
5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

TCP Non-Renegable Selective Acknowledgments

(NR-SACKs) and benefits for space and satellite

communications

Fan Yang∗, Paul D. Amer∗, Si Quoc Viet Trang†, and Emmanuel Lochin†

∗CIS Department of University of Delaware, Newark, DE 19716, USA ,
firstname.name@udel.edu

†Université de Toulouse ISAE-SUPAERO, DISC-RESCOM, Toulouse, France ,
firstname.name@isae-supaero.fr

Abstract

TCP is designed to tolerate reneging. This design has been challenged since (i) reneging rarely occurs in
practice, and (ii) even when reneging does occur, it alone generally does not help the operating system resume
normal operation when the system is starving for memory. We investigate how freeing received out-of-order PDUs
from the send buffer by using Non-Renegable Selective Acknowledgments (NR-SACKs) can improve end-to-end
performance. This improvement results when send buffer blocking occurs in TCP. Preliminary results for TCP NR-
SACKs show that (i) TCP data transfers with NR-SACKs never perform worse than those without NR-SACKs, and
(ii) NR-SACKs can improve end-to-end throughput when send buffer blocking occurs. Under certain circumstances,
we observe throughput increasing by using TCP NR-SACKs as much as 15% and particularly over long-delay
links such as GEO satellite links. The tradeoff for this potential gain is a change to the semantics of the TCP
send buffer requiring the more complex management of non-contiguous PDUs. We investigate potential application
performance gains when TCP receiver implements NR-SACKs and present empirical results on a real satellite link
in the Centre National d’Études Spatiales (CNES) France’s agency responsible for shaping and implementing its
space policy in Europe.

Keywords

Satellite communications; TCP; TCP Reneging; Selective Acknowledgment

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/132277818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

1 Introduction

Reliable transport protocols (such as TCP and SCTP) employ two data acknowledgment mechanisms: (i) cumulative
acknowledgments (CUMACK) indicate data that has been received in-sequence, and (ii) selective acknowledgments
(SACKs) indicate the data that has been received, whether it is out-of-order or not. While cumulative acknowledged
data becomes solely a receiver’s responsibility, SACKed data does not. SACKed out-of-order data is implicitly
renegable; that is, a receiver may SACK data and later discard it [1]. The reneging feature induces that a transport
sender must maintain copies of SACKed data in the send buffer until they are cumulatively acknowledged which can
result in a non-negligible utilization of the sending buffer and sending buffer blocking.

TCP’s design to tolerate reneging has been challenged since (i) reneging rarely occurs in practice [2], and (ii)
even when reneging does occur, it alone generally does not help the operating system resume normal operation
when the system is starving for memory [2]. If a TCP receiver never renegs, SACKed data is wastefully stored in
the send buffer until cumulatively acknowledged.

Non-Renegable Selective Acknowledgments (NR-SACKs) were introduced in [3] to improve end-to-end through-
put performance when sender buffer blocking occurs. NR-SACKs allow a receiver to convey non-renegable infor-
mation of received out-of-order data back to the corresponding sender. NR-SACKs allow that sender to remove
NR-SACKed data from the send buffer sooner than waiting for the arrival of corresponding CUMACK. NR-SACKs
have been evaluated for SCTP, SCTP with Concurrent Multipath Transmission (CMT) and multipath TCP (MPTCP),
and results show NR-SACKs not only reduce sender’s memory requirements, but also improve the end-to-end
throughput under certain conditions [4, 5, 6, 7]. Quick UDP Internet Connections (QUIC) [8], generally considered
as HTTP2 + TLS + TCP and designed by Google, already supports a functionality similar to NR-SACKs. In a
QUIC ACK frame, a QUIC receiver reports the largest observed packet number, and up to 256 NACK ranges which
represent packet numbers which are considered to be lost. After receiving an acknowledgment, the QUIC sender
can free those packets (with sequence numbers less than the highest received sequence number) which are not
reported in NACKs from the send buffer.

In this work, we investigate potential application performance gains if a TCP receiver is designed never to reneg,
and likewise uses NR-SACKs This paper is organized as follows. Section II explains potential performance gains
by prohibiting reneging in TCP. Section III briefly explains our implementation of TCP NR-SACKs in Linux kernel.
Section IV analyzes empirical results for TCP data transfers with NR-SACKs vs. without NR-SACKs on a small
testbed topology in our lab. Section V and present empirical results of NR-SACKs on a real satellite link in the
Centre National d’Études Spatiales (CNES) France’s agency responsible for shaping and implementing its space
policy in Europe. Section VI concludes our work.

2 Potential Performance Gains by Prohibiting Reneging in TCP

Figure 1 illustrates how the reneged TCP transfer can result in sending buffer blocking (1), and how a non-regenable
approach would result in better utilization of the available resource (2). The TCP sender is not blocked ‘wastefully’
maintaining copies of SACKed data. Instead the send buffer has room for transmitting new application data.

To gain insight to the performance penalty incurred by TCP tolerating reneging, consider the example in Figure
1. Assume the shown TCP send buffer can accommodate four TCP-PDUs and the TCP receive buffer can hold
seven TCP-PDUs. As the TCP sender transmits TCP-PDUs, space is allocated in the send buffer. When CUMACK
come back to the sender, the cumulatively acknowledged data is released. When SACKs come back, information
is noted at the data sender, but the data itself cannot be released. Only later when SACKed data is eventually
cumulatively acknowledged will the allocated send buffer space be released. During the intervals between SACKing
and CUMACKing, the send buffer utilization falls below 100%. For example in Figure 1, after the ‘ACK 1, SACK
3-4’ arrives, half of the send buffer is storing data that has already arrived at the data receiver. If the send buffer is
small as in this illustration, a situation arrives after TCP-PDU 5 is transmitted when no new data can be transmitted
until TCP-PDU 2 is retransmitted and later cumulatively acknowledged. This situation is referred to as send buffer

blocking.
From Figures 1 and 2, we have following observations:
First, the data transmission is blocked due to loss in Figure 1. For a TCP connection with a lossy and long-delay

link, send buffer blocking can seriously decrease the throughput. NR-SACKs alleviate send buffer blocking hence
higher throughput is achieved in Figure 2.

2

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

1

1

1

2 2

1

1

2

2

3 3

3 4 4

5

2 5

5

5

2

2 2

66

1

3

3 4

3 4 5

2 3 4 5

6

3 4

3 4

5432

3 4 5

100%

100%

100%

100%

100%

75%

50%

25%

100%

Ack 1

Ack 1 − Sack 3−3

Ack 1 − Sack 3−4

Ack 1 − Sack 3−5

Ack 5

Ack 6

SEND BUFFER BLOCKING

Sender Buffer Receiver Buffer

D
a

ta
 S

e
n

t

Figure 1: TCP data transfer w/o NR-SACK (TCP vanilla)

Second, unlike SCTP’s unordered data service which allows a data receiver to deliver out-of-order data to
a receiving application, a TCP receiver must not deliver out-of-order data. Whereas SCTP’s receiver effectively
advertises extra available receive window space upon delivering out-of-order data, TCP’s receiver must keep the
out-of-order data and does not increase the receiver window size.

Third, the current semantics of a TCP send buffer define a window of contiguous bytes that a sender may
transmit. The lower edge of the window is defined by the received highest CUMACK number. The upper edge is
defined to be the highest CUMACK number plus the number of bytes in the advertised receive window.

Under these circumstances, there is no advantage to having a receive window larger than the send window (as
is demonstrated in Figure 1). We propose to modify the TCP’s send window semantics to allow a possibly non-
contiguous set of bytes. Please note, the advertised receive window semantics does not change; it remains the
number of bytes that the data sender is allowed to have outstanding starting from the received highest CUMACK
number. However, with this change, the send buffer may have gaps. For example, in Figure 2, after TCP-PDU 3 is
freed by NR-SACK 3-3, the send buffer is no longer contiguous. With this change in the send window semantics,
it makes sense to have a receiver window larger than the send window. A smaller send buffer, which needs not to
keep copies of SACKed data, can keep a larger receive window busy (e.g., default send and receive buffer sizes for
Linux 2.6.31 are 16,384 and 87,380 bytes, respectively.)

3

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

1

1

1

2 2

1

1

2

2

3 3

3 4 4

5

2

2

2

1

3

3 4

3 4 5

2 3 4 5

4 5 66

75 6 7

5 6 7

2 6 7 8 8

2 7 8

2

9 9

8 9 10 11 11

1010982

3 4 5

3 4 5 7

6

6

7

5 7

6

10

8

9

5432

100%

100%

100%

100%

100%

100%

Ack 1

Ack 1 − Sack 3−3

Ack 1 − Sack 3−4

Ack 1 − Sack 3−5

Ack 10

Sender Buffer Receiver Buffer

D
a

ta
 S

e
n

t

100%

100%

100%

100%

100%

Ack 1 − Sack 3−7

Ack 9

Ack 1 − Sack 3−6

100%

Ack 7

Ack 8

Figure 2: TCP data transfer with NR-SACK

3 Implementation

In Linux, the sk_buff structure (skb) represents data that is about to be transmitted by a sender or has been received
by a receiver. Each skb in the TCP retransmission queue is tagged by a sacked field indicating the current state
of the skb (e.g., SACKed, lost, retransmitted, etc). Based on the state of each skb, a TCP sender maintains per-
socket information to estimate current network capacity. This estimate is used by both the congestion control and
flow control mechanisms. If a TCP sender simply frees SACKed skbs, the sender will have wrong estimates of the
current state of the network, and these wrong estimates will mislead the congestion control mechanism. Therefore,
NR-SACKs can only free data sections of a SACKed skb, and must maintain the control information sections to
allow a TCP sender have correct estimates of the current network state. The complete implementation details of
TCP NR-SACKs in the Linux kernel can be found in [9] and the kernel patch is given in Appendix for information
purpose.

4 Experimental Design I

The testbed (Figure 3) of experiment I is composed of a Cisco Linksys E1200 router and three computers: two
TCP senders and one TCP receiver. Both TCP senders are connected to the router with a tethered 100Mbps
Ethernet cable, and the TCP receiver is connected to the router with a tethered 10Mbps Ethernet cable. Two TCP
connections can be established: one between the normal TCP sender and the receiver, and the other between the

4

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

NR-SACK TCP sender and the receiver. Traffic is generated by transferring a 50MB file from TCP senders to the
receiver over these connections. At any given time, only one TCP connection is transferring the data.

NR−SACK TCP

Normal TCP

TCP receiver
100Mb/s

100Mb/s

10Mb/s

LINKSYS E1200

Figure 3: Testbed topology I

4.1 Experimental Parameters

In Linux, the default upper limit of the TCP send buffer size on the TCP senders is 905KB. The performance of NR-
SACKs is tested under six different send buffer sizes {22KB, 44KB, 90KB, 181KB, 362KB, 905KB}, three different
loss rates {0%, 1%, 5%} and three different one way delays {10ms, 50ms, 500ms}. The extra loss and delay are
configured on the outgoing direction of the senders’ Ethernet interfaces by using the Linux traffic control [10].

4.2 Results

To evaluate the performance of TCP data transfers with NR-SACKs vs. without NR-SACKs, we employ the metric
throughput gain defined in [6] as

(TN R−SACK − T)/T ∗ 100%

where TNR−SACK is the throughput achieved with NR-SACKs and T is the throughput achieved without NR-SACKs
for an identical set of experimental parameters (send buffer size, loss rate, bandwidth, and delay). Throughput gain
represents the percentage of improvement that results from using NR-SACKs. When we analyze how throughput
gain varies as the loss rate and one-way delay change, we use a region of gain metric [6] defined as the send buffer
size interval, [a, b], where any send buffer size from a to b inclusive results in an expected throughput gain of at
least 5%.

NR-SACKs require extra processing time at a TCP sender. Our hypothesis was that this overhead would be neg-
ligible, that TCP data transfers with NR-SACKs would always perform at least as well as those without NR-SACKs
[5] and under certain parameter configurations, NR-SACKs would improve the end-to-end throughput. Figure 4
shows the throughput gains for all parameter combinations tested.

With no loss, the number of runs was one or two because results were identical. With random loss, the number
of runs was at least 30. We observed when no loss was introduced, no NR-SACKs were generated and throughput
gain was always 0. We also observed throughput gains were zero or positive for all parameter combinations tested.
Our hypothesis was confirmed.

As stated in section 2, NR-SACKs can improve the end-to-end throughput when send buffer blocking occurs
(i.e., the send buffer is filled by Retransmission Queue (RtxQ)). A RtxQ comprises PDUs which have been sent but
have not arrived at the receiver. These PDUs can be either ‘in flight’ or lost. The size of the RtxQ is bounded by
both the Bandwidth-Delay Product (BDP) and the average cwnd (denoted cwnd):

RtxQ size ≤ min (BDP, cwnd) (1)

For a given delay, increased loss results in a smaller cwnd. For a given loss rate, longer delay results in a
larger BDP. In the remaining of this section, we discuss on the impact of loss rate and delay on throughput gain of
NR-SACKs.

5

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10ms 50ms 500ms 10ms 50ms 500ms

T
h
ro

u
g
h
p
u
t

G
a
in

 (
%

)

send bu�er: 22KB
44KB
90KB

181KB

362KB
906KB

5% loss1% loss

Figure 4: NR-SACKs throughput gain with various send buffer sizes

We observed regions of gain for both loss rates. The region of gain for 1% loss was [212KB, 905KB], and for
5% loss was [10KB, 155KB]. As the loss rate increases, cwnd decreases and hence the send buffer blocking region
becomes smaller, thus indicating less of an impact of NR-SACKs.

We did not observe any obvious region of gain with 10ms delay, and the regions of gain with 50ms and 500ms
delays were [65KB, 160KB] and [212KB, 905KB], respectively. As stated in section 4.2, a longer delay results in a
larger BDP. As delay increases, BDP increases and hence the send buffer blocking region becomes larger. In this
case, NR-SACKs provide potential throughput gains.

5 Experiment Design II

Encouraged by the positive results in our lab (not presented in this extended abstract), a collaboration study began
between University of Delaware (UD) and Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)
to empirically quantify potential gains of TCP NR-SACKs over a long delay, lossy satellite link at France’s Centre
National d’Études Spatiales (CNES)1.

Figure 5 shows the testbed. Three computers (one normal TCP sender, one NR-SACK sender and one TCP
receiver) are physically located at CNES. The TCP senders and receiver are connected via a real satellite link. The
RTT and bandwidth of the satellite link is approximately 610ms and 80Kbps, respectively. The traffic is generated
by transferring a 1MB file from a TCP sender to the receiver. The performance of TCP NR-SACKs vs TCP normal
is tested under four different send buffer sizes {22KB, 44KB, 90KB, 181KB} and five different loss rates {0%, 0.5%,
1%, 2%, 5%}.

Figure 6 shows the average throughput gains with NR-SACKs. Each data point represents the average through-
put gain of 50 transfers with and 50 transfers without NR-SACKs. These results confirm our hypothesis that TCP
data transfers with NR-SACKs always perform as well as those without NR-SACKs. We did not observe obvious
region of gain with 2% and 5% losses. The right edges of throughput gains with loss rates 0%, 0.5% and 1% are
44KB, 38KB and 34KB, respectively. This result is consistent with those presented in the previous section: that the
region of gain moves left towards smaller buffer sizes as the loss rate increases. We also observed that, within the
region of gain, the maximum throughput gain of a higher loss rate would be greater than that of a smaller loss rate.
When the loss rate is 1%, the throughput gain can reach as high as 6.8% under a 22KB send buffer.

1
http://www.
nes.fr/

6

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
�������

����
����
����
����
����
����

����
����
����
����
����
����
����

Normal TCP NR−SACK TCP

TCP receiver

iDirect Hub Satellite terminal

Figure 5: Topology for testing TCP NR-SACKs at CNES

6 Discussion

Because the data receiver is allowed to discard SACKed data, when a retransmit timeout occurs the data sender
MUST ignore prior SACK information in determining which data to retransmit [1]. This MUST should have been a
SHOULD. But the point of SACKs is to make TCP robust, efficiency is not the goal. Currently, middleboxes could do
incorrect things. For example, a NAT rewrites a connection which has got symbolic IP addresses in it and rewrites
IP addresses, then the offset of the segment is different. Also devices can randomize sequence numbers but don’t
fix SACK blocks, so SACK blocks are out of the window. So our research is trying to demonstrate freeing received
data from the send buffer is beneficial and new transport protocol (e.g., QUIC) designs can adopt this mechanism
rather than add NR-SACKs to the TCP standard.

7 Conclusion

In this work, we introduced NR-SACKs to TCP and investigated their impact in situations where a TCP receiver
never renegs. We extended the Linux TCP to support NR-SACKs. Based on both experiments, we concluded that
(i) TCP data transfers with NR-SACKs never perform worse than those without NR-SACKs, and (ii) NR-SACKs can
improve end-to-end throughput in TCP when send buffer blocking occurs. The positive gains demonstrated in our
experiments were mostly for small buffer sizes not likely to be used in practical situations. However, if the satellite
link were higher bandwidth, thus increasing the BDP, we expect gains for larger buffer sizes as buffer blocking is
more likely to occur.

Acknowledgements

The authors would like to thank Nicolas Kuhn for useful comments and CNES for providing us the satellite testbed
CESARS.

7

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

 0

 1

 2

 3

 4

 5

 6

 7

 8

22 44 90 181

T
h
ro

u
g
h
p
u
t

G
a
in

 (
%

)

Send Bu�er Size (KB)

0% loss
0.5% loss

1% loss
2% loss
5% loss

Figure 6: Throughput gain with NR-SACKs over satellite link

References

[1] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowledgment Options. RFC 2018,
October 1996.

[2] N. Ekiz, Transport Layer Reneging. PhD Dissertation, CIS Department, University of Delaware, May 2012.

[3] P. Natarajan, Leveraging Transport Services for Improved Application Performance. PhD Dissertation, CIS
Department, University of Delaware, 2009.

[4] N. Ekiz, P. Amer, P. Natarajan, R. Stewart and J. Iyengar, SCTP Data Acknowledgement with Non-renegable
Selective Acks (NR-SACKs), draft-natarajan-tsvwg-sctp-nrsack. IETF Internet draft, February 2011.

[5] P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. Iyengar, and R. Stewart, Non-Renegable Selective Acks (NR-
SACKs) for SCTP. IEEE International Conference on Network Protocols, Orlando, Florida, USA, October
2008.

[6] E. Yilmaz, N. Ekiz, P. Amer, J. Leighton, F. Baker, and R. Stewart, Throughput Analysis of Non-Renegable
Selective Acknowledgments (NR-SACKs) for SCTP. Computer Communications, 33(16):1982–1991, October
2010.

[7] F. Yang and P. Amer, Non-renegable Selective Acks (NR-SACKs) for MPTCP. The 3rd International Workshop
on Protocols and Applications with Multi-Homing Support, Barcelona, Spain, March, 2013.

[8] R. Hamilton, J. Iyengar, I. Swett and A. Wilk, QUIC Wire Layout Specification. http://bit.ly/1s2RHWJ.

[9] F. Yang, Non-Renegable Selective Acknowledgments and Scheduling for TCP and Multipath TCP. PhD Dis-
sertation, CIS Department, University of Delaware, 2015.

[10] Linux Advanced Routing and Traffic Control. http://www.lart
.org/.

8

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

Appendix

diff -r
NP linux-3.0.1-vanilla/in
lude/linux/skbuff.h linux-3.0.1-t
p-nrsa
ks-dev/in
lude/linux/skbuff.h

*** linux-3.0.1-vanilla/in
lude/linux/skbuff.h 2011-08-05 00:59:21.000000000 -0400

--- linux-3.0.1-t
p-nrsa
ks-dev/in
lude/linux/skbuff.h 2014-04-20 15:58:59.000000000 -0400

*** 486,492 ****

{

return (stru
t rtable *)skb_dst(skb);

}

!

extern void kfree_skb(stru
t sk_buff *skb);

extern void
onsume_skb(stru
t sk_buff *skb);

extern void __kfree_skb(stru
t sk_buff *skb);

--- 486,493 ----

{

return (stru
t rtable *)skb_dst(skb);

}

! /* UD_PEL TCP-NRSACKs */

! extern int skb_free_frags(stru
t sk_buff *skb);

extern void kfree_skb(stru
t sk_buff *skb);

extern void
onsume_skb(stru
t sk_buff *skb);

extern void __kfree_skb(stru
t sk_buff *skb);

diff -r
NP linux-3.0.1-vanilla/net/
ore/skbuff.
 linux-3.0.1-t
p-nrsa
ks-dev/net/
ore/skbuff.

*** linux-3.0.1-vanilla/net/
ore/skbuff.
 2011-08-05 00:59:21.000000000 -0400

--- linux-3.0.1-t
p-nrsa
ks-dev/net/
ore/skbuff.
 2014-04-16 11:50:34.000000000 -0400

*** 398,403 ****

--- 398,433 ----

#endif

}

+ /* UD_PEL TCP-NRSACKs:

+ * free paged data of a skb */

+ int skb_free_frags(stru
t sk_buff *skb)

+ {

+ int i, frags_size;

+

+ if (!skb)

+ return 0;

+

+ frags_size = 0;

+ if (skb_shinfo(skb)->nr_frags)

+ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)

+ frags_size += skb_shinfo(skb)->frags[i℄.size;

+

+ /* for testing */

+ //printk("%u bytes are freed\n", frags_size);

+

+ if (skb_shinfo(skb)->nr_frags)

+ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)

+ put_page(skb_shinfo(skb)->frags[i℄.page);

+

+ /* update
orresponding skb fields */

9

5th Federated and Fractionated Satellite Systems Workshop
November 2–3, 2017, ISAE SUPAERO – Toulouse, France

+ skb->data_len -= frags_size;

+ skb->len -= frags_size;

+ skb->truesize -= frags_size;

+ skb_shinfo(skb)->nr_frags = 0;

+

+ return frags_size;

+ }

+

/* Free everything but the sk_buff shell. */

stati
 void skb_release_all(stru
t sk_buff *skb)

{

diff -r
NP linux-3.0.1-vanilla/net/ipv4/t
p_input.
 linux-3.0.1-t
p-nrsa
ks-dev/net/ipv4/t
p_input.

*** linux-3.0.1-vanilla/net/ipv4/t
p_input.
 2011-08-05 00:59:21.000000000 -0400

--- linux-3.0.1-t
p-nrsa
ks-dev/net/ipv4/t
p_input.
 2014-04-16 11:44:41.000000000 -0400

*** 3235,3240 ****

--- 3235,3263 ----

s32
a_seq_rtt = -1;

ktime_t last_a
kt = net_invalid_timestamp();

+ /* UD_PEL TCP-NRSACKs:

+ * examine all skbs in the send buffer,

+ * free paged data of a skb if it is SACKed;

+ * skb stru
t and linear data part is preserved */

+

+ skb = t
p_write_queue_head(sk);

+

+ while (skb && skb != (stru
t sk_buff *)(&(sk)->sk_write_queue) && skb != t
p_send_head(sk)) {

+ stru
t sk_buff *skb_nrsa
ked;

+ u32 nrsa
ked_free_size; /* memory spa
e freed by NR-SACKs (only paged data) */

+

+ if (TCP_SKB_CB(skb)->sa
ked & TCPCB_SACKED_ACKED) {

+ skb_nrsa
ked = skb;

+ skb = skb->next;

+ nrsa
ked_free_size = skb_free_frags(skb_nrsa
ked);

+ /* memory a

ounting */

+ sk->sk_wmem_queued -= nrsa
ked_free_size;

+ sk_mem_un
harge(sk, nrsa
ked_free_size);

+ }else

+ skb = skb->next;

+ }

+

+

while ((skb = t
p_write_queue_head(sk)) && skb != t
p_send_head(sk)) {

stru
t t
p_skb_
b *s
b = TCP_SKB_CB(skb);

u32 a
ked_p
ount;

10

