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Abstract 
 

A novel adaptive image fusion method by using Chebyshev polynomial analysis (CPA), 

for applications in vegetation satellite imagery, is introduced in this paper. Fusion is a 

technique that enables the merging of two satellite cameras: panchromatic and multi-

spectral, to produce higher quality satellite images to address agricurtural and 

vegetation issues such as soiling, floods and crop harvesting. Recent studies show 

Chebyshev polynomials to be effective in image fusion mainly in medium to high noise 

conditions, as per real-life satellite conditions. However, its application was limited to 

heuristics. In this research, we have proposed a way to adaptively select the optimal 

CPA parameters according to user specifications. Support vector machines (SVM) is used 

as a classifying tool to estimate the noise parameters, from which the appropriate CPA 

degree is utilised to perform image fusion according to a look-up table. Performance 

evaluation affirms the approach’s ability in reducing the computational complexity to 

perform fusion. Overall, adaptive CPA fusion is able to optimize an image fusion system’s 

resources and processing time. It therefore may be suitably incorporated onto real 

hardware for use on vegetation satellite imagery.     
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1.0  INTRODUCTION 
 

Vegetation is defined as plant life that are to be 

found in a particular region or habitat, and is seen as 

an essential factor in a nation’s agricultural industry. 

The successful harvesting of crops, for example, is 

heavily dependent on farmers selecting a suitable 

geographical location. This in turn is influenced by 

aspects such as moisture, latitude, elevation above 

sea level, length of the growing season, solar 

radiation, temperature regimes, soil type and 

drainage conditions, topographic aspect and slope, 

prevailing winds, salt spray and air pollutants.  

To this end, early researches in the field have led to 

the application of remote sensing (RS) to classify the 

various types of  vegetation for agricultural purposes 

[1-2]. This comprise components like satellite imagery, 

airphotos from UAV’s, chemical properties and 

physical properties such as surface texture, roughness 

and slope characteristics. Further, the fusion of 

multimodal and multi-temporal RS imagery has been 

implemented in recent years to enhance the visual 

quality of image data and consequently aid the 

classification process. One such method is to fuse 

Panchromatic (PAN) satellite images, which offer 

high spatial resolution and sharp, detailed scenery, 

with the equivalent Multi-spectral (MS) images which 

boasts high colour/spectral resolution. The successful 

merging of these modalities provides a ‘best of both 

worlds’ output image of higher quality for 

classification. 

Problems tend to arise in real-life RS applications as 

the data are prone to corruption by noise. This may 

include sensor-level noise that are prevalent within 

the satellite cameras and sensors, or it may consist of 

transmission-based noise experienced during data 
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transmission from satellite to ground. Overall, noise 

components from these two sources can be 

combined and may generally be modelled as 

Gaussian [3]. Image fusion methods have been 

developed taking into consideration the problem of 

noise, such as pyramid and wavelet-based 

approaches and independent component analysis 

(ICA) [4]. In 2010 a fusion scheme using bi-variate 

Chebyshev polynomials as basis functions was 

proposed for image fusion and performed favourably 

over other algorithms, especially in medium to heavy 

noise presence [5]. Chebyshev polynomials analysis 

(CPA) works on the basis of low-pass signal 

approximation. As noise tend to occupy the higher 

frequency spectrum, using lower order polynomials 

can absolve those noise at a cost of signal accuracy 

during approximation. 

Developments of CPA fusion however were largely 

restricted to a heuristical approach, where a fixed set 

of basis functions are used to fuse images regardless 

of their noise level. An obvious disadvantage of this is 

the lack of optimisation, less efficiency and higher 

computational complexity [3]. It should have been 

sufficient, for example, to use n = 5 orders for an 

image with 25dB SNR – where lower orders mean less 

calculations, and lower processing time. On the other 

hand, a 15dB SNR image may require as much as n = 

13 orders for adequate processing. We therefore 

propose an adaptive approach to CPA fusion that 

automatically estimates the SNR level, hence 

negating any need for a reference (non-noisy or 

ground truth) image. Using this approach, we may 

tailor specific polynomial orders to be applied on 

certain levels of noisy images, thereby optimising the 

algorithm. 

Section two describes the literature behind our 

approach and its motivations. In section three, the 

methodology of adaptive CPA fusion is discussed. 

Section four shows the performance evaluation 

results while section five concludes our work. 

 

 

2.0  RESEARCH BACKGROUND 
 

2.1  Vegetation Imagery 

 

Interpreting vegetation data based on satellite 

imagery is a key part of the agricultural industry. From 

it, researchers are able to comprehend the flora 

species native to an area and the influences behind 

Figure 1 SVM Training Example 
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their growth and distribution. Conversely, the 

reflectance quality of RS images may be affected by 

several factors: brightness, which is derived from a 

weighted sum of all spectral colour bands and 

constitutes the principal variation in soil reflectance; 

greenness, related to the amount of green 

vegetation in a scene; and moisture. 

On a smaller scale, the visual quality of flora as 

seen from RS are influenced by factors such as the 

leaf’s structure, age, water status, mineral stresses 

and health. Each leaf also differs by the typical 

spectral features recorded for leaf pigments, cell 

structure and water content. Further, the length of 

electromagnetic wavelengths captured by RS 

cameras affect the amount of reflection that occurs. 

For instance, the density of the tree canopy may 

affect the scattering of the wavelengths. A lower 

reflectance occurs in the visible colour spectrum i.e. 

400-700nm as more light are absorbed by the leaf 

pigments. Moreover, the blue (450nm) and red 

(670nm) wavelengths comprise the two main 

absorption bands that absorb two main pigments of 

the leaf [6]. 

 

2.2  Remote Sensing Tools for Vegetation Image 

Analysis  

 

The complex nature of vegetation imagery, as noted 

above, has necessitated the use of remote sensing 

tools for analysis [7]. RS is an area that has been of 

paramount importance to the nations technological 

advancements, with contributions towards global 

positioning system (GPS), lithography, urban planning 

in addition to vegetation and agriculture. 

Furthermore, in recent times application of RS has 

been hugely aided by image fusion [8]. This entails 

that various camera sensors are fused by signal 

processing techniques to achieve a higher quality 

composite image, which better facilitates decision 

making or further processing. 

Remote sensing (RS) applications are concerned 

with the acquisition of geo-spatial images using aerial 

photography by satellites and airborne sensors, such 

as SPOT, QuickBird, IKONOS and IRS. RS aims to 

deliver high quality geographic images in terms of 

both spatial and spectral resolutions. Developing a 

high performance sensor camera to perform such 

tasks is unfeasible due to factors such as the radiation 

Figure 2 SVM testing and subsequent adaptive CPA fusion 
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energy absorbed by the sensor and the limited data 

transfer rate from satellite platform to ground. Rather, 

signal processing methods are utilised to achieve 

similarly high quality results, in lieu of an expensive 

sensor camera [3]. 

One of the most important aspects of RS, in which 

fusion plays an integral part, is pan-sharpening [10]. 

This entails that the acquired data of a given scene 

comprise two modalities: a PAN image depicting the 

scene in a high spatial resolution but in a single 

frequency, and an MS image that captures the 

landscape in a multitude of spectral resolutions 

across the wavelength spectrum though at 1:4 the 

spatial resolutions of PAN. Fusion offers a practical 

and cost effective method to aid in distinguishing 

wavelength spectrum though at 1:4 the spatial 

resolutions of PAN, by means of injecting the detailed 

spatial resolutions of PAN into a resampled version of 

multispectral images using methods such as the 

wavelet transform. 

 

2.3  Image Fusion of PAN and MS Images 

 

Image fusion is a branch of digital signal processing 

and refers to the process of merging salient 

information from two or more source images to 

generate a higher quality output. The efficiency of 

fusion performance inadvertently depends on the 

fusion method, which comprises numerous transform-

based approaches [11]. Classical fusion techniques 

in RS applications also include the intensity-hue-

saturation (IHS) method in which the red-green-blue 

(RGB) coloured domain of the original MS imagery is 

transformed into IHS to obtain a better separation of 

colour for fusion with PAN images, though it often 

produces spectral degradation. Others include the 

principal component analysis (PCA), in which the MS 

image is decorrelated into several components.  

Fusion occurs by replacing the first/principal MS 

component with the PAN image, coupled with the 

Brovey transform that multiplies each MS band by the 

PAN image, and finally by the division of each 

product by the sum of the MS bands. However these 

methods tend to ignore the need for high quality 

outputs of spectral information, which has proven 

essential in applications such as lithology and soil and 

vegetation analysis. High pass filtering (HPF) or 

modulation (HPM) of PAN inputs added to 

multispectral images are able to overcome this 

drawback. More recently, given the conciliatory 

nature of RS fusion between spatial resolution of PAN 

and spectral resolution of MS images, wavelet-based 

fusion techniques were found to be better equipped 

to handle this trade-off [9,12]. 

 

2.4  Chebyshev-Based Denoising 

 

An approach utilising a bivariate separable 

approximation of classical Chebyshev polynomials 

has been successfully implemented in image fusion. 

The advantage of the CPA method, compared to 

the aforementioned algorithms above, is its 

robustness in adverse noise conditions due to the 

polynomials’ intrinsic smoothing property. CPA was 

found to perform favourably well in general image 

fusion fields such as surveillance, medical imaging 

and multifocal digital camera applications [3]. An 

extension to the work was proposed in 2011 which 

involves a hybrid fusion scheme between CPA and 

ICA based on regional saliency [13]. 

A notable critique of CPA is its heuristical 

approach; a fixed set of basis functions are usually 

used to fuse images regardless of their noise level. 

This enables users to attain higher levels of fusion 

quality results but at reduced efficiency. In contrast, 

methods such as ICA and empirical mode 

decomposition (EMD) employ adaptive denoising in 

their fusion schemes. While this necessitates the 

estimation of noise information before it is 

suppressed, the benefit entails that the algorithm 

parameters may consequently be customised to fit 

the degree of noise. The immediate advantage of 

this is the efficient use of system cost and complexity. 

Therefore, a modified CPA that enables adaptive 

fusion is desired. In this research the CPA algorithm is 

tweaked to include the training and classification of 

noise levels. In other words, machine-learning 

principles are utilised to allow customised fusion 

parameters for filtering varying degrees of noise 

components. Support vector machines (SVM) were 

chosen as the classification tool, from which the SNR 

classification may be implemented based on a 

lookup table. This effectively absolves the need for a 

reference (ground truth) image, thus mimicking 

imaging systems in the real world where signals are 

often corrupted by noise and a reference image 

does not tend to exist. 

 

 

3.0  ADAPTIVE CPA FOR FUSION  

 

3.1  Chebyshev Polynomial Theory 

 

One-dimensional Chebyshev Polynomials, written 

mathematically as Tn(x) can be defined via the 

recursive equation 

 

𝑇0(𝑥) =  1;  
𝑇1(𝑥) =  𝑥;  

𝑇𝑛 + 1(𝑥) =  2𝑥𝑇𝑛(𝑥) −  𝑇𝑛 − 1(𝑥) 

 

whereby their properties have been explained in 

[14]. For one-dimensional signal approximation, the 

polynomials can be used to estimate a given signal 

𝑓(𝑥): 

 

𝑓(𝑥) =  ∑ 𝑎𝑛𝑇𝑛(𝑥)

𝑁−1

𝑛=0

 

 

where 𝑓(𝑥) is the approximation, and an a 

coefficient on n which was proven to have the 

following form: 
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𝑎𝑛 =  
2

𝜋
 ∑ (1 − 𝑥)−

1
2

1

𝑥=−1

𝑓(𝑥)𝑇𝑛(𝑥) 

 

The Chebyshev polynomials are sorted based on 

order. A finite order n used in CPA expansion enables 

basic signal features to be retained while more 

complex polynomials can be omitted. The concept 

of CPA can be generalised to other signal 

decomposition approaches such as Fourier and 

wavelets whereby a finite number of bases are 

acquired and used to adequately represent a signal. 

A separable extension of 1D CPA, similar to the 

discrete cosine transform (DCT), was subsequently 

introduced for use on image signals, called two-

dimensional separable Chebyshev Polynomials. Its 

definition and properties are given below [5]: 

 

𝑓(𝑥, 𝑦) =  ∑ ∑ 𝑎𝑚,𝑛𝑇𝑚(𝑥)𝑇𝑛(𝑦)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

 

 

and the coefficient 𝑎𝑚,𝑛 is given by 

 

𝑎𝑚,𝑛 =  
4

𝜋2
 ∑ ∑ (1 − 𝑥)−

1
2 

1

𝑦=−1

1

𝑥=−1

(1

− 𝑦)−
1
2 𝑓(𝑥, 𝑦)𝑇𝑚(𝑥)𝑇𝑛(𝑦) 

 

For corrupted images, Gaussian noise components 

tend to mostly occupy the higher frequency 

spectrum. Incidentally, as higher order polynomials 

comprise of high frequency components, the idea 

therefore is to limit the CPA order so as to remove 

noise components at a cost of also removing high 

energy information – including edges and strong 

texture. CPA approximation effectively acts as a low-

pass filter that eliminates unwanted noise at the 

expense of lower signal accuracy. To extend this 

useful feature to fusion applications, comparisons are 

made between image coefficients as done in [15]. 

 

3.2  Support Vector Machines 

 

The SNR of an incoming test image may be 

estimated from a classification technique known as 

support vector machines (SVM) [17], [18]. It is a 

supervised machine learning algorithm that enables 

the binary classification of data by essentially 

maximising the distance between two categories. 

The SVM algorithm maps statistical data as points in 

space based on their features; thereafter the 

algorithm is trained to draw a line that divides data 

into two classes. The attraction of this method is the 

line is designed to maximise the distance or width 

separating the classes.  

Having achieved this, new data mapped in 

space shall be automatically categorised into either 

class. Subsequently, classification of multiple classes 

can be easily achieved by cascading the SVM 

algorithm through a number of iterations. 

In this paper, SNR classes are divided into 30, 20, 15 

and 10dB. The steps involved in SVM training and 

testing are as follows: 

1) Since this is a concept study, using a basic 

binary (one-to-one or cascading one-to-all) SVM 

classifier suffices. Though we acknowledge that 

more advanced SVM types, like the multi-class 

SVM, may be employed instead to obtain 

further improved results. we shall first train it to 

classify between images of 30dB and 20dB. 

Other iterations would follow similar steps (30dB 

and 15dB, 30dB and 10dB, 20dB and 15dB and 

so on). Extract 100 patches of size 100x100 pixels 

from both 30dB and 20dB images. Choose from 

various parts of the image, though it is best to 

select patches from plain or low edge regions. 

The rationale is that high frequency noise 

components would be more distinguishable in 

plain areas, and therefore more easily 

estimated. 

2) Obtain the histogram for each patch from both 

images. From these, relevant features to be 

incorporated the SVM algorithm are extracted. 

The effectiveness and accuracy of SVM is highly 

dependent on the number of samples, s and 

number of features, N. In our experiment we 

identified features to be the histogram mean, 

variance and intensity range. We now have two 

sets of feature data, which should differ 

accordingly between images of 30dB and 20dB.  

3) which maps them into an N-dimensional space 

and calculates the best regressional fit to classify 

between 30dB and 20dB. 

4) A test image of unknown SNR is provided. 

Patches and features are extracted similar to 

the above, then fed into the algorithm. The 

output classifies this image into either 30dB or 

20dB.  

5) Having obtained the class, a look-up table is 

then referred to determine the Chebyshev 

polynomial order required for fusion. Overall, this 

process ensures an optimal use of resources 

whilst obtaining the best possible score for a 

particular image noise scenario. 

Figures 1 and 2 shows an example of SVM, and 

subsequently fusion, being implemented on a noise 

corrupted image. In turn, the scatter plot in SVM 

space for our data can be seen in Figure 3. 
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Figure 3 Scatter plot for remote sensing image with different levels of noise 

 
 
4.0  RESULT AND ANALYSIS 

 

The fusion results can be evaluated through the 

Petrovic objective fusion metric [16].  The metric 

calculates the amount of edge information that has 

been transferred from the input images into the fused 

output, thus giving a bounded score between 0.00 

and 1.00. In this work, we take a step further to 

efficiently calculate the best fit of polynomial order 

according to the appropriate noise level. Regression 

analysis via SVM is first performed onto a set of fusion 

image datasets at varying noise levels to estimate 

their SNR class. Then, we devise a look-up table to 

match the appropriate CPA specification for a 

particular SNR. The table lists Petrovic scores for each 

various noise levels and polynomial orders 

respectively. It serves as a reference on which 

experimental fusion scenarios can base their 

selection of parameters.  
The look-up table was created using noise-

corrupted images to reflect real RS conditions 

whereby the transmission of data is prone to noise. 

Incremental Gaussian noise was added to a set of 

input images, ranging from 30dB to 5dB in order to 

represent the various degrees of image corruption. 

Two grayscale PAN and MS images (taken from the 

standard image fusion dataset [19]) were obtained 

as inputs, from which the fusion will generate a 

composite output image via polynomial orders n = 3; 

5; 7; 9; 11; 13; 15; 17 and 21. For CPA, 7 x 7 

overlapping windows/patches were used. 

Overlapping is performed by a shift of one pixel per 

iteration. For the sake of brevity, the method utilises 

the max-abs fusion rule [4].  

All fusion outputs are assessed by the Petrovic 

metric. The scores are recorded in Figure 4, which 

constitutes our look-up table. For testing, an input 

image set comprising an arbitrary SNR is considered. 

The SNR value is estimated via SVM; from there, a 

suitable order is selected.  

Table 1 displays the confusion matrix, showing the 

results of SVM. The matrix describes the accuracy of 

adaptive CPA for each noise condition, i.e. how well 

it correctly classifies the noise level as opposed to the 

other noise levels. For instance, 30dB SNR has been 

correctly predicted 63.34% of the time, compared to 

it being incorrectly predicted (or confused) as 20dB 

(18.33%), 15dB (13.33%) or 10dB (5.00%). As can be 

seen, the approach manages to achieve an 

average accuracy of 77.92% throughout all SNR 

levels involved. The score is acceptable, though 

somewhat limited mainly due to only three features - 

mean, variance and intensity range being used for 

SVM. Improved accuracy may be achieved with 

more features in place.  

 

 

 

 

 

 

 

 



15                                Zaid, Nur’Aqilah & Tania / Jurnal Teknologi (Sciences & Engineering) 78: 6–11 (2016) 9–17 

 

 

 
Figure 4 Fusion scores for various SNR and polynomial orders 

 

 
Table 1 Confusion matrix of SVM results 

 

 

Figure 6 displays the results for a multi-spectral (MS) 

and panchromatic (PAN) fusion scenario.The aim of 

image fusion is to capture the regions of interest 

denoted in the PAN image (circled red), whilst 

suppressing its dark background and prioritise the 

brighter and more detailedbackground from the MS 

image. Two noisy fusion scenarios are presented – 

30dB uses n = 13 whereas n = 5 suffices for 5dB. It can 

be seen that both scenarios are able to attain their 

objective through optimised use of resources.  

The approach allows for different parameters to be 

tailored adaptively, according to specific 

requirements. The degree of polynomial order is 

controlled by the user and the noise level for an input 

image may be calculated from the equation above, 

whereas the range of adequate Petrovic score can 

be determined in advance. For a clear image input 

with an SNR of 30dB, if we set the acceptable visual 

image quality to be 0.4 in the Petrovic scale then n = 

7 orders shall suffice. If 0.5 is set, then n = 11 x 13 will 

be appropriate. The scores in the graph tend to 

degrade along with the decrease in SNR, though not 

always in proportion. For a low SNR of 7 or 5dB the 

scores oscillate around the 0.38 mark regardless of 

order number. Hence for very  noisy conditions, it 

makes sense to limit the number of orders thereby 

reducing computational redundancy. Another 

interesting thing to note is when using n = 21 orders, in 

some cases thescores tend to drop rather than 

increase. This means that a polynomial order of 

around n = 13 is optimal for low noise conditions.  

Figure 5 displays the elapsed processing time for 

each order. The benchmark test was performed on 

the MATLAB R2013a platform, using Windows XP OS 

running on a 3.00GHz Intel Core2Duo CPU. As can be 

seen, higher orders require more processing due to 

high computational complexity. Selecting n = 5 over 

n = 13 orders on low SNR scenarios, for instance, 

saves 2,112s of processing time which translates to a 

speed-up of almost 6 times in efficiency rate.  

 

 
Figure 5 Processing time for different polynomial orders 

 

 

5.0  CONCLUSION 

 

A novel approach of deriving adaptive CPA fusion 

for vegetation RS imagery has been presented in this 

paper. The research is borne from requirements in 

vegetation-based image data which require 
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enhancement for the purpose of classification. 

Fusion-based Pan-sharpening is an established tool 

used in RS to achieve that aim, where in this study 

adaptive Chebyshev polynomials are used as basis 

functions for signal approximation in a highly efficient 

manner. SVM is utilised to train and estimate the SNR 

parameters of a noisy image scenario, from which 

the suitable coefficients of CPA are chosen in order 

to optimise processing time. Performance evaluation 

via a look-up table affirms the approach’s ability in 

reducing computational complexity for RS images 

affected by noise. 

This study is a first application of the method and 

serves to prove the concept rather than getting the 

best results, therefore a comparative analysis with 

other techniques is not within the scope. However, 

our limitations are readily acknowledged. The 

accuracy of SVM should improve with the use of 

multi-class SVM, as well as the extraction of more 

pertinent features to maximise the distance between 

classes. Suggestions to this may be to use wavelet or 

histogram-of-gradients (HOG) based features rather 

than conventional histograms. Also, alternative 

classication tools such as artificial neural network 

(ANN) and fuzzy logic may be implemented for 

better accuracy and faster implementation 

 
 

 
(a) (b) 

 
(c) (d) 

 

Figure 6 Result of RS image fusion showing (a) Multi-spectral input, (b) Panchromatic input, (c) Low noise (SNR 30dB) fused output 

and (d) High noise (SNR 5dB) fused output 
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