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ABSTRACT 

Non parametric inferential statistics was used to guide the numerical optimization study to search for the optimum 
result in this article. The technique was demonstrated in a case study and a significant improved predictive model was 
formulated with 4% less residual sum of squares (RSS) than the median model, 20% less than the mean model and 79% 
less than a benchmarked empirical model. The methodology proposed herewith addressed the selection dilemma between 
mean and median. It identified an optimum value and formulated a better predictive model than those by either mean or 
median.   
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INTRODUCTION 

Researchers often face the decision to choose 
between mean and median of a dataset as a better 
collective representation in their study. The decision often 
leads to a consequential predictive modelling formulation, 
and therefore it is crucial to be able to make the best 
selection. The issue spans across different field of studies 
as a universal dilemma. In hydrological research, some 
researcher recommended using the median while other 
recommended the mean value (Schneider and McCuen, 
2005), (Hawkins et. al., 2009), (Hawkins, 2014). This 
study proposed to utilise numerical analysis algorithm 
(Fattorini, 1999), (Mordecai, 2003), (Jon, 2004), (Jorge 
and Stephen, 2006), (Ruszczyński, 2006) guided by 
inferential statistics (Rao, 1997), (Young and Smith, 
2005), (Cox, 2006), (Efron, 2010), (Ling and Yusop, 
2014, 2014b) for assessment.  

In the past few years, the proposed methodology 
was tested rigorously with rainfall-runoff data and 
modelling with an aim to hone the runoff prediction result 
of an empirical model. The methodology was 
demonstrated through a selected case study which used 
piecewise function to model the correlation between A 
and B as: 
 

 
 

CDA
DAB 


2

        (1) 

for A > D, else B = 0 
 
A, B = given observed data 
C, D = fitting parameter 
 

C correlates to D via another parameter L in the form 
of C = D/L (L is a fitting value between 0 and 1). All 
parameters are either positive integers or real numbers. 
For illustration, this study used a twenty-two A-B positive 
real number dataset below 25 (hydrological dataset not 
shown here) and D was pre-determined to be 0.001 to 
substitute into equation (1) and simplify (1) into: 
  

 

L
A

AB
001.0001.0

2001.0



        (2) 

for A > 0.001, else B = 0 
 

where A, B and L are as defined in previous 
section. An empirical model assumed that data 
distribution nature would not affect the model 
predictability and proposed L = 0.2 to further reduce 
equation (2) into a simple form of:  

 

  2
004.0
001.0


 A

AB         (3) 

for A > 0.001, else B = 0 
 

where A and B are as defined in previous section.  
 
METHODOLOGY 

Given the A-B dataset, twenty-two L values were 
derived from equation (2). The descriptive statistics of L 
values was tabulated in Table 1. The study will identify a 
best collective representation of L value for the dataset 
and benchmarked against the empirical (model) equation 
(3) where L was proposed and assumed to be 0.2 despite 
of its data distribution. Inferential non-parametric 
statistics was employed for two claim assessments set 
forth by the empirical model’s assumption with two Null 
hypotheses: 

 
Null Hypothesis 1 (H01): Equation (3) applies for every 
dataset.
Null Hypothesis 2 (H02): L = 0.20 and the value of 0.20 is 
a constant in equation (3). 

 
The rejection of H01 implies that the empirical 

(model) equation (3) is invalid and not applicable for the 
dataset of this study, while H02 rejection indicates that L is 
not a constant as proposed but a variable. Rejection of 
both hypotheses will pave way to derive new L value. The 
selection of a different L value will formulate a new 
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predictive model using equation (2). Beside the derived 
mean and median value of L dataset, numerical analysis 
algorithm will search through both mean and median’s 
confidence interval range for an optimum L value at alpha 
= 0.01 level. The goal is to formulate different predictive 
model using different L value for further comparison 
analyses. In order to include confidence intervals into the 
discussion, bootstrapping technique, Bias corrected and 
accelerated (BCa) procedure (2000 samples) was 
conducted at a stringent 99% confidence level on the L 
dataset (Efron and Tibshirani, 1994), (Davison and 
 Hinkley, 1997) (Rochoxicz, 2011).  
 
MEAN, MEDIAN AND OPTIMUM L  

The L dataset is not normally distributed from its 
skewness and kurtosis (2.41, 7.23), conventional 
statistical practice is to adopt the median value as the 
collective representation for the skewed L dataset. Mean, 
median value and the respective BCa 99% confident 
interval range are 0.0013 [0.00086, 0.00181] and 0.0011 
[0.00079, 0.00131]. BCa biases of mean and median 
values were at proximate range but mean value has larger 
BCa standard error than median. Some researchers would 
recommend selecting median over mean to represent L 
dataset in this case (Wright, 1997), (Howell, 2007), 
(Hawkins, 2014).  

Under the circumstance, the study turned to a 
different premise for sourcing solution and further 
assessment. L optimization study can be conducted via 
numerical analyses approach using equation (2). The least 
square fitting algorithm was set to identify an optimum L 
value by minimizing the residual sum of squares (RSS)1 
between predicted B and its observed values. 
 

0

5

10

15

20

25

30

35

0.00 0.05 0.10 0.15 0.20

R
SS

 

L 

Prediction Model's RSS 

5

6

7

8

0.0007 0.0014

  
 

Figure-1. Prediction model’s RSS of equation (2) as per L 
variations. The dash box shows the magnified view of the 

lowest RSS near to the origin. 
 

The optimization study was conducted twice 
where first (un-supervised) attempt was based on L 
variation across a wide range values from 0.00001 to 
1,000,000 on equation (2). Same algorithm was repeated 
to (supervised) search for the optimum L value but within 

                                                 
1  

2

1




n

i
observedpredicted BBRSS  

the BCa confidence interval limits only of both mean and 
median of the derived L dataset in order to confirm the 
optmized result of the first attempt.  

Prediction model’s RSS varied according to L as 
depicted in Figure-1. The optimization study via numerical 
analysis identified an optimum L value to be 0.00093 
where overall predcitive model’s RSS is the lowest. This 
optimum L value  is neither the mean nor median of the L 
dataset as tabulated in Table-1. Had numerical analysis 
produced a third choice and compounded the dilemma into 
a “trilemma” paradox?  
 
MEAN, MEDIAN AND OPTIMUM L MODEL 

The Mean, median and optimum L values were 
used to formulate three prediction models using equation 
(2) in order to study the model’s prediction efficiency (E)2 
respectively and draw further comparisons. Three 
prediction models were formulated as below. Using mean 
value, piecewise model (2) becomes: 

  

 2
796.0
001.0


 A

AB        (4) 

for A > 0.001, else B = 0 
 
Using median value, piecewise model (2) becomes: 
 

 2
951.0
001.0


 A

AB        (5) 

for A > 0.001, else B = 0 
 
Using optimum L value, piecewise model (2) becomes: 
 

 2
074.1
001.0


 A

AB        (6) 

for A > 0.001, else B = 0 
 

where A and B are the same parameters as stated 
in previous section.  
 
COMPARISON OF PREDICTIVE MODEL’S 
PREDICTION PERCENTAGE ERROR 

Prediction (models) equation (4-6) were 
benchmarked against empirical (model) equation (3) for 
further model predictive accuracy assessment. Besides E 
and RSS, Bootstrapping BCa procedure (99% confident 
interval level with 2000 samples) was again employed to 
analyse model’s prediction percentage error pattern for 
comparison. BCa results generated 99% confidence 
intervals of the mean, 5% trimmed mean and median of 
the prediction percentage error from each model. BCa 
confidence interval spanning across zero indicates high 
likelihood for the model to yield accurate prediction 
results (where 0% prediction error cannot be ruled out at 
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alpha = 0.01). Tabulated BCa results were shown in Table 
2.  
 
OVERALL MODEL PREDICTION ERROR AND 
RSS 

Based on equation (2), the overall model 
prediction error (Err) can be calculated by the summation 
of predictive model’s residual to indicate the overall 
model prediction pattern. Zero value indicates a perfect 
overall model prediction with no error, the negative value 
indicates the overall model tendency of under-prediction 
and vice versa. Figure-2 depicted overall predictive 
model’s error tendencies with respect to L variation. 
Figure-3 re-presented the grand schema of this indicator to 
RSS due to L variation. 
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Figure-2. Predictive model error according to L variation. 
The dash box magnified the area near to the origin where 
the overall model error curve crossed x-axis (model error 

= 0). 
 

As shown in Figure-2, the optimum L value to 
yield the overall predictive model error of zero lies within 
the range near to the origin. The correlation between 
overall model error (Err) and L variation was modelled by 
using IBM, PASW (version 18) with the following 
equation for L variation range of [0.0001, 0.2]. (Adjusted 
R square = 1.000, Standard error = 0.001, p< 0.001):  
 

110
0002.0

882.4  e LErr       (7) 

 
Err  = overall model prediction error 
L  = as defined previously 
 

To study the predictive model’s RSS according to 
L variation, the correlation between model RSS and overall 
model error (Err) was modelled with the following 
equation for L variation range of [0.0001, 0.2]:  
 
RSS = -0.00002Err3+0.046Err2-0.005Err +5.642      (8)  
 

where Err and RSS are as defined previously. 
Equation (8) has an adjusted R square = 1.000, Standard 
error < 0.001 and p< 0.001. 

 

  
 

Figure-3. Overall model RSS & prediction error as per L 
variation graph shows that as L value = 0.0001, the overall 

model prediction error will be negative (model under-
prediction tendency shown on negative x-axis) while 
overall model RSS also increases to large magnitude 

(shown on y-axis). Empirical model (L=0.2 as indicated 
on the lower right area) tends to have positive overall 

prediction error (model over-prediction tendency shown 
on positive x-axis). 

 
Equation (7) was modelled to represent Figure-2 

while equation (8) describes Figure-3. As shown in    
Figure-3, optimum L value will yield lowest RSS and Err 
around the region near to the origin. Figure-4 is the close 
up view of Figure-3 near to the origin. 
 

 
 

Figure-4. Zoom in view of Figure-3 near to the origin. 3 
different L values were indicated on the curve for 

illustration purpose. Optimum L = 0.00093 yields lowest 
model RSS (lowest point on y-axis) and overall model 

prediction error (near to zero on x-axis). The BCa 
boundary lines (in dash lines) are the 99% BCa confidence 
interval of the L dataset of this study [0.00079, 0.00181]. 

 
RESULTS AND DISCUSSION 

The dilemma to select between mean and median 
as a better collective representation of a dataset was 
addressed in this study through the proposed optimization 
study via numerical analysis approach guided by non-
parametric inferential statistics. The ultimate goal of this 
study is to identify the best collective representation value 
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from a dataset for the formulation of a good predictive 
model without the limitation to choose between mean and 
median only.  

The common pitfall in the least square fitting 
algorithm is to wrongly identify local minima or maxima 
as optimum solution thus producing inconsistent wrong 
results. The initial guess point for least square fitting 
algorithm to commence an optimization search often 
played an influential role to end results. Researchers often 
started the initial guess point with a wild guess which 
could lead to a wrong conclusion (Hansen, 1992), (Horst 
and Tuy, 1996), (Fattorini, 1999), (Mordecai, 2003), (Jon, 
2004), (Jorge and Stephen, 2006), (Ruszczyński, 2006). 
Un-supervised least square fitting algorithm started to 
produce inconsistent optimum L results when the initial 
guess point was > 1000 in this study. However, optimum L 
value remained the same only if the initial guess point was 
set at any value below 1000. On the other hand, repetitive 
optimum L search within BCa confidence interval ranges 
consistently converged to the same optimum L value. The 
Inferential statistics can be an effective guide to narrow 
the optimum L search and identify a statistical significant 
optimum L solution in swift and precise manner. This 
study assessed the validity of the optimization study 
methodology (numerical analysis algorithm in specific) 
and identified the optimum L value with the guide from 
inferential statistics. The optimum L result was also 
verified against the BCa results to assure that least square 
algorithm did not wrongly identify local minima as global 
minima.  

Based on proximate comparison results in Table 
1, the median L value would be selected as a better choice 
over mean. As the L dataset is not so normally distributed, 
median L value has always been recommended as a better 
choice. The selection dilemma appears to be addressed but 
is the median L value really the best collective 
representation of the L dataset to formulate the best 
predictive model? Was the decision based upon proximate 
range comparison between mean and median L too 
subjective? The proposed methodology in this study 
identified an optimum L value other than mean and 
median which complicated the decision making to choose 
between mean and median only. In order to further analyse 
the difficult deadlocked situation, all three L values were 
adopted for the predictive model formulation for further 
evaluations.  

Under the optimization convergence and 
divergence study, predictive model’s RSS was found to 
decrease as L varied away from mean toward the optimum 
L value (Figure-1). Predictive model comparison study 
(table 2) also showed that equation (6) has highest E 
(0.991), 20% less RSS than equation (4) and 4% less than 
equation (5). Equation (6) emerged as the better prediction 
model followed by equation (5) and then equation (4).  

Significance of the empirical model’s assumption 
to further simplify equation (2) into equation (3) was 
challenged as well. From Table (1), neither BCa 
confidence intervals of mean nor median of the L value 
includes 0.2, and therefore the empirical model’s 

simplification proposal (H01) can be rejected at alpha = 
0.01 level. Table 1 also showed that BCa mean confidence 
interval range housed 110% possible L variation within its 
upper and lower limit while median harboured 67%, these 
wide L variation possibilities implied that L is impossible 
to be a constant value (0.2) but a variable thus H02 can be 
rejected at alpha = 0.01 level as well. These L variations 
indicated that any L value within those ranges would be a 
significant fit at the same alpha level thus the optimum L 
can also be justified with BCa results as the best 
exemplification of L dataset (at alpha = 0.01) because it 
falls within both BCa confidence interval ranges.  

Empirical (model) equation (3) consistently over-
predicted B values, the model prediction percentage 
error’s mean, 5% trimmed mean and median had positive 
confident interval range (Table 2). Its standard deviation 
of the model prediction percentage error fluctuated at 
positive intervals with highest positive model prediction 
error (over-prediction) range compared to mean (model) 
equation (4), median (model) equation (5) and the 
optimum L (model) equation (6). Contrary, optimum L 
(model) equation (6) had model prediction percentage 
error confidence interval ranges which spanned from 
negative to positive values. These interval span indicated 
the likelihood (at alpha = 0.01) of having zero percentage 
prediction error (Table 2). Model equation (6) also has 
higher E value and 79% less RSS than (model) equation 
(3). The empirical model’s assumption to simplify 
equation (2) into equation (3) induced more prediction 
errors and over-predicted B consistently in this study.  

BCa results comparison (Table 2) between 
(model) equation (4), (5) and (6) showed that predictive 
model equation (4) has the highest range of prediction 
percentage error with higher error fluctuation than its 
counterpart models. On average, model equation (4) over-
predicted B values while the other two models showed 
model prediction percentage error with confidence interval 
ranges which spanned across zero. Those spanning pattern 
indicated that equation (5) and equation (6) are likely (at 
alpha = 0.01) to produce accurate B predictions with zero 
percentage error. Model equation (5) and equation (6) are 
therefore better predictive models than (model) equation 
(4). BCa results comparison between (model) equation (5) 
and equation (6) showed that (model) equation (6) 
managed to predict B values with lower percentage error 
and less error fluctuations than (model) equation (5) thus 
further demarcated (model) equation (6) as the best 
predictive model among the three. 

Optimization study approach was based on the 
minimization of RSS to determine the optimum result but 
neither RSS nor its conjugate E can offer any insight about 
the predictive model’s prediction pattern. Besides BCa 
results (Table 2), model prediction error (Err) was used to 
analyse predictive model’s prediction patterns (model’s 
overall over-prediction or under-prediction tendency). 
Equation (7) and (8) were modelled to provide an 
overview of the RSS, E and the prediction tendency (Err) 
of a predictive model due to L variation.  
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BCa boundaries (as shown in Figure-4) identified 
a range where the predictive model’s over-prediction 
tendency crossed over to under-prediction pattern at the 
optimum point which was correctly identified by 
numerical analysis algorithm within the indicated BCa 
confidence interval range. The optimum L value yielded 
an overall model prediction error near to zero. Further 
reduction in L value beyond the optimum point will 
produce predictive model with higher RSS and under-
prediction tendency for B values (Figure-4).  
 
CONCLUSIONS 

Inferential statistics narrowed the optimum search 
band while optimization study pin pointed an optimum L 
value within the BCa confidence interval range; both 
methods supplemented each other in this regard. The 
optimum L value (0.00093) from this study can also be 
verified by taking the second derivative of equation (8), 
where a local minimum was found to have an overall 
model prediction error (Err) of 0.049. The corresponding 
L value with the overall model prediction error can be 
solved with equation (7) to be 0.00093. This result verified 
that numerical analyses optimisation algorithm had 
correctly identified a statistical significant optimum L 
value.  

The rejection of both null hypotheses concluded 
that data distribution plays an influential role. The 
assumption that L = 0.2 is invalid and cannot be treated as 
a constant to simplify equation (2) into the empirical 
(model) equation (3) which becomes obsolete and not 
applicable for the dataset in this study. The use of the 
empirical (model) equation (3) commits type II error. 

The choice of the optimum L value as the 
collective representation for L dataset formulated the best 
predictive model equation (6) in this study. The proposed 
methodology identified an optimum L value and 
formulated a significantly better predictive model than 
those by either mean or median. It also addressed the 
common selection dilemma faced by many researchers.  
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