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Abstract

Behaviour models are the most commonly used input for predicting the reliability of a soft-
ware system at the early design stage. A component behaviour model reveals the structure
and behaviour of the component during the execution of system-level functionalities. There
are various challenges related to component reliability prediction at the early design stage
based on behaviour models. For example, most of the current reliability techniques do not
provide fine-grained sequential behaviour models of individual components and fail to con-
sider the loop entry and exit points in the reliability computation. Moreover, some of the cur-
rent techniques do not tackle the problem of operational data unavailability and the lack of
analysis results that can be valuable for software architects at the early design stage. This
paper proposes a reliability prediction technique that, pragmatically, synthesizes system
behaviour in the form of a state machine, given a set of scenarios and corresponding con-
straints as input. The state machine is utilized as a base for generating the component-rele-
vant operational data. The state machine is also used as a source for identifying the nodes
and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG,
a stack-based algorithm is used to compute the reliability. The proposed technique is evalu-
ated by a comparison with existing techniques and the application of sensitivity analysis to
a robotic wheelchair system as a case study. The results indicate that the proposed tech-
nigue is more relevant at the early design stage compared to existing works, and can pro-
vide a more realistic and meaningful prediction.

Introduction

Observation of the trends in a range of fields indicates a variety of computer software applica-
tions. Computer software can be found embedded in many devices and equipment, such as
hand phones, automobiles and aircraft. In addition, software is increasingly used to support
critical business applications and industrial processes. Most of these fields depend on software
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for their basic functioning. Software failure can lead to critical events and fatal consequences in
safety-critical applications as well as in business applications. In order to meet customer expec-
tations and needs, the software must have high reliability. The increasing demands of software
functionalities are leading to various issues including the scalability and degree of concurrency
of the software system. Customer satisfaction is also a serious challenge; thus, software reliabil-
ity engineering must live up to the needs of today’s complex software systems and their specific
challenges [1].

The reliability approach is formalized to explain the failure behaviour within a system. Soft-
ware reliability is defined as the probability that the software system will perform a required
function correctly (failure-free) in a stated environment for a specified period of time. Due to
the heterogeneity of the execution environment and the development methodology of current
software systems, a failure broadly can mean that the software system is unable to deliver the
expected service and is not capable of resuming its service to the state prior to being inter-
rupted. Several kinds of failures are possible during service execution, such as faults in the
implementation of the software components, hardware failure and network failure. Hardware
failure is due to an unreliable hardware resource, and network failure occurs because the mes-
sage is lost or there is a problem in inter-component communication [2,3]. Predicting software
reliability at an early design stage enables the software’s designer to identify and improve any
weak design spots. This is more cost-effective than fixing consequent errors at later implemen-
tation phases. Therefore, the reliability technique must be able to work at the early design
stage, and particularly during the architectural design phase.

Based on the lifecycle of the reliability measurement, the reliability measures taken early
while building and later during the testing or post-deployment [4,5,6]. The data used in these
measurements respectively are appraisal data, testing data, and real world data. The purpose of
the early measurement is to discover the design spots in order to rework, while later measure-
ments are used for the release decision or to certify the components or the whole system. There
is no difference in the capability and the property of the reliability approaches that can be used
for the two types of the later measurements, because the input data and the purposes are simi-
lar. For instance, the later approaches mainly focus on the prediction accuracy while do not
pay more attention to the methods of data elicitation and behaviour modeling. Meanwhile, the
early approaches concentrate on how to tackle the problem of lack of operational data before
the coding stage and the precise modeling of the system behaviour [2,7].

A software development team is a cohesive coalition of individuals working together
towards a common goal [8]. The structure of the development team may consist of sub-teams
such as design, implementation and deployment team. The members of these sub-teams are
requirements analysts, architects, coders, component engineers, testers and so on. The number
of the members often depends on the project size and the company policy. For instance, in a
small project, the number of the members could be small. Therefore, a team member may have
to play a number of roles, either at the same time or in frequent alternation. The early measure-
ment of the reliability is part of the design process and stage, therefore, the reliability analysis is
conducted as part of the design process [9]. In turn, the later measurements are part of the test-
ing process and stage, hence, the analysis is implemented as part of the testing. The reliability
approach in this research is used early as part of the design activities.

Based on behaviour models, several techniques can be used to evaluate the reliability of soft-
ware at an early stage and identify the reliability-critical elements of the architecture. However,
the existing techniques suffer from a number of drawbacks that limit their applicability and
accuracy.

First, according to [2,10] several existing techniques use imprecise, coarse-grained, sequen-
tial models of system architecture as the base for early reliability prediction. Imprecise and
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coarse-grained terms are referring to the use of Markov chains directly as a modeling notation
to create the architectural models in the form of a state machine. In this sense, system or com-
ponent states are represented and interpreted by the state machine, with neither any intermedi-
ate notation that reveals the concurrent nature of the system architecture (such as UML,
SysML) nor an explicit mechanism that defines how the state machine was constructed.

Second, most of the existing techniques [7,10,11,12] model the influence of the loop entry
and exit points on the control and data flow throughout the component behaviour model while
neglecting that during reliability computation, because they use Markov model to compute the
reliability which assumes the state transition probabilities are history-independent. For example,
if a specific set of components’ operations invokes more than another set, because it represents a
sequence in a loop, and if these operations have a higher failure rate than the other operations,
then computing the reliability without considering the number of invocations will produce an
inaccurate prediction. Therefore, the use of technique that is able to keep the previous invoca-
tions related values may produce more accurate results. This paper’s work attempts to remedy
the shortcomings of the early reliability prediction techniques by proposing a technique for pre-
dicting component reliability based on fine-grained sequential models of system architecture
synthesized from scenario specifications. This technique is intended to be complementary to the
existing approaches of system-level reliability prediction. The values obtained from the pro-
posed technique can be used in existing (or future) system-level reliability approaches which
require the reliability values of the newly designed components. We argue that dealing with the
important challenges in component reliability prediction at the early design stage stems from
the precise derivation of an architectural model that is able to reveal the components’ structural
and behavioural perspectives, tackle the unavailability of operational data and consider the loop
entry and exit points of the behaviour models in the reliability computation.

The paper is structured as follows. We first highlight the research gap in early reliability pre-
diction and then discuss the related works in Section 2. Section 3 defines the proposed tech-
nique’s elements and construction steps and illustrates the applicability of the proposed
technique using an illustrative example. In Section 4, we evaluate and illustrate the applicability
of the proposed technique using a real world case study. The last section concludes the paper
and provides an outline of future works.

Related Works

During the last decade, many techniques have been proposed to predict software reliability in
the early design stage depending on behavioural models; these techniques address different
problems and challenges. However, individual component reliability is an integral issue that
should be considered in predicting the reliability of a software system at the early design stage
[13,14]. Except for certain works [3,10,11,15], which we discuss in this section, most of the cur-
rent approaches [6,16,17,18,19,20,21,22,23,24] predict the reliability of a system based on the
reliability of its components, without going into sufficient detail about the internal behaviours
of the components with respect to down-to-up prediction. It appears that these works assume
the availability of the operational data related to individual components. The operational data
can be used to determine component reliability accurately without considering a component’s
internal structure and behaviour; however, sometimes such information is not available at the
early design stage (e.g.in the case of brand new components).

The work by [3,10,11,15] can be seen as a precursor of our technique because these scholars
provide explicitly early reliability techniques for predicting individual components using beha-
vioural models. These approaches consider the effects of a component’s internal structure and
behaviour in terms of its reliability. The works by [3] and [15] employed parameter
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dependencies and the components’ environment or the deployment environment to predict
component reliability. These works demonstrate the enhancement of reliability prediction via
documentation of the component services’ external and internal behaviour in a structured con-
trol flow manner. The work by [3] is one of the few approaches that compare the predicted val-
ues and the actual measured values for evaluating the accuracy of the approach. The behaviour
of the component in [15] is documented by the component’s developers as call-propagation
over a component service and input parameter values. The documentation is conducted via
stochastic regular expressions with the probability of failure for each internal action. This
mechanism makes the capture of transition dependencies mathematically tractable, even in the
case of complex components. However, this approach does not specify how the input values
can be obtained [13,25].

On the other hand, the work by [11] proposes a modeling approach that can be used for
developing a representative operational profile that tackles the lack of knowledge about the
new component’s operational data at the early design stage. The profile is built based on the
domain expert and operational data obtained from similar functional component(s). In the
same way, the work by [7] addresses the problem of individual component reliability predic-
tion at the early design stage and the operational data unavailability. Furthermore, the author
modifies the operational profile devolved in [11] by using multiple information sources that
can be available at the early design stage, such as the requirements specification document and
a simulation technique in order to achieve more accuracy. The adoption of the work in [7] as
part of the system-level reliability approaches [12,25] demonstrates the need for the prediction
of individual component reliability in order to predict the whole system reliability. The compo-
nent reliability techniques in [11] and [7] mapped the components states to a first-order dis-
crete-time Markov chain (DTMC) in order to compute the reliability. However, the first-order
DTMC does not explicitly reflect the effects of architectural features such as loops and condi-
tional branching in the component reliability prediction [12]. Moreover, none of these tech-
niques use a fine-grained method that utilizes the explicit requirements specification as the
main source at the early design stage to synthesize the behaviour models. The scenario-based
method of Rodrigueset al. [10] is perhaps closest in spirit to our own technique. In that work,
the behaviour model of the component is synthesized from the requirements specification. The
requirements are provided in scenarios using message sequence charts (MSCs). Then, the states
of the behaviour model are mapped to the DTMC to compute the reliability. However, that
work did not consider the influence of loop entry and exit points in the computation, due to
the use of the DTMC.

Proposed Technique for Component Reliability Prediction

The reliability of a component is predicted based on the component’s architectural design and
the operational data relevant to this design. The component architectural design is modeled or
constructed in the form of a state machine. This state machine can be derived from the code
using induction algorithms or from the requirements specification using behaviour synthesis
algorithms. This paper’s work is intended for the early design stage before the coding stage;
therefore, the proposed technique is built through the behaviour synthesis. Synthesizing a
behaviour model or deriving a state machine from requirements specification is the starting
point for the proposed technique.

For ease of exposition, the proposed technique is depicted as a three-phase process as
shown in Fig 1. Broadly, the requirements specification is the main source utilized by the tech-
nique to synthesize the component behaviour model. Finite state machines (FSMs) are the
basic elements that used in the behaviour synthesis. The behaviour model can be used for two
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Fig 1. Phases of software component reliability prediction.

doi:10.1371/journal.pone.0163346.9001

purposes: as a simulation of the component behaviour and as a source for obtaining and identi-
tying the elements of a probabilistic dependency graph. The simulation provides an execution
log for the component, and the log serves as the runtime observation data required as input to
generate operational data for the component. The operational data are necessary to determine
the values of the dependency graph’s parameters. Finally, the constructed graph (which is a
component probabilistic dependency graph (CPDG)) is used as input to a tree transversal algo-
rithm which works to compute the component reliability.

A dependency graph is selected to represent the component structure and behaviour for
two reasons. First, it facilitates the capture and modeling of an individual component’s behav-
iour (including the loop entry and exit points) and includes the consideration of that informa-
tion in the reliability computation. This aspect is overlooked in most current component
reliability techniques. Second, it is typical to use a specific computation algorithm, namely, the
tree transversal algorithm, to allow for a tractable solution.

3. Phase 1: Synthesizing the component behaviour model

The process of synthesizing the component behaviour from scenario specifications as a popular
requirements elicitation tool involves three activities: preparing scenarios, translating the com-
ponent instances in each scenario to FSMs, and merging the FSMs of each component into one
state machine model such as the labelled transition system (LTS). In order to define how the
behaviour models can be synthesized, this section briefly reviews our previous research work
[26], which is relevant to the synthesis of behaviour models from requirements specification;
noting that the technique proposed in this paper is not dependent only on our previous work.
Any behaviour model that is obtained through one of the existing behaviour synthesis methods
or even from a component’s code as a result of a reverse engineering process can be used.

3.1.1 Preparing scenarios. Briefly, the system scenarios in this paper’s work were written
using a scenario language called the scalable triggered scenario (s-T'Ss) language. Triggered sce-
nario languages provide syntactic constructs for describing the conditional or causal relations
between sequences of actions. Scenarios in a language like live sequence charts, are described in
conditional form (called universal form) and existential. In triggered language, scenarios are
described in universal form with existential semantics. This type of modeling provides a good
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Fig 2. System specifications: (a) ATM system constraints, (b) ATM system scenarios using s-TSs.
doi:10.1371/journal.pone.0163346.9002

tit with use cases which is the primary form of requirements elicitation. An example of an exis-
tential scenario is the automatic teller machine (ATM) scenario which describes a statement
like “If the user inserts a valid card into the ATM, and then enters the correct password, she/he
shall be able to request cash and have it dispensed by the ATM”. This statement is also condi-
tional in the sense that requesting and obtaining cash is expected to be possible if the user has
inserted a valid card and input the correct password. An example of a universal statement is:
“If the user inserts a valid card into the ATM, and then enters an invalid password, then she/he
must receive the password incorrect message”. The s-TSs facilitates the writing of statements
like “If the user inserts a valid card into the ATM, and then enters a valid password, then she/
he must able to see the ATM options, otherwise she/he must receive the password incorrect
message”. The last statement in a universal form, but more concise and compact (two universal
statements combined together). s-TSs use constructs such as implied triggers and branching
messages to compact the statements. Fig 2 shows the specifications of the ATM system, with
Fig 2(a) depicting the system constraints which are elicited as domain knowledge, and Fig 2(b)
illustrating the ATM scenarios using s-TSs.

The s-T'Ss enhance the current triggered scenario languages [27,28] by adding constructs
that enable the writing of scenarios in a compact and concise manner in order to enhance the
scalability of scenario modeling. At the early design stage when complete information about
the behaviour of a system is not available, there is no option other than to leverage the system
constraints and their state variables as basic information sources to enrich system scenarios
which are already documented using s-T'Ss as mentioned previously. The constraints and their
state variables (held in a system state vector) are elicited as domain knowledge related to the
early design’s specifications. In order to prepare scenarios based on these information sources,
in Step 1 we elicit a component’s state variables from the system state vector. The component’s
state variables are used to define the constraints relevant to the component’s incoming and
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outgoing messages. In Step 2, the values of the component’s state variables which appear in the
constraints table (Fig 2(a)) are used to annotate scenarios as pre- and post-conditions associ-
ated with each incoming and outgoing message of the component instance. Each component
instance is annotated independently, depending on its own state variables list. The reason for
this independence is that the goal is only to construct the behaviour model of the component
(not the behaviour of the system that represented through the scenario). The values of some
state variables may be marked as missing due to not having specifications. Thus, these missing
values in the annotated scenarios need to be propagated in Step 3 of this phase using a propaga-
tion technique similar to the work by [29] and [30]. Fig 3(b) shows one of the scenarios in Fig 2
after implementing the scenario preparation steps.

3.1.2 Translating the component instances within the scenario to a set of FSMs. Once
the scenarios are prepared (annotated and propagated), we are ready to synthesize a behaviour
model for each component in the system. The strategy starts by generating a number of FSMs
for the component (one FSM from each scenario). Thus, each FSM represents the behaviour of
the component corresponding to a specific scenario from the set of system scenarios. These
FSMs will later be merged (in Phase3) to produce a complete behaviour model of the compo-
nent. In order to convert each component instance within a scenario to FSM, pre-post condi-
tions values and operations (incoming and outgoing messages) of this component instance will
be translated to states and transitions, respectively. Fig 4 shows the three FSMs of the “Bank”
component obtained from the three ATM system scenarios shown previously in Fig 2.

3.1.3 Merging the set of component FSMs into one state machine modelln the final
activity in behaviour model construction, we merge the different FSMs of the component by
identifying identical terminal and starting states. Two different FSMs will be merged if and
only if the terminal state of one is similar to the starting state of the other. The merging transi-
tion will be created from a terminal to a start (the transition from a start to a terminal is not
allowed). The similarity between the states is determined based on the state vector values of the

Fig 3. Scenario preparation: (a) Elicited state variables of each component in the ATM example, (b) Scenario1 of Fig 2 after annotation based
on the state variables and propagation.

doi:10.1371/journal.pone.0163346.9003
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Fig 4. FSMs of the “Bank” component in the ATM system (obtained from the three scenarios in Fig 2).

doi:10.1371/journal.pone.0163346.9004

states. The final output of this phase is the LTS which represents the behaviour of the compo-
nent. Fig 5 shows the LTS as a result of merging the component FSMs of the “Bank” compo-
nent shown above in Fig 4.

Phase 2: Preparing a component probabilistic dependency graph

A CPDG s a directed graph that reveals the component’s structure and behaviour, which deter-
mine the component’s reliability. The use of a probabilistic graph is a classical method in soft-
ware engineering applications. Baah et al. [31] propose a probabilistic graphical model that
works with algorithm to analyze program behaviour. This model is used for a program’s fault
comprehension and localization. In early reliability prediction there are a number of approaches
that use a probabilistic graph. Yacoub et al. [18] proposed a dependency graph with a scenario-
based algorithm as a technique to analyze the reliability of a component-based software system.
However, the nodes in Yacoub et al’s graph representing states of multiple components while
CPDG states are belonging to one component, because the purpose in this research is to predict
component reliability while in [13] the goal is the whole system reliability.

Preparing the CPDG involves two activities: constructing the CPDG, and generating the
operational data. In the construction activity, all the elements of the CPDG are defined based
on the basic notation and definitions of the CPDG and the synthesized behaviour model of the
targeted component. The synthesis of the behaviour model was already described in relation to
the previous phase. The next subsection defines the notations and parameters of the CPDG.
Then, the operational data generation activity which provides the data used to assign values to
all the CPDG parameters is described.

3.2.1 Constructingthe CPDG. Briefly, the CPDG construction requires the identification
of its basic notation and definitions. In graph theory, a directed graph G is defined as a set of
pairs, G = (N, E), where:

N represents a set of nodes

E represents a set of edges

For CPDG the formal definition is:

G = (N, E) where:

N is a finite set of nodes representing the component’s states

N = {S, Entry, Exit} where:

S is defined by the tuple <§;, RS;> where:
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Fig 5. State machine of “Bank” component (as a result of merging the FSMs shown in Fig 4).

doi:10.1371/journal.pone.0163346.9005

S; is a unique identification of the component’s states

RS, is the reliability of a state i (it is a probability that indicates that the component will pass
the current state correctly (fault free)

Entry is a virtual state pointing to the first state of the component’s execution (it has no
input transition and it reliability is 1)

Exit is a virtual state pointing to the termination of the component’s execution (it has no
outgoing transition and it reliability is 1)

E is a finite set of edges representing the transitions between the component’s states

E={T}.

T is defined by PT}; or PTig,;; where:

PT;; is the probability of transition from state i to state j, which is the probability that the next
state will be executed after the current state (the sum of the outgoing transition probabilities
from each state to all the other states, including implicitly the failure transition, should be 1)

PT g, is the probability of transition from state i to exit state.

Fig 6 shows an example of how a CPDG can be constructed based on the states and transi-
tions of the behaviour model of a component. Fig 6 depicts the CPDG of the “Bank” compo-
nent which is constructed using the behaviour model of this component. The nodes in the
CPDG are directly inherited from the states of the behaviour model, whereby all the states in
the behaviour model become nodes in the CPDG. Moreover, “super” nodes Entry and Exit are
added to represent the initiation and termination of the execution.
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Fig 6. A CPDG constructed from the“Bank” component behaviour model.
doi:10.1371/journal.pone.0163346.9006

3.2.2 Generating the operational data. The operational data describe the behaviour of the
component quantitatively. The data identify an ordered set of operations that the software
component performs along with their associated probabilities. At the early stages of software
development, the operational data on a given component may not be available, particularly in
the case of newly designed components, and a design time reliability prediction technique
must take this uncertainty into consideration. To generate operational data in this paper’s
work, the concept of the representative operational profile that has been used in the literature
[7,12], relying on a hidden Markov model (HMM) and a Baum-Welch algorithm[32], is
adopted. The HMM is defined by four elements’ states S = {S;,5,,Ss,. . .,S,}, a transition matrix
A = {a;}that represents the transition probabilities from state S; to state S;, observations O =
{01, 05, O3, ..., Oy}, and an observation probability matrix E = {e;,} that represents the proba-
bility of observing event Oy in state S;. In this paper’s work, the component behaviour model
that was synthesized in the previous phase will be mapped to define the HMM states S and
transition matrix A = {a;}. The observations O and the observation probability matrix E = {e;}
are identified based on the data gathered from similar function components, domain knowl-
edge, and analysis of the component architectural model using the technique proposed by [33].
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Baum-Welch is an iterative optimization technique used with HMM to approximate the
best transition and observation probabilities. It is defined as an expectation-maximization
algorithm that, given the number of states S, number of observations O, and a set of training
data A = {a;}and E = {e;},gives the best values for the transition and observation probability
matrices A and E. In brief, the data obtained from the Baum-Welch algorithm represent the
operational data of the component based on the training data, which represent the compo-
nent’s behaviour based on its architectural design. However, all these details are relevant to
operational profile modeling, which is beyond this paper’s scope. The operational data are uti-
lized directly to predict all the CPDG parameters; for instance, if the state S; fails 5 times each
100 execution, it means the reliability of state i is (RS; = 0.95). Similarly, the operational data
give the frequencies of the transitions among the states which translate the transition probabili-
ties PT;; into the CPDG.

Phase 3: Computing the component reliability

After constructing the CPDG and defining its related parameters, an algorithm to estimate the
component reliability (CR_Estimate) is developed. The algorithm estimates or computes the
component reliability based on the CPDG branches and their relevant parameters. In the
CPDG, each path represents consecutive states and transitions. The algorithm traverses the
CPDG thereby computing the paths’ reliabilities. The computation is based on Eq 3, which is
derived from Eq 1. Eq 1 has been widely used by path-based reliability approaches
[20,34,35,36] at the system level, while in this technique it is adopted at the component level.
This adoption is similar to most of the state-based component reliability prediction tech-
niques [7,11,12], which reuse a system-level formula at the component level. The CR_Esti-
mate algorithm takes the CPDG and the components’ maximum expected iteration number
as inputs (as the component operates for a long time). Its outputs are the components’ reliabil-
ities with the iterations from zero to the maximum expected iteration number. As with the
depth first searching algorithm, CR_Estimate traverses all the CPDG paths from Entry to
Exit. Each path is iterated until the number of iterations equals the maximum number of
expected iterations. The algorithm at each cycle of the computation refers to the number of
the iteration and this determines the termination; therefore, in CR_Estimate, infinite loops
that lead to deadlock are not allowed.

By adopting the formula in [35] the path reliability can be defined as:

R, = [ Rrs™ (1)
i=1

where:

R, is the reliability of the path number k wherek=1,2,.. ., K.

K is the total number of paths.

n is the number of states in the path.

Pr(v;) is the probability of visiting each state i belonging to the path from the initial state.
From the CPDG definitions, the probability of transition to the first state is 1; then Pr(v;) can
be rewritten as:

Pr(v,) = 1.PT,,.PT,,.....PT, ,, .PT, ,
= PT,,.PT,,.....PT_,,  .PT_,

= ﬂPTi—l.i
i=2
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n H PTFL,;‘

SRy =R x [[RS (3)
i=2

K
ZRPk

R — k=1

¢ K

(4)

Algorithm 1, beginning from the start node, computes the reliability of all the CPDG
branches. As shown in Lines 13 and 14, the branch reliability is computed based on Eq 3. At
the end of each branch, the reliability value of that branch is stored in an Rtemp variable(Line
8).Using the value of the Rtemp, the component reliability is then computed using Eq 4 (Line
23). Eq 4 is a common way to compute path reliability in most path-based reliability
approaches [20,36,37].

Algorithm 1 Component reliability estimation algorithm: CR_Estimate

1. function computRc (GraphCPDG, maximumexpectediterationmax it)
2. Initialization:pthTemp=1,transTemp=1, it no=0; Rtemp=20;
3. s=8Stack.Create;
4. s.push (S;, RS;, it no, transTemp, pthTemp) ;
5. While Stack #0 do
6. s.pop(S;, RS;,it no, transTemp, pthTemp) ;
7. if S;==Exit {Exitnode}
8. Rtemp+=PthTemp;
9. k++, it no=0;

10. else

11. forit no=0tomax itdo

12. forall S;, RS; € S; successorsdo

13. transTemp® = PT; 5;

14. pthTemp* = power (RS;, transTemp) ;

15. s.push(S;, RS;,it no+=1, pthTemp) ;

16. Ifit no==max it

17. S;=Exit;

18. endif

19. end for

20 end for

21. endif

22. endWhile

23. R.=Rtemp/k

24 return R,

25 end function

Evaluation

This section presents the evaluation of the proposed technique in terms of applicability check-
ing, sensitivity analysis and comparison evaluation. The applicability checking is directed to
reveal whether the prediction of component reliability that is obtained based on the behaviour
models synthesized from requirements specification is both possible and meaningful or not
and furthermore to generalize the proposed technique. The results are demonstrated in the
context of a real world case study. The sensitivity analysis is designed to show that the proposed
technique may respond meaningfully to changes in its parameters, which in turn indicates to
the correctness of the technique. The sensitivity analysis is also used to recognize the critical
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states in a component whose modification has a greater impact on improving the component
reliability. From this perspective the sensitivity analysis can be shown as a decision support
tool for evaluating various design alternatives. Finally, the comparative analysis was conducted
to investigate the improvement yielded by the proposed technique with respect to the problems
of existing techniques that have been discussed in the introduction of this paper.

Case Study

In the evaluation we used a software component named the avoid-component which is part of
the controlling system of a robotic wheelchair system [38]. The wheelchair software is a com-
ponent-based system that has been developed by our research group to support research in
embedded real-time (ERT) software engineering and rehabilitation robotics. The robotic
wheelchair provides mobility for people with a disability and elderly people who are unable to
operate the classical wheelchair system. The behaviour of the robot while in motion is highly
constrained by the characteristics of reliability attributes and safety criteria. The robotic wheel-
chair consists of a motor power platform that is complete with a detector and certain movers,
which depend on the suitability and usability to achieve wheelchair functionality. The most
common detectors and movers, such as the infrared detector, sonar, laser, fibre optics and oth-
ers, are used in the robotic wheelchair system to detect an obstacle and determine the distance.
The power driving system is one of the important factors in a robotic wheelchair because the
main purpose is to facilitate wheelchair consumer movement, along with other advantages
such as driving automatically and avoiding obstacles.

In order to avoid unnecessary complexity, this research focuses mainly on activities that are
related to the scenario of obstacle avoidance from the point of view of an avoid-component of
a robotic wheelchair. In this scenario, the avoid-component receives a detectObstacle signal;
this obstacle maybe on the left side or the right side. Depending on the position of the obstacle,
the system has to activate an obstacleLeft or obstacleRight variable, which is located in a compo-
nent called Subsumption. As soon as the variable is activated, it has to set a global variable
named avoidActive, and then it has to wait 2 mc for a direction change before returning back to
the detectObstacle state to repeat all these activities again.

Synthesis of the Behaviour Model of avoid-component

Fig 7(a) shows the wheelchair system constraints as part of the requirements specification.
Based on these constraints and the scenarios of the system, the state variables of the avoid-com-
ponent (shown in Fig 7(b)) were elicited. Using system constraints and the state variables of
the avoid-component, the scenario of obstacle avoidance shown in Fig 7(c) is prepared (anno-
tated and propagated). By applying the steps defined previously and based on the prepared sce-
nario of obstacle avoidance, the behaviour model of the avoid-component is constructed. This
behaviour model is shown in Fig 8.

As an illustration, assume that the failure rate values in the behaviour model are related to
the operations that appear in the scenario of obstacle avoidance (Fig 7(c)) for which the values
are shown in Table 1. Similar to the work by [7,11], as described previously, these values were
inferred from analogous components with similar operations and input obtained from a
domain expert (the wheelchair developer). The failure rates and the behaviour model are
required in the next phase to prepare the CPDG.

Preparation of the CPDG of avoid-component

To prepare the CPDG of the avoid-component, two steps are needed: constructing the CPDG,
and generating the operational data relevant to the component. The data are used to assign the
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Fig 7. Part of wheelchair system specifications: (a) System constraints, (b) State vector of avoid-component (elicited based on (a) and the
basic scenario of obstacle avoidance), (c) Prepared (annotated and propagated) scenario of obstacle avoidance to synthesize the behaviour
model of the avoid-component.

doi:10.1371/journal.pone.0163346.9007

values of the transition probabilities of the CPDG. The CPDG is constructed through mapping
each state and transition in the behaviour model to the node and edge in the CPDG. The super
nodes Entry and Exit are added to represent the instantiation and termination of execution.
Fig 9(a) shows the constructed CPDG of the avoid-component.

Fig 8. Behaviour model of the avoid-component.

doi:10.1371/journal.pone.0163346.9008

PLOS ONE | DOI:10.1371/journal.pone.0163346  September 26, 2016 14/24



Software Reliability Prediction

Table 1. Failure rate values of operations in the obstacle avoidance scenario.

Operation Probability of failure
Signal from IR sensor 0.01
Activate obstacle Right 0.005
Activate obstacle Left 0.002
Activation finished 0.004
Set avoid active 0.004
Direction change finished 0.002

doi:10.1371/journal.pone.0163346.t001

Based on the states of the behaviour model and the failure rates shown above in Table 1, the
operational data relevant to the avoid-component were obtained. As described previously, the
data were generated through construction of a HMM and execution of the Baum-Welch algo-
rithm to train the HMM. To build the HMM, sets of state S = {S1, S2, S3, . . ., Sn} and observa-
tions O = {01, 02, O3, ..., Om}are needed. Therefore, each state in the behaviour model is
mapped to a state in S, and each transition is mapped to an observation in O. Similar to the
work by [7,11,12], the domain knowledge and similar function components (e.g. the values in
Table 1) are used to obtain the basic information that describes the behavioural transitions.
This information is used as a basis to initialize the values of the HMM. For example, to deter-
mine the probability of receiving a signal from the IR sensor, the probability of failure relevant
to this operation which is obtained from similar components is used. However, to determine
the detail about whether the signal is received from the left or right IR sensor, domain knowl-
edge is used. For instance, assume a domain expert mentioned that the signal comes from the

Fig 9. The CPDG of the avoid-component: (a) before and (b) after assigning the values of state reliablities and transtion probablities.

doi:10.1371/journal.pone.0163346.9009
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left sensor most of the time. Therefore, receiving the signal from the left IR sensor can take
higher probability than the right. After initializing the values of the HMM using this type of
information and executing the Baum-Welch algorithm, the final transition probabilities
required in the CPDG are obtained. Fig 9(b) shows the constructed CPDG of the avoid-compo-
nent after assigning the transition probabilities.

Computation of the Reliablity through Application of the CR_Estimate
Algorithm

We implemented the CR_Estimate algorithm defined in Section 3.6 and applied it to the
CPDG of the avoid-component (Fig 9). Our objective was to analyze the relationship between
the execution cycle and the component reliability by solving the steady state probability of not
being in any fajlure state (as the component operates for a long time). Moreover, we aimed to
analyze the sensitivity of the component reliability to the states’ reliabilities. We also investi-
gated how different usage scenarios affected the application reliability.

To compute the reliability of the component, we set the maximum iteration number of the
algorithm to a large number (in order to reach the steady state probability). Based on the result
shown in Table 2 and Fig 10, it can be seen that the component reliability gradually decreased
as the iteration number increased. Thereafter, the component reliability became stable when
the iteration number was>4. We can, therefore, report that the reliability at the beginning of
the execution was 0.981540, while it decreased and became stable at a value of 0.980344. The
iteration number indicates the number of the execution cycle. Based on this result, the reliabil-
ity of the avoid-component was 0.980344 which refers to the steady state probability of not
being in any failure state.

In order to investigate the computational accuracy of the CR_Estimate Algorithm, we need
to compare the computed reliability values with measured values of the component. In the
early prediction known as the measured reliability value will not be available, due to the
absence of runtime information. Furthermore, obtaining a measured value of individual com-
ponent reliability is not an easy task. To obtain the reliability of individual component, we
need to define all the failure modes caused by the targeted component. Note that the compo-
nent usually used as part of other components, therefore it is difficult to determine which com-
ponent is causing a specific failure independently. For instance, the avoid-component is part of
Subsumption component of the wheelchair and some of operations’ execution of the avoid-
component are complemented by an operation that belongs to the Subsumption. Thus, it is dif-
ficult to determine whether a specific failure was caused by the avoid-component or other
operation in the Subsumption. In fact, as discussed in the introduction of this paper, the
absence of the run time information which is used in the component reliability measurement is
the main reason that leads to develop the CR_Estimate Algorithm and the related early predic-
tion algorithms.

Table 2. Summary of the results of applying CR_Estimate algorithm.

Iteration number Component reliability
0.981540
0.980521
0.980372
0.980348
0.980345
0.980344

AWM | = O

1V
()]

doi:10.1371/journal.pone.0163346.1002
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Fig 10. Impact of the iteration number on component reliability.
doi:10.1371/journal.pone.0163346.9010

Therefore, in the investigation of computational accuracy of the algorithm we will try to
measure the difference between the expected and computed reliability value of the component.
The expected value can be elicited from information related to analogous components with
similar operations and information obtained from a domain expert, such as the information
shown in Table 1. The expected value is not a perfect to evaluate the individual component reli-
ability, because it is information source that is inherently subjective and may be inaccurate,
either due to the complexity of the component or to unexpected operational profiles of that
component. However, it is used in this investigation just to give indicator whether the com-
puted value is close to the expectation or not with the a help of other related works such as the
work presented in the study [7].

If we have N operations in the component, and F; is the expected failure probability of the
i'™ operation, the expected reliability of the component Ex (R.) can be elicited by the following
equation:

N

Ex(R)=1-) (F) (5)

i=1

Based on Eq (5) and the operation failures of the avoid-component shown in Table 1, it is
Ex(R,) = 0.973. Therefore, the difference between the computed value and the expected is
0.00734. By applying the same way for the algorithm presented in [7], based on the expected
operation failures of the used component, the Ex(R.) = 0.910, while the computed was 0.9223,
so the difference is 0.0123. Based on this simple comparison, our computed value seems more
close to the expectation. The purpose of this investigation is just to check whether the accuracy
of the computed value is logically acceptable or not. While the main comparison between this
research and the related works including the work in [7] will be discussed in the comparison of
the results (Section 4.6).
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Sensitivity Analyses

Sensitivity analyses, which vary certain parameters of the behaviour model in order to perceive
the effects on the prediction results, are an important and common way to gain more insights
into the reliability characteristics of the component under study [2,16,39]. Using the CR_Esti-
mate algorithm we investigated the variation in the reliability of the component as a function
of the reliability of states. The graph in Fig 11 and the results in Table 3 show the impact of
changing the state reliability with respect to the component reliability. In our analysis we main-
tained the reliability values of all the states assigned in our previous calculations and varied the
reliability of one state at a time between 0 and 1.

Table 3 is the tabular representation of the graph in Fig 11. The first column presents the
state reliabilities. Each of the following columns shows the reliability of the component (R of
comp) when the reliability of the state between brackets varied according to the values of the
first column.

From Fig 11, it can be observed that the component reliability varied significantly with the
variation in the reliability of statel which is related to the receipt of the signal from the IR sen-
sor. As the reliability of this state decreased, the component reliability dramatically decreased.
This is due to the fact that this state is at the heart of the avoid-component and therefore any
faults in this state will easily propagate and affect the correct operation of the component. In
addition, from our CPDG shown in Fig 9 above it can be observed that, as a minimum, statel
will visit twice per each execution cycle. Furthermore, statel belongs to all CPDG paths. On the
other hand, the reliability of the component doesn’t vary significantly with the variation in the
reliability of state3 and state5. This is due to the weak probability of visiting these; for example,
the transition probability of state3 only equals 0.0971. On the contrary, the component reliabil-
ity is more sensitive to the reliability of state2 and state4; this is due to their higher transition
probability as compared to state3. Among the other states, state6 and state7 are similar to
statel. Both state6 and state7 belong to more than one path in CPDG; thus, the component reli-
ability is more sensitive to these states than in the case of all other states except statel.The anal-
ysis results demonstrate and identify the criticality of each state and the operation that led to it
within the avoid-component clearly.

Table 4 is the tabular representation of the graph in Fig 12. The first column represents
operation failure probabilities. Each of the following columns shows the reliability of the com-
ponent when failure probabilities of operation between brackets varies according to the values
of the first column.

Fig 12 illustrates the impact of varying the operations’ failure probabilities on component
reliability. In each sensitivity run, the failure probabilities of a certain operation were varied
between 0 and 0.1, while all other operations remained unchanged. We executed all runs under
the obstacle avoidance scenario. As the results in the Fig 12 show, decreasing the failure proba-
bilities generally grew the component reliability linearly. The operations Activation finished,
Set avoid active with Direction change finished had a similar impact on component reliability,
as did Activate obstacle Right with Activate obstacle Left. Component reliability was particularly
sensitive to the signal from IR sensor, which plays the central role in avoiding an obstacle. The
higher impact of this operation is due to the multiple invocations per each path traversal.
Hence, it is most beneficial to focus on improving the reliability of the signal from IR sensor
operation.

In conclusion, the derivation and identification of the component states, together with the
operations that lead to them, in relation to reliability prediction for the avoid-component of
the wheelchair system are indeed essential for identifying the critical states and operations in
the component. This type of analysis result could provide valuable information that will enable
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Fig 11. Analysis of sensitivity to states’ reliability.
doi:10.1371/journal.pone.0163346.9011

a component’s architect to know the effectiveness of the states and the operations quantita-
tively. Moreover, sensitivity analyses on the wheelchair demonstrate that the proposed reliabil-
ity technique is meaningful and useful from the perspective of making design decisions, as the
reliability values obtained are able to aid the architect in evaluating design alternatives.

Comparison of Results

This section investigates the improvement of the proposed technique as compared with the

existing works. The investigation was based on a comparison with the related works as dis-

cussed above in Section 2. To fairly compare, we chose the three most similar techniques with
the proposed technique, as shown in Table 5. The selected techniques were equally compared
with the selected comparison criteria regarding early reliability prediction built on the behav-
iour model of the components. The comparison criteria were divided into two aspects, namely,
the behaviour model and the computational model. The behaviour model aspect reflects the
capability of capturing the component structure and behaviour. Moreover, whether the behav-

iour model that is used as architecture is fine-grained sequential model or not. On the other

Table 3. Tabular representation of Fig 11.

State R of comp R of comp R of comp R of comp R of comp R of comp R of comp
reliability (statel) (state2) (state3) (stated) (state5) (state6) (state?)
1 0.99825 0.980679 0.980241 0.980579 0.980300 0.980697 0.980439

0.9 0.838993 0.970535 0.977182 0.970453 0.977234 0.967507 0.967289
0.8 0.705382 0.959821 0.973813 0.959762 0.973859 0.953450 0.953276
0.7 0.590883 0.948332 0.970051 0.948300 0.970093 0.938237 0.938110
0.6 0.490741 0.935775 0.965774 0.935776 0.965813 0.921456 0.921383
0.5 0.401277 0.921710 0.960794 0.921754 0.960831 0.902486 0.902474
0.4 0.319424 0.905428 0.954798 0.905525 0.954836 0.880309 0.880370
0.3 0.242353 0.885642 0.947206 0.885807 0.947248 0.853070 0.853220
0.2 0.167019 0.859590 0.936732 0.859848 0.936784 0.816746 0.817014
0.1 0.089282 0.819032 0.919362 0.819433 0.919437 0.759150 0.759600

doi:10.1371/journal.pone.0163346.t003
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Table 4. Tabular representation of Fig 12.

Failure
probability

0.1
0.08
0.06
0.04
0.02

0

doi:10.1371/journal.pone.0163346.t1004

R of comp (Signal
from IR sensor)

0.835902
0.865844
0.896951
0.929301
0.962979
0.998075

R of comp (Activate | R of comp (Activate R of comp R of comp (Set | R of comp (Direction
obstacle Right) obstacle Left) (Activation avoid active) change finished)
finished)
0.970920 0.977406 0.967953 0.967956 0.967743
0.972942 0.978027 0.970594 0.970595 0.970374
0.974942 0.978637 0.973201 0.973202 0.972974
0.976923 0.979235 0.975778 0.975779 0.975542
0.978884 0.979823 0.978326 0.978326 0.978082
0.980828 0.980401 0.980846 0.980846 0.980594

hand, the computational mechanism aspects concern the availability of the operational data
and consideration of the loop entry and exit points relevant to the behaviour model in the reli-
ability computation. The term fine-grained as mentioned in the introduction, according to [10]
it refers to the use of a scenario language such as UML SD, MSC or LSC to describe the system
scenarios, which have ability to reveal the dynamic behaviour of the system. Then identify an
explicit mechanism for transforming these scenarios to state machine formalism such as LTS.
Therefore, for any prediction technique if its architecture does not rely on such elements then
it can be described as coarse-grained.

The comparison results in Table 5 summarize the improvement of the proposed technique
against the selected techniques. A / mark in parenthesis means that the technique partially
fulfilled the criteria. For the behaviour model aspect, the fine-grained criterion was fully sup-
ported by the proposed technique and by the technique proposed by Rodrigues et al. [10], but
was neglected in the techniques proposed by Roshandel et al. [40] and Cheung et al. [25].
These two techniques represented the behaviour model of software as a provided state machine
without showing how this model was derived from the requirements specification. In our tech-
nique and in the technique proposed by Rodrigues et al., the behaviour model is derived step
by step in a precise way from the requirements specification using algorithm presented in our

Fig 12. Analysis of sensitivity to operations’ failure probability.
doi:10.1371/journal.pone.0163346.9012
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Table 5. Reliability prediction in design-time techniques.

Technique Behaviour model Computational model
Structure and behaviour Fine-grained Data availability Loops
Rodrigues et al.[10] Vv V4 x x
Roshandel et al.[40] (v) x v x
Cheung et al. [25] ) x v x
Proposed technique Vv V4 V4 V4

doi:10.1371/journal.pone.0163346.t005

previous work [24] and discussed briefly in this paper. On the other hand, all the techniques
rely on the structure and behaviour of the design specifications but this is partially included in
Roshandel et al’s and Cheung et al’s works, where the scenario specifications as a primary
source for identifying a dynamic behaviour of the system did not appear or were not explicitly
used. As for the data availability criterion, most of the approaches provided a mechanism for
generating the operational data except for the work by Rodrigues et al. which assumed the
availability of such data. Only the proposed technique considered the loop entry and exit points
in the computation using a stack-based algorithm; the other techniques used the DTMC to
compute the reliability, which does not provide support for such factors.

From the comparison result in Table 5, in summary, the proposed technique is able to reveal
the component’s structure and behaviour and provides fine-grained sequential models to be
used as the base for reliability prediction. It depends on the requirements specification as
input, which is a main source and can be available at the early design stage. The proposed tech-
nique takes into account the loop entry and exit points of the behaviour models in the reliabil-
ity computation. Moreover, it considers the availability of operational data at the early design
stage. The inclusion of these factors in the reliability computation can provide a realistic and
meaningful evaluation of a component’s reliability. In this sense, the proposed technique
shows a strong coupling between the requirements specification, design specifications and
computation mechanism during the reliability prediction, which has been overlooked by most
of the existing techniques.

Conclusions and Future Work

In this paper, a technique for the early reliability prediction of software components is pre-
sented. The proposed technique is shown to have the potential to address the various chal-
lenges related to reliability prediction at the early design stage, such as capturing and modeling
component behaviour based on the requirements specification. In the proposed technique, a
state machine that represents a component’s behaviour is synthesized to reveal the compo-
nent’s dynamic behaviour by describing all the possible interaction sequences of the compo-
nent. The state machine is utilized as a base to generate the component-relevant operational
data with the support of data gathered from similar function components, domain knowledge,
the HMM, and the Baum-Welch algorithm. Moreover, the state machine is mainly used as a
source for identifying the nodes and edges of a probabilistic dependency graph, called the
CPDG. The generated operational data are used to identify the values of the CPDG parameters.
Component reliability is computed through a tree transversal algorithm called the CR_Esti-
mate which utilizes the CPDG as input.

The requirements specification of an ATM system was used to illustrate the applicability of
the proposed technique. A case study for the control system of a robotic wheelchair system was
used to evaluate the proposed technique. The evaluation results of applying CR_Estimate in
the case study indicate that the proposed technique provides meaningful reliability prediction
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in the context of the early stages of software development. The results clearly identified the
relationship between the execution cycles and the component reliability. In addition, the results
identified the critical states of the component that would require intensive testing and valida-
tion. The comparison of our technique and the existing works showed that our proposed tech-
nique provides a realistic and meaningful evaluation of a component’s reliability, which leads
to accurate prediction.

There are several open issues for future work. It is noted that the reliability prediction of
software components may be applied to components and their behaviour in isolation, such as
an off-the-shelf component, which is not part of any system. However, the prediction may be
more meaningful when the component is considered in the context of a system. Therefore, we
intend in future research to construct a system-level reliability approach that can utilize the
results obtained through the proposed technique. Another plan is to enhance the accuracy of
the operational profile that predicts the transition probabilities among the components’ states
through incorporating other machine learning techniques such as the hierarchal hidden Mar-
kov model[41]. Furthermore, to broaden the applicability of the proposed technique to differ-
ent application domains, our future work intends to apply it to a large number of components
whose detailed requirements specifications are available. Another improvement related to the
failure assumption in our work is that there is a possibility that the component might recover
from the failure and successfully finish the task’s execution; such a consideration can be
included in future work.
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