-C(12)-C(13) 118.0(5)
O(2)-C(13)-C(12) 121.9(5)
O(2)-C(13)-C(14) 121.1(4)
C(12)-C(13)-C(14) 117.0(5)
C(1)-C(14)-C(5) 120.4(4)

C(1)-C(14)-C(13) 118.5(5)
C(5)-C(14)-C(13) 121.1(4)
O(3)-C(15)-O(4) 125.0(5)
O(3)-C(15)-C(2) 118.3(4)
O(4)-C(15)-C(2) 116.5(5)
O(6)-C(16)-O(5) 125.9(4)
O(6)-C(16)-C(3) 118.0(4)
O(5)-C(16)-C(3) 116.0(5)
C(16)-O(5)-Ni(1) 126.1(3)
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Table 8.29: Continued: Bond Angles [◦] for NiAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ni(1)-O(7)-H(7A) 132(3)
Ni(1)-O(7)-H(7B) 127(3)
H(7A)-O(7)-H(7B) 89(2)
Ni(1)-O(8)-H(8A) 104(4)
Ni(1)-O(8)-H(8B) 114(4)
H(8A)-O(8)-H(8B) 88(2)
Ni(1)-O(9)-H(9A) 107(3)
Ni(1)-O(9)-H(9B) 119(4)
H(9A)-O(9)-H(9B) 93(2)

Ni(1)-O(10)-H(10A) 127(4)
Ni(1)-O(10)-H(10B) 120(4)

H(10A)-O(10)-H(10B) 90(2)
Ni(1)-O(11)-H(11A) 119(3)
Ni(1)-O(11)-H(11B) 123(4)

H(11A)-O(11)-H(11B) 90(2)
H(12A)-O(12)-H(12B) 87(2)
H(13A)-O(13)-H(13B) 84(2)
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8.5 ZnAQDC structure details

Figure 8.5: Asymmetric unit with atom numbers for ZnAQDC.
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Table 8.30: Crystal data and structure refinement for ZnAQDC.
Parameter Value

Empirical formula C16H14O10Zn
Formula weight 431.64 g·mol−1

Collection Temperature 298(2) K
Wavelength 0.71073Å
Crystal system Triclinic
Space Group P 1̄
Unit cell dimensions

a 7.629(2)Å
b 7.843(2)Å
c 15.045(5)Å
α 91.409(6)◦

β 95.784(5)◦

γ 115.160(5)◦

Volume 808.4(4)Å3

Z 2
Calculated density 1.773 g/m3

Absorption coefficient 1.578 mm−1

F(000) 440
Crystal size 0.5×0.3×0.2 mm
Theta range for data collection 2.73◦ to 26.02◦

Limiting indices −9 ≤ h ≤ 9, −9 ≤ k ≤ 9, −18 ≤ l ≤ 17
Reflections collected / unique 6709 / 3124 [R(int) = 0.0977]
Data Completeness 97.8 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.969 and 0.572
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 3124 / 12 / 269
Goodness-of-fit on F 2 0.947
Final R indices [I>2sigma(I)] R1 = 0.0663, wR2 = 0.1036
R indices (all data) R1 = 0.1681, wR2 = 0.1345
Largest diff. peak and hole 0.532 and -0.490 e·Å−3
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Table 8.31: Crystal coordinates [Å] and equivalent isotropic displacement parame-
ters [Å2] for ZnAQDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Zn(1) 1.00224(13) 0.71567(12) 0.43583(6) 0.0321(3)
C(1) 0.9008(9) 0.8656(9) 0.8297(4) 0.0265(16)
H(1) 0.9023 0.9774 0.8528 0.032
C(2) 0.9614(9) 0.8605(8) 0.7463(4) 0.0231(15)
C(3) 0.9515(9) 0.6901(9) 0.7100(4) 0.0213(15)
C(4) 0.8839(9) 0.5326(8) 0.7589(4) 0.0237(16)
H(4) 0.8754 0.4186 0.7348 0.028
C(5) 0.8286(9) 0.5414(8) 0.8433(4) 0.0215(15)
C(6) 0.7657(9) 0.3700(9) 0.8928(5) 0.0278(17)
C(7) 0.7333(9) 0.3876(9) 0.9880(4) 0.0247(16)
C(8) 0.6905(9) 0.2335(10) 1.0390(5) 0.0341(18)
H(8) 0.6864 0.1217 1.0144 0.041
C(9) 0.6546(10) 0.2457(11) 1.1248(5) 0.046(2)
H(9) 0.6227 0.1414 1.1588 0.055
C(10) 0.6657(10) 0.4132(11) 1.1617(5) 0.043(2)
H(10) 0.6451 0.4215 1.2212 0.051
C(11) 0.7061(10) 0.5670(10) 1.1129(4) 0.0349(18)
H(11) 0.7094 0.6777 1.1385 0.042
C(12) 0.7425(9) 0.5566(9) 1.0243(4) 0.0257(16)
C(13) 0.7850(9) 0.7212(9) 0.9703(4) 0.0270(17)
C(14) 0.8382(9) 0.7101(9) 0.8794(4) 0.0227(15)
C(15) 1.0529(11) 1.0406(9) 0.6994(4) 0.0250(16)
C(16) 1.0076(9) 0.6701(9) 0.6195(4) 0.0277(17)
O(1) 0.7815(7) 0.8645(6) 1.0010(3) 0.0408(13)
O(2) 0.7409(7) 0.2174(6) 0.8583(3) 0.0422(13)
O(3) 1.2329(7) 1.1150(6) 0.7064(3) 0.0396(13)
O(4) 0.9402(6) 1.1011(6) 0.6594(3) 0.0331(12)
O(5) 0.9934(8) 0.7791(7) 0.5631(3) 0.0486(14)
O(6) 1.0715(7) 0.5510(6) 0.6052(3) 0.0426(13)
O(7) 1.2913(8) 0.7768(8) 0.4467(4) 0.0586(16)

H(7A) 1.368(9) 0.845(8) 0.408(3) 0.070
H(7B) 1.331(11) 0.884(6) 0.480(4) 0.070
O(8) 0.7033(8) 0.6485(7) 0.4203(3) 0.0468(14)

H(8A) 0.628(9) 0.538(4) 0.392(4) 0.056
H(8B) 0.706(10) 0.698(7) 0.368(2) 0.056
O(9) 0.5294(8) 0.0157(7) 0.6885(3) 0.0468(14)

H(9A) 0.429(6) 0.040(9) 0.697(4) 0.056
H(9B) 0.587(8) 0.079(9) 0.739(3) 0.056
O(10) 0.5388(7) 0.7237(6) 0.5788(4) 0.0462(14)

H(10A) 0.649(6) 0.782(8) 0.556(4) 0.055
H(10B) 0.579(9) 0.822(6) 0.618(3) 0.055
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Table 8.32: Anisotropic displacement parameters [Å2] for ZnAQDC. The
anisotropic displacement factor exponent takes the form −2π2[h2a∗2U11 + ... +
2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Zn(1) 0.0492(6) 0.0271(5) 0.0274(5) 0.0090(4) 0.0155(4) 0.0207(4)
C(1) 0.031(4) 0.022(4) 0.027(4) 0.002(3) 0.002(3) 0.011(3)
C(2) 0.020(4) 0.019(4) 0.026(4) 0.004(3) -0.002(3) 0.006(3)
C(3) 0.035(4) 0.025(4) 0.013(4) 0.006(3) 0.002(3) 0.022(3)
C(4) 0.028(4) 0.022(4) 0.022(4) -0.004(3) 0.003(3) 0.011(3)
C(5) 0.019(4) 0.021(4) 0.019(4) 0.003(3) 0.003(3) 0.002(3)
C(6) 0.020(4) 0.018(4) 0.043(5) 0.006(4) 0.005(3) 0.006(3)
C(7) 0.022(4) 0.027(4) 0.025(4) 0.011(3) 0.012(3) 0.008(3)
C(8) 0.032(4) 0.036(5) 0.033(5) 0.010(4) 0.001(4) 0.014(4)
C(9) 0.046(5) 0.045(6) 0.045(5) 0.034(4) 0.010(4) 0.015(4)

C(10) 0.036(5) 0.060(6) 0.024(4) 0.015(4) 0.003(4) 0.012(4)
C(11) 0.045(5) 0.045(5) 0.020(4) 0.004(4) 0.008(4) 0.022(4)
C(12) 0.022(4) 0.030(4) 0.024(4) -0.005(3) 0.003(3) 0.010(3)
C(13) 0.030(4) 0.029(4) 0.026(4) 0.001(3) 0.001(3) 0.017(4)
C(14) 0.027(4) 0.023(4) 0.018(4) -0.004(3) 0.003(3) 0.011(3)
C(15) 0.037(5) 0.026(4) 0.019(4) 0.009(3) 0.013(4) 0.018(4)
C(16) 0.026(4) 0.019(4) 0.032(4) 0.004(3) 0.009(3) 0.003(3)
O(1) 0.062(4) 0.035(3) 0.033(3) 0.003(2) 0.017(3) 0.025(3)
O(2) 0.067(4) 0.023(3) 0.036(3) 0.002(2) 0.012(3) 0.018(3)
O(3) 0.025(3) 0.038(3) 0.055(4) 0.019(3) 0.013(3) 0.010(3)
O(4) 0.034(3) 0.031(3) 0.046(3) 0.014(2) 0.011(2) 0.023(3)
O(5) 0.091(4) 0.052(3) 0.032(3) 0.015(2) 0.023(3) 0.054(3)
O(6) 0.059(4) 0.038(3) 0.042(3) 0.006(2) 0.028(3) 0.027(3)
O(7) 0.046(4) 0.077(4) 0.052(4) 0.039(3) 0.018(3) 0.022(3)
O(8) 0.050(4) 0.047(3) 0.049(4) 0.017(3) 0.022(3) 0.021(3)
O(9) 0.044(3) 0.059(4) 0.043(3) 0.003(3) 0.014(3) 0.026(3)

O(10) 0.037(3) 0.037(3) 0.057(4) 0.004(3) 0.007(3) 0.009(3)

Table 8.33: Symmetry operations used in the following tables for ZnAQDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,-y,-z’
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Table 8.34: Bond Lengths [Å] for ZnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Zn(1)-O(6) 1.984(5) 2
Zn(1)-O(4) 2.000(4) 2
Zn(1)-O(7) 2.036(6)
Zn(1)-O(8) 2.097(5)
C(1)-C(14) 1.377(8)
C(1)-C(2) 1.385(8)
C(1)-H(1) 0.9300
C(2)-C(3) 1.400(8)

C(2)-C(15) 1.514(8)
C(3)-C(4) 1.383(8)

C(3)-C(16) 1.492(8)
C(4)-C(5) 1.387(8)
C(4)-H(4) 0.9300
C(5)-C(14) 1.387(8)
C(5)-C(6) 1.471(8)
C(6)-O(2) 1.222(7)
C(6)-C(7) 1.491(8)
C(7)-C(8) 1.384(8)

C(7)-C(12) 1.392(8)
C(8)-C(9) 1.357(9)
C(8)-H(8) 0.9300
C(9)-C(10) 1.378(10)
C(9)-H(9) 0.9300

C(10)-C(11) 1.364(9)
C(10)-H(10) 0.9300
C(11)-C(12) 1.396(8)
C(11)-H(11) 0.9300
C(12)-C(13) 1.476(8)
C(13)-O(1) 1.217(7)
C(13)-C(14) 1.477(8)
C(15)-O(3) 1.234(7)
C(15)-O(4) 1.258(7)
C(16)-O(6) 1.247(7)
C(16)-O(5) 1.248(7)
O(4)-Zn(1) 2.000(4) 2
O(6)-Zn(1) 1.984(5) 2
O(7)-H(7A) 0.89(2)
O(7)-H(7B) 0.88(2)
O(8)-H(8A) 0.88(2)
O(8)-H(8B) 0.89(2)
O(9)-H(9A) 0.88(2)
O(9)-H(9B) 0.87(2)

O(10)-H(10A) 0.88(2)
O(10)-H(10B) 0.88(2)
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Table 8.35: Bond Angles [◦] for ZnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(6)-Zn(1)-O(7) 91.5(2) 2
O(4)-Zn(1)-O(7) 85.67(19) 2
O(5)-Zn(1)-O(8) 84.8(2)
O(6)-Zn(1)-O(8) 87.24(19) 2
O(4)-Zn(1)-O(8) 93.55(18) 2
O(7)-Zn(1)-O(8) 178.1(2)
C(14)-C(1)-C(2) 122.0(6)
C(14)-C(1)-H(1) 119.0
C(2)-C(1)-H(1) 119.0
C(1)-C(2)-C(3) 119.0(6)

C(1)-C(2)-C(15) 120.1(5)
C(3)-C(2)-C(15) 120.7(6)
C(4)-C(3)-C(2) 119.1(6)

C(4)-C(3)-C(16) 118.3(5)
C(2)-C(3)-C(16) 122.6(6)
C(3)-C(4)-C(5) 121.2(6)
C(3)-C(4)-H(4) 119.4
C(5)-C(4)-H(4) 119.4
C(4)-C(5)-C(14) 119.8(6)
C(4)-C(5)-C(6) 118.1(6)

C(14)-C(5)-C(6) 122.1(6)
O(2)-C(6)-C(5) 122.1(6)
O(2)-C(6)-C(7) 120.3(6)
C(5)-C(6)-C(7) 117.6(5)

C(8)-C(7)-C(12) 120.7(6)
C(8)-C(7)-C(6) 119.3(6)

C(12)-C(7)-C(6) 120.0(6)
C(9)-C(8)-C(7) 120.0(7)
C(9)-C(8)-H(8) 120.0
C(7)-C(8)-H(8) 120.0
C(8)-C(9)-C(10) 119.8(7)
C(8)-C(9)-H(9) 120.1

C(10)-C(9)-H(9) 120.1
C(11)-C(10)-C(9) 121.6(7)

C(11)-C(10)-H(10) 119.2
C(9)-C(10)-H(10) 119.2
C(10)-C(11)-C(12) 119.4(7)
C(10)-C(11)-H(11) 120.3
C(12)-C(11)-H(11) 120.3
C(7)-C(12)-C(11) 118.6(6)
C(7)-C(12)-C(13) 121.2(6)

C(11)-C(12)-C(13) 120.1(6)
O(1)-C(13)-C(12) 120.7(6)
O(1)-C(13)-C(14) 120.8(6)
C(12)-C(13)-C(14) 118.5(5)
C(1)-C(14)-C(5) 118.9(6)
C(1)-C(14)-C(13) 121.2(5)
C(5)-C(14)-C(13) 119.8(6)
O(3)-C(15)-O(4) 126.8(6)
O(3)-C(15)-C(2) 115.6(6)
O(4)-C(15)-C(2) 117.5(6)
O(6)-C(16)-O(5) 123.8(6)
O(6)-C(16)-C(3) 118.7(6)
O(5)-C(16)-C(3) 117.5(6)
C(15)-O(4)-Zn(1) 127.8(4) 2
C(16)-O(5)-Zn(1) 117.9(4)
C(16)-O(6)-Zn(1) 144.5(5) 2
Zn(1)-O(7)-H(7A) 122(5)
Zn(1)-O(7)-H(7B) 96(5)
H(7A)-O(7)-H(7B) 86(2)
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Table 8.36: Continued: Bond Angles [◦] for for ZnAQDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Zn(1)-O(8)-H(8A) 115(5)
Zn(1)-O(8)-H(8B) 94(5)
H(8A)-O(8)-H(8B) 88(2)
H(9A)-O(9)-H(9B) 88(2)

H(10A)-O(10)-H(10B) 87(2)

244



8.6 CaFDC structure details

Figure 8.6: Asymmetric unit with atom numbers for CaFDC.
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Table 8.37: Crystal data and structure refinement for CaFDC.
Parameter Value

Empirical formula C30H20Ca2O14

Formula weight 684.64 g·mol−1

Collection Temperature 100(2) K
Wavelength 0.77490Å
Crystal system Monoclinic
Space Group P2(1)
Unit cell dimensions

a 7.5411(16)Å
b 6.6118(14)Å
c 27.999(6)Å
α 90◦

β 97.053(3)◦

γ 90◦

Volume 1385.4(5)Å3

Z 2
Calculated density 1.641 g/m3

Absorption coefficient 0.613 mm−1

F(000) 704
Crystal size 0.16×0.06×0.01 mm
Theta range for data collection 2.97◦ to 29.36◦

Limiting indices −9 ≤ h ≤ 9, −8 ≤ k ≤ 8, −35 ≤ l ≤ 35
Reflections collected / unique 15211 / 5824 [R(int) = 0.0414]
Data Completeness 99.1%
Absorption correction Semi-empirical with SADABS
Max. and min. transmission 0.99 and 0.91
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 5824 / 142 / 440
Goodness-of-fit on F 2 1.046
Final R indices [I>2sigma(I)] R1 = 0.0818, wR2 = 0.2182
R indices (all data) R1 = 0.0856, wR2 = 0.2220
Absolute structure parameter 0.09(8)
Extinction coefficient 0
Largest diff. peak and hole 1.770 and -0.923 e·Å−3
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Table 8.38: Crystal coordinates [Å] and equivalent isotropic displacement param-
eters [Å2] for CaFDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Ca(1) 0.2290(2) 0.3608(3) 0.99531(6) 0.0125(4)
Ca(2) -0.2537(2) 0.2541(3) 0.50212(6) 0.0117(3)
C(1) 0.4551(15) 0.5012(14) 1.4238(3) 0.0183(19)
C(2) 0.0423(11) 0.0077(13) 0.5755(3) 0.0104(14)
C(3) 0.0462(12) 0.6166(14) 1.0753(3) 0.0118(14)
C(4) 0.4567(14) 0.1064(16) 0.9242(3) 0.0180(17)
C(5) 0.3242(10) 0.7477(12) 1.2488(3) 0.0099(14)
C(6) 0.1248(10) -0.0172(12) 0.6277(3) 0.0090(13)
C(7) 0.3768(11) 0.4753(13) 1.3712(3) 0.0115(14)
C(8) 0.4531(9) -0.1419(13) 0.8563(3) 0.0112(14)

H(22A) 0.5152 -0.2343 0.8784 0.013
C(9) 0.3214(12) -0.0590(14) 0.7762(3) 0.0150(15)

C(10) 0.3149(11) 0.1900(12) 0.8410(3) 0.0124(15)
H(24A) 0.2829 0.3192 0.8520 0.015
C(11) 0.0566(10) 0.3594(13) 1.1420(3) 0.0123(13)

H(25A) -0.0018 0.2664 1.1194 0.015
C(12) 0.1818(11) 0.4397(14) 1.2227(3) 0.0137(15)
C(13) 0.0977(10) 0.5551(13) 1.1267(3) 0.0108(13)
C(14) 0.1725(10) 0.2452(12) 0.7517(3) 0.0109(14)
C(15) 0.1012(13) 0.3000(12) 1.1903(3) 0.0167(17)

H(29A) 0.0764 0.1669 1.2004 0.020
C(16) 0.1837(11) 0.6988(12) 1.1592(3) 0.0119(15)

H(30A) 0.2107 0.8312 1.1491 0.014
C(17) 0.3864(10) 0.6368(12) 1.3392(3) 0.0113(13)

H(33A) 0.4356 0.7631 1.3502 0.014
C(18) 0.1055(10) 0.1379(12) 0.6608(3) 0.0099(12)

H(34A) 0.0461 0.2600 0.6506 0.012
C(19) 0.2281(10) 0.2646(13) 1.3065(3) 0.0133(15)

H(35A) 0.1721 0.1410 1.2960 0.016
C(20) 0.2607(11) -0.0736(13) 0.7241(3) 0.0110(14)
C(21) 0.2407(11) 0.4240(13) 1.2749(3) 0.0111(14)
C(22) 0.3020(11) 0.2929(12) 1.3551(3) 0.0133(16)

H(38A) 0.3001 0.1839 1.3771 0.016
C(23) 0.4077(12) -0.2000(11) 0.8078(3) 0.0166(17)

H(39A) 0.4353 -0.3313 0.7971 0.020
C(24) 0.1739(11) 0.1112(13) 0.7087(3) 0.0140(16)
C(25) 0.2762(10) -0.2315(13) 0.6918(3) 0.0134(15)

H(41A) 0.3319 -0.3556 0.7022 0.016
C(26) 0.2712(11) 0.1333(13) 0.7931(3) 0.0118(15)
C(27) 0.2064(10) -0.2005(12) 0.6432(3) 0.0145(17)

H(43A) 0.2147 -0.3060 0.6206 0.017
C(28) 0.2269(11) 0.6367(13) 1.2069(3) 0.0128(16)
C(29) 0.3227(10) 0.6085(12) 1.2911(3) 0.0114(15)
C(30) 0.4081(10) 0.0493(13) 0.8724(3) 0.0110(15)
H(1A) -0.342(10) -0.143(10) 0.445(3) 0.013
H(3A) -0.302(8) 0.687(7) 0.531(3) 0.013
H(7A) 0.219(6) 0.796(3) 0.9798(12) 0.013
H(9A) 0.191(7) -0.022(10) 1.044(3) 0.013
H(1B) -0.240(11) -0.143(10) 0.481(2) 0.013
H(3B) -0.143(8) 0.664(10) 0.543(3) 0.013
H(7B) 0.347(4) 0.737(5) 0.959(2) 0.013
H(9B) 0.333(7) -0.046(8) 1.031(2) 0.013
O(1) -0.2619(10) -0.0495(10) 0.4567(2) 0.0215(14)
O(2) 0.0449(9) -0.1465(11) 0.54797(18) 0.0190(12)
O(3) -0.2323(9) 0.5764(10) 0.5352(2) 0.0182(13)
O(4) -0.0197(8) 0.1760(9) 0.5621(2) 0.0135(13)
O(5) 0.4979(9) 0.3461(11) 1.4486(2) 0.0188(13)
O(6) 0.5252(7) -0.0320(9) 0.9534(2) 0.0092(11)
O(7) 0.2398(8) 0.6886(9) 0.9618(2) 0.0164(13)
O(8) 0.4244(7) 0.2815(9) 0.93834(19) 0.0109(11)
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Table 8.39: Continued: Crystal coordinates [Å] and equivalent isotropic displace-
ment parameters [Å2] for CaFDC. Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

x y z Ueq

O(9) 0.2850(8) 0.0640(9) 1.0438(2) 0.0150(13)
O(10) 0.4564(9) 0.6791(10) 1.4408(2) 0.0180(14)
O(11) 0.0130(8) 0.8079(9) 1.0661(2) 0.0158(13)
O(12) 0.0180(9) 0.4852(9) 1.0431(2) 0.0162(13)
O(13) 0.1032(8) 0.4144(8) 0.7525(2) 0.0153(12)
O(14) 0.3917(8) 0.9164(9) 1.2483(2) 0.0151(12)
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Table 8.40: Anisotropic displacement parameters [Å2] for CaFDC. The anisotropic
displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+ 2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Ca(1) 0.0131(7) 0.0082(8) 0.0154(7) -0.0020(6) -0.0021(6) -0.0017(7)
Ca(2) 0.0104(6) 0.0073(7) 0.0160(7) 0.0011(6) -0.0036(6) 0.0024(6)
C(1) 0.036(6) 0.010(4) 0.010(3) 0.002(3) 0.005(4) 0.003(4)
C(2) 0.008(2) 0.011(2) 0.0118(16) 0.0000(16) -0.0025(16) 0.0006(17)
C(3) 0.011(2) 0.012(2) 0.0129(18) 0.0022(16) 0.0024(17) 0.0037(18)
C(4) 0.025(4) 0.017(4) 0.013(4) 0.002(3) 0.006(4) 0.001(4)
C(5) 0.008(2) 0.011(2) 0.012(2) -0.0002(17) 0.0035(16) -0.0005(17)
C(6) 0.007(2) 0.009(2) 0.0105(17) -0.0007(15) 0.0009(16) -0.0020(16)
C(7) 0.011(2) 0.010(2) 0.013(2) 0.0007(16) 0.0005(17) 0.0016(17)
C(8) 0.008(3) 0.011(3) 0.015(3) 0.000(3) 0.002(3) 0.004(3)
C(9) 0.017(2) 0.013(2) 0.0141(19) -0.0022(18) 0.0007(17) 0.0013(18)

C(10) 0.013(4) 0.006(3) 0.019(4) 0.000(3) 0.005(3) -0.002(3)
C(11) 0.012(2) 0.0115(18) 0.0134(19) 0.0019(15) 0.0024(16) -0.0010(17)
C(12) 0.016(2) 0.012(2) 0.0133(19) 0.0022(17) 0.0003(17) 0.0005(18)
C(13) 0.011(2) 0.0100(18) 0.0112(18) 0.0006(16) 0.0001(16) -0.0015(16)
C(14) 0.007(3) 0.008(4) 0.018(4) 0.000(3) 0.003(3) 0.001(3)
C(15) 0.024(4) 0.011(4) 0.015(4) -0.003(3) -0.001(3) -0.001(3)
C(16) 0.016(4) 0.006(3) 0.014(4) -0.004(3) 0.005(3) 0.001(3)
C(17) 0.011(2) 0.011(2) 0.013(2) 0.0004(16) 0.0024(17) -0.0005(17)
C(18) 0.009(2) 0.010(2) 0.0113(17) -0.0004(15) 0.0027(16) 0.0005(17)
C(19) 0.014(3) 0.009(4) 0.016(4) -0.003(3) 0.000(3) 0.003(3)
C(20) 0.012(2) 0.009(2) 0.0121(18) 0.0012(17) 0.0021(16) 0.0037(17)
C(21) 0.012(2) 0.009(2) 0.0119(18) -0.0009(17) 0.0020(16) -0.0017(17)
C(22) 0.022(4) 0.009(4) 0.008(3) 0.001(3) 0.001(3) 0.005(3)
C(23) 0.023(4) 0.010(4) 0.016(4) 0.003(3) -0.003(3) 0.003(3)
C(24) 0.019(4) 0.007(4) 0.016(4) -0.001(3) 0.004(3) 0.006(3)
C(25) 0.015(3) 0.009(4) 0.016(4) 0.002(3) 0.000(3) -0.005(3)
C(26) 0.013(4) 0.007(4) 0.016(4) -0.002(3) 0.001(3) 0.004(3)
C(27) 0.014(4) 0.012(4) 0.017(4) 0.001(3) -0.002(3) -0.006(3)
C(28) 0.014(2) 0.011(2) 0.013(2) -0.0011(17) 0.0012(17) -0.0013(17)
C(29) 0.012(4) 0.006(3) 0.017(4) 0.001(3) 0.004(3) -0.001(3)
C(30) 0.011(2) 0.010(2) 0.011(2) -0.0001(17) -0.0013(17) 0.0021(17)
O(1) 0.024(3) 0.011(3) 0.029(3) -0.004(3) 0.002(3) 0.000(3)
O(2) 0.032(3) 0.014(3) 0.011(2) -0.003(3) 0.004(2) 0.004(3)
O(3) 0.0178(19) 0.015(2) 0.0211(19) -0.0013(16) 0.0019(16) 0.0031(17)
O(4) 0.018(3) 0.007(3) 0.014(3) 0.000(2) -0.005(2) 0.004(2)
O(5) 0.030(3) 0.008(3) 0.018(3) 0.004(3) 0.001(3) 0.003(3)
O(6) 0.0045(17) 0.0107(18) 0.0115(18) 0.0004(15) -0.0034(14) 0.0022(14)
O(7) 0.011(3) 0.005(3) 0.032(3) 0.002(2) 0.000(3) 0.002(2)
O(8) 0.0098(18) 0.0084(18) 0.0140(17) -0.0027(15) 0.0002(14) 0.0046(15)
O(9) 0.0116(19) 0.0134(19) 0.0201(19) -0.0009(15) 0.0018(15) -0.0021(16)
O(10) 0.023(3) 0.016(3) 0.013(3) -0.007(2) -0.002(3) -0.005(3)
O(11) 0.016(3) 0.010(3) 0.021(3) 0.005(2) 0.003(2) 0.000(2)
O(12) 0.020(3) 0.013(3) 0.017(3) -0.002(2) 0.007(3) -0.007(3)
O(13) 0.016(3) 0.008(3) 0.021(3) 0.002(2) 0.003(2) -0.001(2)
O(14) 0.013(3) 0.011(3) 0.022(3) -0.004(2) 0.003(2) -0.003(2)

Table 8.41: Symmetry operations used in the following tables for CaFDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,y+1/2,-z’
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Table 8.42: Bond Lengths [Å] for CaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ca(1)-O(12) 2.349(7)
Ca(1)-O(8) 2.360(6)
Ca(1)-O(7) 2.367(7)

Ca(1)-O(11) 2.374(6) 2
Ca(1)-O(9) 2.394(6)
Ca(1)-C(3) 3.133(8) 2
Ca(2)-O(3) 2.321(7)
Ca(2)-O(2) 2.328(7) 2
Ca(2)-O(5) 2.332(6) 1
Ca(2)-O(4) 2.338(6)
Ca(2)-O(1) 2.372(7)

Ca(2)-O(10) 2.395(7) 2
Ca(2)-C(1) 3.191(10) 2

Ca(2)-H(1B) 2.70(8)
C(1)-O(5) 1.258(11)

C(1)-O(10) 1.269(11)
C(1)-C(7) 1.528(11)
C(1)-Ca(2) 3.191(10) 2
C(2)-O(4) 1.247(10)
C(2)-O(2) 1.280(11)
C(2)-C(6) 1.525(10)

C(3)-O(12) 1.253(11)
C(3)-O(11) 1.308(11)
C(3)-C(13) 1.499(10)
C(3)-Ca(1) 3.133(8) 2
C(4)-O(8) 1.257(12)
C(4)-O(6) 1.291(11)
C(4)-C(30) 1.499(11)
C(5)-O(14) 1.227(10)
C(5)-C(28) 1.497(11)
C(5)-C(29) 1.501(10)
C(6)-C(18) 1.402(11)
C(6)-C(27) 1.404(11)
C(7)-C(22) 1.383(12)
C(7)-C(17) 1.401(11)
C(8)-C(30) 1.398(11)
C(8)-C(23) 1.412(10)

C(8)-H(22A) 0.9500
C(9)-C(23) 1.391(11)
C(9)-C(26) 1.423(12)
C(9)-C(20) 1.479(11)

C(10)-C(26) 1.390(11)
C(10)-C(30) 1.409(11)

C(10)-H(24A) 0.9500
C(11)-C(15) 1.409(10)
C(11)-C(13) 1.409(12)

C(11)-H(25A) 0.9500
C(12)-C(15) 1.382(11)
C(12)-C(28) 1.431(12)
C(12)-C(21) 1.478(11)
C(13)-C(16) 1.417(11)
C(14)-O(13) 1.236(10)
C(14)-C(24) 1.495(11)
C(14)-C(26) 1.496(11)

C(15)-H(29A) 0.9500
C(16)-C(28) 1.396(11)

C(16)-H(30A) 0.9500
C(17)-C(29) 1.385(11)

C(17)-H(33A) 0.9500
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Table 8.43: Continued: Bond Lengths [Å].
Angle Symm. op. atom 1 Symm. op. atom 3

C(18)-C(24) 1.387(11)
C(18)-H(34A) 0.9500
C(19)-C(21) 1.387(12)
C(19)-C(22) 1.417(10)

C(19)-H(35A) 0.9500
C(20)-C(25) 1.395(12)
C(20)-C(24) 1.428(11)
C(21)-C(29) 1.417(11)

C(22)-H(38A) 0.9500
C(23)-H(39A) 0.9500
C(25)-C(27) 1.412(11)

C(25)-H(41A) 0.9500
C(27)-H(43A) 0.9500
O(1)-H(1A) 0.90(2)
O(1)-H(1B) 0.92(2)
O(2)-Ca(2) 2.328(7) 2
O(3)-H(3A) 0.90(2)
O(3)-H(3B) 0.90(2)
O(5)-Ca(2) 2.332(6) 1
O(6)-Ca(1) 2.313(5) 2
O(7)-H(7A) 0.894(19)
O(7)-H(7B) 0.886(19)
O(9)-H(9A) 0.91(2)
O(9)-H(9B) 0.91(2)
O(10)-Ca(2) 2.395(7) 2
O(11)-Ca(1) 2.374(6) 2
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Table 8.44: Bond Angles [◦] for CaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(12)-Ca(1)-O(7) 87.9(2)
O(8)-Ca(1)-O(7) 83.2(2)

O(6)-Ca(1)-O(11) 168.9(2) 2 2
O(12)-Ca(1)-O(11) 87.1(2) 2
O(8)-Ca(1)-O(11) 88.1(2) 2
O(7)-Ca(1)-O(11) 84.8(2) 2
O(6)-Ca(1)-O(9) 80.0(2) 2

O(12)-Ca(1)-O(9) 92.8(2)
O(8)-Ca(1)-O(9) 96.9(2)
O(7)-Ca(1)-O(9) 164.4(2)

O(11)-Ca(1)-O(9) 110.8(2) 2
O(6)-Ca(1)-C(3) 165.5(2) 2 2

O(12)-Ca(1)-C(3) 95.6(2) 2
O(8)-Ca(1)-C(3) 83.0(2) 2
O(7)-Ca(1)-C(3) 105.9(2) 2

O(11)-Ca(1)-C(3) 22.5(2) 2 2
O(9)-Ca(1)-C(3) 89.6(2) 2
O(3)-Ca(2)-O(2) 87.8(3) 2
O(3)-Ca(2)-O(5) 91.6(2) 1
O(2)-Ca(2)-O(5) 95.1(2) 2 1
O(3)-Ca(2)-O(4) 84.7(2)
O(2)-Ca(2)-O(4) 89.3(2) 2
O(5)-Ca(2)-O(4) 174.1(2) 1
O(3)-Ca(2)-O(1) 170.5(3)
O(2)-Ca(2)-O(1) 83.8(3) 2
O(5)-Ca(2)-O(1) 84.8(2) 1
O(4)-Ca(2)-O(1) 99.5(2)

O(3)-Ca(2)-O(10) 86.7(2) 2
O(2)-Ca(2)-O(10) 174.1(2) 2 2
O(5)-Ca(2)-O(10) 87.4(2) 1 2
O(4)-Ca(2)-O(10) 87.9(2) 2
O(1)-Ca(2)-O(10) 101.8(3) 2
O(3)-Ca(2)-C(1) 103.7(2) 2
O(2)-Ca(2)-C(1) 162.0(3) 2 2
O(5)-Ca(2)-C(1) 98.4(3) 1 2
O(4)-Ca(2)-C(1) 78.2(2) 2
O(1)-Ca(2)-C(1) 85.5(2) 2

O(10)-Ca(2)-C(1) 20.6(2) 2 2
O(3)-Ca(2)-H(1B) 168.3(10)
O(2)-Ca(2)-H(1B) 95.4(16) 2
O(5)-Ca(2)-H(1B) 99.3(13) 1
O(4)-Ca(2)-H(1B) 84.1(12)
O(1)-Ca(2)-H(1B) 19.5(10)

O(10)-Ca(2)-H(1B) 89.5(16) 2
C(1)-Ca(2)-H(1B) 70.6(15) 2
O(5)-C(1)-O(10) 123.9(8)
O(5)-C(1)-C(7) 118.9(8)
O(5)-C(1)-Ca(2) 100.3(5) 2
C(7)-C(1)-Ca(2) 121.8(6) 2
O(4)-C(2)-O(2) 124.1(7)
O(4)-C(2)-C(6) 118.7(7)
O(2)-C(2)-C(6) 117.2(7)

O(12)-C(3)-O(11) 121.1(7)
O(12)-C(3)-C(13) 120.3(8)
O(11)-C(3)-C(13) 118.2(7)
O(12)-C(3)-Ca(1) 82.1(5) 2
C(13)-C(3)-Ca(1) 145.0(6) 2
O(8)-C(4)-O(6) 122.1(8)
O(8)-C(4)-C(30) 120.2(8)
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Table 8.45: Continued: Bond Angles [◦] for CaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(6)-C(4)-C(30) 117.7(8)
O(14)-C(5)-C(28) 127.0(8)
O(14)-C(5)-C(29) 127.5(7)
C(28)-C(5)-C(29) 105.5(7)
C(18)-C(6)-C(27) 120.3(7)
C(18)-C(6)-C(2) 119.4(7)
C(27)-C(6)-C(2) 120.1(7)

C(22)-C(7)-C(17) 120.5(7)
C(22)-C(7)-C(1) 120.4(7)
C(17)-C(7)-C(1) 119.1(7)

C(30)-C(8)-C(23) 121.1(7)
C(30)-C(8)-H(22A) 119.5
C(23)-C(8)-H(22A) 119.5
C(23)-C(9)-C(26) 120.7(7)
C(23)-C(9)-C(20) 130.4(8)
C(26)-C(9)-C(20) 108.9(7)
C(26)-C(10)-C(30) 117.7(8)

C(26)-C(10)-H(24A) 121.1
C(30)-C(10)-H(24A) 121.1
C(15)-C(11)-C(13) 120.8(7)

C(15)-C(11)-H(25A) 119.6
C(13)-C(11)-H(25A) 119.6
C(15)-C(12)-C(28) 120.4(7)
C(15)-C(12)-C(21) 131.1(8)
C(28)-C(12)-C(21) 108.5(7)
C(11)-C(13)-C(16) 121.4(7)
C(11)-C(13)-C(3) 120.0(7)
C(16)-C(13)-C(3) 118.6(8)

O(13)-C(14)-C(24) 126.6(7)
O(13)-C(14)-C(26) 127.1(8)
C(24)-C(14)-C(26) 106.2(7)
C(12)-C(15)-C(11) 118.6(8)

C(12)-C(15)-H(29A) 120.7
C(11)-C(15)-H(29A) 120.7
C(28)-C(16)-C(13) 116.8(8)

C(28)-C(16)-H(30A) 121.6
C(13)-C(16)-H(30A) 121.6

C(29)-C(17)-C(7) 118.6(7)
C(29)-C(17)-H(33A) 120.7
C(7)-C(17)-H(33A) 120.7
C(24)-C(18)-C(6) 119.3(7)

C(24)-C(18)-H(34A) 120.4
C(6)-C(18)-H(34A) 120.4
C(21)-C(19)-C(22) 117.5(8)

C(21)-C(19)-H(35A) 121.2
C(22)-C(19)-H(35A) 121.2
C(25)-C(20)-C(24) 121.2(7)
C(25)-C(20)-C(9) 130.4(8)
C(24)-C(20)-C(9) 108.4(7)
C(19)-C(21)-C(29) 120.8(7)
C(19)-C(21)-C(12) 130.4(8)
C(29)-C(21)-C(12) 108.8(7)
C(7)-C(22)-C(19) 121.6(8)

C(7)-C(22)-H(38A) 119.2
C(19)-C(22)-H(38A) 119.2

C(9)-C(23)-C(8) 117.9(8)
C(9)-C(23)-H(39A) 121.0
C(8)-C(23)-H(39A) 121.0
C(18)-C(24)-C(20) 120.2(7)
C(18)-C(24)-C(14) 131.6(7)
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Table 8.46: Continued: Bond Angles [◦] for CaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(20)-C(24)-C(14) 108.2(7)
C(20)-C(25)-C(27) 117.7(8)

C(20)-C(25)-H(41A) 121.2
C(27)-C(25)-H(41A) 121.2

C(10)-C(26)-C(9) 121.3(7)
C(10)-C(26)-C(14) 130.6(8)
C(9)-C(26)-C(14) 108.1(7)
C(6)-C(27)-C(25) 121.4(8)

C(6)-C(27)-H(43A) 119.3
C(25)-C(27)-H(43A) 119.3
C(16)-C(28)-C(12) 121.9(7)
C(16)-C(28)-C(5) 129.7(8)
C(12)-C(28)-C(5) 108.4(7)

C(17)-C(29)-C(21) 120.8(7)
C(17)-C(29)-C(5) 130.5(7)
C(21)-C(29)-C(5) 108.7(7)
C(8)-C(30)-C(10) 121.2(7)
C(8)-C(30)-C(4) 120.0(7)

C(10)-C(30)-C(4) 118.8(8)
Ca(2)-O(1)-H(1A) 139(6)
Ca(2)-O(1)-H(1B) 101(6)
H(1A)-O(1)-H(1B) 82(4)
C(2)-O(2)-Ca(2) 130.5(6) 2

Ca(2)-O(3)-H(3A) 133(6)
Ca(2)-O(3)-H(3B) 135(6)
H(3A)-O(3)-H(3B) 85(4)
C(2)-O(4)-Ca(2) 129.5(5)
C(1)-O(5)-Ca(2) 134.3(7) 1
C(4)-O(6)-Ca(1) 147.0(6) 2

Ca(1)-O(7)-H(7A) 119(2)
Ca(1)-O(7)-H(7B) 117(2)
H(7A)-O(7)-H(7B) 90(3)
C(4)-O(8)-Ca(1) 125.4(6)

Ca(1)-O(9)-H(9A) 116(6)
Ca(1)-O(9)-H(9B) 119(5)
H(9A)-O(9)-H(9B) 81(3)
C(1)-O(10)-Ca(2) 117.9(6) 2
C(3)-O(11)-Ca(1) 113.4(5) 2
C(3)-O(12)-Ca(1) 125.9(6)
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8.7 SrFDC structure details

Figure 8.7: Asymmetric unit with atom numbers for SrFDC.
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Table 8.47: Crystal data and structure refinement for SrFDC.
Parameter Value

Empirical formula C30H26O17Sr2
Formula weight 833.75 g·mol−1

Collection Temperature 298(2) K
Wavelength 0.71073Å
Crystal system Triclinic
Space Group P 1̄
Unit cell dimensions

a 8.578(2)Å
b 11.836(3)Å
c 15.626(4)Å
α 72.437(4)◦

β 78.722(5)◦

γ 85.437(4)◦

Volume 1483.1(7)Å3

Z 2
Calculated density 1.867 g/m3

Absorption coefficient 3.683 mm−1

F(000) 836
Crystal size 3×.1×.05 mm
Theta range for data collection 2.84◦ to 26.02◦

Limiting indices −10 ≤ h ≤ 10, −14 ≤ k ≤ 14, −19 ≤ l ≤ 18
Reflections collected / unique 12487 / 5769 [R(int) = 0.0618]
Data Completeness 98.4%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission .832 and .588
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 5769 / 21 / 487
Goodness-of-fit on F 2 1.029
Final R indices [I>2sigma(I)] R1 = 0.0523, wR2 = 0.1145
R indices (all data) R1 = 0.0932, wR2 = 0.1345
Largest diff. peak and hole 1.510 and -0.526 e·Å−3
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Table 8.48: Crystal coordinates [Å] and equivalent isotropic displacement param-
eters [Å2] for SrFDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Sr(1) 0.75784(6) 0.59240(4) -0.01243(4) 0.02178(16)
Sr(2) 0.48891(6) 0.83117(4) 0.08721(3) 0.02028(16)
C(1) 0.1211(6) 0.3919(5) 0.6996(4) 0.0255(13)
H(1) 0.1436 0.4058 0.7514 0.031
C(2) 0.2095(7) 0.4485(5) 0.6150(4) 0.0261(14)
H(2) 0.2861 0.5032 0.6087 0.031
C(3) 0.1789(6) 0.4200(4) 0.5403(4) 0.0208(12)
C(4) 0.2536(6) 0.4628(4) 0.4439(4) 0.0215(13)
C(5) 0.3745(6) 0.5416(5) 0.4007(4) 0.0235(13)
H(5) 0.4203 0.5799 0.4333 0.028
C(6) 0.4265(7) 0.5626(5) 0.3074(4) 0.0248(13)
H(6) 0.5066 0.6167 0.2774 0.030
C(7) 0.3619(6) 0.5049(4) 0.2580(4) 0.0197(12)
C(8) 0.2383(7) 0.4257(4) 0.3017(4) 0.0235(13)
H(8) 0.1922 0.3877 0.2690 0.028
C(9) 0.1865(6) 0.4054(4) 0.3936(4) 0.0229(13)

C(10) 0.0600(7) 0.3275(5) 0.4581(4) 0.0224(13)
C(11) 0.0603(7) 0.3403(5) 0.5499(4) 0.0230(13)
C(12) -0.0306(7) 0.2890(5) 0.6336(4) 0.0255(13)
H(12) -0.1111 0.2376 0.6394 0.031
C(14) -0.0003(6) 0.3151(4) 0.7094(4) 0.0209(12)
C(15) -0.1008(7) 0.2645(4) 0.8017(4) 0.0221(13)
C(16) 0.4250(6) 0.5275(4) 0.1579(4) 0.0210(12)
C(18) 0.6212(7) 0.8983(4) -0.2241(4) 0.0216(12)
C(19) 0.7188(7) 0.9908(5) -0.2790(4) 0.0301(14)
H(19) 0.7583 1.0403 -0.2524 0.036
C(20) 0.7584(7) 1.0109(5) -0.3729(4) 0.0287(14)
H(20) 0.8270 1.0710 -0.4091 0.034
C(21) 0.6930(7) 0.9390(4) -0.4106(4) 0.0216(13)
C(22) 0.7095(7) 0.9399(4) -0.5078(4) 0.0219(13)
C(23) 0.7996(7) 1.0100(5) -0.5859(4) 0.0314(15)
H(23) 0.8635 1.0683 -0.5833 0.038
C(24) 0.7927(7) 0.9912(5) -0.6688(4) 0.0286(14)
H(24) 0.8563 1.0357 -0.7217 0.034
C(25) 0.6918(7) 0.9066(5) -0.6747(4) 0.0244(13)
C(26) 0.6001(7) 0.8386(4) -0.5949(4) 0.0217(13)
H(26) 0.5314 0.7830 -0.5972 0.026
C(27) 0.6115(6) 0.8540(4) -0.5125(4) 0.0219(13)
C(28) 0.5269(7) 0.7940(5) -0.4177(4) 0.0237(13)
C(29) 0.5874(6) 0.8510(5) -0.3569(4) 0.0217(12)
C(30) 0.5541(7) 0.8267(5) -0.2640(4) 0.0242(13)
H(30) 0.4887 0.7644 -0.2281 0.029
C(31) 0.5912(6) 0.8732(4) -0.1213(4) 0.0198(12)
C(32) 0.6782(7) 0.8955(5) -0.7654(4) 0.0284(14)
O(1) -0.0293(5) 0.2656(4) 0.4400(3) 0.0362(11)
O(2) 0.5306(5) 0.6046(3) 0.1200(3) 0.0266(9)
O(3) 0.3705(5) 0.4685(4) 0.1163(3) 0.0324(10)
O(4) -0.2202(5) 0.2075(3) 0.8066(3) 0.0298(10)
O(5) -0.0573(5) 0.2799(3) 0.8704(3) 0.0321(10)
O(6) 0.4268(5) 0.7191(4) -0.3952(3) 0.0358(11)
O(7) 0.5885(5) 0.9586(3) -0.0884(2) 0.0249(9)
O(8) 0.5714(5) 0.7677(3) -0.0724(3) 0.0301(10)
O(9) 0.5839(5) 0.8223(3) -0.7682(3) 0.0318(10)

O(10) 0.7677(5) 0.9579(4) -0.8357(3) 0.0426(12)
O(11) 0.7957(5) 0.7800(3) 0.0457(3) 0.0277(10)

H(11A) 0.860(6) 0.763(5) 0.084(3) 0.053(11)
H(11B) 0.850(7) 0.842(4) 0.008(3) 0.053(11)
O(12) 0.9834(5) 0.5210(3) 0.0950(3) 0.0291(10)

H(12A) 0.933(7) 0.475(4) 0.146(3) 0.053(11)
H(12B) 0.984(8) 0.584(4) 0.118(4) 0.053(11)
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Table 8.49: Continued: Crystal coordinates [Å] and equivalent isotropic displace-
ment parameters [Å2] for SrFDC. Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

x y z Ueq

O(13) 0.7147(6) 0.3694(4) 0.0725(3) 0.0442(12)
H(13A) 0.790(5) 0.319(5) 0.064(5) 0.054(9)
H(13B) 0.644(5) 0.345(6) 0.051(5) 0.054(9)
O(14) 0.9617(6) 0.7378(4) -0.1303(3) 0.0541(15)

H(14A) 0.958(7) 0.811(3) -0.133(4) 0.054(9)
H(14B) 1.043(6) 0.737(5) -0.173(4) 0.054(9)
O(30) 0.2626(6) 0.8699(6) -0.0063(4) 0.0698(19)

H(30A) 0.252(7) 0.923(4) -0.055(3) 0.054(9)
H(30B) 0.178(5) 0.833(5) 0.011(4) 0.054(9)
O(1W) 0.0604(5) 0.0409(3) 0.1069(3) 0.0382(11)
H(1W) -0.029(4) 0.009(6) 0.136(5) 0.070(13)
H(2W) 0.126(6) -0.016(5) 0.128(5) 0.070(13)
O(2W) 0.8637(6) 0.3363(4) 0.2697(3) 0.0489(13)
H(3W) 0.857(8) 0.266(3) 0.306(4) 0.070(13)
H(4W) 0.770(5) 0.343(6) 0.256(5) 0.070(13)
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Table 8.50: Anisotropic displacement parameters [Å2] for SrFDC. The anisotropic
displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+ 2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Sr(1) 0.0246(3) 0.0217(3) 0.0187(3) -0.0055(2) -0.0031(2) -0.0022(2)
Sr(2) 0.0243(3) 0.0200(3) 0.0151(3) -0.0032(2) -0.0024(2) -0.0025(2)
C(1) 0.025(3) 0.031(3) 0.020(3) -0.007(2) -0.003(3) -0.004(2)
C(2) 0.025(3) 0.026(3) 0.026(4) -0.006(3) 0.000(3) -0.011(2)
C(3) 0.020(3) 0.023(3) 0.019(3) -0.008(2) -0.001(2) 0.000(2)
C(4) 0.023(3) 0.020(3) 0.015(3) 0.004(2) -0.001(2) -0.002(2)
C(5) 0.023(3) 0.027(3) 0.021(3) -0.006(2) -0.004(3) -0.010(2)
C(6) 0.024(3) 0.029(3) 0.018(3) -0.004(2) 0.000(3) -0.007(2)
C(7) 0.023(3) 0.017(2) 0.015(3) 0.001(2) -0.004(2) 0.001(2)
C(8) 0.027(3) 0.024(3) 0.018(3) -0.001(2) -0.010(3) -0.004(2)
C(9) 0.023(3) 0.017(3) 0.026(4) -0.004(2) -0.001(3) -0.007(2)

C(10) 0.029(3) 0.024(3) 0.015(3) -0.004(2) -0.008(3) -0.002(2)
C(11) 0.022(3) 0.024(3) 0.022(3) -0.006(2) -0.003(3) 0.000(2)
C(12) 0.031(3) 0.025(3) 0.020(3) -0.004(2) -0.007(3) -0.001(2)
C(14) 0.024(3) 0.023(3) 0.012(3) -0.001(2) -0.001(2) -0.002(2)
C(15) 0.025(3) 0.018(3) 0.022(3) -0.005(2) 0.000(3) -0.006(2)
C(16) 0.019(3) 0.022(3) 0.018(3) -0.001(2) -0.001(2) 0.002(2)
C(18) 0.029(3) 0.026(3) 0.011(3) -0.007(2) -0.006(2) 0.002(2)
C(19) 0.039(4) 0.027(3) 0.025(4) -0.003(3) -0.011(3) -0.007(3)
C(20) 0.038(4) 0.029(3) 0.020(3) -0.009(3) -0.002(3) -0.013(3)
C(21) 0.026(3) 0.022(3) 0.017(3) -0.007(2) -0.003(3) 0.001(2)
C(22) 0.029(3) 0.020(3) 0.019(3) -0.008(2) -0.006(3) -0.002(2)
C(23) 0.039(4) 0.033(3) 0.025(4) -0.006(3) -0.008(3) -0.016(3)
C(24) 0.032(4) 0.032(3) 0.018(3) 0.000(3) -0.005(3) -0.007(3)
C(25) 0.027(3) 0.029(3) 0.021(3) -0.009(2) -0.010(3) -0.002(2)
C(26) 0.027(3) 0.022(3) 0.018(3) -0.006(2) -0.006(3) -0.004(2)
C(27) 0.027(3) 0.024(3) 0.015(3) -0.006(2) -0.003(3) -0.005(2)
C(28) 0.022(3) 0.024(3) 0.023(3) -0.003(2) -0.007(3) 0.000(2)
C(29) 0.019(3) 0.024(3) 0.020(3) -0.006(2) -0.001(2) -0.005(2)
C(30) 0.030(3) 0.022(3) 0.018(3) -0.001(2) -0.005(3) 0.001(2)
C(31) 0.021(3) 0.021(3) 0.019(3) -0.009(2) -0.006(2) 0.004(2)
C(32) 0.032(4) 0.038(3) 0.013(3) -0.006(3) -0.002(3) 0.002(3)
O(1) 0.039(3) 0.042(2) 0.029(3) -0.008(2) -0.003(2) -0.022(2)
O(2) 0.034(2) 0.0227(19) 0.019(2) -0.0029(16) 0.0022(19) -0.0046(17)
O(3) 0.040(3) 0.043(2) 0.020(2) -0.0166(19) -0.005(2) -0.012(2)
O(4) 0.029(2) 0.040(2) 0.018(2) -0.0062(18) 0.0016(18) -0.0152(19)
O(5) 0.039(3) 0.039(2) 0.019(2) -0.0071(19) -0.002(2) -0.0162(19)
O(6) 0.043(3) 0.040(2) 0.025(2) -0.0088(19) 0.000(2) -0.018(2)
O(7) 0.034(2) 0.0224(19) 0.019(2) -0.0061(16) -0.0047(18) -0.0031(17)
O(8) 0.050(3) 0.023(2) 0.015(2) -0.0020(16) -0.0053(19) 0.0019(18)
O(9) 0.039(3) 0.038(2) 0.023(2) -0.0108(19) -0.010(2) -0.013(2)

O(10) 0.045(3) 0.057(3) 0.017(2) 0.002(2) 0.001(2) -0.019(2)
O(11) 0.028(2) 0.031(2) 0.026(3) -0.0077(19) -0.0082(19) -0.0052(18)
O(12) 0.034(3) 0.033(2) 0.021(2) -0.0095(18) -0.004(2) 0.0003(19)
O(13) 0.050(3) 0.032(2) 0.049(3) -0.003(2) -0.014(3) -0.007(2)
O(14) 0.066(4) 0.031(2) 0.051(3) -0.011(2) 0.027(3) -0.011(2)
O(30) 0.034(3) 0.113(5) 0.034(3) 0.031(3) -0.014(3) -0.022(3)
O(1W) 0.034(3) 0.026(2) 0.045(3) 0.001(2) -0.001(2) -0.0018(19)
O(2W) 0.047(3) 0.056(3) 0.040(3) -0.014(2) 0.005(3) -0.012(3)
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Table 8.51: Symmetry operations used in the following tables for SrFDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,-y,-z’

260



Table 8.52: Bond Lengths [Å] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Sr(1)-O(8) 2.574(4)
Sr(1)-O(2) 2.580(4)

Sr(1)-O(13) 2.591(4)
Sr(1)-O(14) 2.592(4)
Sr(1)-O(11) 2.704(4)
Sr(1)-O(12) 2.726(4)
Sr(1)-O(12) 2.801(4) 2
Sr(2)-O(9) 2.518(4) 1
Sr(2)-O(7) 2.528(3) 2
Sr(2)-O(4) 2.547(4) 2
Sr(2)-O(2) 2.584(4)

Sr(2)-O(30) 2.584(5)
Sr(2)-O(11) 2.651(4)
Sr(2)-O(7) 2.706(4)
Sr(2)-O(8) 2.764(4)
Sr(2)-C(31) 3.100(5)
Sr(2)-C(32) 3.353(6) 1
C(1)-C(2) 1.388(7)

C(1)-C(14) 1.392(7)
C(1)-H(1) 0.9300
C(2)-C(3) 1.385(8)
C(2)-H(2) 0.9300
C(3)-C(11) 1.398(7)
C(3)-C(4) 1.465(7)
C(4)-C(5) 1.379(7)
C(4)-C(9) 1.405(8)
C(5)-C(6) 1.390(7)
C(5)-H(5) 0.9300
C(6)-C(7) 1.384(8)
C(6)-H(6) 0.9300
C(7)-C(8) 1.399(7)

C(7)-C(16) 1.500(7)
C(8)-C(9) 1.370(7)
C(8)-H(8) 0.9300
C(9)-C(10) 1.488(7)
C(10)-O(1) 1.225(6)
C(10)-C(11) 1.488(8)
C(11)-C(12) 1.373(8)
C(12)-C(14) 1.386(8)
C(12)-H(12) 0.9300
C(14)-C(15) 1.502(7)
C(15)-O(4) 1.248(6)
C(15)-O(5) 1.270(7)
C(16)-O(3) 1.255(6)
C(16)-O(2) 1.265(6)
C(18)-C(19) 1.390(7)
C(18)-C(30) 1.405(8)
C(18)-C(31) 1.515(7)
C(19)-C(20) 1.390(8)
C(19)-H(19) 0.9300
C(20)-C(21) 1.377(7)
C(20)-H(20) 0.9300
C(21)-C(29) 1.390(7)
C(21)-C(22) 1.494(8)
C(22)-C(23) 1.378(8)
C(22)-C(27) 1.397(7)
C(23)-C(24) 1.392(8)
C(23)-H(23) 0.9300
C(24)-C(25) 1.408(7)
C(24)-H(24) 0.9300
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Table 8.53: Continued: Bond Lengths [Å] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(25)-C(26) 1.390(8)
C(25)-C(32) 1.490(8)
C(26)-C(27) 1.377(7)
C(26)-H(26) 0.9300
C(27)-C(28) 1.500(8)
C(28)-O(6) 1.209(6)
C(28)-C(29) 1.505(8)
C(29)-C(30) 1.368(7)
C(30)-H(30) 0.9300
C(31)-O(8) 1.257(6)
C(31)-O(7) 1.263(6)
C(32)-O(9) 1.248(7)

C(32)-O(10) 1.269(7)
C(32)-Sr(2) 3.353(6) 1
O(3)-Sr(1) 2.428(4) 2
O(4)-Sr(2) 2.547(4) 2
O(7)-Sr(2) 2.528(3) 2
O(9)-Sr(2) 2.518(4) 1

O(11)-H(11A) 0.86(3)
O(11)-H(11B) 0.89(3)
O(12)-Sr(1) 2.801(4) 2

O(12)-H(12A) 0.87(3)
O(12)-H(12B) 0.92(3)
O(13)-H(13A) 0.86(3)
O(13)-H(13B) 0.85(3)
O(14)-H(14A) 0.86(3)
O(14)-H(14B) 0.87(3)
O(30)-H(30A) 0.84(3)
O(30)-H(30B) 0.83(3)
O(1W)-H(1W) 0.86(3)
O(1W)-H(2W) 0.87(3)
O(2W)-H(3W) 0.86(3)
O(2W)-H(4W) 0.86(3)
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Table 8.54: Bond Angles [◦] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(8)-Sr(1)-O(13) 133.88(15)
O(2)-Sr(1)-O(13) 79.26(14)
O(3)-Sr(1)-O(14) 99.41(16) 2
O(8)-Sr(1)-O(14) 79.78(15)
O(2)-Sr(1)-O(14) 136.04(13)

O(13)-Sr(1)-O(14) 142.21(16)
O(3)-Sr(1)-O(11) 142.79(14) 2
O(8)-Sr(1)-O(11) 68.01(12)
O(2)-Sr(1)-O(11) 69.56(12)

O(13)-Sr(1)-O(11) 132.42(14)
O(14)-Sr(1)-O(11) 69.08(14)
O(3)-Sr(1)-O(12) 141.92(13) 2
O(8)-Sr(1)-O(12) 142.72(12)
O(2)-Sr(1)-O(12) 94.71(12)

O(13)-Sr(1)-O(12) 73.00(14)
O(14)-Sr(1)-O(12) 88.34(16)
O(11)-Sr(1)-O(12) 74.72(12)
O(3)-Sr(1)-O(12) 80.52(13) 2 2
O(8)-Sr(1)-O(12) 134.14(12) 2
O(2)-Sr(1)-O(12) 153.36(12) 2

O(13)-Sr(1)-O(12) 76.10(14) 2
O(14)-Sr(1)-O(12) 66.45(13) 2
O(11)-Sr(1)-O(12) 121.85(12) 2
O(12)-Sr(1)-O(12) 68.53(13) 2

O(9)-Sr(2)-O(7) 82.70(12) 1 2
O(9)-Sr(2)-O(4) 82.92(13) 1 2
O(7)-Sr(2)-O(4) 80.97(12) 2 2
O(9)-Sr(2)-O(2) 90.45(12) 1
O(7)-Sr(2)-O(2) 167.83(12) 2
O(4)-Sr(2)-O(2) 88.24(12) 2

O(9)-Sr(2)-O(30) 149.67(17) 1
O(7)-Sr(2)-O(30) 80.46(19) 2
O(4)-Sr(2)-O(30) 69.67(15) 2
O(2)-Sr(2)-O(30) 101.12(18)
O(9)-Sr(2)-O(11) 78.34(13) 1
O(7)-Sr(2)-O(11) 117.64(12) 2
O(4)-Sr(2)-O(11) 151.18(13) 2
O(2)-Sr(2)-O(11) 70.34(12)

O(30)-Sr(2)-O(11) 131.93(16)
O(9)-Sr(2)-O(7) 131.48(12) 1
O(7)-Sr(2)-O(7) 77.05(12) 2
O(4)-Sr(2)-O(7) 134.97(12) 2
O(2)-Sr(2)-O(7) 114.85(11)

O(30)-Sr(2)-O(7) 68.25(13)
O(11)-Sr(2)-O(7) 73.19(12)
O(9)-Sr(2)-O(8) 142.89(13) 1
O(7)-Sr(2)-O(8) 122.49(11) 2
O(4)-Sr(2)-O(8) 124.54(12) 2
O(2)-Sr(2)-O(8) 68.50(11)

O(30)-Sr(2)-O(8) 66.93(17)
O(11)-Sr(2)-O(8) 66.08(12)
O(7)-Sr(2)-O(8) 47.66(10)
C(2)-C(1)-C(14) 122.1(5)
C(2)-C(1)-H(1) 119.0

C(14)-C(1)-H(1) 119.0
C(3)-C(2)-C(1) 117.2(5)
C(3)-C(2)-H(2) 121.4
C(1)-C(2)-H(2) 121.4
C(2)-C(3)-C(11) 121.0(5)
C(2)-C(3)-C(4) 129.7(5)
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Table 8.55: Continued: Bond Angles [◦] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(11)-C(3)-C(4) 109.3(5)
C(5)-C(4)-C(9) 119.8(5)
C(5)-C(4)-C(3) 131.0(5)
C(9)-C(4)-C(3) 109.1(5)
C(4)-C(5)-C(6) 118.6(5)
C(4)-C(5)-H(5) 120.7
C(6)-C(5)-H(5) 120.7
C(7)-C(6)-C(5) 121.6(5)
C(7)-C(6)-H(6) 119.2
C(5)-C(6)-H(6) 119.2
C(6)-C(7)-C(8) 119.8(5)
C(6)-C(7)-C(16) 119.7(5)
C(8)-C(7)-C(16) 120.4(5)
C(9)-C(8)-C(7) 118.6(5)
C(9)-C(8)-H(8) 120.7
C(7)-C(8)-H(8) 120.7
C(8)-C(9)-C(4) 121.6(5)
C(8)-C(9)-C(10) 131.1(5)
C(4)-C(9)-C(10) 107.4(5)

O(1)-C(10)-C(11) 126.0(5)
O(1)-C(10)-C(9) 127.4(5)
C(11)-C(10)-C(9) 106.6(4)
C(12)-C(11)-C(3) 121.0(5)

C(12)-C(11)-C(10) 131.4(5)
C(3)-C(11)-C(10) 107.6(5)

C(11)-C(12)-C(14) 118.8(5)
C(11)-C(12)-H(12) 120.6
C(14)-C(12)-H(12) 120.6
C(12)-C(14)-C(1) 119.8(5)

C(12)-C(14)-C(15) 120.5(5)
C(1)-C(14)-C(15) 119.6(5)
O(4)-C(15)-O(5) 123.8(5)
O(4)-C(15)-C(14) 118.2(5)
O(5)-C(15)-C(14) 118.0(5)
O(3)-C(16)-O(2) 123.4(5)
O(3)-C(16)-C(7) 118.2(5)
O(2)-C(16)-C(7) 118.4(5)

C(19)-C(18)-C(30) 119.9(5)
C(19)-C(18)-C(31) 119.8(5)
C(30)-C(18)-C(31) 120.3(5)
C(20)-C(19)-C(18) 121.4(5)
C(20)-C(19)-H(19) 119.3
C(18)-C(19)-H(19) 119.3
C(21)-C(20)-C(19) 117.8(5)
C(21)-C(20)-H(20) 121.1
C(19)-C(20)-H(20) 121.1
C(20)-C(21)-C(29) 121.2(5)
C(20)-C(21)-C(22) 130.4(5)
C(29)-C(21)-C(22) 108.4(5)
C(23)-C(22)-C(27) 120.4(5)
C(23)-C(22)-C(21) 130.5(5)
C(27)-C(22)-C(21) 109.1(5)
C(22)-C(23)-C(24) 118.3(5)
C(22)-C(23)-H(23) 120.8
C(24)-C(23)-H(23) 120.8
C(23)-C(24)-C(25) 121.7(5)
C(23)-C(24)-H(24) 119.2
C(25)-C(24)-H(24) 119.2
C(26)-C(25)-C(24) 118.7(5)
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Table 8.56: Continued: Bond Angles [◦] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(26)-C(25)-C(32) 121.1(5)
O(7)-C(31)-Sr(2) 60.3(3)
C(18)-C(31)-Sr(2) 173.3(4)
O(9)-C(32)-O(10) 123.2(6)
O(9)-C(32)-C(25) 118.4(5)
O(10)-C(32)-C(25) 118.3(6)
O(10)-C(32)-Sr(2) 85.7(4) 1
C(25)-C(32)-Sr(2) 154.2(4) 1
C(16)-O(2)-Sr(1) 124.7(3)
C(16)-O(2)-Sr(2) 126.1(3)
Sr(1)-O(2)-Sr(2) 101.30(12)
C(16)-O(3)-Sr(1) 164.3(4) 2
C(15)-O(4)-Sr(2) 134.9(3) 2
C(31)-O(7)-Sr(2) 151.6(4) 2
C(31)-O(7)-Sr(2) 95.8(3)
Sr(2)-O(7)-Sr(2) 102.95(12) 2
C(31)-O(8)-Sr(1) 134.8(4)
C(31)-O(8)-Sr(2) 93.2(3)
Sr(1)-O(8)-Sr(2) 96.78(12)
C(32)-O(9)-Sr(2) 122.1(4) 1
Sr(2)-O(11)-Sr(1) 96.43(12)

Sr(2)-O(11)-H(11A) 124(5)
Sr(1)-O(11)-H(11A) 112(4)
Sr(2)-O(11)-H(11B) 112(4)
Sr(1)-O(11)-H(11B) 120(4)

H(11A)-O(11)-H(11B) 95(3)
Sr(1)-O(12)-Sr(1) 111.47(13) 2

Sr(1)-O(12)-H(12A) 104(4)
Sr(1)-O(12)-H(12A) 113(4) 2
Sr(1)-O(12)-H(12B) 102(4)
Sr(1)-O(12)-H(12B) 129(4) 2

H(12A)-O(12)-H(12B) 95(3)
Sr(1)-O(13)-H(13A) 119(5)
Sr(1)-O(13)-H(13B) 108(5)

H(13A)-O(13)-H(13B) 99(4)
Sr(1)-O(14)-H(14A) 121(4)
Sr(1)-O(14)-H(14B) 139(4)

H(14A)-O(14)-H(14B) 100(4)
Sr(2)-O(30)-H(30A) 130(4)
Sr(2)-O(30)-H(30B) 123(4)

H(30A)-O(30)-H(30B) 106(4)
H(1W)-O(1W)-H(2W) 100(4)
H(3W)-O(2W)-H(4W) 99(4)

C(24)-C(25)-C(32) 120.1(5)
C(27)-C(26)-C(25) 119.6(5)
C(27)-C(26)-H(26) 120.2
C(25)-C(26)-H(26) 120.2
C(26)-C(27)-C(22) 121.2(5)
C(26)-C(27)-C(28) 130.5(5)
C(22)-C(27)-C(28) 108.3(5)
O(6)-C(28)-C(27) 127.5(5)
O(6)-C(28)-C(29) 127.2(5)
C(27)-C(28)-C(29) 105.3(4)
C(30)-C(29)-C(21) 121.3(5)
C(30)-C(29)-C(28) 129.8(5)
C(21)-C(29)-C(28) 108.9(5)
C(29)-C(30)-C(18) 118.2(5)
C(29)-C(30)-H(30) 120.9
C(18)-C(30)-H(30) 120.9
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Table 8.57: Continued: Bond Angles [◦] for SrFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(8)-C(31)-O(7) 122.7(5)
O(8)-C(31)-C(18) 118.4(4)
O(7)-C(31)-C(18) 118.9(5)
O(8)-C(31)-Sr(2) 62.9(3)
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8.8 BaFDC structure details

Figure 8.8: Asymmetric unit with atom numbers for BaFDC.
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Table 8.58: Crystal data and structure refinement for BaFDC.
Parameter Value

Empirical formula C15H8BaO6

Formula weight 421.55 g·mol−1

Collection Temperature 100(2) K
Wavelength 0.77490Å
Crystal system Triclinic
Space Group P1
Unit cell dimensions

a 6.7676(6) Å
b 7.2311(7) Å
c 14.1591(13) Å
α 82.763(2)◦

β 84.102(2)◦

γ 66.047(2)◦

Volume 627.17(10)Å
3

Z 2
Calculated density 2.232 g/m3

Absorption coefficient 3.994 mm−1

F(000) 404
Crystal size 0.12×0.08×0.02 mm
Theta range for data collection 3.17◦ to 33.59◦

Limiting indices −9 ≤ h ≤ 9, −10 ≤ k ≤ 10,0 ≤ l ≤ 20
Reflections collected / unique 3737 / 3737 [R(int) = 0.0000]
Data Completeness 99.1%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9244 and 0.6457
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 3737 / 9 / 410
Goodness-of-fit on F 2 1.038
Final R indices [I>2sigma(I)] R1 = 0.0258, wR2 = 0.0672
R indices (all data) R1 = 0.0265, wR2 = 0.0676
Absolute Structure Parameter 0.143(19)
Largest diff. peak and hole 1.908 and -1.173 e·Å−3
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Table 8.59: Crystal coordinates [Å] and equivalent isotropic displacement param-
eters [Å2] for BaFDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Ba(1) -0.44487(4) 0.07349(4) 0.48041(2) 0.01216(10)
Ba(2) -0.10026(3) 0.43896(3) 0.39963(2) 0.01129(10)
O(1) -0.5169(8) 0.1401(7) 0.9451(4) 0.0159(8)
O(2) -0.6843(8) 0.3213(9) 1.3228(4) 0.0164(9)
O(3) -0.5113(8) 0.5070(8) 1.3557(4) 0.0143(8)
O(4) -0.3654(9) 0.3670(9) 0.5651(4) 0.0142(11)
O(5) -0.3644(12) 0.6748(11) 0.5374(5) 0.0152(13)
O(6) -0.0202(8) -0.3636(7) -0.0542(4) 0.0169(9)
O(7) -0.1613(13) -0.1851(11) 0.3246(5) 0.0183(14)
O(8) -0.1378(10) 0.1079(9) 0.3438(4) 0.0144(11)
O(9) -0.0554(7) -0.0692(7) -0.4314(4) 0.0126(8)
O(10) 0.1329(8) 0.1247(8) -0.4699(4) 0.0139(8)
C(1) -0.5581(9) 0.3632(9) 1.1263(4) 0.0104(10)

H(1A) -0.5864 0.2454 1.1463 0.012
C(2) -0.5518(12) 0.4882(12) 1.1929(6) 0.0112(13)
C(3) -0.5089(10) 0.6625(9) 1.1615(4) 0.0118(10)

H(3A) -0.4985 0.7428 1.2074 0.014
C(4) -0.4810(9) 0.7204(9) 1.0634(4) 0.0109(10)

H(4A) -0.4572 0.8402 1.0427 0.013
C(5) -0.4899(11) 0.5947(10) 0.9985(5) 0.0115(11)
C(6) -0.4653(10) 0.6111(10) 0.8928(5) 0.0118(10)
C(7) -0.4283(10) 0.7556(9) 0.8283(4) 0.0123(10)

H(7A) -0.4183 0.8711 0.8491 0.015
C(8) -0.4062(10) 0.7262(10) 0.7319(4) 0.0132(11)

H(8A) -0.3778 0.8228 0.6869 0.016
C(9) -0.4242(11) 0.5602(9) 0.6985(4) 0.0105(10)

C(10) -0.4623(10) 0.4142(9) 0.7643(4) 0.0120(10)
H(10A) -0.4739 0.2993 0.7436 0.014
C(11) -0.4825(11) 0.4424(9) 0.8603(5) 0.0108(10)
C(12) -0.5115(10) 0.3060(9) 0.9450(4) 0.0115(10)
C(13) -0.5223(10) 0.4155(9) 1.0309(5) 0.0110(10)
C(14) -0.5848(13) 0.4368(12) 1.2959(6) 0.0079(15)
C(15) -0.3867(16) 0.5346(15) 0.5940(7) 0.0115(17)
C(16) -0.0592(10) -0.1337(9) 0.1242(4) 0.0113(10)

H(16A) -0.0886 -0.2502 0.1461 0.014
C(17) -0.0563(11) -0.0013(10) 0.1884(5) 0.0123(11)
C(18) -0.0085(10) 0.1685(9) 0.1542(4) 0.0127(10)

H(18A) -0.0034 0.2545 0.1985 0.015
C(19) 0.0313(10) 0.2140(9) 0.0575(4) 0.0125(10)

H(19A) 0.0643 0.3286 0.0359 0.015
C(20) 0.0217(10) 0.0876(9) -0.0066(5) 0.0107(10)
C(21) 0.0442(11) 0.0977(9) -0.1123(5) 0.0116(10)
C(22) 0.0797(9) 0.2399(9) -0.1800(4) 0.0109(10)

H(22A) 0.0975 0.3535 -0.1613 0.013
C(23) 0.0884(10) 0.2104(9) -0.2767(4) 0.0126(10)

H(23A) 0.1181 0.3029 -0.3238 0.015
C(24) 0.0543(13) 0.0485(12) -0.3049(6) 0.0110(14)
C(25) 0.0199(10) -0.0948(10) -0.2369(4) 0.0122(10)

H(25A) -0.0021 -0.2066 -0.2554 0.015
C(26) 0.0187(12) -0.0685(9) -0.1420(5) 0.0110(11)
C(27) -0.0113(10) -0.1995(10) -0.0556(4) 0.0121(10)
C(28) -0.0177(10) -0.0883(9) 0.0278(5) 0.0101(10)
C(29) -0.1224(17) -0.0266(16) 0.2925(7) 0.0126(18)
C(30) 0.0461(17) 0.0287(13) -0.4104(7) 0.0144(18)
O(11) -0.6402(14) -0.0838(15) 0.3743(8) 0.052(3)

H(11A) -0.777(10) -0.06(2) 0.399(10) 0.063
H(11B) -0.65(2) -0.205(11) 0.368(11) 0.063
O(12) 0.1560(10) 0.5540(10) 0.5035(5) 0.0167(12)

H(12A) 0.228(14) 0.635(12) 0.489(6) 0.020
H(12B) 0.172(16) 0.563(15) 0.565(2) 0.020
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Table 8.60: Anisotropic displacement parameters [Å2] for BaFDC. The anisotropic
displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+ 2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Ba(1) 0.0116(2) 0.0126(2) 0.0121(2) 0.00142(17) -0.00002(17) -0.00554(18)
Ba(2) 0.0129(2) 0.0134(2) 0.0099(2) -0.00139(16) 0.00025(16) -0.00773(18)
O(1) 0.020(2) 0.011(2) 0.016(2) -0.0034(16) 0.0010(17) -0.0065(17)
O(2) 0.018(2) 0.026(3) 0.011(2) -0.0007(19) 0.0007(17) -0.015(2)
O(3) 0.015(2) 0.016(2) 0.014(2) -0.0027(17) -0.0017(16) -0.0077(18)
O(4) 0.016(2) 0.013(3) 0.013(2) -0.0034(19) -0.0023(18) -0.004(2)
O(5) 0.021(2) 0.012(2) 0.014(3) -0.003(2) 0.004(2) -0.008(2)
O(6) 0.020(2) 0.012(2) 0.019(2) -0.0036(17) -0.0012(17) -0.0057(17)
O(7) 0.031(3) 0.018(3) 0.012(3) -0.001(2) 0.000(2) -0.017(3)
O(8) 0.016(2) 0.014(3) 0.015(3) -0.005(2) 0.004(2) -0.008(2)
O(9) 0.0139(19) 0.0095(19) 0.013(2) 0.0003(16) -0.0021(16) -0.0032(16)
O(10) 0.0143(19) 0.019(2) 0.011(2) 0.0025(18) -0.0017(17) -0.0105(18)
C(1) 0.010(2) 0.013(3) 0.009(2) -0.0024(19) 0.0013(19) -0.005(2)
C(2) 0.010(3) 0.013(3) 0.010(3) -0.003(2) 0.001(2) -0.005(2)
C(3) 0.012(2) 0.013(3) 0.013(3) -0.003(2) 0.002(2) -0.007(2)
C(4) 0.012(2) 0.009(2) 0.013(3) -0.0012(19) 0.0013(19) -0.006(2)
C(5) 0.011(3) 0.014(3) 0.010(3) -0.003(2) 0.001(2) -0.006(2)
C(6) 0.007(2) 0.019(3) 0.010(3) 0.000(2) 0.000(2) -0.007(2)
C(7) 0.012(2) 0.011(2) 0.012(2) -0.0018(19) -0.005(2) -0.002(2)
C(8) 0.015(2) 0.014(3) 0.010(2) 0.000(2) 0.000(2) -0.005(2)
C(9) 0.012(3) 0.006(2) 0.011(3) 0.0043(19) -0.001(2) -0.003(2)

C(10) 0.014(2) 0.011(2) 0.012(2) -0.004(2) 0.001(2) -0.006(2)
C(11) 0.011(2) 0.010(3) 0.011(3) -0.0025(19) 0.000(2) -0.003(2)
C(12) 0.012(2) 0.013(2) 0.011(2) 0.000(2) -0.0011(19) -0.006(2)
C(13) 0.011(2) 0.014(3) 0.008(2) -0.0007(19) -0.001(2) -0.004(2)
C(14) 0.007(3) 0.008(3) 0.009(3) -0.004(2) -0.003(2) -0.002(2)
C(15) 0.014(3) 0.013(4) 0.010(3) -0.005(3) 0.002(3) -0.007(3)
C(16) 0.014(2) 0.014(3) 0.006(2) -0.0014(19) 0.0001(19) -0.006(2)
C(17) 0.011(3) 0.011(3) 0.013(3) 0.000(2) 0.002(2) -0.004(2)
C(18) 0.015(2) 0.011(3) 0.012(3) -0.003(2) 0.001(2) -0.004(2)
C(19) 0.016(3) 0.013(3) 0.011(2) -0.0011(19) -0.001(2) -0.008(2)
C(20) 0.008(2) 0.012(3) 0.013(3) -0.006(2) 0.003(2) -0.004(2)
C(21) 0.012(2) 0.015(3) 0.008(3) -0.002(2) 0.003(2) -0.005(2)
C(22) 0.011(2) 0.011(2) 0.010(2) -0.0034(19) 0.0002(19) -0.003(2)
C(23) 0.012(2) 0.013(3) 0.011(3) 0.001(2) 0.001(2) -0.005(2)
C(24) 0.012(3) 0.011(3) 0.012(3) 0.001(2) -0.001(2) -0.006(2)
C(25) 0.013(2) 0.015(3) 0.011(3) 0.000(2) -0.001(2) -0.008(2)
C(26) 0.015(3) 0.010(3) 0.008(3) -0.001(2) -0.002(2) -0.005(2)
C(27) 0.015(2) 0.017(3) 0.008(2) -0.003(2) 0.0010(19) -0.009(2)
C(28) 0.007(2) 0.010(3) 0.011(3) -0.0004(19) 0.000(2) -0.0014(19)
C(29) 0.015(4) 0.013(4) 0.010(3) 0.003(3) -0.003(2) -0.006(3)
C(30) 0.019(3) 0.009(4) 0.014(3) -0.003(3) 0.003(3) -0.005(3)
O(11) 0.026(4) 0.037(5) 0.072(7) 0.021(4) 0.017(4) -0.003(3)
O(12) 0.012(3) 0.022(3) 0.021(3) -0.005(2) -0.001(2) -0.012(2)

Table 8.61: Symmetry operations used in the following tables for BaFDC.
Operation

#1 ‘x,y,z’
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Table 8.62: Bond Lengths [Å] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Ba(1)-O(5) 2.737(7) 1
Ba(1)-O(10) 2.755(5) 1
Ba(1)-O(8) 2.756(6)
Ba(1)-O(9) 2.778(5) 1
Ba(1)-O(4) 2.817(6)
Ba(1)-O(2) 2.863(5) 1
Ba(1)-O(7) 3.050(7)
Ba(1)-C(29) 3.221(11)
Ba(1)-O(3) 3.282(5) 1
Ba(1)-C(14) 3.374(9) 1
Ba(1)-Ba(2) 4.1745(4)
Ba(2)-O(7) 2.672(7) 1
Ba(2)-O(8) 2.726(6)
Ba(2)-O(2) 2.737(5) 1
Ba(2)-O(3) 2.745(5) 1
Ba(2)-O(5) 2.749(7)

Ba(2)-O(10) 2.774(5) 1
Ba(2)-O(12) 2.805(6)
Ba(2)-O(4) 2.927(6)
Ba(2)-C(15) 3.178(10)
Ba(2)-Ba(1) 4.3277(5) 1
Ba(2)-Ba(1) 4.4593(5) 1
O(1)-C(12) 1.215(8)
O(2)-C(14) 1.273(10)
O(2)-Ba(2) 2.737(5) 1
O(2)-Ba(1) 2.863(5) 1
O(3)-C(14) 1.274(9)
O(3)-Ba(2) 2.745(5) 1
O(3)-Ba(1) 3.282(5) 1
O(4)-C(15) 1.275(11)
O(5)-C(15) 1.259(12)
O(5)-Ba(1) 2.737(7) 1
O(6)-C(27) 1.210(8)
O(7)-C(29) 1.296(12)
O(7)-Ba(2) 2.672(7) 1
O(8)-C(29) 1.251(12)
O(9)-C(30) 1.245(11)
O(9)-Ba(1) 2.778(5) 1

O(10)-C(30) 1.272(11)
O(10)-Ba(1) 2.755(5) 1
O(10)-Ba(2) 2.774(5) 1
C(1)-C(13) 1.381(8)
C(1)-C(2) 1.401(10)

C(1)-H(1A) 0.9500
C(2)-C(3) 1.414(10)

C(2)-C(14) 1.476(12)
C(3)-C(4) 1.415(8)

C(3)-H(3A) 0.9500
C(4)-C(5) 1.393(8)

C(4)-H(4A) 0.9500
C(5)-C(13) 1.413(9)
C(5)-C(6) 1.484(9)
C(6)-C(7) 1.383(8)

C(6)-C(11) 1.408(9)
C(7)-C(8) 1.391(8)

C(7)-H(7A) 0.9500
C(8)-C(9) 1.397(9)

C(8)-H(8A) 0.9500
C(9)-C(10) 1.405(9)
C(9)-C(15) 1.498(12)
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Table 8.63: Continued: Bond Lengths [Å] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(10)-C(11) 1.383(8)
C(10)-H(10A) 0.9500
C(11)-C(12) 1.504(9)
C(12)-C(13) 1.513(9)
C(14)-Ba(1) 3.374(9) 1
C(16)-C(28) 1.391(8)
C(16)-C(17) 1.407(9)

C(16)-H(16A) 0.9500
C(17)-C(18) 1.409(9)
C(17)-C(29) 1.507(12)
C(18)-C(19) 1.392(8)

C(18)-H(18A) 0.9500
C(19)-C(20) 1.392(8)

C(19)-H(19A) 0.9500
C(20)-C(28) 1.421(9)
C(20)-C(21) 1.483(9)
C(21)-C(22) 1.393(8)
C(21)-C(26) 1.400(9)
C(22)-C(23) 1.403(8)

C(22)-H(22A) 0.9500
C(23)-C(24) 1.393(10)

C(23)-H(23A) 0.9500
C(24)-C(25) 1.398(10)
C(24)-C(30) 1.527(13)
C(25)-C(26) 1.379(9)

C(25)-H(25A) 0.9500
C(26)-C(27) 1.499(10)
C(27)-C(28) 1.498(9)

O(11)-H(11A) 0.90(2)
O(11)-H(11B) 0.91(2)
O(12)-H(12A) 0.89(2)
O(12)-H(12B) 0.90(2)
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Table 8.64: Bond Angles [◦] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(5)-Ba(1)-O(8) 111.2(2) 1
O(10)-Ba(1)-O(8) 149.37(16) 1
O(11)-Ba(1)-O(9) 135.9(2) 1
O(5)-Ba(1)-O(9) 76.03(19) 1 1
O(10)-Ba(1)-O(9) 137.60(14) 1 1
O(8)-Ba(1)-O(9) 73.03(16) 1
O(11)-Ba(1)-O(4) 159.0(2)
O(5)-Ba(1)-O(4) 131.69(19) 1
O(10)-Ba(1)-O(4) 107.69(17) 1
O(8)-Ba(1)-O(4) 83.77(18)
O(9)-Ba(1)-O(4) 64.70(15) 1
O(11)-Ba(1)-O(2) 60.9(2) 1
O(5)-Ba(1)-O(2) 128.0(2) 1 1
O(10)-Ba(1)-O(2) 75.35(14) 1 1
O(8)-Ba(1)-O(2) 74.70(16) 1
O(9)-Ba(1)-O(2) 145.48(14) 1 1
O(4)-Ba(1)-O(2) 100.00(16) 1
O(11)-Ba(1)-O(7) 63.5(2)
O(5)-Ba(1)-O(7) 71.55(18) 1
O(10)-Ba(1)-O(7) 124.44(19) 1
O(8)-Ba(1)-O(7) 45.03(19)
O(9)-Ba(1)-O(7) 82.76(18) 1
O(4)-Ba(1)-O(7) 126.38(19)
O(2)-Ba(1)-O(7) 83.13(19) 1

O(11)-Ba(1)-C(29) 77.7(3)
O(5)-Ba(1)-C(29) 94.3(2) 1
O(10)-Ba(1)-C(29) 136.7(2) 1
O(8)-Ba(1)-C(29) 22.5(2)
O(9)-Ba(1)-C(29) 81.8(2) 1
O(4)-Ba(1)-C(29) 106.2(2)
O(2)-Ba(1)-C(29) 72.9(2) 1
O(7)-Ba(1)-C(29) 23.6(2)
O(11)-Ba(1)-O(3) 101.8(2) 1
O(5)-Ba(1)-O(3) 164.73(16) 1 1
O(10)-Ba(1)-O(3) 101.62(13) 1 1
O(8)-Ba(1)-O(3) 58.28(16) 1
O(9)-Ba(1)-O(3) 108.51(13) 1 1
O(4)-Ba(1)-O(3) 61.30(14) 1
O(2)-Ba(1)-O(3) 41.71(13) 1 1
O(7)-Ba(1)-O(3) 94.27(16) 1
C(29)-Ba(1)-O(3) 72.4(2) 1
O(11)-Ba(1)-C(14) 80.0(2) 1
O(5)-Ba(1)-C(14) 144.5(2) 1 1
O(10)-Ba(1)-C(14) 93.32(17) 1 1
O(8)-Ba(1)-C(14) 59.2(2) 1
O(9)-Ba(1)-C(14) 124.72(18) 1 1
O(4)-Ba(1)-C(14) 83.18(18) 1
O(2)-Ba(1)-C(14) 21.62(16) 1 1
O(7)-Ba(1)-C(14) 82.3(2) 1
C(29)-Ba(1)-C(14) 64.8(2) 1
O(3)-Ba(1)-C(14) 22.01(15) 1 1
O(11)-Ba(1)-Ba(2) 130.8(2)
O(5)-Ba(1)-Ba(2) 138.87(16) 1

O(10)-Ba(1)-Ba(2) 137.80(11) 1
O(8)-Ba(1)-Ba(2) 40.14(12)
O(9)-Ba(1)-Ba(2) 67.71(10) 1
O(4)-Ba(1)-Ba(2) 44.43(12)
O(2)-Ba(1)-Ba(2) 79.78(10) 1
O(7)-Ba(1)-Ba(2) 84.92(14)
C(29)-Ba(1)-Ba(2) 62.54(18)
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Table 8.65: Continued: Bond Angles [◦] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(3)-Ba(1)-Ba(2) 41.05(8) 1
C(14)-Ba(1)-Ba(2) 58.16(14) 1
O(7)-Ba(2)-O(8) 137.0(2) 1
O(7)-Ba(2)-O(2) 86.8(2) 1 1
O(8)-Ba(2)-O(2) 91.94(17) 1
O(7)-Ba(2)-O(3) 89.6(2) 1 1
O(8)-Ba(2)-O(3) 65.91(17) 1
O(2)-Ba(2)-O(3) 141.97(15) 1 1
O(7)-Ba(2)-O(5) 77.5(2) 1
O(8)-Ba(2)-O(5) 124.76(19)
O(2)-Ba(2)-O(5) 139.5(2) 1
O(3)-Ba(2)-O(5) 75.75(19) 1
O(7)-Ba(2)-O(10) 143.8(2) 1 1
O(8)-Ba(2)-O(10) 76.44(17) 1
O(2)-Ba(2)-O(10) 77.10(15) 1 1
O(3)-Ba(2)-O(10) 122.68(15) 1 1
O(5)-Ba(2)-O(10) 94.02(19) 1
O(7)-Ba(2)-O(12) 75.3(2) 1
O(8)-Ba(2)-O(12) 142.56(19)
O(2)-Ba(2)-O(12) 67.94(18) 1
O(3)-Ba(2)-O(12) 146.61(16) 1
O(5)-Ba(2)-O(12) 72.0(2)

O(10)-Ba(2)-O(12) 68.62(18) 1
O(7)-Ba(2)-O(4) 121.51(19) 1
O(8)-Ba(2)-O(4) 82.24(16)
O(2)-Ba(2)-O(4) 143.43(16) 1
O(3)-Ba(2)-O(4) 67.02(16) 1
O(5)-Ba(2)-O(4) 45.8(2)
O(10)-Ba(2)-O(4) 66.41(15) 1
O(12)-Ba(2)-O(4) 95.41(17)
O(7)-Ba(2)-C(15) 100.5(2) 1
O(8)-Ba(2)-C(15) 105.6(2)
O(2)-Ba(2)-C(15) 143.1(2) 1
O(3)-Ba(2)-C(15) 74.7(2) 1
O(5)-Ba(2)-C(15) 23.1(2)

O(10)-Ba(2)-C(15) 76.0(2) 1
O(12)-Ba(2)-C(15) 79.0(2)
O(4)-Ba(2)-C(15) 23.7(2)
O(7)-Ba(2)-Ba(1) 140.57(17) 1
O(8)-Ba(2)-Ba(1) 40.67(12)
O(2)-Ba(2)-Ba(1) 127.43(12) 1
O(3)-Ba(2)-Ba(1) 51.75(11) 1
O(5)-Ba(2)-Ba(1) 84.42(15)

O(10)-Ba(2)-Ba(1) 71.38(10) 1
O(12)-Ba(2)-Ba(1) 131.29(13)
O(4)-Ba(2)-Ba(1) 42.35(12)
C(15)-Ba(2)-Ba(1) 65.21(17)
O(7)-Ba(2)-Ba(1) 113.87(17) 1 1
O(8)-Ba(2)-Ba(1) 91.04(13) 1
O(2)-Ba(2)-Ba(1) 40.46(11) 1 1
O(3)-Ba(2)-Ba(1) 155.53(11) 1 1
O(5)-Ba(2)-Ba(1) 114.53(16) 1

O(10)-Ba(2)-Ba(1) 38.34(10) 1 1
O(12)-Ba(2)-Ba(1) 52.93(13) 1
O(4)-Ba(2)-Ba(1) 103.30(11) 1
C(15)-Ba(2)-Ba(1) 105.79(19) 1
Ba(1)-Ba(2)-Ba(1) 105.483(11) 1
O(7)-Ba(2)-Ba(1) 41.96(15) 1 1
O(8)-Ba(2)-Ba(1) 146.56(13) 1
O(2)-Ba(2)-Ba(1) 118.51(12) 1 1
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Table 8.66: Continued: Bond Angles [◦] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(3)-Ba(2)-Ba(1) 80.98(10) 1 1
O(5)-Ba(2)-Ba(1) 35.53(15) 1
O(10)-Ba(2)-Ba(1) 121.26(12) 1 1
O(12)-Ba(2)-Ba(1) 67.83(13) 1
O(4)-Ba(2)-Ba(1) 80.59(12) 1
C(15)-Ba(2)-Ba(1) 58.63(18) 1
Ba(1)-Ba(2)-Ba(1) 113.720(10) 1
Ba(1)-Ba(2)-Ba(1) 120.758(9) 1 1
C(14)-O(2)-Ba(2) 126.3(5) 1
C(14)-O(2)-Ba(1) 102.4(5) 1
Ba(2)-O(2)-Ba(1) 101.19(16) 1 1
C(14)-O(3)-Ba(2) 133.3(5) 1
C(14)-O(3)-Ba(1) 83.1(5) 1
Ba(2)-O(3)-Ba(1) 87.20(13) 1 1
C(15)-O(4)-Ba(1) 162.3(6)
C(15)-O(4)-Ba(2) 89.3(5)
Ba(1)-O(4)-Ba(2) 93.22(17)
C(15)-O(5)-Ba(1) 153.3(6) 1
C(15)-O(5)-Ba(2) 98.0(6)
Ba(1)-O(5)-Ba(2) 108.8(2) 1
C(29)-O(7)-Ba(2) 160.8(7) 1
C(29)-O(7)-Ba(1) 85.6(6)
Ba(2)-O(7)-Ba(1) 102.2(2) 1
C(29)-O(8)-Ba(2) 159.9(6)
C(29)-O(8)-Ba(1) 100.1(6)
Ba(2)-O(8)-Ba(1) 99.20(18)
C(30)-O(9)-Ba(1) 128.7(5) 1

C(30)-O(10)-Ba(1) 133.7(6) 1
C(30)-O(10)-Ba(2) 123.1(6) 1
Ba(1)-O(10)-Ba(2) 103.01(15) 1 1
C(13)-C(1)-C(2) 118.3(6)

C(13)-C(1)-H(1A) 120.9
C(2)-C(1)-H(1A) 120.9
C(1)-C(2)-C(3) 119.8(7)

C(1)-C(2)-C(14) 120.4(7)
C(3)-C(2)-C(14) 119.7(7)
C(2)-C(3)-C(4) 121.7(6)

C(2)-C(3)-H(3A) 119.1
C(4)-C(3)-H(3A) 119.1
C(5)-C(4)-C(3) 117.4(6)

C(5)-C(4)-H(4A) 121.3
C(3)-C(4)-H(4A) 121.3
C(4)-C(5)-C(13) 120.4(6)
C(4)-C(5)-C(6) 130.6(6)

C(13)-C(5)-C(6) 109.0(5)
C(7)-C(6)-C(11) 120.1(6)
C(7)-C(6)-C(5) 131.2(6)

C(11)-C(6)-C(5) 108.7(6)
C(6)-C(7)-C(8) 117.9(6)

C(6)-C(7)-H(7A) 121.1
C(8)-C(7)-H(7A) 121.1
C(7)-C(8)-C(9) 122.6(6)

C(7)-C(8)-H(8A) 118.7
C(9)-C(8)-H(8A) 118.7
C(8)-C(9)-C(10) 119.2(6)
C(8)-C(9)-C(15) 119.1(6)

C(10)-C(9)-C(15) 121.5(7)
C(11)-C(10)-C(9) 118.2(6)

C(11)-C(10)-H(10A) 120.9
C(9)-C(10)-H(10A) 120.9
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Table 8.67: Continued: Bond Angles [◦] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(10)-C(11)-C(6) 121.9(6)
C(10)-C(11)-C(12) 129.1(6)
C(6)-C(11)-C(12) 108.9(5)
O(1)-C(12)-C(11) 127.7(6)
O(1)-C(12)-C(13) 127.1(6)
C(11)-C(12)-C(13) 105.1(5)

C(1)-C(13)-C(5) 122.3(6)
C(1)-C(13)-C(12) 129.6(6)
C(5)-C(13)-C(12) 108.2(5)
O(2)-C(14)-O(3) 121.6(8)
O(2)-C(14)-C(2) 119.1(7)
O(3)-C(14)-C(2) 119.4(7)
O(2)-C(14)-Ba(1) 56.0(4) 1
O(3)-C(14)-Ba(1) 74.9(5) 1
C(2)-C(14)-Ba(1) 146.4(5) 1
O(5)-C(15)-O(4) 121.7(9)
O(5)-C(15)-C(9) 119.0(8)
O(4)-C(15)-C(9) 119.2(8)
O(5)-C(15)-Ba(2) 58.9(5)
O(4)-C(15)-Ba(2) 67.1(5)
C(9)-C(15)-Ba(2) 154.7(6)

C(28)-C(16)-C(17) 117.8(6)
C(28)-C(16)-H(16A) 121.1
C(17)-C(16)-H(16A) 121.1
C(16)-C(17)-C(18) 119.9(6)
C(16)-C(17)-C(29) 121.2(7)
C(18)-C(17)-C(29) 118.7(7)
C(19)-C(18)-C(17) 122.1(6)

C(19)-C(18)-H(18A) 119.0
C(17)-C(18)-H(18A) 119.0
C(18)-C(19)-C(20) 118.4(6)

C(18)-C(19)-H(19A) 120.8
C(20)-C(19)-H(19A) 120.8
C(19)-C(20)-C(28) 119.7(6)
C(19)-C(20)-C(21) 132.1(6)
C(28)-C(20)-C(21) 108.2(5)
C(22)-C(21)-C(26) 119.6(6)
C(22)-C(21)-C(20) 131.3(6)
C(26)-C(21)-C(20) 109.1(5)
C(21)-C(22)-C(23) 118.1(6)

C(21)-C(22)-H(22A) 121.0
C(23)-C(22)-H(22A) 121.0
C(24)-C(23)-C(22) 121.4(6)

C(24)-C(23)-H(23A) 119.3
C(22)-C(23)-H(23A) 119.3
C(23)-C(24)-C(25) 120.4(7)
C(23)-C(24)-C(30) 120.6(7)
C(25)-C(24)-C(30) 118.9(7)
C(26)-C(25)-C(24) 117.8(6)

C(26)-C(25)-H(25A) 121.1
C(24)-C(25)-H(25A) 121.1
C(25)-C(26)-C(21) 122.6(6)
C(25)-C(26)-C(27) 128.6(6)
C(21)-C(26)-C(27) 108.8(5)
O(6)-C(27)-C(28) 127.6(6)
O(6)-C(27)-C(26) 126.9(6)
C(28)-C(27)-C(26) 105.4(5)
C(16)-C(28)-C(20) 122.1(6)
C(16)-C(28)-C(27) 129.5(6)
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Table 8.68: Continued: Bond Angles [◦] for BaFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(20)-C(28)-C(27) 108.4(5)
O(8)-C(29)-O(7) 123.2(9)
O(8)-C(29)-C(17) 118.0(8)
O(7)-C(29)-C(17) 118.8(9)
O(8)-C(29)-Ba(1) 57.4(5)
O(7)-C(29)-Ba(1) 70.8(5)
C(17)-C(29)-Ba(1) 155.5(6)
O(9)-C(30)-O(10) 125.4(9)
O(9)-C(30)-C(24) 117.7(8)

O(10)-C(30)-C(24) 116.8(8)
Ba(1)-O(11)-H(11A) 109(9)
Ba(1)-O(11)-H(11B) 139(10)

H(11A)-O(11)-H(11B) 82(4)
Ba(2)-O(12)-H(12A) 134(6)
Ba(2)-O(12)-H(12B) 138(5)

H(12A)-O(12)-H(12B) 86(4)
C(10)-C(11)-C(6) 121.9(6)
C(10)-C(11)-C(12) 129.1(6)
C(6)-C(11)-C(12) 108.9(5)
O(1)-C(12)-C(11) 127.7(6)
O(1)-C(12)-C(13) 127.1(6)
C(11)-C(12)-C(13) 105.1(5)
C(1)-C(13)-C(5) 122.3(6)

C(1)-C(13)-C(12) 129.6(6)
C(5)-C(13)-C(12) 108.2(5)
O(2)-C(14)-O(3) 121.6(8)
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8.9 CdFDC structure details

Figure 8.9: Asymmetric unit with atom numbers for CdFDC.
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Table 8.69: Crystal data and structure refinement for CdFDC.
Parameter Value

Empirical formula C15H12O8Cd
Formula weight 432.65 g·mol−1

Collection Temperature 100(2) K
Wavelength 0.77490Å
Crystal system Monoclinic
Space Group P2(1)/c
Unit cell dimensions

a 7.7123(2) Å
b 28.5057(8)Å
c 6.6459(2) Å
α 90◦

β 105.050(2)◦

γ 90◦

Volume 1410.95(7)Å
3

Z 4
Calculated density 2.037 g/m3

Absorption coefficient 1.982 mm−1

F(000) 856
Crystal size 0.18×0.08×0.03 mm
Theta range for data collection 3.08◦ to 33.61◦

Limiting indices −11 ≤ h ≤ 10, −39 ≤ k ≤ 40,−9 ≤ l ≤ 9
Reflections collected / unique 20326 / 4304 [R(int) = 0.0523]
Data Completeness 99.7%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.90 and 0.68
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 4304 / 15 / 235
Goodness-of-fit on F 2 1.045
Final R indices [I>2sigma(I)] R1 = 0.0257, wR2 = 0.0676
R indices (all data) R1 = 0.0288, wR2 = 0.0695
Extinction coefficient 0
Largest diff. peak and hole 0.594 and -0.486 e·Å−3
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Table 8.70: Crystal coordinates [Å] and equivalent isotropic displacement param-
eters [Å2] for CdFDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Cd(1) 0.783610(16) 0.523252(4) 0.330768(19) 0.01055(5)
C(1) 0.4144(2) 0.18545(6) 0.3702(3) 0.0117(3)
H(1) 0.2871 0.1837 0.3295 0.014
C(2) 0.5192(2) 0.14461(6) 0.3966(3) 0.0116(3)
C(3) 0.7070(2) 0.14768(6) 0.4595(3) 0.0122(3)
H(3) 0.7765 0.1197 0.4770 0.015
C(4) 0.7940(2) 0.19101(6) 0.4970(3) 0.0119(3)
H(4) 0.9212 0.1928 0.5421 0.014
C(5) 0.6901(2) 0.23129(6) 0.4669(3) 0.0104(3)
C(6) 0.7429(2) 0.28140(6) 0.4818(3) 0.0107(3)
C(7) 0.9104(2) 0.30256(6) 0.5306(3) 0.0126(3)
H(7) 1.0169 0.2843 0.5681 0.015
C(8) 0.9189(2) 0.35164(6) 0.5234(3) 0.0119(3)
H(8) 1.0327 0.3667 0.5566 0.014
C(9) 0.7631(2) 0.37889(6) 0.4683(3) 0.0111(3)

C(10) 0.5935(2) 0.35724(6) 0.4205(3) 0.0117(3)
H(10) 0.4868 0.3755 0.3837 0.014
C(11) 0.5853(2) 0.30889(6) 0.4282(3) 0.0106(3)
C(12) 0.4259(2) 0.27692(6) 0.3771(3) 0.0119(3)
O(1) 0.26768(18) 0.28792(5) 0.3192(2) 0.0171(3)
C(13) 0.5016(2) 0.22843(6) 0.4049(3) 0.0108(3)
C(14) 0.4301(3) 0.09775(6) 0.3430(3) 0.0123(3)
O(2) 0.51881(19) 0.06241(5) 0.3188(2) 0.0163(3)
O(3) 0.25901(18) 0.09631(5) 0.3130(2) 0.0149(3)
C(15) 0.7735(2) 0.43118(6) 0.4434(3) 0.0106(3)
O(4) 0.92334(18) 0.45208(5) 0.4995(2) 0.0150(3)
O(5) 0.63122(18) 0.45317(4) 0.3552(2) 0.0135(2)
O(6) 0.72896(18) 0.54311(5) 0.6454(2) 0.0154(3)

H(6A) 0.6174(19) 0.5440(10) 0.633(4) 0.023
H(6B) 0.780(4) 0.5679(7) 0.700(4) 0.023
O(7) 0.8136(2) 0.48861(5) 0.0282(2) 0.0171(3)

H(7A) 0.729(3) 0.4705(8) -0.029(4) 0.026
H(7B) 0.819(4) 0.5063(9) -0.071(4) 0.026
O(8) 0.8619(2) 0.62203(5) 0.8435(2) 0.0195(3)

H(8A) 0.831(4) 0.6181(10) 0.956(3) 0.029
H(8B) 0.819(4) 0.6485(6) 0.798(4) 0.029
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Table 8.71: Anisotropic displacement parameters [Å2] for CdFDC. The anisotropic
displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+ 2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Cd(1) 0.01018(8) 0.00669(8) 0.01377(8) 0.00134(4) 0.00129(5) 0.00008(4)
C(1) 0.0122(8) 0.0089(7) 0.0130(8) -0.0004(6) 0.0012(6) -0.0002(6)
C(2) 0.0141(8) 0.0079(7) 0.0124(7) -0.0006(6) 0.0025(6) -0.0013(6)
C(3) 0.0138(8) 0.0090(7) 0.0128(7) -0.0004(6) 0.0018(6) 0.0014(6)
C(4) 0.0121(8) 0.0095(7) 0.0134(8) 0.0000(6) 0.0020(6) 0.0000(6)
C(5) 0.0113(8) 0.0086(7) 0.0108(7) 0.0001(5) 0.0019(6) -0.0008(6)
C(6) 0.0123(8) 0.0090(7) 0.0106(7) 0.0002(6) 0.0023(6) -0.0003(6)
C(7) 0.0117(8) 0.0093(7) 0.0158(8) -0.0001(6) 0.0015(6) 0.0007(6)
C(8) 0.0106(8) 0.0110(8) 0.0136(8) -0.0009(6) 0.0024(6) -0.0023(6)
C(9) 0.0125(8) 0.0086(7) 0.0116(7) 0.0000(6) 0.0024(6) -0.0019(6)
C(10) 0.0121(8) 0.0090(7) 0.0141(8) 0.0001(6) 0.0036(6) 0.0001(6)
C(11) 0.0093(7) 0.0094(7) 0.0129(7) -0.0008(6) 0.0025(6) -0.0011(6)
C(12) 0.0125(8) 0.0089(7) 0.0140(8) 0.0001(6) 0.0030(6) 0.0000(6)
O(1) 0.0134(7) 0.0133(7) 0.0240(7) 0.0011(5) 0.0036(5) 0.0000(5)
C(13) 0.0113(8) 0.0086(7) 0.0119(7) 0.0000(5) 0.0021(6) 0.0004(6)
C(14) 0.0159(8) 0.0085(7) 0.0109(7) 0.0001(6) 0.0005(6) -0.0008(6)
O(2) 0.0175(7) 0.0085(6) 0.0214(7) -0.0029(5) 0.0022(5) 0.0004(5)
O(3) 0.0133(6) 0.0099(6) 0.0195(7) -0.0020(5) 0.0007(5) -0.0017(5)
C(15) 0.0119(8) 0.0089(7) 0.0108(7) 0.0009(6) 0.0027(6) -0.0012(6)
O(4) 0.0121(6) 0.0101(6) 0.0212(7) 0.0012(5) 0.0011(5) -0.0024(5)
O(5) 0.0118(6) 0.0088(6) 0.0193(6) 0.0030(5) 0.0029(5) 0.0004(4)
O(6) 0.0125(6) 0.0152(7) 0.0188(7) -0.0020(5) 0.0042(5) -0.0016(5)
O(7) 0.0176(7) 0.0162(6) 0.0175(7) -0.0015(5) 0.0045(5) -0.0034(5)
O(8) 0.0203(7) 0.0160(7) 0.0221(7) -0.0003(5) 0.0054(6) -0.0015(5)

Table 8.72: Symmetry operations used in the following tables for CdFDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,y+1/2,-z+1/2’
#3 ‘-x,-y,-z’
#4 ‘x,-y-1/2,z-1/2’
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Table 8.73: Bond Lengths [Å] for CdFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Cd(1)-O(7) 2.3050(15)
Cd(1)-O(6) 2.3080(14)
Cd(1)-O(5) 2.3447(13)
Cd(1)-O(4) 2.3561(14) 3
Cd(1)-O(4) 2.4305(13)
Cd(1)-O(2) 2.5437(14) 2
Cd(1)-C(15) 2.7357(17)
Cd(1)-C(14) 2.7516(18) 2
C(1)-C(13) 1.388(2)
C(1)-C(2) 1.402(2)
C(1)-H(1) 0.9500
C(2)-C(3) 1.402(2)

C(2)-C(14) 1.502(2)
C(3)-C(4) 1.397(2)
C(3)-H(3) 0.9500
C(4)-C(5) 1.385(2)
C(4)-H(4) 0.9500
C(5)-C(13) 1.407(2)
C(5)-C(6) 1.481(2)
C(6)-C(7) 1.386(2)

C(6)-C(11) 1.412(2)
C(7)-C(8) 1.402(2)
C(7)-H(7) 0.9500
C(8)-C(9) 1.397(2)
C(8)-H(8) 0.9500
C(9)-C(10) 1.406(2)
C(9)-C(15) 1.504(2)

C(10)-C(11) 1.381(2)
C(10)-H(10) 0.9500
C(11)-C(12) 1.496(2)
C(12)-O(1) 1.221(2)
C(12)-C(13) 1.493(2)
C(14)-O(2) 1.251(2)
C(14)-O(3) 1.283(2)
C(14)-Cd(1) 2.7515(18) 2
O(2)-Cd(1) 2.5436(14) 2
O(3)-Cd(1) 2.2792(14) 2
C(15)-O(4) 1.267(2)
C(15)-O(5) 1.267(2)
O(4)-Cd(1) 2.3561(13) 3
O(6)-H(6A) 0.844(13)
O(6)-H(6B) 0.845(13)
O(7)-H(7A) 0.843(13)
O(7)-H(7B) 0.839(13)
O(8)-H(8A) 0.845(13)
O(8)-H(8B) 0.848(13)
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Table 8.74: Bond Angles [◦] for CdFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(7)-Cd(1)-O(5) 82.02(5)
O(6)-Cd(1)-O(5) 86.19(5)
O(3)-Cd(1)-O(4) 86.79(5) 2 3
O(7)-Cd(1)-O(4) 104.15(5) 3
O(6)-Cd(1)-O(4) 82.59(5) 3
O(5)-Cd(1)-O(4) 131.06(5) 3
O(3)-Cd(1)-O(4) 162.65(5) 2
O(7)-Cd(1)-O(4) 84.94(5)
O(6)-Cd(1)-O(4) 87.15(5)
O(5)-Cd(1)-O(4) 55.04(4)
O(4)-Cd(1)-O(4) 76.88(5) 3
O(3)-Cd(1)-O(2) 54.37(5) 2 2
O(7)-Cd(1)-O(2) 97.87(5) 2
O(6)-Cd(1)-O(2) 83.20(5) 2
O(5)-Cd(1)-O(2) 88.61(4) 2
O(4)-Cd(1)-O(2) 136.41(4) 3 2
O(4)-Cd(1)-O(2) 142.97(5) 2
O(3)-Cd(1)-C(15) 168.51(5) 2
O(7)-Cd(1)-C(15) 81.03(5)
O(6)-Cd(1)-C(15) 87.86(5)
O(5)-Cd(1)-C(15) 27.54(5)
O(4)-Cd(1)-C(15) 104.32(5) 3
O(4)-Cd(1)-C(15) 27.59(5)
O(2)-Cd(1)-C(15) 116.07(5) 2
O(3)-Cd(1)-C(14) 27.56(5) 2 2
O(7)-Cd(1)-C(14) 98.60(5) 2
O(6)-Cd(1)-C(14) 87.74(5) 2
O(5)-Cd(1)-C(14) 115.48(5) 2
O(4)-Cd(1)-C(14) 111.48(5) 3 2
O(4)-Cd(1)-C(14) 169.53(5) 2
O(2)-Cd(1)-C(14) 26.97(5) 2 2
C(15)-Cd(1)-C(14) 143.00(5) 2

C(13)-C(1)-C(2) 118.30(16)
C(13)-C(1)-H(1) 120.9
C(2)-C(1)-H(1) 120.9
C(1)-C(2)-C(3) 120.17(16)
C(1)-C(2)-C(14) 119.71(16)
C(3)-C(2)-C(14) 119.99(16)
C(4)-C(3)-C(2) 121.31(16)
C(4)-C(3)-H(3) 119.3
C(2)-C(3)-H(3) 119.3
C(5)-C(4)-C(3) 118.32(17)
C(5)-C(4)-H(4) 120.8
C(3)-C(4)-H(4) 120.8
C(4)-C(5)-C(13) 120.62(16)
C(4)-C(5)-C(6) 130.65(16)
C(13)-C(5)-C(6) 108.69(15)
C(7)-C(6)-C(11) 120.45(16)
C(7)-C(6)-C(5) 131.17(16)
C(11)-C(6)-C(5) 108.34(15)
C(6)-C(7)-C(8) 118.36(16)
C(6)-C(7)-H(7) 120.8
C(8)-C(7)-H(7) 120.8
C(9)-C(8)-C(7) 121.28(16)
C(9)-C(8)-H(8) 119.4
C(7)-C(8)-H(8) 119.4
C(8)-C(9)-C(10) 120.09(16)
C(8)-C(9)-C(15) 120.85(15)

C(10)-C(9)-C(15) 118.90(16)
C(11)-C(10)-C(9) 118.58(16)
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Table 8.75: Continued: Bond Angles [◦] for CdFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

C(11)-C(10)-H(10) 120.7
C(9)-C(10)-H(10) 120.7
C(10)-C(11)-C(6) 121.22(16)
C(10)-C(11)-C(12) 129.94(16)
C(6)-C(11)-C(12) 108.78(15)
O(1)-C(12)-C(13) 127.09(17)
O(1)-C(12)-C(11) 127.57(16)
C(13)-C(12)-C(11) 105.31(15)
C(1)-C(13)-C(5) 121.26(16)

C(1)-C(13)-C(12) 129.80(16)
C(5)-C(13)-C(12) 108.87(15)
O(2)-C(14)-O(3) 121.94(17)
O(2)-C(14)-C(2) 120.97(17)
O(3)-C(14)-C(2) 116.99(16)

O(2)-C(14)-Cd(1) 67.22(10) 2
O(3)-C(14)-Cd(1) 55.27(9) 2
C(2)-C(14)-Cd(1) 166.68(12) 2
C(14)-O(2)-Cd(1) 85.81(11) 2
C(14)-O(3)-Cd(1) 97.17(11) 2
O(4)-C(15)-O(5) 121.17(16)
O(4)-C(15)-C(9) 120.28(16)
O(5)-C(15)-C(9) 118.44(15)

O(4)-C(15)-Cd(1) 62.67(9)
O(5)-C(15)-Cd(1) 58.79(9)
C(9)-C(15)-Cd(1) 170.71(12)
C(15)-O(4)-Cd(1) 165.79(12) 3
C(15)-O(4)-Cd(1) 89.74(10)
Cd(1)-O(4)-Cd(1) 103.12(5) 3
C(15)-O(5)-Cd(1) 93.67(11)
Cd(1)-O(6)-H(6A) 110.1(19)
Cd(1)-O(6)-H(6B) 114.8(19)
H(6A)-O(6)-H(6B) 112(3)
Cd(1)-O(7)-H(7A) 114(2)
Cd(1)-O(7)-H(7B) 118(2)
H(7A)-O(7)-H(7B) 102(3)
H(8A)-O(8)-H(8B) 105(3)
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8.10 MnFDC structure details

Figure 8.10: Asymmetric unit with atom numbers for MnFDC.
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Table 8.76: Crystal data and structure refinement for MnFDC.
Parameter Value

Empirical formula C15H10O7Mn
Formula weight 357.17 g·mol−1

Collection Temperature 100(2) K
Wavelength 0.77490Å
Crystal system Monoclinic
Space Group C2/c
Unit cell dimensions

a 26.943(2)Å
b 7.2476(6)Å
c 6.9261(5)Å
α 90◦

β 97.703(2)◦

γ 90◦

Volume 1340.27Å
3

Z 4
Calculated density 1.770 g/m3

Absorption coefficient 1.287 mm−1

F(000) 724
Crystal size 0.11×0.03×0.01 mm
Theta range for data collection 3.95◦ to 33.60◦

Limiting indices −38 ≤ h ≤ 38, 0 ≤ k ≤ 10,0 ≤ l ≤ 9
Reflections collected / unique 14469 / 2016 [R(int) = 0.0351]
Data Completeness 99.2%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.93 and 0.84
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 2016 / 0 / 116
Goodness-of-fit on F 2 1.045
Final R indices [I>2sigma(I)] R1 = 0.0258, wR2 = 0.0631
R indices (all data) R1 = 0.0312, wR2 = 0.0660
Extinction coefficient 0
Largest diff. peak and hole 0.502 and -0.290e·Å−3
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Table 8.77: Crystal coordinates [Å] and equivalent isotropic displacement param-
eters [Å2] for MnFDC. Ueq is defined as one third of the trace of the orthogonalized
Uij tensor.

x y z Ueq

Mn(1) 0.2500 0.7500 0.0000 0.01056(8)
O(1) 0.0000 0.8255(2) 0.2500 0.0243(4)
O(2) 0.21209(4) 0.33697(13) 0.21582(17) 0.01266(19)
O(3) 0.19208(4) 0.63223(14) 0.14824(16) 0.0142(2)
C(1) 0.09294(5) 0.57709(19) 0.2192(2) 0.0132(3)

H(1A) 0.1034 0.7017 0.2112 0.016
C(2) 0.12705(5) 0.43129(18) 0.2148(2) 0.0121(2)
C(3) 0.11108(5) 0.24814(19) 0.2289(2) 0.0158(3)

H(3A) 0.1348 0.1512 0.2301 0.019
C(4) 0.06095(5) 0.2049(2) 0.2411(3) 0.0171(3)

H(4A) 0.0503 0.0804 0.2476 0.021
C(5) 0.02732(5) 0.34959(19) 0.2433(2) 0.0137(3)
C(6) 0.04362(5) 0.53403(18) 0.2356(2) 0.0131(3)
C(7) 0.0000 0.6581(3) 0.2500 0.0145(4)
C(8) 0.18054(5) 0.47134(18) 0.1920(2) 0.0111(2)
O(4) 0.28846(4) 0.48028(14) 0.03761(19) 0.0150(2)

H(1WA) 0.2971(8) 0.413(3) -0.048(4) 0.032(6)
H(2WA) 0.2719(9) 0.408(4) 0.104(4) 0.044(7)

Table 8.78: Anisotropic displacement parameters [Å2] for MnFDC. The anisotropic
displacement factor exponent takes the form −2π2[h2a∗2U11 + ...+ 2hka∗b∗U12].

U11 U22 U33 U23 U13 U12

Mn(1) 0.01050(12) 0.00762(12) 0.01372(13) -0.00029(10) 0.00218(12) -0.00109(10)
O(1) 0.0183(7) 0.0113(7) 0.0441(11) 0.000 0.0069(7) 0.000
O(2) 0.0116(4) 0.0101(4) 0.0162(5) 0.0012(4) 0.0020(4) 0.0017(3)
O(3) 0.0132(4) 0.0102(4) 0.0197(5) 0.0012(4) 0.0046(4) -0.0009(4)
C(1) 0.0117(6) 0.0111(5) 0.0169(7) 0.0011(5) 0.0022(5) -0.0008(5)
C(2) 0.0096(5) 0.0120(5) 0.0149(7) 0.0010(5) 0.0017(5) -0.0002(5)
C(3) 0.0123(6) 0.0113(6) 0.0241(8) 0.0012(5) 0.0036(5) 0.0008(5)
C(4) 0.0121(6) 0.0112(5) 0.0284(8) 0.0018(5) 0.0039(5) -0.0001(5)
C(5) 0.0116(6) 0.0114(6) 0.0185(7) -0.0001(5) 0.0032(5) 0.0003(5)
C(6) 0.0121(6) 0.0101(6) 0.0172(7) 0.0006(5) 0.0022(5) 0.0005(5)
C(7) 0.0115(8) 0.0122(8) 0.0195(10) 0.000 0.0013(7) 0.000
C(8) 0.0101(5) 0.0122(6) 0.0110(6) -0.0007(5) 0.0018(5) -0.0002(4)
O(4) 0.0163(4) 0.0111(4) 0.0184(6) 0.0000(4) 0.0053(5) 0.0001(4)

Table 8.79: Symmetry operations used in the following tables for MnFDC.
Operation

#1 ‘x,y,z’
#2 ‘-x,y,-z+1/2’
#3 ‘x+1/2,y+1/2,z’
#4 ‘-x+1/2,y+1/2,-z+1/2’
#5 ‘-x,-y,-z’
#6 ‘x,-y,z-1/2’
#7 ‘-x+1/2,-y+1/2,-z’
#8 ‘x+1/2,-y+1/2,z-1/2’
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Table 8.80: Bond Lengths [Å] for MnFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

Mn(1)-O(2) 2.1853(11) 4
Mn(1)-O(3) 2.1557(10)
Mn(1)-O(3) 2.1557(10) 7
Mn(1)-O(4) 2.2114(10)
Mn(1)-O(4) 2.2114(10) 7
O(1)-C(7) 1.213(3)

O(2)-Mn(1) 2.1853(11) 4
O(2)-C(8) 1.2888(15)
O(3)-C(8) 1.2544(16)

C(1)-H(1A) 0.9500
C(1)-C(2) 1.4034(18)
C(1)-C(6) 1.3845(18)
C(2)-C(3) 1.4028(18)
C(2)-C(8) 1.4990(18)

C(3)-H(3A) 0.9500
C(3)-C(4) 1.3999(19)

C(4)-H(4A) 0.9500
C(4)-C(5) 1.387(2)
C(5)-C(5) 1.487(3) 2
C(5)-C(6) 1.4103(19)
C(6)-C(7) 1.4938(18)
C(7)-C(6) 1.4937(18) 2

O(4)-H(1WA) 0.82(3)
O(4)-H(2WA) 0.86(3)
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Table 8.81: Bond Angles [◦] for MnFDC.
Angle Symm. op. atom 1 Symm. op. atom 3

O(2)-Mn(1)-O(3) 91.95(4) 4 7
O(2)-Mn(1)-O(4) 89.65(4) 6 7
O(2)-Mn(1)-O(4) 90.35(4) 4 7
O(2)-Mn(1)-O(4) 90.35(4) 6
O(2)-Mn(1)-O(4) 89.65(4) 4
O(3)-Mn(1)-O(3) 180.0 7
O(3)-Mn(1)-O(4) 87.22(4)
O(3)-Mn(1)-O(4) 92.78(4) 7
O(3)-Mn(1)-O(4) 87.22(4) 7 7
O(3)-Mn(1)-O(4) 92.78(4) 7
O(4)-Mn(1)-O(4) 180.00(5) 7
Mn(1)-O(2)-C(8) 123.64(9) 4
Mn(1)-O(3)-C(8) 134.58(9)
H(1A)-C(1)-C(2) 121.0
H(1A)-C(1)-C(6) 121.0
C(2)-C(1)-C(6) 118.07(12)
C(1)-C(2)-C(3) 120.20(12)
C(1)-C(2)-C(8) 119.87(12)
C(3)-C(2)-C(8) 119.92(12)

C(2)-C(3)-H(3A) 119.2
C(2)-C(3)-C(4) 121.56(13)

H(3A)-C(3)-C(4) 119.2
C(3)-C(4)-H(4A) 121.0
C(3)-C(4)-C(5) 117.93(13)

H(4A)-C(4)-C(5) 121.0
C(4)-C(5)-C(5) 130.85(8) 2
C(4)-C(5)-C(6) 120.59(13)
C(5)-C(5)-C(6) 108.55(8) 2
C(1)-C(6)-C(5) 121.60(13)
C(1)-C(6)-C(7) 129.95(12)
C(5)-C(6)-C(7) 108.45(12)
O(1)-C(7)-C(6) 127.02(8)
O(1)-C(7)-C(6) 127.02(8) 2
C(6)-C(7)-C(6) 105.96(16) 2
O(2)-C(8)-O(3) 123.55(12)
O(2)-C(8)-C(2) 117.85(12)
O(3)-C(8)-C(2) 118.59(12)

Mn(1)-O(4)-H(1WA) 127.6(17)
Mn(1)-O(4)-H(2WA) 109.5(17)

H(1WA)-O(4)-H(2WA) 104(2)
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8.11 Additional Experimental Conditions

As with any work, there are far more experiments than those that are ultimately
reported. The follow is a list of some of the additional experiments and experi-
mental conditions used throughout this thesis.

Chapter 3 outlines experiments using nanoparticles of yttrium aluminum gar-
net. The experimental conditions listed in that chapter are those that were opti-
mized through the conditions listed in Table 8.82. All of these were in the same
reverse emulsion process described in the chapter. The columns list the sample
number, solvent, surfactanct, the ratio of the solvent to the surfactant, reflux time
and temperature, hydrolyzing base, calcination conditions, and results.

In addition to the nanoparticles above, some addition inorganic phosphors
were prepared of a vanadate with the formula MVO4. In these compounds the
vanadate group as a sensitizer and transfers energy to the emitter ion, usually a
small concentration of europium or terbium. In Table 8.83, these reactions are
listed. Some are solvent/surfact emulsion reactions, while the others are classic
ceramics bulk oxide preparations. The same emulsion technique was applied in
hopes of making nanoparticles, but it was ultimate found that small particles of
these were not accessible through this route.

The cerium oxalate formate compounds described in Chapter 4 were discov-
ered in the course of looking for anhydrous, rare earth framework compounds.
Quite a few others were identified along the way, and the experimental proce-
dures followed are contained in Tables 8.84 through 8.91. The tables give a sam-
ple number, whether the heating was by microwave or convention methods, the
metal source and amount, the ligand source and amount, solvent used, if there
were any extra additions, the heating time and temperature, and the results.

Tables 8.92 and 8.93 list the experimental conditions used for the an-
thraquinone frameworks in Chapter 5, along with some additional metals of which
single crystal samples were never attained.

Many experiments were carried out using the fluorenone dicarboxylic acid lig-
and. They are summarized in Tables 8.94 to 8.95. These were all carried out
hydrothermally with conventional heating and the column heading are equivalent
to those in the preceeding tables.
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tion and dehydration dynamics of yttrium potassium oxalate tetrahydrate
studied by x-ray powder diffraction. Chem. Mater., 11:1559, 1999.

[126] E. Jeanneau, N. Audebrand, J.-P. Auffrédic, and D. Louër. Crystal structure,
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