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ABSTRACT 

Each summer in Australia, bushfires burn many hectares of forest, causing deaths, injuries, and 

destroying property. Agent-based simulation is a powerful tool to test various management strategies 

on a simulated population, and to raise awareness of the actual population behaviour. But valid 

results depend on realistic underlying models. This paper describes two simulations of the Australian 

population's behaviour in bushfires designed in previous work, one based on a finite-state machine 

architecture, the other based on a belief-desire-intention agent architecture. It then proposes several 

contributions towards more realistic agent-based models of human behaviour: a methodology and 

tool for easily designing BDI models; a number of objective and subjective criteria for comparing 

agent-based models; a comparison of our two models along these criteria, showing that BDI provides 

better explanability and understandability of behaviour, makes models easier to extend, and is 

therefore best adapted; and a discussion of possible extensions of BDI models to further improve 

their realism. 
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INTRODUCTION 
 

Each summer in Australia, bushfires burn many 

hectares of forest, causing deaths, injuries, and 

destroying property. Societies can manage such 

crisis and emergency situations in several ways: 

adopt urban and territory planning policies to 

reduce the risks (e.g. forbid construction in 

exposed areas); raise awareness and prepare the 

population in advance; or create efficient 

emergency management policies to deal with 

crises when they happen. Modelling and 

simulation offer tools to test the effects and 

complex interactions of these different strategies 

without waiting for an actual crisis to happen, 

without putting human lives at risk, with limited 

cost, and with a great degree of control on all 

conditions and the possibility of reproducing 

exactly the same situation as many times as 

needed. 

When modelling human behaviour, 

mathematical, equation-based models are too 

limited (Parunak, Savit, & Riolo, 1998) whereas 

agent-based models offer many benefits 

(Bonabeau, 2002). They allow capturing 

emergent phenomena that characterise such 

complex systems; they provide an intuitive and 

realistic description of their behaviour; and they 

are flexible, offering different levels of 

abstraction by varying the complexity of agents. 

Agent-based modelling and simulation platforms 

over various architectures of different 

complexity for the agents: reflex or reactive 

agents are very simplistic, reacting to environ-

mental stimuli without any long-term reasoning; 

finite-state machines require scripting all of the 

possible states of the agents and the 

corresponding transitions; cognitive agents offer 

a more flexible description of behaviours in 

terms of goals and plans. 

In particular the BDI (Belief, Desire, Intention 

(Rao & George, 1991)) architecture is very 

sophisticated and realistic, grounded in the 

philosophy of human rationality (Bratman, 

1987), and linked with emotions (Adam, Herzig, 

& Longin, 2009). Such realism of the human 

behaviour model is important for the simulation 

to produce valid results (van Ruijven, 2011). For 

these reasons and as previously discussed in 

(Adam & Gaudou, 2016a), the BDI architecture 

is therefore more adapted for crisis situations 

that involve complex individual decision-

making, influenced by emotions (sometimes 

causing irrational actions), and by the social 

context (effect of group, family, etc.). According 

to (Norling, 2004), BDI also provides an adapted 

level of abstraction to describe human behaviour 

in terms of folk psychology, which is the 

preferred level of description for humans. It 

therefore addresses the problem of the scarcity of 

(quantitative) behavioural data by allowing the 

use of qualitative data such as witness statements 

or expert reports. 

Despite these advantages that make it very 

suitable for social simulation, BDI has had 

limited use in this field due to the lack of adapted 

tools to harness its complexity (Adam & 

Gaudou, 2016a). In previous work (Adam, 

Danet, Thangarajah, & Dugdale, 2016; Adam, 

Beck, & Dugdale, 2015; P. Taillandier, 

Bourgais, Caillou, Adam, & Gaudou, 2016) we 

have described how two new tools could be used 

to de-velop BDI agent-based models from 

interviews. We illustrated how to use these tools 

by turning an existing model of the behaviour of 

the Australian population in bushfires (with a 

finite-state machine architecture (Adam & 

Gaudou, 2016b, 2017)) into a BDI model. In this 

paper we now want to com-pare these two 

models, addressing the same problem with 

different architectures, using both objective and 

subjective criteria. We believe that such model 

comparison is important to further justify the 

interest of BDI models. 

This paper is structured as follows. We first 

describe the context of our case study 

(Melbourne bushfires) and our initial model of 

population behaviour using a finite state machine 

(FSM) architecture (Adam & Gaudou 2017). We 

then discuss BDI agents as a more complex 

alternative, expose some of the obstacles 

preventing their use in social simulations, 



propose some technological solutions and 

illustrate them by providing a BDI model of 

population behaviour. The next section is 

dedicated to comparing this BDI model with the 

initial FSM model: we discuss the literature 

about model comparison, derive our own list of 

comparison criteria, and present the results of 

comparing our models following these criteria. 

The last section discusses future prospects and 

concludes the paper. 

 

INITIAL MODEL OF THE POPULATION 
IN BUSHFIRES 

 

Context 
 

We focus on the so-called Black Saturday, 7th 

February 2009, when particularly strong 

bushfires hit the state of Victoria in Australia, 

killing 173 people and destroying hectares of 

bush and many properties. The official 

recommendation to the population was to 

”prepare, stay and defend, or leave early”. 

However, reports (Alan Rhodes, 2014) written 

after these fires showed that emergency 

management policies were designed based on an 

(ideal) expected behaviour that differed from the 

residents’ actual behaviour on the day. It is 

therefore important to provide deciders with a 

simulator to raise their awareness about 

residents’ actual decision making, and let them 

try different communication strategies. 

Currently, the available data is mostly in the 

form of witness statements (Exell, 2009) and 

police hearings. The Royal Commission 

(Teague, McLeod, & Pascoe, 2009) also 

gathered the following statistics about the 

victims: 

• Preparation: 58% of the victims had made 

no preparation at all; many prepared to leave but 

expected a warning before going; 20% intended 

to stay and defend and were well prepared; 14% 

had made limited preparation. 

• Awareness: the fire took 30% of those who 

died by surprise; 24% of the victims were 

unaware that they lived in a bush fire prone area; 

38% had no basic knowledge about what to do. 

• Causes of death: 14% died while escaping 

(4% by car and 10% by foot); 69% died while 

passively sheltering in a building; the others died 

while trying to defend. 

• Vulnerability: 44% of the victims were 

considered vulnerable because of their age 

(under 12 or over 70), illness or disability; 32% 

died on properties whose defendability was 

questionable. 

 

To facilitate comparison, we have implemented 

a general model in the GAMA simulation 

platform (Grignard. et al., 2013) that allows 

choosing between two models of the civilians’ 

behaviour: the first one is based on a FSM (finite 

state machine) and the second one on BDI (belief 

desire intention). Figure 1 presents the class 

diagram of the global model. For the sake of 

comparison, we defined a generic Civilian class 

that regroups all the common properties, actions 

and reflexes of both behaviour models. 

Below we describe the model of the 

environment, buildings and fires; then the 

generic model of civilians and finally the FSM 

architecture for civilians. The following section 

describes the BDI architecture and the tools that 

were used in its design and implementation. We 

try to give enough details about each model to 

allow the reader to understand the comparison 

provided in the next section. 

 

MODEL OF THE ENVIRONMENT AND 
THE FIRE 

 

For the sake of simplicity, the environment is 

represented as a grid containing the different 

types of agents (houses, shelters, fires, and 

residents). This simplistic environment is not 

realistic, but was proven sufficient to simulate 

the residents’ decision-making behaviours in 

reaction to fires (Adam & Gaudou, 2017). 

Fire. Very complex and detailed models of the 

spread of fire already exist (Du, Chong, & 

Tolhurst, 2013; Miller, Hilton, Sullivan, & 



Prakash, 2015), but realistic fire behaviour is not 

the focus here. With the goal of not adding 

unnecessary complexity, we have designed a 

very simplistic fire model that is sufficient to 

trigger and visualise the reactions of the 

population in which we are interested. The fire is 

composed of fire agents (each with a location 

and an intensity representing its radius of action), 

having a reflex architecture, i.e. the following 

reflexes are triggered at each step of the 

simulation: 

• Grow (increase or decrease intensity): 

probabilities are parameters. 

• Propagate to a non-burning neighbour cell, 

creating a new fire agent. The probability of 

propagating, and starting intensity of new fires, 

are parameters. 

• Deal damage to buildings in its radius of 

action (based on its intensity). The amount of 

damage is picked randomly between 0 and a 

maximum value, a function of intensity and a 

”damage factor” parameter. 

• Deal injuries to residents in its radius of 

action, also a random number between 0 and the 

maximum value based on its intensity and on an 

”injury factor” parameter. If the person is in their 

house the injury is moderated by its resistance 

weighted by a ”protection factor” parameter. 

• Disappear when its intensity is null. 

 

The different parameters involved allow the 

user of the simulation to make the fire more or 

less dangerous (growing and propagating more 

quickly, dealing more damage and injuries, etc.), 

in order to observe the desired behaviours. 

Actions are also available to start new fires or 

stop all fires (and thus the simulation). 

 
Figure 1: UML class diagram of the model 

 
 

 

 

Houses. The environment initially contains a 

number (parameter) of houses each inhabited by 

exactly 1 resident (in future work we plan to 

consider families and their relationships). Each 

house is an agent with the following attributes: 

• Owner: the resident of that house 

• Resistance: random initial value between 

100 and 200 to simulate house resistance. This 

value is increased by the resident preparing the 

house for a fire, or decreased by fire damage. 

Resistance also offers some protection from fire 

injuries to its resident. 

• Damage: the damage received from fire 

 

The houses collapse from fire damage when 

their resistance drops to 0. They then cease to 

offer protection and the resident’s motivation to 

defend them also disappears. Houses stay in the 

environment as ruins for final visualisation. 

 

Shelters. Shelters are safe places offering total 

protection from the fires (no injuries can be 

received while in a shelter). Once a resident has 

reached a shelter, it stays inside until the end of 

the simulation. 

 

GENERIC CIVILIAN MODEL 



 

Civilian agents are heterogeneous agents, each 

having their own values of attributes: 

• defend motivation: random initial value 

between 0.0 and 1.0 to simulate the propensity to 

defend their home. 

• escape motivation: random initial value 

between 0.0 and 1.0 to simulate the propensity to 

escape in case of danger. 

• awareness probability: random initial value 

between 0.0 and 1.0 to simulate the attention 

towards dangers. 

• perception radius: random initial value 

between 0.0 and 20.0 to simulate the maximal 

distance of perception of fires. 

• defence radius: random initial value 

between 0.0 and 10.0 to simulate the area of 

defence. 

• danger radius: random initial value 

between 0.0 and 10.0 to simulate the area of 

danger. 

• velocity: random initial value between 0.2 

and 1.0 to simulate the moving speed. 

• location on the grid. 

• house id: each agent is initially in a house. 

• health: the health of the civilian. It is 

increased by preparing for fire and decreased 

when injuries are received. A health of 0 means 

death. 

• injuries: the injuries received from fire. It 

decreases the health. 

• is safe: defines if the civilian is in a shelter.  

• is dead: defines if the civilian is dead. 

• in smoke: defines if the civilian is in smoke 

(slow movement). 

 

In addition, each civilian agent has the 

following actions: 

• Prepare for fire: consists in increasing the 

resistance of the house (watering, removing 

vegetation, etc.) and health (wearing appropriate 

clothing, etc.). 

• Fight fire: consists in decreasing the 

intensity of nearby fires by a value. 

• Moving: consists in heading towards the 

closest shelter (amongst the known shelters); the 

agent might get injured if travelling too close to 

the fire. 

 

Finally, they have reflexes: 

• Update status: is activated at every step; 

updates the agent speed according to the health 

and the presence of smoke; it also updates the 

agent’s motivation to defend the property 

according to the agent context. 

• Die: is activated when the health of the 

agent reaches 0; it kills the agent (the attribute 

isdead is set to true). 

 

FINITE-STATE MACHINE MODEL OF 
BEHAVIOUR 

 

Civilian-FSM agents have a finite-state-

machine architecture (Adam & Gaudou, 2017) 

with the following states and transitions (c.f. 

Figure 2), inspired by the states observed in the 

interviews: 

• Unaware: initial state where the agent is 

(rightly or wrongly) unaware of any danger, and 

does nothing; agents can become aware by 

spotting fires in their perception radius (see 

flames, smell smoke, etc.), with a probability 

based on their objective abilities; they up-date 

their value of subjective danger based on their 

perceptions and motivations; 

• Indecisive: the agent is aware of some 

fires but has not yet made a decision about how 

to react; agents stay indecisive for a varying 

amount of time, until they have enough 

motivation to either fight or escape; initial 

motivations are individual and then vary based 

on the evaluation of the situation (subjective 

danger); 

• Preparing to escape: the agent has 

decided to leave and starts preparing. The agent 

does this until ready, or surprised by the fire 

before being ready (transition to Escaping), or 

blocked by the fire and forced to stay (transition 

to Preparing to defend); 



• Escaping: the agent is evacuating towards 

the closest shelter (call the moving action); travel 

efficiency de-pends on objective abilities; 

injuries can be received from fires on the way. 

Unless the agent dies during travel, its next state 

will be Safe when reaching the shelter; 

• Preparing to defend: the agent has 

decided to de-fend, or was forced to stay because 

the fire blocks escape; it prepares the house and 

itself (call the prepareforfire action) until the fire 

is close enough, which triggers the transition to 

Defending; 

• Defending:  the agent is actively fighting 

the fire around its house (call the fightfire 

action); if that fire is extinguished, the agent 

transitions back to Preparing to defend until 

another fire comes; if motivations change (e.g. 

subjective danger increases when actually seeing 

the fire, or subjective abilities decrease after 

failing to fight) and evacuation becomes more 

urgent, the agent transitions to Escaping; 

• Safe: the agent is (and will stay) in a 

shelter, and can-not be injured anymore; 

• Dead: final state of all agents whose health 

dropped to 0 as a result of injuries received from 

the fire (from any state other than Safe); 

• Survivor: final state of all agents who did 

not die during the fires (e.g. successful 

defenders, lucky passive, and all sheltered 

agents). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This simple model is sufficient to highlight the 

role of subjective, irrational determinants of the 

decisions and behaviours of each resident, and 

therefore captures the discrepancies shown by 

the data. Indeed the objective value of danger 

influences injuries and damage, and the objective 

value of capability influences the success of 

actions. But these objective values are 

inaccessible to the agents, whose decisions are 

based on their subjective values of danger and 

abilities, and on their motivations. 

 

 

FSM 
model 
discussion 

 

This model was implemented in GAMA, and 

our experiments showed good results in 

highlighting the role of subjective factors in the 

”irrational” behaviour of the population (Adam 

& Gaudou, 2016b, 2017). However, we have 

previously argued for the use of BDI agents in 

social simulations (Adam & Gaudou, 2016a); 

their main advantage, and even more so when 

aiming at raising awareness, is that their 

behaviour is encoded in terms of concepts from 

folk psychology (Norling, 2004) and are 

therefore more easily understood by human 

users. To further prove our point, we 

implemented a BDI version of the civilian agents 

in this bushfire simulation, in order to 

then compare it with the FSM version. 

 

BDI MODEL OF THE POPULATION 
BEHAVIOUR IN BUSHFIRES 

 

As discussed above, BDI agents offer many 

interesting advantages for social simulation, in 

particular when applied to raising awareness. 

However, they are little used yet, due to their 

higher computational complexity and the lack of 

dedicated supporting tools and methodologies. In 

this section, we describe a methodology (TDF) 

and tool (GAMA-BDI) to support the integration 

of BDI agents in simulations, and illustrate them 

by designing a new version of the civilian model 

Figure 2: states of the FSM for civilian agent 



above, with a BDI architecture instead of the 

FSM architecture. 

 

Methodology: Tactics Development 
Framework (TDF) 

 

When designing a conceptual model for 

computational simulation, UML is the most 

widely used tool, mostly because of its generality 

and ease of use, allowing one to describe entities 

in terms of attributes and actions; but it is not 

well suited for modelling human behaviour 

which is what is often required in disaster 

management and evacuation simulations such as 

our case study. On the other hand, agent-based 

software development methodologies that 

develop systems using mental attitudes of goals, 

events, plans, beliefs, capabilities etc. are well 

suited for these systems. This is particularly 

relevant when transcribing behaviours described 

by human witnesses, as is the case here, since 

humans naturally tend to explain their behaviour 

in terms of mental attitudes. For instance, 

consider this extract: “I looked out the window 

and saw some hazy smoke to the north-west. 

Gary said that he thought it was just dust but we 

went outside and straight away we noticed that 

we could smell smoke. It was about 12.45pm 

when we smelt the smoke and as soon as that 

happened, Gary agreed to go and get the fire 

pump”. We can make the mental attitudes 

involved more explicit: Gary (wrongly) believed 

for a while that the smoke was just dust, but 

planned to get more information; after going 

outside they perceived smoke and realised that it 

was coming from a fire (belief update). As a 

result, Gary adopted the goal to get ready for the 

fire, and started on their plan whose first action 

was to get the fire pump. 

Whilst there are several agent-oriented 

software engineering methodologies such as 

Prometheus, Tropos, O-MaSE, GAIA and others 

(DeLoach, Padgham, Perini, Susi, & 

Thangarajah, 2009), we introduce a more recent 

methodology that has been specifically built for 

eliciting and encoding tactical/strategic 

behaviours in dynamic domains: TDF (Tactics 

Development Framework) (Evertsz, 

Thangarajah, Yadav, & Ly, 2015). TDF is based 

on the Prometheus methodology (Padgham & 

Winiko, 2002), a mature and popular agent-

oriented software engineering methodology. A 

pilot study has shown that TDF significantly 

improves comprehension of behaviour models, 

compared to UML (Evertsz et al., 2015). 

Although TDF was initially designed to capture 

and model military behaviour, we have shown in 

previous work (Adam, Beck, & Dugdale, 2015) 

that this framework can be adapted to model 

civilians’ descriptions of their behaviour in crisis 

situations. The TDF methodology proceeds in 

following 3 phases: System specification: 

Identification of system-level artefacts, namely 

goals, scenarios, percepts, actions, data, actors 

and roles; Architectural design: Specification of 

the internals of the system, namely the agents 

that play the different roles, the interactions 

between the agents (via protocols) if any, and 

messages between agents; and Detailed design: 

Definition of the internals of the agents, namely 

capabilities, plan diagrams and internal 

messages/sub-goals. 

 

Tool: GAMA-BDI plugin 
 

GAMA (Grignard. et al., 2013; GAMA, n.d.; P. 

Taillandier, Grignard, Gaudou, & Drogoul, 

2014) is an open source platform for agent-based 

modelling and simulation of complex spatialised 

systems. It provides built-in functions for using 

Geographical Information Systems data such as 

OpenStreetMap for fast and precise mapping of 

the environment. Simulations built with GAMA 

are scalable, since the platform can deal with 

several thousand agents, depending on the level 

of complexity of their architecture. Furthermore, 

GAMA provides a very simple and high level 

programming language called GAML, which 

allows even non-programmers to simply build 

and maintain their own models. As a result, it is 

widely used by designers from many different 

fields: urban growth (P. Taillandier, Banos, et 



al., 2016), geo-historical reproduction of past 

crises (Gasmi et al., 2014), socio-environmental 

models (Gaudou et al., 2014), impact of floods 

on land planning (F. Taillandier, Adam, Delay, 

Plattard, & Toumi, 2016), etc. Finally, it is 

supported by an active development team that is 

progressively improving the software. GAMA 

was recently extended with a BDI plugin 

(Caillou, Gaudou, Grignard, Truong, & 

Taillandier, 2015; P. Taillandier, Bourgais, et al., 

2016) to allow designers to easily create BDI 

agent models in the GAML language. They can 

specify logical predicates, initialise their agents 

with beliefs and desires, describe the effect of 

new percepts on the agent’s beliefs, and provide 

them with a plan library. The BDI engine then 

lets the agents perceive their environment, 

update their beliefs and desires, select an 

intention based on the relative priorities of their 

goals, and choose and execute an adapted plan to 

reach that goal. We have previously shown that 

this BDI plugin connects well with the TDF 

methodology as it uses matching concepts, and 

have successfully used it to implement the 

conceptual BDI model designed with TDF 

(Adam et al., 2016). The next paragraph 

describes the resulting model in enough detail 

for the reader to understand the comparison of 

the 2 models. 

 

The BDI model 
 

In GAML (the programming language of the 

GAMA platform), the designer first needs to 

describe the different logical predicates that will 

be manipulated by the agent. This is basically the 

ontology of the domain. Agents can be endowed 

with an initial knowledge base with different 

beliefs and de-sires. These predicates can be 

associated with a priority. We define two 

predicates for the civilian-bdi agents: 

• stay alive: desire to flee fires to stay alive. 

Its priority is based on the agent’s danger 

aversion (escape motivation). 

• protect property: desire to protect property. 

Its priority is based on the agent’s danger 

determination (defend motivation). 

 

Agents can then be given perceptions, which 

explain how they interpret the stimuli coming in. 

We define two perceptions for the civilian-bdi 

agents: 

• perceive fires: perceive new fires (that are 

not yet in their list of known fires) and add them 

to their list. 

• perceive shelters: perceive new shelters 

(that are not yet in their list of known shelters) 

and add them to their list. 

 

Agents are also endowed with a number of 

rules for updating their mental attitudes. Each 

rule allows inferring new beliefs or desires 

according to a specific condition (that can be a 

specific belief or desire). For the civilian-bdi 

agent, we define two rules: 

• infer escape desire: infer the stayalive 

desire according to the awarenessprobability if 

the civilian knows that there is at least one fire 

(the agent refers to its known fires list). 

• infer protect desire: infer the protect 

property desire according to the 

awarenessprobability if the civilian knows that 

there is a least one fire (known fires list). 

 

The agents are endowed with a library of plans 

to achieve their goals. Each GAML plan is 

defined with several optional features: the goal it 

achieves (keyword: intention); a context 

condition (keyword: when) describing when this 

plan is applicable; and a success condition 

(keyword: finished_when). We define three 

plans for the civilian-bdi agents: 

• prepare property: this realises the goal 

protectproperty, by executing the prepareforfire 

action it is applicable when the fire is not too 

close (i.e. the distance is higher than defence 

radius). 

• fight fire: this realises the goal 

protectproperty, by executing the fightfire 

action; it is applicable when the fire is close 



enough (distance is lower than or equal to 

defence radius). 

• go to shelter: this realises the goal stayalive, 

by executing the moving action. 

 

BDI model discussion 
 

This methodology and tool are generic and not 

limited to this particular case study. TDF was 

also used for military training simulations. 

GAMA has been used in such various domains 

such as agronomy, epidemiology, civil 

engineering, and geosciences. We are currently 

using GAMA-BDI for simulating social 

attachment in earthquake evacuations (Bangate, 

Dugdale, Adam, & Beck, 2017), as well as 

cognitive biases in bushfires (Arnaud, Adam, & 

Dugdale, 2017). We believe that the combination 

of these tools can help more designers to use 

BDI agents in their models and simulations. 

 

COMPARING THE SIMULATIONS 
 

In this section, we compare our two simulations 

(FSM and BDI) of the population behaviour in 

bushfires. We start by discussing the literature 

about model comparison, and then propose our 

own list of comparison criteria, finally using 

them to perform this comparison. 

 

Model comparison: state of the art 
 

In crisis management as well as other 

application fields of social simulation, many ad 

hoc simulators are created, with different agent 

architectures, different underlying models, and 

different tools; making comparisons hard. 

However model comparison is essential to 

determine which model is most appropriate for 

which application. 

Model comparison has been the topic of many 

research works. Some of these works evaluate 

and compare the actual modelling platforms (e.g. 

Netlogo, Repast, Mason, etc.) (Railsback, 

Lytinen, & Jackson, 2006; Laclavík et al., 2011; 

Daudé & Langlois, 2007; Bajracharya & Duboz, 

2013). Others focus on comparing the 

performance of the resulting systems. For 

instance (Bartish & Thevathayan, 2002) have 

compared the use of BDI and FSM architectures 

in games: evaluating complexity in terms of the 

number of behaviours, finding that it was linear 

for BDI agents and quadratic for FSM. On the 

other hand, run-time performance, using a small 

number of agents, degraded more quickly for 

BDI agents than for FSM agents in bigger 

systems. 

Comparisons have also been made by focusing 

on the underlying models. In this context, most 

of works base their comparison on the simulation 

results and use two types of metrics: a fitness 

function - often computed by estimating the error 

between the observed data and simulated ones - 

and a computation time. For example, (Truong et 

al., 2016) compare three land-use change models 

based on three different architectures for the 

farmer agents: probabilistic, multi-criteria and 

BDI. The comparisons between the three models 

are achieved by using the fuzzy kappa 

coefficient (Hagen, 2003) that allows evaluating 

the local similarity between the observed data 

and the simulated ones, and the percent absolute 

deviation. 

Another technique that has been used by the 

agent-based community is “Docking”, 

sometimes also known as “replication”, or 

Model to Model comparison (Carley, 2002). 

Docking attempts to align multiple models in 

order to investigate if they yield similar results. 

The compared models may all use an agent-

based approach but be implemented in different 

platforms or languages for example (Axtell, 

Axelrod, Epstien, & Cohen, 1996; Arifin, Davis, 

& Zhou, 2010; Xiang, Kennedy, & Madey, 

2005), or they may use completely different 

approaches, by specifying their models using, for 

example, symbolic mathematical expressions or 

agents (North & Macal, 2002; Rank, 2010). The 

benefits of docking are well documented (Arifin 

et al., 2010; Rouchier & Tanimura, 2016) and 

include ensuring the validity of simulation 



results, increasing the quality of the model, and 

assessing if one model subsumes another. 

Some works go further and propose measures 

to compare the complexity of models. Thus, 

(Mandes & Winker, 2015), propose measures 

divided in three groups: 

1. Difficulty of description: 

• number of parameters 

• number of lines of code 

• maximum cyclomatic 

complexity
1
 

• average cyclomatic 

complexity 

• maximum nested block 

depth level 

• average nested block depth 

level 

2. Difficulty of creation: 

• computational time 

• memory usage 

3. Difficulty of organization: 

• approximate entropy 

• fractal dimension 

 

Our comparison metrics 
 

This work aims at comparing two agent 

architectures through the comparison of two 

models. Contrary to (Mandes & Winker, 2015), 

the models will be very complex (integration of 

cognitive agents) and share many elements. As a 

result, some of the previously proposed metrics 

are not very well adapted. In addition, these 

authors do not propose any specific metric 

concerning the ease of appropriation of the 

models by users, which is a very important 

criterion for the reusability of models. We 

therefore propose the following metrics: 

 

1. Difficulty of description: 

• number of characters in the 

code: we choose to use the 

                                                        
1
 Cyclomatic complexity is a metric used to indicate the 

complexity of a program; it is a quantitative measure of the 

number of linearly independent paths in its source code.  

number of characters rather 

than the number of lines as 

the length of lines can be 

very heterogeneous 

2. Difficulty of creation: 

• computational time 

• memory usage 

3. Difficulty of appropriation: 

• understandability 

• explainability 

• extensibility 

4. Model credibility: 

• error between observed data 

and simulated data 

 

Note that as stated by (Müller et al., 2014) the 

common use of a modelling platform (such as 

Netlogo, GAMA or Repast) can facilitate model 

comparison. This is why in this work we have 

used the GAMA platform to implement both 

models. 

 

Comparison results 
 

Difficulty of description. Table 1 shows the 

comparison of code length. We can observe that 

the code is far more compact with the BDI 

model (more than 24% more compact). This is 

due to using specific features, like perceptions, 

that simplify writing the model, and to the fact 

that the FSM architecture requires explicitly 

specifying all the possible existing states and 

their transitions. This second explanation also 

shows a limitation of the FSM architecture in 

terms of modularity: enriching the model 

requires adding new states and specifying new 

transitions, which becomes increasingly 

complicated as the number of states increases, 

whereas adding new desires and plans in the BDI 

architecture is straightforward (see Extensibility, 

below). 

 
Table 1: code comparison (difficulty of description) 

Measure     FSM Model      BDI Model 

   #characters in the code 1769 1310 



 

Difficulty of creation. Table 2 shows the 

comparison concerning the use of computer 

resources. For the time computation, we use the 

same scenario with 10 replications and the same 

series of seeds. The memory usage was 

estimated with 5000 civilian agents (and a grid 

of 100x100 cells) after 2 simulation steps (the 

time for the agents to detect fires). The memory 

usage concerns the memory used by all aspects 

of the simulation, not only the civilian agents, 

but also all of the other agents and the GAMA 

platform interface. 

The computation times are relatively close. A 

deeper analysis with a profiling tool shows that 

the computation time is mostly due to the 

civilian agent actions and not to the computation 

linked to the architecture. 

In the same way, the results for the memory 

usage are very close. Note that as our goal was to 

define a BDI model as close as possible as the 

FSM one, we did not use belief predicates that 

could have used more memory than basic 

variables (for example, for the known fires and 

known shelters). 

 
Table 2: comparison of computer resource usage 

(difficulty of creation) 

 

 

 

 

 

Difficulty of appropriation. We designed a 

questionnaire for test subjects to compare the 

two models on two aspects: understandability of 

code (can they understand how it works and 

modify it), and explainability of behaviour (can 

they understand what the agents do and why). 

We asked a limited number of testers (a dozen 

students from a computer science laboratory, 

with various levels of previous exposure to FSM 

and BDI models) to answer this questionnaire. 

These are more subjective criteria so this survey 

only provides qualitative feedback on the 

models. The testers found the BDI model more 

understandable and had less difficulty modifying 

it than the FSM model. It was also easier to 

explain behaviour in terms of what the agents 

desired instead of which state they were 

currently in. In future work we will conduct the 

study on a larger scale. 

Model credibility. In order to evaluate the 

model credibility, we used some of the data 

provided in the reports concerning bushfires (see 

Context section above), in particular the ones 

related to the causes of death: 

• 14% died while escaping 

• 69% died while passively sheltering in a 

building;  

• 17% died while defending their property. 

 

As the models are stochastic, we carried out 10 

replications for each model with the same series 

of seeds.Table 3 shows that the two models 

produce correct results even if they could be 

improved by enriching them to better take into 

account the heterogeneity of the behaviours. The 

difference between the results of the two models 

is not really significant. This was predictable as 

the Civilian-bdi and Civilian-fsm agents share 

the same attributes and actions. 

Table 3. Comparison of the model outputs 

(Model credibility) 

 
Table 3: comparison of model outputs (model 

credibility) 

 

 

 

 

 

Extensibility  

Measure     FSM Model     BDI Model 

Computation time 35 s 45 s 

Memory usage 103 Mo 109 Mo 

Measure Real data FSM Model BDI Model 

Died escaping 14% 18% 13 % 

Died passively 69% 72% 68 % 

Died defending 17% 10% 19 % 



Experiments. To assess the extensibility of 

both models, we performed an experiment where 

we asked seven researchers and students from 

various profiles (sociology, agronomy, computer 

science, civil engineering) to undertake an 

exercise. We gave them the BDI and FSM 

models, and asked them to extend both models 

with a new “warn neighbours” behaviour. This 

behaviour was specified as precisely as possible: 

the agents should have an attribute determining 

their motivation to warn neighbours; a motivated 

agent chooses an neighbour who is unaware of 

the fire, communicates to the neighbour their list 

of known fires, and makes them aware; this 

action should take exactly one time step. The 

subjects were asked to implement this behaviour 

in both architectures, and then to provide 

feedback about how easy it was to perform this 

extension. We also reviewed and marked their 

code to measure how well they succeeded in 

extending each model. 

Results. The subjects’ performances on both 

models were correlated together (i.e. those 

performing better on FSM also performed better 

on BDI, and vice versa). Also, all subjects 

obtained a better mark for the BDI model than 

for the FSM model, which seems to suggest that 

the BDI model is easier to extend. On the 

contrary, from the participants’ feedback, they 

felt that FSM concepts were easier to understand. 

This was particularly true for those participants 

who did not have a computer science 

background or those not familiar with BDI. But 

this impression of easiness was not correlated 

with the quality of their code (despite finding it 

easy, they made errors and their models were not 

correct). 

Many programming errors were independent of 

the architecture (e.g. forgetting to consider only 

unaware neighbours, or to remove already 

warned neighbours from the unaware list). 

Typical errors in the BDI model were syntax 

errors or plan-managing errors (how to properly 

finish a plan, remove the satisfied intention) that 

would be avoided if the subjects had more 

knowledge of BDI. Typical errors in the FSM 

model were related to forgetting transitions, 

which is inherent to the FSM architecture and 

increases as the model complexity increases 

(more states mean more transitions to add for 

each additional state). 

Comparison conclusion. The concepts of 

states and transitions in the FSM model appeared 

to be more intuitive to the subjects who were 

unfamiliar with BDI. However, despite this 

impression of simplicity they made more errors 

(in particular missing transitions). Conversely, 

BDI is initially harder to understand due to 

complex concepts such as plans and intentions, 

but easier to use (since there is no need to 

exhaustively list many transitions). BDI was also 

found to be more flexible and less sequential 

than FSM. 

Discussion. Extending the FSM model required 

specifying a new state, the action to be 

performed in that state, and more importantly all 

of the transitions to and from that new state, 

linking it to the previously existing states. 

Extending the BDI model required writing a new 

plan, specifying the desire to be satisfied by that 

plan, and the perception triggering that desire; 

this does not change if the complexity of the 

agent increases. As a result, the difference in 

extensibility of both architectures is not very 

significant for an agent of limited complexity 

such as the one presented here, but would grow 

exponentially as the agent’s complexity 

increases. Indeed as the complexity grows, an 

increasing number of states would need to be 

added to the FSM model, also requiring ever 

more transitions to and from these states. 

Conversely, the cost of extending the BDI model 

would stay rather stable. 

 

CONCLUSION AND FUTURE WORK 
 

In this paper, we discussed the need to compare 

agent-based models for social simulations using 

both objective and subjective criteria, in order to 

help designers determine which agent 

architecture is the most adapted for their needs. 

Concretely, we focused on modelling the 



behaviour of the Australian population in 

bushfires, with two very different agent 

architectures: finite

-state machines, and belief-desire-intention 

agents. We then compared these two models on a 

number of objective criteria, and also asked 

subjects to subjectively compare their 

understandability and explainability, and to try to 

extend both models. Our results show that BDI 

models, despite being initially more di cult to 

understand, offer a gain in modularity, 

flexibility, understandability and extensibility. 

This is essential in crisis management where the 

goal of such models is precisely to explain 

behaviour, raise awareness, and explore new 

strategies. Extensibility is also key in facilitating 

the reusability of existing models. 

The originality of our work is that we have 

developed and compared two models in the exact 

same context, with two different architectures for 

the same agents. Having already argued 

previously for the use of the BDI architecture in 

social simulation (Adam & Gaudou, 2016a), this 

work goes further by describing useful tools for 

creating BDI agents (TDF and GAMA). It also 

concretely compares BDI with another 

frequently used and seemingly simpler 

architecture, finite-state machines. Our 

experiments show that although BDI might 

initially seem more complex to handle, it is then 

more compact to implement, and makes it easier 

to explain behaviours and to extend complex 

models. This paper therefore addresses two 

frequently raised problems of BDI agents: the 

lack of tools for using them, and their 

complexity limiting their accessibility to non-

specialists. 

Finally we would like to mention that the BDI 

architecture can be extended with emotions 

(Adam et al., 2009), and this extension has now 

been implemented in the GAMA simulation 

platform (Bourgais, Taillandier, & Vercouter, 

2016). Other psychological factors can also be 

taken into account such as social attachment 

(Bangate et al., 2017) and cognitive biases 

(Arnaud et al., 2017). Such extensions will 

provide agents with even more realism, which is 

crucial when modelling human 

behaviour in social simulations (and even more 

so in crisis situations), in order to deduce valid 

results. In future work, we will therefore 

improve the BDI version of the human behaviour 

model by integrating various emotions and 

psychological factors, starting again from the 

interviews where many survivors describe how 

they felt before, during, and after the bushfires. 

The random fire model has also become a 

limiting factor. We therefore plan to increase 

realism by using a more credible fire simulator 

(e.g. (Miller et al., 2015; Du et al., 2013)). 

Indeed, our long-term goal is to further develop 

this simulator and turn it into a serious game, 

which requires all aspects of the simulation to be 

as close as possible to reality. 
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