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HEIGHT AND CONTOUR PROCESSES OF CRUMP-MODE-JAGERS FORESTS (I):
GENERAL DISTRIBUTION AND SCALING LIMITS IN THE CASE OF SHORT EDGES

EMMANUEL SCHERTZER AND FLORIAN SIMATOS

ABSTRACT. Crump–Mode–Jagers (CMJ) trees generalize Galton–Watson trees by allow-
ing individuals to live for an arbitrary duration and give birth at arbitrary times during
their life-time. In this paper, we are interested in the height and contour processes en-
coding a general CMJ tree.

We show that the one-dimensional distribution of the height process can be ex-
pressed in terms of a random transformation of the ladder height process associated
with the underlying Lukasiewicz path. As an application of this result, when edges of
the tree are “short” we show that, asymptotically, (1) the height process is obtained by
stretching by a constant factor the height process of the associated genealogical Galton–
Watson tree, (2) the contour process is obtained from the height process by a constant
time change and (3) the CMJ trees converge in the sense of finite-dimensional distribu-
tions.
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2 EMMANUEL SCHERTZER AND FLORIAN SIMATOS

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

1.1. Galton–Watson forests and their scaling limits. A planar discrete rooted tree is a
rooted tree where edges have unit length and which is endowed with an ordering on
siblings, in such a way that it can be naturally embedded in the plane. Since the semi-
nal work of Aldous, Neveu, Pitman and others [2, 3, 4, 17, 22, 23], it is well known that
such a tree is conveniently encoded by its height and contour processes. To generate
these processes, one can envision a particle starting from the root and traveling along
the edges of the tree at unit speed, from left to right. The contour process is simply con-
structed by recording the distance of the particle from the root of the tree. To generate
the height process, we start by labeling the vertices of the tree according to their order
of visit by the exploration particle (i.e., from left to right): the height process evaluated
at k is then given by the distance from the root of the kth vertex.

From a probabilistic standpoint, a particularly interesting case is the Galton–Watson
case where each individual u in the tree begets a random number of offspring ªu , these
random variables being i.i.d. with common distribution ª. In the critical and subcriti-
cal cases – i.e., when E(ª) ∑ 1 – the tree is almost surely finite. Considering an infinite
sequence of such i.i.d. random rooted planar trees, we can generate a random (planar)
forest with its corresponding contour and height processes – respectively denoted by C

and H – obtained by pasting sequentially the height and contour processes of the trees
composing the forest.

When E(ª2) <1, the large time behavior of those processes properly normalized in
time and space can be described in terms of a reflected Brownian motion. More pre-
cisely, if E(ª) = 1 and if 0 <æ= Var(ª2) <1 then we have

µ

1
p

p
H ([pt ]),

1
p

p
C (pt )

∂

=) 2

æ
(|w(t )|, |w(t/2)|)

with w a standard Brownian motion and the convergence holds weakly (in the func-
tional sense), see Aldous [4], Bennies and Kersting [5] and Marckert and Mokkadem [19].

Le Gall and Le Jan [18] and then Duquesne and Le Gall [10] relaxed the finite vari-
ance assumption and proved, under suitable assumptions, the existence of a scaling
sequence ("p , p 2N) and a limiting continuous path H1 such that

°

"pH ([pt ]),"pC (pt )
¢

=) (H1(t ),H1(t/2))

where H1 can be expressed as a functional of a spectrally positive Lévy process. In par-
ticular, we note that the height and contour processes are always asymptotically related
by a simple deterministic and constant time change. The purpose of this paper is to
extend these results to the more general class of Crump-Mode-Jagers forests.

1.2. Crump-Mode-Jagers forests. Chronological trees generalize discrete trees in the
following way: each individual u is endowed with a pair (Vu ,Pu) such that:

(1) Vu 2 (0,1) represents the life-length of u;
(2) Pu is a point measure which represents the age of u at childbearing. As individ-

uals produce their offspring during their lifetime, we have Pu(Vu ,1) = 0.

Discrete trees are particular cases of chronological trees obtained with Vu = 1 and Pu =
ªu≤1, with ªu 2N the number of offspring and ≤1 the Dirac measure at 1.

As noted by Lambert in [14] (to which the reader is referred for background on chrono-
logical trees), a chronological tree can be regarded as a tree satisfying the rule “edges
always grow to the right”. This is illustrated in Figures 1 and 2 where we present a
sequential construction of a planar chronological forest from a sequence of “sticks”
!= (!n ,n ∏ 0), where !n = (Vn ,Pn).
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1.2.1. Sequential construction of a Crump-Mode-Jagers forest. The reader is refered to
Figures 1 and 2 for an illustration of this construction.

At time n = 0 we start with the empty forest and we add the stick !0 at time n = 1.
In the case considered in Figure 2, P0 has two atoms which correspond to birth times
of individuals, but these two atoms are not yet matched with the sticks corresponding
to these individuals. These unmatched atoms are called stubs, and each time there is at
least one stub we graft the next stick to the highest stub.

We iteratively apply this rule until there is no more stub, at which point we have built
a complete chronological tree with a natural planar embedding. Figure 2 illustrates a
particular case where at time 10 there is no more stub, and in each time this happens
we start a new tree with the next stick.

Thus, starting at time n = 0 from the empty forest and iterating these two rules, we
build in this way a forest F1, possibly consisting of infinitely many chronological trees.
By definition, a CMJ forest is obtained when the initial sticks are i.i.d., and throughout
the paper we will denote their common distribution by (V §,P §).

1.2.2. Chronological height and contour processes of CMJ forests. As for discrete trees,
the contour process of a CMJ forest is obtained by recording the position of an explo-
ration particle traveling at unit speed along the edges of the forest from left to right,
moving, when a chronological tree is represented as in Figure 2, at infinite speed along
dashed lines. This process will be referred to as the chronological contour process asso-
ciated to the CMJ forest, and the chronological height of an individual is defined as its
date of birth.

We define the genealogical contour and height processes as the contour and height
processes associated to the discrete forest encoding the genealogy of F1, see Figures 3
and 4 for a pictorial representation. Throughout the paper, we use the following nota-
tion:

Genealogical processes: : H and C denote the genealogical height and contour pro-
cesses, respectively;

Chronological processes: : H and C denote the chronological height and contour pro-
cesses, respectively.

Contour processes of CMJ forests have been considered by Lambert in [14] in the
particular setting where birth events are distributed in a Poissonian way along the sticks
independently of the life-length – the so-called binary, homogeneous case. Under this
assumption, the author showed that the (jumping) contour process is a spectrally posi-
tive Lévy process. See also [8, 9, 15, 16, 24, 25] for related works.

1.3. Overview of main results. Besides these results, little is known to our knowledge
in the general case. One of the main result of the present paper is to describe in full
generality the joint distribution of the chronological and genealogical height processes
at a fixed time, see Theorem 1.1 and Lemma 2.12 below.

We believe that this description paves the way to a general study of Crump-Mode-
Jagers forests. As an illustration, we treat here the so-called “short edge” case where
edges of the chronological trees are short: in this case, the Crump-Mode-Jagers forest
becomes asymptotically proportional to its genealogical forest. This loose statement is
formalized in Theorems 1.3, 1.6 and and 1.9 below below.

Also, in current work in progress [32] we use these techniques to treat the case where
the offspring distribution has finite variance: in this case, new scaling limits emerge,
which are related to the Poisson snake [1, 6].

1.4. First main result: joint distribution of the chronological and genealogical height
processes at a fixed time. Let S = (S(n),n 2N) be the Lukasiewicz path: it is defined by
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S(0) = 0 and, for n ∏ 1,

S(n) =
n°1
X

k=0
(|Pk |°1)

(here and in the sequel, |∫| is mass of the measure ∫). Let T = (T (k),k 2 N) be the se-
quence of weak ascending ladder height times, also referred to as record times: it is
defined by T (0) = 0 and by

T (k +1) = inf
©

`> T (k) : S(`) ∏ S(T (k))
™

for k ∏ 0, with the convention T (k + 1) = 1 if T (k) = 1. Let eT °1(n) for n 2 N be the
number of record times smaller than n, i.e., eT °1(n) = max{k ∏ 0 : T (k) ∑ n}. For k ∏ 1
such that T (k) <1, define

ª(k) = S(T (k °1))°S(T (k)°1)

corresponding to the undershoot upon reaching the kth record time. For any measure
P and any k ∑ |P |, denote by Ak (P ) the position of the kth largest atom of P .

As explained above, all our objects are constructed from an initial sequence of sticks
!= (!n ,n 2N). For technical convenience, we actually assume that a sequence of sticks
! is indexed by Z, i.e., ! = (!n ,n 2 Z), and we denote by ≠ the set of sequences of
sticks. This makes it possible to consider, for each n, the dual (or time-reversal) operator
#n :≠!≠ defined by #n(!) = (!n°k°1,k 2 Z). Recall that H is the height process of a
classical Galton-Watson tree.

Theorem 1.1. For n 2N let

R(n) =
X

1∑k∑n:T (k)<1
Y(k) where Y(k) = Aª(k)(PT (k)°1).

Then the genealogical and chronological height processes at time n are given by the fol-
lowing formula:

(1.1)
°

H (n), H(n)
¢

=
°

eT °1(n) , R ± eT °1(n)
¢

±#n .

The functional Y(k) ±#n appearing in the above statement is depicted in Figures 5
and 8. Moreover, the functionals in the right-hand side of (1.1) are by definition com-
puted with respect to the reversed sequence of sticks (!n°k°1,k 2Z), e.g., eT °1(n)±#n is
the nth record time associated to the sequence (!n°1°k ,k ∏ 0).

We note that the one-dimensional marginals of the genealogical height process H

in terms of the ladder height time process is already known in the literature, see for in-
stance Marckert and Mokkadem [19]. The previous result states that in order to describe
the chronological height process, more structure of the ladder height process is needed:
not only do we need to extract the record times (as in the Galton-Watson case), but also
the corresponding undershoots.

We emphasize the fact that the previous result is purely deterministic. We now intro-
duce the probabilistic set-up of Crump-Mode-Jagers forests and state our main results
concerning the asymptotic behavior of the chronological height and contour processes.

1.5. Main results: scaling limits. We now present the main results of the paper con-
cerning the asymptotic behavior of the chronological height and contour processes, see
Theorems 1.3, 1.6 and 1.9 below.

1.5.1. Probabilistic set-up. A Crump-Mode-Jagers forest is obtained when the initial se-
quence of sticks is i.i.d.. We consider in this paper a triangular setting and consider
for each p ∏ 1 a stick-valued random variable (V §

p ,P §
p ) corresponding to a (sub)critical

CMJ branching process, i.e., which satisfies

(1.2) 0 ∑ E(|P §
p |) ∑ 1.
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We assume moreover that the sequence (P §
p ) is near-critical in the sense that

(1.3) lim
p!1

E(|P §
p |) = 1.

Let Pp be the probability distribution on≠ under which ! is an i.i.d. sequence of sticks
with common distribution (V §

p ,P §
p ). We let ) denote weak convergence under Pp and

fdd) denote convergence in the sense of finite-dimensional distributions under Pp . For

instance, Bp
fdd) B1 if and only if (Bp (t ), t 2 I ) underPp converges weakly to (B1(t ), t 2 I )

for any finite set I Ω [0,1).

1.5.2. Preliminaries. For a given sequence ("p , p 2 N), define the rescaled processes
Hp ,Hp , Sp , Cp and Cp as follows: for t 2R+:

(1.4) Hp (t ) = "pH ([pt ]), Hp (t ) = "pH([pt ]) and Sp (t ) = 1

p"p
S([pt ]),

([x] 2Z denotes the integer part of x 2R) and

(1.5) Cp (t ) = "pC (pt ), Cp (t ) = "pC(pt ).

In the near-critical case, it is well-known since Duquesne and Le Gall [10] that if Sp con-
verges, then under under additional mild assumptions the rescaled genealogical height
and contour processes converge weakly toward a continuous process. This is summa-
rized in the next theorem which involves the following condition.

Condition G. The following three conditions are met:

(H1) Sp ) S1 for some Lévy process S1 with infinite variation;
(H2) the Laplace exponent √ of S1 satisfies

R1
1 du/√(u) <1;

(H3) if (Z p
k ,k ∏ 0) is a Galton-Watson process with offspring distribution |P §

p | and
started with [p"p ] individuals, then for every ±> 0,

liminf
p!1

P
≥

Z p
[±/"p ] = 0

¥

> 0.

When condition G holds, we can and will assume without loss of generality that as
p !1 we have "p ! 0 and p"p !1. Moreover, since we are in triangular setting where
the law of the jump size of S may depend on p, S1 is not necessarily a stable process.

Theorem 1.2 (Corollary 2.5.1 in [10]). Assume that condition G holds. Then (Hp ,Cp ) )
(H1,H1( ·/2)) for some continuous process H1 satisfying P(H1(t ) > 0) = 1 for every
t > 0.

1.5.3. Convergence of the chronological height process. To explain our results we start
with some notation. The strong Markov property implies that the random variablesY(k)
introduced in Theorem 1.1 are i.i.d. (under Pp ), and we denote byY§

p a random variable
with their common distribution. We will show in Lemma 2.12 that Y§

p is obtained by
first size-biasing the random variable |P §

p | and then recording the age of the individual
when giving birth to a randomly chosen child. The mean ofY§

p has a simple expression,
namely (see Lemma 2.12)

(1.6) E(Y§
p ) = E

µ

Z1

0
uP §

p (du)

∂

.

Nerman and Jagers [21] already noticed thatY§
p describes the age of an ancestor of a typ-

ical individual when giving birth to its next ancestor. For this reason,Y§
p and in particu-

lar the condition E(Y§
p ) <1 – which is one way to formalize the “short edge” condition –

plays a major role in previous works on CMJ processes, see for instance [26, 27, 28, 29, 30,
31]. In the present paper we prove that if E(Y§

p ) <1, then in the near-critical regime the
asymptotic behavior of the chronological height process is obtained by stretching the
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genealogical height process by the deterministic factor E(Y§
p ). The statement involves

the following assumption which is alway satisfied (under (1.3)) in the non-triangular
setting.

Condition Y. The sequence of random variables (Y§
p ) is uniformly integrable and con-

verges in law to a random variable Y§
1 with finite mean Æ§.

Theorem 1.3 (Short edges). Assume that conditions G and Y hold. Then
°

Hp ,Hp
¢ fdd=)

°

H1, Æ§H1
¢

.

Remark 1.4. Theorem 1.3 is a consequence of a more general result: if, for a fixed t ,
Hp (t ) is tight and a weaker condition than condition Y holds, then Hp (t )°Hp (t ) ) 0,
see Theorem 3.1 below.

Remark 1.5. In [30], Sagitov investigated (in the non-triangular setting) the size of a
CMJ process conditioned to survive at large time under the very short edge assumption
introduced below, corresponding to E(V §

1 ) <1 and E(Y§
1 ) <1 (see also Section 8 and

Green [12]). The population size is described in the limit in terms of a continuous state
branching process where space and time are scaled analogously as in Theorem 1.2. As a
consequence, the previous result can be seen as a genealogical version of [30]. We also
note that in [30], the results are obtained through an entirely different approach, namely
analytic computations involving some non-trivial extension of the renewal theorem.

1.5.4. Convergence of the chronological contour process. The analysis of the contour
process is significantly more delicate than that of the height process: compared to the
Galton–Watson case, new difficulties are created by the chronological structure, see the
discussion in Section 1.6.

For the chronological contour process, condition Y is not enough. Indeed, we note
thatH does not “see” what happens after an individual has given birth to its last child. In
other words, two sequences of sticks != ((Vn ,Pn),n 2Z) and !̃= ((Ṽn ,Pn),n 2Z) yield
the same chronological height process. In contrast, the chronological contour process
heavily depends on the life length of individuals and so an extra assumption on V §

p is
called upon.

Condition VP. The sequence of random sticks (V §
p ,P §

p ) converges in law to a random
stick (V §

1,P §
1) such that V §

1 has mean E(V §
1) = Ø§ 2 (0,1) and E(|P §

1|) = 1. Moreover,
the sequence (V §

p ) is uniformly integrable.

In light of the above discussion, condition VP is intuitively more stringent than con-
dition Y and so we will refer to this case as to the case of “very short edges”1. Our main
result shows that when conditions Y and VP hold, then the chronological contour pro-
cess is obtained from the chronological height process by rescaling time by the deter-
ministic factor 1/(2Ø§). Hence, again provided that edges are short enough, this result
provides a relation between the height and contour processes which is analogous to the
discrete case. Moreover, the limits are proportional to the height process (up to multi-
plicative constant in time and space) of a continuous-state branching process as in the
Galton-Watson case.

Theorem 1.6 (Very short edges case). Assume that conditions G, Y and VP hold, as well
as the technical condition V in Section 4. Then

°

Hp ,Cp ,Hp ,Cp
¢ fdd=)

°

H1,H1( ·/2),Æ§H1,Æ§H1±'1
¢

where '1(t ) = t/(2Ø§).

1It follows from (1.6) that E(Y§) ∑ E(V §|P §|) and so if the life length is independent from the number of
offspring, then we do obtain E(Y§) ∑ E(V §).
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Remark 1.7. Condition V is here in order to have a generalized versions of the renewal
theorem, see Section 5.2. Note that this condition is automatically satisfied in the non-
triangular setting, in which case the assumptions of the previous result are simply con-
dition G, E(V §) <1 and E(|P §|) = 1.

Remark 1.8. Theorem 1.6 is a consequence of a more general result: if only condition VP
holds (with no requirement on Y§

p ), then the contour process can be obtained from the
height process by a deterministic time change, see Theorem 4.1 below.

The previous result, and in particular the joint convergence

(Cp ,Cp )
fdd) (H1( ·/2),Æ§H1±'1),

strongly suggests that the whole chronological forest can asymptotically be obtained
from the genealogical one through a deterministic stretching of the edges. If instead of
convergence of finite-dimensional marginals we had functional convergence in the pre-
vious display, then this would actually be exact. However, we exhibit counter-examples
in Section 8 where the assumptions of Theorem 1.6 hold, but there cannot be functional
convergence. Despite this negative result, the following result shows that the chronolog-
ical and genealogical forests indeed become asymptotically proportional to one another
in the sense of finite-dimensional distributions.

Theorem 1.9. Assume that conditions G, Y and VP hold, as well as the technical condi-
tion V in Section 4. Then for every 0 ∑ u ∑ v we have

inf
u∑t∑v

Cp (t )°Æ§ inf
u∑t∑v

Cp (2'1(t )) ) 0.

1.6. Main ideas of the proof of Theorems 1.3 and 1.6 and technical challenges. The
proof of Theorem 1.3 is actually quite straightforward once Theorem 1.1 is established.
Indeed, condition Y implies that the law of large numbers hold for R. It gives R(n) ºÆ§n
for large n and as a consequence,

H(n) = R ± eT °1(n)±#n ºÆ§
eT °1(n)±#n =Æ§H (n)

(note that since we are interested in convergence in distribution, the dual operator is
actually irrelevant). Details are provided in Section 3.

In contrast, the proof of Theorem 1.6 is significantly more difficult. To explain this
difficulty, it is useful to compare with the Galton–Watson case.

1.6.1. The Galton-Watson case. In the Galton-Watson case, the convergence of the con-
tour process is obtained from the convergence of the height process by using the fact
that the contour process somehow interpolates the height process (see details below).
This observation leads to the inequality (see for instance [10, Equation (2.33)])

(1.7) sup
0∑s∑t

Ø

ØCp (s)°Hp ( fp (s))
Ø

Ø∑ "p + sup
s∑t

Ø

ØHp (s +1/p)°Hp (s)
Ø

Ø

with

fp (t ) = 1

p
inf

©

j ∏ 0 : 2( j °1)°H ( j ) ∏ pt
™

.

Because H ( j ) ø j , it is not hard to see that fp converges (in a functional sense) to the
linear function t 7! t/2. From (1.7), it is obvious that if Hp )H1, again in a functional
sense, with H1 continuous, then Hp and Cp converge jointly.
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1.6.2. The Crump-Mode-Jagers case. Many of these ideas work in the present chrono-
logical setting, and we begin by explaining the interpolation alluded to above. Let in the
sequel

V (°1) = 0, V (n) =V0 +·· ·+Vn and Kn = 2V (n °1)°H(n), n ∏ 0.

Note that the sequence (Kn ,n ∏ 0) is non-decreasing and that its terminal value is al-
most surely infinite (because of the subcritical assumption (1.2)). It can be checked
from the definition of the chronological height and contour processes that:

• C(Kn) =H(n) for every n 2N;
• for t 2 [Kn ,Kn+1], C first increases at rate +1 up toH(n)+Vn and then decreases

at rate °1 toH(n +1).

SinceH(n+1) ∑H(n)+Vn and Vn +(Vn +H(n)°H(n+1)) = Kn+1°Kn , this interpolation
is indeed well-defined. Moreover, it immediately entails the following bound (see for
instance Figure 3, and note that it holds deterministically for any initial sequence of
sticks):

(1.8) sup
t2[Kn ,Kn+1]

|C(t )°H(n)| ∑ |H(n +1)°H(n)|+Vn .

Let further ' be the left-continuous inverse of (K[t ], t ∏ 0), defined by

(1.9) '(t ) := min
©

j ∏ 0 : K j ∏ t
™

, t ∏ 0.

Then defining

(1.10) 'p (t ) := 1

p
'(pt ) = 1

p
inf

©

j ∏ 0 : 2V ( j °1)°H( j ) ∏ pt
™

,

the inequality (1.8) translates after scaling into

(1.11)
Ø

ØCp (t )°Hp ('p (t ))
Ø

Ø∑ "pV'(pt ) +
Ø

ØHp ('p (t )+1/p)°Hp ('p (t ))
Ø

Ø , t ∏ 0,

which is the chronological generalization of (1.7). Under condition VP, the law of large
numbers applies to V and gives V ( j °1) ºØ§ j . AsH( j ) ø j , this gives similarly as in the
Galton-Watson case 'p (t ) )'1(t ). However, the analogy with the Galton-Watson case
stops here, and we now highlight the main differences with the Galton-Watson case, and
the technical challenges to overcome in order to prove Theorem 1.6.

1.6.3. Difference with the Galton-Watson case. First of all, although in the Galton-Watson
case the gap between convergence of finite-dimensional distributions and functional
convergence of Hp is small (this is essentially condition (H2) above, and this can only
happen in a triangular setting) this is not the case for the chronological height pro-
cess. To illustrate this, we present in Section 8 simple non-triangular examples where
Hp converges in the sense of finite-dimensional distributions but the limiting process
is unbounded on any open interval. For this to happen in the Galton-Watson case,
one has to consider very specific offspring distributions in a triangular setting (so that
condition (H2) above does not hold), whereas here many simple examples, in a non-
triangular setting, can be easily found. In other words, assuming functional conver-
gence of Hp seems a strong hypothesis to make; and finding conditions under which
Hp converges in a functional sense constitutes an interesting open problem which is
not addressed here. More deranging, we also exhibit in Section 8 an example where Hp

converges in a functional sense to a continuous process, but Cp fails to converge in a
functional sense.

These various examples show that the usual techniques developed in the Galton-
Watson case are insufficient, and new arguments are called upon.
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1.6.4. Technical challenges and new arguments. Technically, one of the main difficulty
comes from the fact that the random time 'p (t ) appearing in (1.11) is not “nice”: be-
cause the processes V andH appearing in its definition are dependent, we cannot read-
ily rely on renewal-type arguments to control it, or to control other processes consid-
ered at this time. For instance, even the term "pV'(pt ) appearing in the right-hand side
of (1.11), which seems innocuous as the rescaled length of a single individual (and which
is just "p in the Galton-Watson case), is actually not straightforward to control and in-
volved arguments are needed (see Section 6.3).

To circumvent this problem, the main idea is to approximate ' by a “nicer” random
time '̄: since, as mentioned above, V ( j ) ¿H( j ), a natural approximation of ' is given
by

'̄(t ) = inf
©

j ∏ 0 : 2V ( j ) ∏ t
™

.

It turns out that '̄ indeed exhibits many useful properties and that the other processes
are much easier to control when considered at '̄ than at '. For instance, 2V'̄(pt ) is the
jump of the renewal process 2V straddling pt , and can thus be controlled by the renewal
theorem. As another illustration, we will show in Lemma 6.7 that H shifted at '̄ has a
simple and useful probabilistic description (which is not the case forH shifted at ').

Thus, the global idea of the proof is to:

• show that '̄ and ' are close;
• use this to transfer problems on ' to problems on '̄;
• leverage the nicer structure of '̄ to solve problems on '̄.

In addition, one of the main ingredient to fulfill this program is a refined decomposi-
tion of the spine of an individual. This decomposition relies on the spine process, which
generalizes the exploration process of Le Gall and Le Jan in [18] to the present chrono-
logical setting. This process lies at the heart of the proof of Theorem 1.1 and of many
other results: it is presented in the next section.

1.7. Notation. Before going on we collect some general notation used throughout the
paper.

1.7.1. General notation. Let Z denote the set of integers and N the set of non-negative
integers. For x 2R let [x] = max{n 2Z : n ∑ x} and x+ = max(x,0) be its integer and posi-
tive parts, respectively. If A ΩR is a finite set we denote by |A| its cardinality. Throughout
we adopt the convention max; = sup; = °1, min; = inf; = +1 and

Pb
k=a uk = 0 if

b < a, with (uk ) any real-valued sequence.

1.7.2. Measures. Let M be the set of finite point measures on (0,1) endowed with the
weak topology, ≤x 2 M for x > 0 be the Dirac measure at x and z be the zero measure,
the only measure with mass 0. For a measure ∫ 2M we denote its mass by |∫| = ∫(0,1)
and the supremum of its support by º(∫) = inf{x > 0 : º(x,1) = 0} with the convention
º(z) = 0. For k 2 N we define ®k (∫) 2 M as the measure obtained by removing the k
largest atoms of ∫, i.e., ®k (∫) = z for k ∏ |∫| and, writing ∫ = P|∫|

i=1 ≤a(i ) with 0 < a(|∫|) ∑
·· · ∑ a(1),®k (∫) =P|∫|

i=k+1 ≤a(i ) for k = 0, . . . , |∫|°1.

1.7.3. Finite sequences of measures. We let M§ = [n2N(M \ {z})n be the set of finite
sequences of non-zero measures in M . For Y 2 M§ we denote by Len(Y ) the only
integer n 2 N such that Y 2 (M \ {z})n , which we call the length of Y , and identify
z with the only sequence of length 0. For two sequences Y1 = (Y1(1), . . . ,Y1(H1)) and
Y2 = (Y2(1), . . . ,Y2(H2)) in M§ with lengths H1, H2 ∏ 1, we define [Y1,Y2] 2 M§ as their
concatenation:

[Y1,Y2] =
°

Y1(1), . . . ,Y1(H1),Y2(1), . . . ,Y2(H2)
¢

.
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Further, by convention we set [z,Y ] = [Y ,z] = Y for any Y 2 M§ and we then define
inductively

[Y1, . . . ,YN ] =
£

[Y1, . . . ,YN°1],YN
§

, N ∏ 2.

Note that, with these definitions, we have Len([Y1, . . . ,YN ]) = Len(Y1)+·· ·+Len(YN ) for
any N ∏ 1 and Y1, . . . ,YN 2M§.

Identifying a measure ∫ 2M \{z} with the sequence of length one (∫) 2M§, the above
definitions give sense to, say, [Y ,∫] with Y 2M§ and ∫ 2M \{z}. The operator º defined
on M is extended to M§ through the relation

º(Y ) =
Len(Y )

X

k=1
º(Y (k)), Y = (Y (1), . . . ,Y (Len(Y )) 2M§.

Recalling the convention
P0

k=1 = 0, we see that º(z) = 0 and further, it follows directly
from the above relation that º([Y1, . . . ,YN ]) =º(Y1)+·· ·+º(YN ).

1.7.4. Measurable space. We define L = {(v,∫) 2 (0,1)£M : v ∏ º(∫)} and call an ele-
ment s 2 L either a stick or a life descriptor. We work on the measurable space (≠,F )
with≠= LZ the space of doubly infinite sequences of sticks and F the æ-algebra gener-
ated by the coordinate mappings. An elementary event ! 2≠ is written as != (!n ,n 2
Z) and !n = (Vn ,Pn). For n 2 Z we consider the three operators µn ,#n ,G : ≠! ≠ de-
fined as follows:

• µn is the shift operator, defined by µn(!) = (!n+k ,2Z);
• #n is the dual (or time-reversal) operator, defined by #n(!) = (!n°k°1,k 2Z);
• G is the genealogical operator, mapping the sequence ((Vn ,Pn),n 2 Z) to the

sequence ((1, |Pn |≤1),n 2Z).

Note that the genealogical and chronological height and contour processes are related
by the relations H =H±G and C =C±G . We say that a mapping ° :≠!X (valued in an
arbitrary space X) is a genealogical mapping if it is invariant by the genealogical opera-
tor, i.e., if °±G = °. The shift and dual operators are related by the following relations:

(1.12) #m ±#n = µn°m and #n ±µm =#n+m , m,n 2Z,

and for any random time ° :≠!Zwe have

(1.13) P° ±#n =Pn°1°°±#n .

2. SPINE PROCESS AND LUKASIEWICZ PATH

In this section, we introduce the spine process and relate it to the well-known Lukasiewicz
path. The spine process is introduced in Sections 2.1 and 2.2 and the Lukasiewicz in
Section 2.4. We prove in Section 2.5 a crucial formula for the spine process (see Proposi-
tion 2.4) from which Theorem 1.1 is readily derived. More precisely, the spine process is
expressed in terms of a random functional of the weak ascending ladder height process
associated to the dual Lukasiewicz path. Sections 2.6 and 2.7 continue the study of the
spine process and give a description of the.

2.1. Overview of the spine process. The idea underlying the definition of the spine pro-
cess relies on the decomposition of the “spine” – or “ancestral line” – lying below the
point of the tree corresponding to the birth of the nth individual. In the nth step of the
sequential construction presented on Figure 2, this corresponds to the path in the forest
starting from the root and reaching up to n (which also corresponds to the right-most
path in the planar forest constructed at step n). As can be seen from the figure, this path
is naturally decomposed into finitely many segments that correspond to each ancestor’s
contribution to the spine: these segments are highlighted in bold on Figure 6.

The spine process at n is then defined as a sequence of measures that encodes this
decomposition. More precisely, we start by labeling ancestors from highest to lowest.
Then, the kth element of the spine process (evaluated at time n) is simply the measure
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that records the location of the stubs on the kth segment – crosses on Figure 6 – and the
age of the kth ancestor upon giving birth to the (k °1)st ancestor – circles on Figure 6.

2.2. Spine process. Consider the operator © : M§ £M ! M§ defined for ∫ 2 M and
Y = (Y (1), . . . ,Y (Len(Y )) 2M§ by

(2.1) ©(Y ,∫) =

8

>

<

>

:

[Y ,∫] if ∫ 6= z,
°

Y (1), . . . ,Y (H °1),®1(Y (H))
¢

if ∫= z and H ∏ 1,

z else,

where H = max{k ∏ 1 : |Y (k)| ∏ 2}. Note that by definition, we have ©(Y ,∫) 2 M§ for
Y 2M§ and ∫ 2M and that further, if ∫ 6= z then©(Y ,∫) 6= z.

The spine processS0 = (Sn
0 ,n ∏ 0) (the subscript 0 will be justified below, see (2.9)) is

the M§-valued sequence defined recursively by

(2.2) S0
0 = z and Sn+1

0 =©(Sn
0 ,Pn), n ∏ 0.

This dynamic is illustrated on Figure 6. As already discussed in the introduction, the
kth element of Sn

0 (ordered from top to bottom) records (1) the location of the stubs
on the kth segment in the spine decomposition illustrated in Figure 6, and (2) the age
of the kth ancestor (of n) when begetting the (k °1)st ancestor (identifying, for k = 1,
the individual with its 0th ancestor). In words, the recursive relation (2.2) encodes the
fact that the birth event corresponding to the (n + 1)st individual coincides with the
next available stub after grafting the nth stick on top of Sn

0 . In particular, if no stub is
available, a new spine is started from scratch (third relation).

We note that when Sn
0 6= z, any element of the sequence Sn

0 contains at least one
atom: the one corresponding the birth of an ancestor, which is not counted as a stub.
In particular, the condition H = max{k ∏ 1 : |Y (k)| ∏ 2} in (2.1) reads “look for the first
available segment with a stub”.

2.3. Link between the spine process and the height and exploration processes. As dis-
cussed above, the spine process encodes the spine of an individual by breaking it into
the different sticks of its ancestors as in Figure 6. In particular, the birth time of the
individual is recovered by summing up the lengths of the sticks appearing in the spine
process: this means precisely that the spine process and the chronological height pro-
cess are related as follows:

H(n) =º(Sn
0 ), n ∏ 0.

The spine process can be seen as a chronological generalization of the exploration
process of Le Gall and Le Jan [18], and for this reason we will define Ωn

0 = Sn
0 ±G as the

exploration process. This process is not exactly the one of Le Gall and Le Jan. Therein,
the authors only consider the stubs attached to the spine. However, in the chronological
case, not only do we need to keep track of the number of available stubs, but one needs
to also record the length of the segments carrying those stubs (in the discrete case, this
is always equal to 1). This is done by adding the additional atom corresponding to the
birth of the “previous” ancestor (when ancestors are labelled from top to bottom), and
whose location coincides with the length of the corresponding segment.

2.4. Lukasiewicz path. We define the Lukasiewicz path S = (S(n),n 2Z) by S(0) = 0 and,
for n ∏ 1,

S(n) =
n°1
X

k=0
(|Pk |°1) and S(°n) =°

°1
X

k=°n
(|Pk |°1) .

Note that if ° is a random time, the dual operator acts as follows:

(2.3) S(°)±#n = S(n)°S(n °°±#n), n 2Z.

We consider the following functionals associated to S, which will be used repeatedly
in the rest of the paper:
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• the sequence of weak ascending ladder height times: T (0) = 0 and for k ∏ 0,

T (k +1) = inf
©

`> T (k) : S(`) ∏ S(T (k))
™

= T (1)±µT (k) +T (k);

• the hitting times upward and downward:

ø` = inf{k > 0 : S(k) ∏ `} and ø°` = inf{k ∏ 0 : S(k) =°`} , `∏ 0,

so that in particular ø0 = T (1);
• for ` 2Nwith ø` <1,

≥` = `°S(ø`°1) and µ` =®≥` (Pø`°1),

so that ≥` is the undershoot upon reaching level `;
• and the backward maximum

L(m) = max
k=0,...,m

S(°k), m ∏ 0.

Note that, since S(ø0) ∏ 0, ≥0 =°S(ø0 °1) ∑ S(ø0)°S(ø0 °1) = |Pø0°1|°1, so that µ0 6= z.
We will pay special attention to the following functionals of the ladder height process:

• for k ∏ 1 with T (k) <1,

Q(k) =µ0 ±µT (k°1) and Y(k) =º±Q(k) = Aª(k)
°

PT (k)°1
¢

;

where Ak (∫) is the position of the kth largest atom of ∫;
• the following two inverses associated to the sequence (T (k),k ∏ 0):

T °1(n) = min{k ∏ 0 : T (k) ∏ n} and eT °1(n) = max{k ∏ 0 : T (k) ∑ n} , n ∏ 0.

The fact that µ0 6= z implies that Q(k) 6= z whenever it is well-defined, a simple fact
that will be used later on. If n is a weak ascending ladder height time, then eT °1(n) =
T °1(n) with T ( eT °1(n)) = n = T (T °1(n)), while if n is not a weak ascending ladder height
time, then eT °1(n)+1 = T °1(n) with T ( eT °1(n)) < n < T (T °1(n)). Define

A (n) = {n °T (k) : k ∏ 0}±#n , n ∏ 0.

It is well-known that A (n)\R+ is the set of n’s ancestors, see for instance Duquesne
and Le Gall [10]. This property relates the height process and the weak ascending ladder
height times T through the following identity:

(2.4) H (n) = eT °1(n)±#n , n ∏ 0.

The genealogical height is also given by the length of Sn
0 as we show now.

Lemma 2.1. For any n ∏ 0 we have Len
°

Sn
0

¢

=H (n).

Proof. As highlighted in Section 2.3, the exploration process Ωn
0 = Sn

0 ±G slightly dif-
fers from the classical definition of the exploration process in Le Gall and Le Jan [18]:
however, this slight difference does not alter the length of the sequence, which remains
unchanged between the two definitions.

Since the length of the sequence in the classical exploration process coincides with
the height process, this implies that Len

°

Ωn
0

¢

= H (n). Thus, Len
°

Sn
0

¢

= Len
°

Sn
0

¢

±G =
Len

°

Sn
0 ±G

¢

, which proves the desired result. ⇤
Define

m^n = max
°

A (m)\A (n)
¢

, m,n ∏ 0.

Then m^n 2Z and m and n have an ancestor in common (i.e., belong to the same tree)
if and only if m^n ∏ 0 in which case m^n is the lexicographic index of their most recent
common ancestor – see for instance [10]. We end this section by listing the following
identities, which are proved in the Appendix A. The second identity involves the condi-
tion L(n °m)±#m > 0: it is readily checked that

(2.5) L(n °m)±#m = S(m)° min
{m,...,n}

S, 0 ∑ m ∑ n,
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Lemma 2.2. For any 0 ∑ m ∑ n, m is an ancestor of n, i.e., m^n = m, if and only if
L(n °m)±#m = 0.

Proof. The exploration of the subtree rooted at the mth individual starts at time m and
ends at time inf{n ∏ m : S(n) = S(m)°1}. Thus, S(m) ∏ min{m,...,n} S is a necessary and
sufficient condition for n to be in the subtree rooted at m, i.e., for m to be an ancestor
of n, and so this gives the result by (2.5). ⇤

Lemma 2.3. For any n ∏ m ∏ 0 with L(n °m)±#m > 0, we have

(2.6) m^n = n °T (T °1(n °m))±#n = m °øL(n°m) ±#m

and

(2.7) Q(T °1(n °m))±#n =µL(n°m) ±#m .

2.5. Fundamental formula forSn
0 and proof of Theorem 1.1. The goal of this section is

to prove the following fundamental formula forSn
0 . As we show right after, Theorem 1.1

is easily derived from it.

Proposition 2.4. We have

(2.8) Sn
0 =

°

Q( eT °1(n)), . . . ,Q(1)
¢

±#n , n ∏ 0.

Proof of Theorem 1.1 based on Proposition 2.4. As explained in Section 2.3 we haveH(n) =
º(Sn

0 ), and so by definition of º this gives

H(n) =
Len

°

Sn
0

¢

X

k=1
º

°

Sn
0 (k)

¢

.

Therefore, we obtain by plugging in (2.8)

H(n) =
eT °1(n)±#n

X

k=1
º

°

Q(k)±#n¢

=
√

eT °1(n)
X

k=1
º±Q(k)

!

±#n .

Since Y(k) = º±Q(k) this gives H(n) = (R ± eT °1(n))±#n , and as H (n) = eT °1(n)±#n the
proof of Theorem 1.1 is complete. ⇤

The rest of this section is devoted to proving Proposition 2.4. We prove it through
several lemmas, several of which will be used in the sequel. To prove these results, for
m ∏ 0 and k 2 {0, . . . , |Pm |} we introduce

¬(m,k) = ø°k ±µm+1 +m +1 = inf{n ∏ m +1 : S(n) = S(m +1)°k}

and define ¬(m) =¬(m, |Pm |) so that

¬(m) = inf{n ∏ m +1 : S(n) = S(m +1)°|Pm |} = inf{n ∏ m +1 : S(n) = S(m)°1}

which is also equal to ø°1 ±µm+m. Intuitively, for k 2 {0, . . . , |Pm |°1}, ¬(m,k) corresponds
to the index of (k +1)st child of the mth individual (with the convention that children
are ranked from youngest to oldest); whereas ¬(m) is the index of the highest stub on
Sm

0 (i.e., right before attaching the mth individual). In particular, any individual n 2
{m +1, . . . ,¬(m)°1} belongs to a subtree attached to m. In view of this interpretation,
the two following lemmas seem quite natural. For the proof of Lemma 2.8 we will need
the following identity, whose proof is deferred to Appendix B.

Lemma 2.5. Let n ∏ 0, m = n ° ø0 ±#n and i = ≥0 ±#n. If m ∏ 0, then it holds that
i 2 {0, . . . , |Pm |°1} and ¬(m, i ) = n.

Lemma 2.6. For any m ∏ 0 such that |Pm | > 0, n 2 {m+1, . . . ,¬(m)°1} and` 2 {1, . . . ,H (m)}
we have

H (n) >H (m) and Sn
0 (`) =Sm

0 (`).
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Proof. Let `,m and n be as in the statement: we first prove that H (n) >H (m). Since S
only makes negative jumps of size °1, we have by definition of ¬(m)

min
{m+1,...,¬(m)°1}

S ∏ S(m).

This inequality implies that, since n 2 {m + 1, . . . ,¬(m)° 1}, there is at least one more
ladder height time for the dual Lukasiewicz process seen from n as compared to the
dual Lukasiewicz process seen from m. In view of the relation (2.4) which expresses
H (n) = eT °1(n) ±#n as the number of weak ascending ladder height times of the dual
Lukasiewicz process, this means precisely that H (n) >H (m).

We now prove that Sn
0 (`) = Sm

0 (`). Since n 2 {m +1, . . . ,¬(m)°1}, in order to prove
this it is enough to prove that ¬0 ∏¬(m) where we define

¬0 = inf
n

k ∏ m +1 :Sk
0 (`) 6=Sm

0 (`)
o

.

In view of the definition (2.1) of © and the dynamic (2.2), we see that the `th element
of the spine between m and n is modified only if the length of the spine goes below `
between m and n. Since the length of the spine coincides with H , this implies H (¬0) =
` ∑ H (m). Finally, since H (m) < min{m+1,...,¬(m)°1} H , this implies that ¬0 ∏ ¬(m) and
concludes the proof. ⇤

Lemma 2.7. For m ∏ 0 such that |Pm | > 0 and k 2 {0, . . . , |Pm |°1} we have

H (¬(m,k)) =H (m)+1 and S
¬(m,k)
0 (H (m)+1) =®k (Pm).

Proof. By definition of ¬(m,k) and the fact that S only makes jumps of negative size °1,
we have

S(¬(m,k)) = min
m+1,...,¬(m,k)

S ∏ S(m).

A similar argument as in the proof of the previous lemma then leads to the conclusion
H (¬(m,k)) = H (m)+ 1 (i.e., by showing that there is exactly one extra ladder height
time for the dual walk seen from ¬(m,k)).

We now prove that S¬(m,k)
0 (H (m)+1) =®k (Pm). For k = 0 this is seen to be true by

looking at the dynamic (2.2). We now prove that this is true by induction: so assume
this is true for k 2 {0, . . . , |Pm |°2} and let us prove that this continues to hold for k +1.
In order to do so, it is sufficient to combine the induction hypothesis with the following
claim:

S
¬(m,k+1)
0 (H (m)+1) =®1

≥

S
¬(m,k)
0 (H (m)+1)

¥

.

In order to prove this identity, we first note that (again, this is seen by comparing the
number of ladder height times of the dual processes seen from the two times)

H (n) >H (¬(m,k)) =H (m)+1 for n =¬(m,k)+1, . . . ,¬(m,k +1)°1.

Finally, we already know that H (¬(m,k + 1)) = H (m) + 1. From the dynamic (2.2),
this implies that the (H (m)+1)st element of Sn

0 remains unchanged for n = ¬(m,k)+
1, . . . ,¬(m,k +1)°1, but that one stub is removed at time ¬(m,k +1), i.e.,

S
¬(m,k+1)
0 (H (m)+1) =®1

≥

S
¬(m,k)
0 (H (m)+1)

¥

.

This proves the claim made earlier and ends the proof of Lemma 2.7. ⇤

The purpose of the next lemma is to decompose the spine at time n before and af-
ter the kth ancestor: that n has ∏ k ancestors if and only if T (k) ±#n ∑ n explains the
condition in the following statement.

Lemma 2.8. For any n,k ∏ 0 with T (k)±#n ∑ n we have

Sn
0 =

h

S
n°T (k)±#n

0 ,Q(k)±#n , . . . ,Q(1)±#n
i

.
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Recall the convention [z,Y ] = Y for any Y 2M§: in particular,
h

S
n°T (k)±#n

0 ,Q(k)±#n , . . . ,Q(1)±#n
i

=
£

Q(k)±#n , . . . ,Q(1)±#n§

when Sn°T (k)±#n

0 = z.

Proof of Lemma 2.8. Let us first prove the result for k = 1, so we consider n ∏ 0 with
ø0 ±#n ∑ n and we prove that Sn

0 = [Sn°T (1)±#n

0 ,Q(1)±#n]. Combining the two previous
lemmas, we see that

S
¬(m,i )
0 =

£

Sm
0 ,®i (Pm)

§

for any m ∏ 0 and any i 2 {0, . . . , |Pm | °1}. In particular, Lemma 2.5 shows that we can
apply this to m = n °ø0 ±#n and i = ≥0 ±#n , which gives

S
¬(m,i )
0 =

h

S
n°ø0±#n

0 ,®≥0±#n (Pn°ø0±#n )
i

.

On the one hand, we have¬(m, i ) = n (again by Lemma 2.5) and so in particularS¬(m,i )
0 =

Sn
0 , while on the other hand, we have

®≥0±#n (Pn°ø0±#n ) =®≥0 (Pø0°1)±#n =Q(1)±#n .

Combining the above arguments concludes the proof for k = 1. The general case follows
by induction left to the reader. ⇤

We can now prove Proposition 2.4.

Proof of Proposition 2.4. By definition, T ( eT °1(n)) ∑ n and so Lemma 2.8 with k = eT °1(n)
yields

Sn
0 =

h

S
n°T ( eT °1(n))±#n

0 ,Q( eT °1(n))±#n , · · · ,Q(1)±#n
i

.

Since Q(k) 6= z whenever it is well-defined, in particular for k 2 {1, . . . , eT °1(n)}, it follows
that

Len
°

Sn
0

¢

= eT °1(n)±#n +Len
≥

S
n°T ( eT °1(n))±#n

0

¥

.

However, Len
°

Sn
0

¢

= eT °1(n)±#n by (2.4), and thus Len
≥

S
n°T ( eT °1(n))±#n

0

¥

= 0 which means

S
n°T ( eT °1(n))±#n

0 = z. This achieves the proof of Proposition 2.4. ⇤
2.6. Right decomposition of the spine. In the case of i.i.d. life descriptors, the spine
process is by construction (2.2) a Markov process and the present section can be seen as
a description of its transition probabilities: we show in Proposition 2.9 that for m ∑ n,
the spine at n is deduced from the spine at m by truncatingSm

0 and then by concatenat-
ing a spine that is independent of the past up to m, a construction reminiscent of the
snake property – see Duquesne and Le Gall [10]. As we shall now see, the independent
“increment” will be given by

(2.9) Sn
m :=Sn°m

0 ±µm , 0 ∑ m ∑ n,

which, when life descriptors are i.i.d., is distributed as the original spine at time n °m.
In particular, since º(Sn

m) =º(Sn°m
0 ±µm) =º(Sn°m

0 )±µm =H(n °m)±µm , we note that
an immediate consequence of (1.1) and (1.12) is that

(2.10) º(Sn
m) =

√

eT °1(n°m)
X

k=1
Y(k)

!

±#n , 0 ∑ m ∑ n.

Proposition 2.9. Let n ∏ m ∏ 0. If m^n ∏ 0, then Sn
0 = [Sm^n

0 ,Sn
m^n] and

(2.11) Sn
m^n =

(

£

µL(n°m) ±#m ,Sn
m

§

if L(n °m)±#m > 0,

Sn
m else.

In order to prove Proposition 2.9, we will need the following lemma.
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Lemma 2.10. For any n ∏ m ∏ 0 we have

(2.12) Sn
m =

°

Q( eT °1(n °m)), . . . ,Q(1)
¢

±#n .

If in addition m^n ∏ 0, then

(2.13) Sn
m^n =

°

Q ±T °1(n °m), . . . ,Q(1)
¢

±#n .

Proof. By definition we have Sn
m =Sn°m

0 ±µm and so Proposition 2.4 implies that

(2.14) Sn
m =

°

Q( eT °1(n °m)), . . . ,Q(1)
¢

±#n°m ±µm .

The first relation (2.12) thus follows from the identity #n°m ±µm =#n of (1.12). To prove
the other relation (2.13), we use (2.12) with m random, which in this case reads as fol-
lows: for any random time °, the relation

(2.15) Sn
°±#n =

°

Q( eT °1(n °°)), . . . ,Q(1)
¢

±#n

holds in the event 0 ∑ ° ±#n ∑ n. Apply now this relation to ° = n °T (T °1(n °m)), so
that m^n = ° ±#n by (2.6). Then we always have ° ∑ n and so under the assumption
m^n ∏ 0, we obtain

Sn
m^n =

°

Q( eT °1(T (°0))), . . . ,Q(1)
¢

±#n

with °0 = T °1(n °m). Since eT °1(T (k)) = k for any k ∏ 0, we obtain the result. ⇤

Remark 2.11. Let us comment on (2.15) as similar identities will be used in the sequel.
To see how it follows from (2.14), write (2.14) in the form Sn

m = (U ±#n)(m) for some
mapping U with domain ≠ and values in the space of M§-valued sequence, so that
(U ±#n)(m) is the mth element of the dual sequence. With this notation, we can directly
plug in a random time, i.e., if m = ° is random then we have Sn

° = (U ±#n)(°) and in
particular, Sn

°±#n = (U ±#n)(°±#n) =U (°)±#n .

Proof of Proposition 2.9. By (2.6), m^n ∏ 0 implies that T (T °1(n °m)) ±#n ∑ n and so
Lemma 2.8 with k = T °1(n °m) gives

Sn
0 =

h

S
n°T (T °1(n°m))±#n

0 ,Q(T °1(n °m))±#n , . . . ,Q(1)±#n
i

.

Combining (2.6), which shows that Sn°T (T °1(n°m))±#n

0 = Sm^n
0 , and the expression for

Sn
m^n given in (2.13) under the assumption m^n ∏ 0 gives the first part of the result,

namely that Sn
0 =

£

Sm^n
0 , Sn

m^n

§

. In order to show (2.11) and thus complete the proof,
we distinguish between the two cases L(n °m)±#m = 0 and L(n °m)±#m > 0.

If L(n °m)±#n = 0, then m^n = m according to Lemma 2.2 which proves (2.11).
Assume now that L(n °m) ±#n > 0: in view of (2.5), this means that n °m is not a

weak ascending ladder height time of S±#n and so T °1(n°m)±#n = eT °1(n°m)±#n +1.
We then obtain by Lemma 2.10 the relation Sn

m^n = [Q(T °1(n °m))±#n ,Sn
m] and since

Q(T °1(n °m))±#n =µL(n°m) ±#m in this case by (2.7), we obtain the result. ⇤

2.7. Probabilistic description of the spine. Let G = inf{k ∏ 0 : T (k) = 1}: Proposi-
tion 2.4 shows that the spine process at time n is a measurable function of the random
variables

°°

T (k)°T (k °1),Q(k)
¢

,k = 1, . . . ,G °1
¢

±#n .

Therefore, the next lemma implicitly characterizes the law ofSn
0 . Recall that ø°

`
= inf{k ∏

0 : S(k) =°`} for `∏ 0.

Lemma 2.12. Let P be a probability distribution on ≠ such that ! under P is i.i.d. with
common distribution (V §,P §) where E(|P §|) ∑ 1. Then under P, the sequence

°°

T (k)°T (k °1),Q(k)
¢

,k = 1, . . . ,G °1
¢
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is equal in distribution to ((T §(k),Q§(k)),k = 1, . . . ,G§ °1), where the random variables
((T §(k),Q§(k)),k ∏ 1) are i.i.d. with common distribution (T §,Q§) satisfying

(2.16) E
£

f (Q§)g (T §)
§

= 1

E(|P §|)
X

t∏1

X

x∏0
E
£

f ±®x (P §); |P §| ∏ x +1
§

g (t ) P
°

ø°x = t °1
¢

for every bounded and measurable functions f : M ! R+ and g :Z+ ! R+, and G§ is an
independent geometric random variable with parameter 1°E(|P §|).

We note that the random variable Y§ =º(Q§(1)) admits a natural interpretation. In-
deed, the previous result implies that

(2.17) E
£

f (Y§)
§

=
1
X

k=1

k°1
X

r=0

1

k
E
£

f ±º±®r (P §) | |P §| = k
§

£ kP(|P §| = k)

E(|P §|) .

Identifying (kP(|P §| = k)/E(|P §|),k ∏ 0) as the size-biased distribution of |P §|, we
see that if we bias the life descriptor P § by its number of children, then Y§ is the age
of the individual when its begets a randomly chosen child. As mentioned in the in-
troduction, in the critical case E(Y§) = 1, the random variable Y§ and its genealogical
interpretation can already be found in Nerman and Jagers [21].

Proof of Lemma 2.12. The strong Markov property implies that G is a geometric ran-
dom variable with parameter P(ø0 = T (1) =1) and that conditionally on G , the random
variables ((T (k) ° T (k ° 1),Q(k)),k = 1, . . . ,G ° 1) are i.i.d. with common distribution
(ø0,Q(1)) conditioned on {ø0 <1}. Thus in order to prove Lemma 2.12, we only have
to show that (ø0,Q(1)) under P( · | ø0 <1) is equal in distribution to (T §,Q§). Recalling
that Q(1) =®≥0 (Pø0°1), we will actually show a more complete result and characterize
the joint distribution of (Pø0°1,ø0,≥0) under P( · | ø0 <1).

Fix in the rest of the proof x, t 2N with t ∏ 1 and h : M ! [0,1) measurable: we will
prove that

(2.18) E
£

h
°

Pø0°1
¢

{≥0=x} {ø0=t }
§

= E
£

h(P §); |P §| ∏ x +1
§

P
°

ø°x = t °1
¢

.

By standard arguments, this characterizes the law of (Pø0°1,ø0,≥0) and implies for in-
stance that for any bounded measurable function F : M £N£N! [0,1), we have

E
£

F
°

Pø0°1,≥0, ø0
¢

| ø0 <1
§

= 1

P(ø0 <1)

X

t∏1

X

x∏0
E
£

F (P §, x, t ); |P §| ∏ x +1
§

P
°

ø°x = t °1
¢

.

Since ø°x is P-almost surely finite, the above relation for F (∫, x, t ) = 1 entails the rela-
tion P(ø0 <1) = E(|P §|) which implies in turn the desired result by taking F (∫, x, t ) =
f (®x (∫))g (t ). Thus we only have to prove (2.18), which we do now. First of all, note that
if

B =
©

S(t °1) =°x and S(k) < 0 for k = 1, . . . , t °1
™

,

then the two events {≥0 = x,ø0 = t } and B \ {|P t°1| ∏ x +1} are equal. It follows from this
observation that

E
£

h(Pø0°1) {≥0=x} {ø0=t }
§

= E
£

h(P t°1) {|P t°1|∏x+1};B
§

and since P t°1 and the indicator function of the event B are independent and P t°1

under P is equal in distribution to P §, we obtain

E
£

h(Pø0°1) {≥0=x} {ø0=t }
§

= E
£

h(P §); |P §| ∏ x +1
§

P(B).

Since P(B) =P(ø°x = t °1) by duality, this proves Lemma 2.12. ⇤
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3. CONVERGENCE OF THE HEIGHT PROCESS AND PROOF OF THEOREM 1.3

In this section we prove the following result from which Theorem 1.3 is immediately
derived.

Theorem 3.1. Fix some t > 0. If Condition Y holds and the sequence (Hp (t ), p ∏ 1) is
tight, thenHp (t )°E(Y§

p )Hp (t ) ) 0.

As will be clear from the proof, condition Y is here to ensure that the overall supre-
mum of the random walk with step distribution Y§

p ° E(Y§
p )°¥ (for some ¥ > 0) con-

verges in distribution to the overall supremum of the random walk with step distribu-
tion Y§

1 ° E(Y§
1)°¥. For this, we invoke Theorem 22 in Borovkov [7], which actually

holds under the following weaker condition (i.e., condition Y implies condition Y’).

Condition Y’. For every p ∏ 1, E(Y§
p ) <1. Moreover, there exists an integrable random

variable Ȳwith EȲ= 0 such that Y§
p °E(Y§

p ) ) Ȳ and E[(Y§
p °E(Y§

p ))+] ! E(Ȳ+).

Thus, Theorem 3.1, and therefore Theorem 1.3, hold if we assume condition Y’ in-
stead of condition Y.

Proof of Theorem 3.1. First of all, note that H ([pt ]) ) 1 since H (n) and eT °1(n) are
equal in distribution by duality (we are working under Pp ). Further, the fundamental
formula (1.1) gives

Hp (t )°E(Y§
p )Hp (t ) =Hp (t )£

√

1
eT °1([pt ])

eT °1([pt ])
X

k=1

°

Y(k)°E(Y§
p )

¢

!

±#[pt ].

Let in the sequel Wp (n) = Ȳp (1)+·· ·+Ȳp (n) and W (n) = Ȳ(1)+·· ·+Ȳ(n), where the two
sequences (Ȳp (k),k ∏ 1) and (Ȳ(k),k ∏ 1) are i.i.d. with common distributionY§

p°E(Y§
p )

and Ȳ introduced in Condition G, respectively. Fix ¥ > 0 and M , N ∏ 1: by duality, it
follows from Lemma 2.12 and standard manipulations that

Pp

≥

Ø

Ø

Ø

Hp (t )°E(Y§
p )Hp (t )

Ø

Ø

Ø

∏ ¥
¥

∑Pp
°

Hp (t ) ∏ M
¢

+Pp
°

H ([pt ]) ∑ N
¢

+P
µ

sup
n∏N

1

n

Ø

ØWp (n)
Ø

Ø∏ ¥/M

∂

.

Letting first p !1, then N !1 and finally M !1 makes the two first terms of the
above upper bound vanish: the first one because the sequence (Hp (t ),n ∏ 1) is tight
and the second one because H ([pt ]) )1, and so we end up with

(3.1) limsup
p!1

Pp

≥

Ø

Ø

Ø

Hp (t )°E(Y§
p )Hp (t )

Ø

Ø

Ø

∏ ¥
¥

∑ limsup
N!1

limsup
p!1

P

µ

sup
n∏N

1

n

Ø

ØWp (n)
Ø

Ø∏ 2¥0
∂

with ¥0 = ¥/(2M). We omit the limsupM!1 because, as we now show, the previous limit
is equal to 0 for each fixed M > 0. In the non-triangular case where the law of Y§

p (and
thus Wp ) does not depend on p, this follows from the strong law of large numbers, and
we now extend this to the triangular setting under Condition Y. Writing

sup
n∏N

1

n

Ø

ØWp (n)
Ø

Ø∑ 1

N

Ø

ØWp (N )
Ø

Ø+ sup
n∏N

1

n

Ø

ØWp (n)°Wp (N )
Ø

Ø

and using that (Wp (n)°Wp (N ),n ∏ N ) is equal in distribution to Wp , we get

P

µ

sup
n∏N

1

n

Ø

ØWp (n)
Ø

Ø∏ 2¥0
∂

∑P
µ

1

N
|Wp (N )| ∏ ¥0

∂

+P
µ

sup
n∏0

1

n +N

Ø

ØWp (n)
Ø

Ø∏ ¥0
∂

.

By the Portmanteau Theorem, we have

limsup
p!1

P

µ

1

N
|Wp (N )| ∏ ¥0

∂

∑P
µ

1

N
|W (N )| ∏ ¥0

∂

,
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which entails

limsup
p!1

P

µ

1

N
|Wp (N )| ∏ ¥0

∂

°!
N!1

0.

As for the second term, if we define W ±
p (n) = Wp (n)±¥0n and W ±(n) = W (n)±¥0n,

then simple manipulations lead to

P

µ

sup
n∏0

1

n +N

Ø

ØWp (n)
Ø

Ø∏ ¥0
∂

∑P
µ

sup
n∏0

W °
p ∏ ¥0N

∂

+P
µ

inf
n∏0

W +
p ∑°¥N

∂

.

Under Condition Y, we have supW °
p ) supW ° and infW +

p ) infW +, see for instance
Theorem 22 in Borovkov [7]. The result thus follows from the fact that, since W + (resp.
W °) is a random walk drifting to +1 (resp. °1), its infimum (resp. supremum) is finite.

⇤

Remark 3.2. By the exact same argument, we leave the reader convince himself that if
tp is a deterministic sequence such that tp /p ! 0, then "pH(tp ) ) 0. This fact will be
used later in proving the convergence of the contour process.

4. CONVERGENCE OF THE CONTOUR PROCESS AND PROOF OF THEOREM 1.6

In this section we state a stronger result than Theorem 1.6. Indeed, Theorem 4.1
below proves that Hp and Cp may converge jointly even if condition Y does not hold,
i.e., E(Y§

p ) =1. In this case, the law of large numbers suggests, in view of Theorem 1.1,
that the chronological and genealogical processes obey to different scalings, i.e.,H(n) ¿
H (n) for large n. Considering different scalings may seem peculiar at first sight and we
begin by justifying this. We then state Theorem 4.1 which is proved in Section 6 after
preliminary results have been established in Section 5.

4.1. Generalization of the scalings. Consider the classical binary-homogeneous case
(considered for instance in [14]) in a non-triangular setting: (V §

p ,P §
p ) = (V §,P §) where

P § is a Poisson process stopped at V §. Assume moreover that |P §| has finite variance
and that V § satisfies P(V § ∏ x) / x°∞ for some ∞ 2 (1,2): in particular, V § has finite first
moment but infinite variance.

The law of large numbers suggests that |P §| and V § are proportional to one another
when they get large and it can be shown that they indeed have the same tail behavior.
In particular, it is well known that condition G is satisfied with "p = 1/p1°1/∞, which
implies in particular that macroscopic jumps of S are of the order of p"p = p1/∞.

On the other hand, at the chronological level, macroscopic jumps of S correspond to
macroscopic edges: in particular,H(p) and C(p) are typically of the order p1/∞, whereas
as argued above H (p) and C (p) are of the order of 1/"p = p1°1/∞. Thus in this simple
case, we see that the chronological and genealogical processes scale in different ways.

To allow for this, we consider in this section another sequence "̄p and, instead of
scaling H and C as in (1.4) and (1.5), we consider the following scalings: the scaling at
the chronological level remains unchanged, i.e.,Hp and Cp are still given by

Hp (t ) = "pH([pt ]) and Cp (t ) = "pC(pt ).

whereas for the genealogical processes Hp , Cp and Sp we use "̄p instead of "p and
consider

Hp (t ) = "̄pH ([pt ]), Cp (t ) = "̄pC (pt ) and Sp (t ) = 1

p"̄p
S([pt ]).

Thus as mentioned earlier, when condition G holds we can and will assume without loss
of generality that "̄p ! 0 and p"̄p !1. Furthermore, we assume in the sequel that ("p )
obeys a similar behavior, i.e., "p ! 0 and p"p !1.
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4.2. Main result concerning convergence of the chronological contour process. In
the triangular setting, condition V below is needed to ensure the convergence of the
contour process. This condition entails a generalized version of the renewal theorem in
a triangular setting.

Let V > 0 be some random variable and G be the additive subgroup generated by the
support of its distribution. In the sequel we say that V is non-arithmetic if G is dense
in R; otherwise, we say that V is arithmetic and in this case, there exists a unique h > 0,
called the span of V , such that G = hZ.

Condition V. If V §
p )V1 for some random variable V §

1, then either all the random vari-
ables (V §

p , p 2 N[ {1}) are arithmetic, or all the random variables (V §
p , p 2 N[ {1}) are

non-arithmetic.

Note that this condition is clearly satisfied in the non-triangular setting.

Theorem 4.1. Assume that conditions G, VP and V hold and that moreover Hp
fdd=) H1

for some process H1 which is (almost surely) continuous at 0 and satisfies the condition
P(H1(t ) > 0) = 1 for every t > 0. Then

(4.1)
°

Hp ,Cp
¢ fdd=)

°

H1,H1±'1
¢

.

4.3. Proof of Theorem 1.6 based on Theorem 4.1. As mentioned earlier, Theorem 1.6
directly follows from Theorem 4.1: the idea is to make repeated use of the following
simple lemma.

Lemma 4.2. If Xp ,Yp , Zp are random variables such that (Xp ,Yp ) ) (X1, f (X1)) and
(Xp , Zp ) ) (X1, g (X1)) for some measurable functions f and g , then (Xp ,Yp , Zp ) )
(X1, f (X1), g (X1)).

Proof. As (Xp , Zp ) and (Xp , Zp ) converge weakly, the sequence (Xp ,Yp , Zp ) is tight. Let
(X ,Y , Z ) be any accumulation point and assume without loss of generality (working
along subsequences) that (Xp ,Yp , Zp ) ) (X ,Y , Z ). Then the continuous mapping im-
plies (Xp ,Yp ) ) (X ,Y ) and so Y = f (X ), and similarly Z = g (X ). Since X is necessarily
equal in distribution to X1 this uniquely characterizes the law of (X ,Y , Z ) and thus
proves the result. ⇤

We now prove Theorem 1.6 assuming that Theorem 4.1 holds. Assume therefore

that conditions G, Y, VP and V hold. Then (Hp ,Cp )
fdd) (H1,C1) by Theorem 1.2,

(Hp ,Hp )
fdd) (H1,Æ§H1) by Theorem 1.3 and thus (Hp ,Cp )

fdd) (Æ§H1,Æ§H1 ±'1)

by Theorem 4.1 (with H1 = Æ§H1 since Hp
fdd) Æ§H1). Repeated use of the previous

lemma then entails the joint convergence
°

Hp ,Cp ,Hp ,Cp
¢ fdd=)

°

H1,H1( ·/2),Æ§H1,Æ§H1±'1
¢

which is the content of Theorem 1.6.

The next three sections are devoted to proving Theorems 4.1 and 1.9. Some prelimi-
nary results are established in the next section, Theorem 4.1 is proved in Section 6 and
Theorem 1.9 in Section 7.

5. PRELIMINARY RESULTS

5.1. Right decomposition of the spine continued. In this section we continue the study
of the spine process initiated in Section 2.6 and prove some further useful identities.

Lemma 5.1. For any n ∏ m ∏ 0 with 0 ∑ m^n < m, we have

Sm
0 =

£

Sm^n
0 ,Q ± eT °1(øL(n°m))±#m , . . . ,Q(1)±#m§

.
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Proof. By Lemma 2.8, for every k such that T (k)±#m ∑ m we have

(5.1) Sm
0 =

h

S
m°T (k)±#m

0 ,Q(k)±#m , . . . ,Q(1)±#m
i

.

Let k = eT °1(øL(n°m)): then T (k) = øL(n°m) (as T ( eT °1(i )) = i for every i ∏ 0) and so T (k)±
#m = m°m^n by (2.6). Since by assumption m^n ∏ 0, we have T (k)±#m ∑ m and (5.1)
gives the result as m °T (k)±#m = m^n. ⇤

In the sequel, we consider the measurable function D` : M§ !R+ that satisfies D0 ¥
0 and for ` 2N\ {0}:

(5.2) D`(Sn
0 ) =

√

X

i :0<T (i )∑min(ø`,n)
Y(i )° (ø` ∑ n)º(µ`)

!

±#n ,n 2N.

The fact that the right hand side is measurable with respect to Sn
0 (and thus can be

written as a function of Sn
0 ) is a consequence of Proposition 2.4 and the fact that the

random variables appearing in the formula are related to the dual Lukasiewicz path S ±
#n .

Moreover, we leave the reader check that for any Y 2M§ the sequence (D`(Y ),` 2N)
is increasing. Actually, this comes from a more general fact, namely that D`(Y ) for Y 2
M§ gives the distance between º(Y ) and the `-th stub of Y as is illustrated on Figure 9.

The following result relates the two shifts which play a key role in this paper : on the
one hand, the canonical shift µ which acts on the initial sequence of sticks ((Vn ,Pn),n 2
Z) through the term º(Sn

m) = º(Sn°m
0 ) ± µm , and on the other hand, the shift in time

through the termH(n)°H(m).

Proposition 5.2. For every 0 ∑ m ∑ n we have

(5.3) H(n)°H(m) =º(Sn
m)°DL(n°m)±#m (Sm

0 ).

Proof. Applying 5.2 to the random `= L(n °m)±#m , we obtain (see Remark 2.11)

(5.4) DL(n°m)±#m (Sm
0 ) =

√

eT °1(min(øL(n°m),m))
X

i=1
Y(i )° (øL(n°m) ∑ m)º(µL(n°m))

!

±#m .

To prove (5.3) we distinguish the two cases m^n < 0 and m^n ∏ 0.
Case 1: m^n < 0. By (2.6) this condition is equivalent to øL(n°m) ±#m > m: in view
of (5.4), we thus need to show that

H(n)°H(m) =º(Sn
m)°

√

eT °1(m)
X

i=1
Y(i )

!

±#m .

Using the expression for H(n), H(m) and º(Sn
m) provided by Proposition 1.1 and (2.10),

we see that in order to show the above relation we only have to show that eT °1(n °m)±
#n = eT °1(n) ±#n . This in turn follows from the fact that the condition m^n < 0 im-
plies that T (T °1(n °m))±#n > n (again by (2.6)), which is equivalent to saying that the
sets {T (i ) : i 2 N} ±#n and {n °m, . . . ,n} do not intersect and gives eT °1(n °m) ±#n =
eT °1(n)±#n . The proof in this case is thus complete.

Case 2: m^n ∏ 0. The result is obvious in the case m^n = m, while in the other case we
can invoke Proposition 2.9 and Lemma 5.1 that give

H(n) =º(Sm^n
0 )+º(µL(n°m))±#m+º(Sn

m) and H(m) =º(Sm^n
0 )+

√

eT °1(øL(n°m))
X

i=1
Y(i )

!

±#m .

Taking the difference between these two expressions yield the result in view of (5.4) (re-
call that m^n ∏ 0 is equivalent to øL(n°m) ±#m ∑ m). ⇤

The following lemma relates the shifted spine to the Skorohod reflection.
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Lemma 5.3. For any 0 ∑ m ∑ n, we have º(Sn
m) =H(n)°mink=m,...,nH(k).

Proof. It follows from (2.10) that

º(Sn
m) =

√

eT °1(n)
X

i=1
Y(i )

!

±#n °
√

eT °1(n)
X

i= eT °1(n°m)+1

Y(i )

!

±#n =H(n)°
√

eT °1(n)
X

i= eT °1(n°m)+1

Y(i )

!

±#n .

Next, we have from Proposition 2.4 that

Sn
0 =

°

Q( eT °1(n)),Q( eT °1(n)°1), . . . ,Q(1)
¢

±#n

while Lemma 2.8 with k = eT °1(n °m) gives

Sn
0 =

h

S
n°T ( eT °1(n°m))±#n

0 ,Q( eT °1(n °m))±#n , . . . ,Q(1)±#n
i

.

Comparing the two expressions for Sn
0 ,we see that

S
n°T ( eT °1(n°m))±#n

0 =
°

Q( eT °1(n)), . . . ,Q( eT °1(n °m)+1)
¢

±#n

and in particular,
√

eT °1(n)
X

i= eT °1(n°m)+1

Y(i )

!

±#n =H
°

n °T ( eT °1(n °m))±#n¢

.

We let the reader convince himself thatH
°

n °T ( eT °1(n °m))±#n
¢

= min{m,...,n}H (again
by comparing the number of ladder height times at n ° T ( eT °1(n ° m)) ±#n and k 2
{m, . . . ,n}), so that gathering the previous relations we finally obtain the desired re-
sult. ⇤

Corollary 5.4. For any 0 ∑ m ∑ n,

(5.5) min
Km∑t∑Kn

C(t ) =H(m)°DL(n°m)±#m (Sm
0 ).

Proof. Let I n
m = min[Km ,Kn ]C. SinceH(n)°H(m) =º(Sn

m)°DL(n°m)±#m (Sm
0 ) by Proposi-

tion 5.2, in order to prove (5.5) it is enough to prove that

º
°

Sn
m

¢

=H(n)° I n
m .

Local minima of C are by construction attained on the set {Kn : n 2N} and sinceH(k) =
C(Kk ) for any k 2 N, this implies I n

m = mink=m,...,nH(k). The result then follows from
Lemma 5.3. ⇤

5.2. Triangular renewal theorem on a macroscopic horizon. Let us now introduce

'̄p (t ) = 1

p
'̄(pt ) with '̄(t ) = inf

©

j ∏ 0 : 2V ( j ) ∏ t
™

,

the first passage time of the renewal process 2V above level t . In Appendix C, we shall
prove the following results on renewal processes that can be seen as an extension of re-
sults of Miller [20]. Proposition 5.5 is an extension of the renewal theorem, where steps
of the renewal process are marked and which holds in a triangular setting. And Propo-
sition 5.6 is also an extension of the renewal theorem, allowing to consider a growing
number of terms before the jump straddling t and also in a triangular setting. The only
purpose of condition VP is for these two results to hold.

Proposition 5.5. Assume that conditions Y, VP and V hold. Then for every t > 0 we have
°

V'̄(pt ),P '̄(pt )
¢

)
°

V̂ §
1,P̂ §

1
¢

where (V̂ §
1,P̂ §

1) has the following distribution: for every
measurable function f :R+£M !R+,

• if V §
1 is non-arithmetic,

E
£

f (V̂ §
1,P̂ §

1)
§

= 1

E(V §
1)

Z1

0
E
£

f (v,P §
1) |V §

1 = v
§

P(V §
1 > v)dv ;
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• if V §
1 is arithmetic with span h,

E
£

f (V̂ §
1,P̂ §

1)
§

= 1

E(V §
1)

X

i∏1
E
£

f (i h,P §
1) |V §

1 = i h
§

P(V §
1 > i h).

In the following statement we use the notation P `
k = (Pk , . . . ,P`°1).

Proposition 5.6. Assume that conditions Y, VP and V hold and for each p ∏ 1 let •p :
M p ! R be a measurable mapping such that •p (P p

0 ) ) •1 for some random variable

•1. Then •[±p](P
'̄(pt )
'̄(pt )°[p±]) )•1 for any 0 < ±< t/(2Ø§).

Recall the exploration process Ωn
0 = Sn

0 ±G , which similarly as (2.9) is extended by
setting Ωn

m = Sn
m ±G = Ωn°m

0 ±µm . The following corollary to Propositions 5.5 and 5.6
gathers the results needed in the sequel.

Corollary 5.7. For t ∏ 0, the three sequences "pV'̄(pt ), "pº(P '̄(pt )) and "p |P '̄(pt )| con-
verge weakly to 0 as p !1. If in addition 0 < ±< t/(2Ø§), then

"pº
≥

S
'̄(pt )
'̄(pt )°[p±]

¥

)H1(±), "̄pº
≥

Ω
'̄(pt )
'̄(pt )°[p±]

¥

)H1(±)

and

sup
0∑u∑±

Sp (u)±#'̄(pt ) ) sup
0∑u∑±

S1(u).

Proof. The convergence of the three sequences "pV'̄(pt ), "pº(P '̄(pt )) and "p |P '̄(pt )| is
a direct consequence of Proposition 5.5 (note that, for point processes, the functionals
º and |·| are continuous for the weak topology).

Let us now discuss the remaining convergence of "pº
≥

S
'̄(pt )
'̄(pt )°[p±]

¥

, "̄pº
≥

Ω
'̄(pt )
'̄(pt )°[p±]

¥

and sup[0,±] Sp ±#'̄(pt ). From their definition, each of these random variables can be

expressed in the form •[±p]
°

P
'̄(pt )
'̄(pt )°[p±]

¢

for some measurable mappings •p : M p !
[0,1). Proposition 5.6 implies that •[±p]

°

P
'̄(pt )
'̄(pt )°[p±]

¢

converges if •
°

P
[p±]
0

¢

does, in

which case they have the same limit. This means that we are brought back to the conver-
gence ofHp (±), Hp (±) and sup[0,±] Sp and since each of these three terms convergences
under condition G the result follows. ⇤

6. PROOF OF THEOREM 4.1

We assume in this section that the assumptions of Theorem 4.1 hold, i.e., condi-

tions G, VP and V hold and Hp
fdd=) H1 for some process H1 which is (almost surely)

continuous at 0 and satisfies the condition P(H1(t ) > 0) = 1 for every t > 0. Let also '̄
and '̄p be as in Section 5.2. We first reduce the proof of Theorem 4.1 to the next three
propositions, and then prove them.

Proposition 6.1. For any t > 0 and any ¥> 1/(2Ø§),

lim
p!1

Pp
°

'(pt )° '̄(pt ) > ¥H('̄(pt ))
¢

= 0.

Proposition 6.2. For any t > 0 we have

(6.1) Hp ('̄p (t ))°Hp ('1(t )) ) 0.

Proposition 6.3. For any t > 0 we have

(6.2) Hp ('p (t )+1/p)°Hp ('̄p (t )) ) 0 and Hp ('p (t ))°Hp ('̄p (t )) ) 0.
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6.1. Proof of Theorem 4.1 based on Propositions 6.1, 6.2 and 6.3. Pursuing from (1.11),
we obtain

(6.3)
Ø

ØCp (t )°Hp ('1(t ))
Ø

Ø∑ "pV'(pt ) +
Ø

ØHp ('p (t )+1/p)°Hp ('1(t ))
Ø

Ø

+2
Ø

ØHp ('p (t ))°Hp ('1(t ))
Ø

Ø .

Propositions 6.2 and 6.3 imply that the two last terms in the right-hand side vanish, and
so we are left with showing that "pV'(pt ) ) 0. Since '̄(pt ) ∑ '(pt ), for any M ,¥ > 0 we
have

Pp
°

"pV'(pt ) ∏ ¥
¢

∑Pp
°

'(pt )° '̄(pt ) > M/"p
¢

+Pp
°

"p max
©

Vk : k = '̄(pt ), . . . ,'̄(pt )+ [M/"p ]
™

∏ ¥
¢

which gives

Pp
°

"pV'(pt ) ∏ ¥
¢

∑Pp
°

'p (t )° '̄p (t ) >H('̄(pt ))/Ø§¢

+Pp
°

Hp ('̄p (t )) >Ø§M
¢

+Pp
°

"pV'̄(pt ) ∏ ¥
¢

+Pp
°

"p max
©

V'̄(pt )+k : k = 1, . . . , [M/"p ]
™

∏ ¥
¢

.

As p !1, the first term vanishes by Proposition 6.1 and the third one by Corollary 5.7.
The second one vanishes when p !1 and then M !1 because Hp (t ) is tight by as-
sumption. As for the last term, we use the union bound (using the fact that the random
variables (V'̄(pt )+k ,k ∏ 1) under Pp are i.i.d. with common distribution V §

p ) and then
Markov inequality to get

Pp
°

"p max
©

V'̄(pt )+k : k = 1, . . . , [M/"p ]
™

∏ ¥
¢

∑ M

"p
P

≥

"pV §
p ∏ ¥

¥

∑ M

¥
E

µ

V §
p ;V §

p ∏ ¥

"p

∂

.

Since the (V §
p ) are uniformly integrable, this last bound vanishes as p !1, which com-

pletes the proof.

6.2. Proof of Proposition 6.2. We start with three lemmas. The following lemma, which
states a triangular weak law of large numbers, is a direct consequence of the uniform
integrability of the (V §

p ), see for instance [11, §22].

Lemma 6.4. For any sequence up !1we have V ([up ])/up )Ø§. In particular, V ([pt ])/p )
Ø§t for any t ∏ 0.

Do we need this re-
sult earlier in the pa-
per?

Lemma 6.5. For every t ∏ 0 we have 'p (t ) )'1(t ).

Proof. Consider any t 0 < '1(t ): using the definition of 'p , the fact that H( j ) ∏ 0 and
that V is increasing, one obtains that

Pp
°

'p (t ) < t 0
¢

∑Pp
°

2V
°

pt 0
¢

< pt
¢

.

Since V (ps)/p ) Ø§s for any s ∏ 0 by Lemma 6.4, we obtain Pp
°

'p (t ) < t 0
¢

! 0 for
t 0 <'1(t ). Let now t 0 >'1(t ), and write

Pp
°

'p (t ) > t 0
¢

∑Pp
°

2V (pt 0)°H(pt 0) ∑ pt
¢

.

Since the sequence ("pH([pt 0]), p ∏ 1) is tight and p"p !1, we obtain H(pt 0)/p )
0 and so (2V (pt 0)°H(pt 0))/p ) 2Ø§t 0. We thus obtain Pp

°

2V (pt 0)°H(pt 0) ∑ pt
¢

! 0
which concludes the proof. ⇤

Lemma 6.6. For any 1 ∑ m ∑ n,

(6.4) 0 ∑º(Sn
m°1)°º(Sn

m) ∑º(Pm°1).

Proof. Relation (2.10) gives

º(Sn
m°1) =

√

eT °1(n°m+1)
X

k=1
Y(k)

!

±#n .
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If eT °1(n °m + 1) ±#n = eT °1(n °m) ±#n , then we obtain º(Sn
m°1) = º(Sn

m) and so the
result holds in this case. Otherwise, we have eT °1(n °m +1) ±#n = eT °1(n °m) ±#n +1
and so isolating the last term, we obtain

º(Sn
m°1) =º(Sn

m)+Y
°

eT °1(n °m +1)
¢

±#n .

Further, for any k 2Nwe have

Y
°

eT °1(k)
¢

=º±Q
°

eT °1(k)
¢

=º±®≥0 (Pø0°1)±µT ( eT °1(k))°1 ∑º(Pø0°1)±µT ( eT °1(k))°1.

As ø0 ±µT ( eT °1(k))°1 = 1, this gives Y( eT °1(k)) ∑º
°

PT ( eT °1(k))°1

¢

and consequently,

Y
°

eT °1(n °m +1)
¢

±#n ∑º
°

PT ( eT °1(n°m+1))°1

¢

±#n =º
°

Pn°T ( eT °1(n°m+1))±#n

¢

.

The condition eT °1(n °m +1)±#n = eT °1(n °m)±#n +1 means that n °m +1 is a weak
ascending ladder height time (for the dual process S ±#n) and thus implies the rela-
tion T ( eT °1(n °m +1))±#n = n °m +1. Plugging in this relation in the previous display
achieves the proof. ⇤

Let for simplicity mp = '̄(pt )^['1(pt )]. Since we have H(mp ) ∑H('̄(pt )) as well as
H(mp ) ∑H(['1(pt )]), the triangular inequality reads

Ø

ØHp ('̄p (t ))°Hp ('1(t ))
Ø

Ø∑ "p
°

H('̄(pt ))°H(mp )
¢

+"p
°

H(['1(pt )])°H(mp )
¢

and since mp ∑ min('(pt ), ['1(pt )]), (5.3) gives by neglecting the terms D ∏ 0
Ø

ØHp ('̄p (t ))°Hp ('1(t ))
Ø

Ø∑ "pº
≥

S
'̄(pt )
mp

¥

+"pº
≥

S
['1(pt )]
mp

¥

.

In particular, we only need to show that "pº(S
¡p
mp

) ) 0 for¡p = '̄(pt ) or ['1(pt )]. Using
the monotonicity of º(Sn

m) in m given by Lemma 6.6, we obtain for any 0 < ±<'1(t )

Pp

≥

"pº
≥

S
¡p
mp

¥

∏ ¥
¥

∑Pp
°

mp ∑¡p ° [p±]
¢

+Pp

≥

"pº
≥

S
¡p

¡p°[p±]

¥

∏ ¥
¥

.

The second term converges to Pp
°

H1(±) ∏ ¥
¢

: for ¡p = ['1(pt )] this is a conse-
quence of Theorem 1.2, and for ¡p = '̄(pt ) this was proved in Corollary 5.7 for ± small
enough. Since this inequality holds for every ± small enough and since H1 is almost
surely continuous at 0 by assumption, in order to conclude the proof it remains to show
that Pp (mp ∑¡p ° [p±]) ! 0 as p !1 for each fixed 0 < ±<'1(t ), which we do now.

The genealogical contour process Cp converges weakly to a continuous process C1
by Theorem 1.2. Since ¡p /p ) '1(t ), this implies that Cp (tp ) ° infIp Cp ) 0 with
tp = ¡p /p or tp = '1(t ) and Ip = [min(¡p /p,'1(t )),max(¡p /p,'1(t ))]. By classical
arguments on discrete trees, this implies that the genealogical distance rescaled by "̄p

between ¡p and mp converges to 0, i.e., "̄p (H (¡p )°H (mp )) ) 0. Therefore, for any
¥> 0 we obtain

limsup
p!1

Pp
°

mp ∑¡p ° [p±]
¢

∑ limsup
p!1

Pp
°

mp ∑¡p ° [p±], "̄p (H (¡p )°H (mp )) ∑ ¥
¢

.

Since L(n °m)±#m = 0 if and only if m = m^n, Proposition 5.2 implies that H (n)°
H (m) =º(Sn

m)±G =º(Ωn
m) for any 0 ∑ m ∑ n with m 2A (n)\R+. In particular, it follows

by definition of mp that H (¡p )°H (mp ) =º(Ω
¡p
mp

). Since º(Ωn
m) is non-increasing in m

by Lemma 6.6, this gives

Pp
°

mp ∑¡p ° [p±], "̄p (H (¡p )°H (mp )) ∑ ¥
¢

∑Pp

≥

"̄pº
≥

Ω
¡p

¡p°[p±]

¥

∑ ¥
¥

.

Since this term converges to P(H1(±) ∑ ¥) (for ¡p = '̄(pt ) this comes from Corol-
lary 5.7 and for¡p = ['1(pt )] this is the convergence of the genealogical height process)
we finally obtain

limsup
p!1

Pp
°

mp ∑¡p ° [p±]
¢

∑P
°

H1(±) ∑ ¥
¢

.

Letting ¥! 0 in the last display therefore concludes the proof.
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6.3. Proof of Proposition 6.1. In order to prove this result, we introduce two inter-
mediate height processes. We enrich the probability space with a random variable fP

which under Pp is equal in distribution to P1 and independent from the sequence
(P '̄(pt )+k ,k ∏ 1), and we consider eS(p) = (eSn

(p),n ∏ 0) the spine process defined from

the sequence (fP ,P '̄(pt )+1, · · · ). For k ∏ 0 we then let

bHp (k) =º
≥

S
'̄(pt )+k
'̄(pt )

¥

and eHp (k) =º
≥

eSk
(p)

¥

.

Lemma 6.7. eHp under Pp is equal in distribution to H under Pp . Moreover, we have
"p supk∏0|eHp (k)° bHp (k)|) 0.

Proof. The first part of the lemma directly follows from the strong Markov property. As
for the second part, Lemma 6.6 gives

0 ∑º
≥

S
'̄(pt )+k
'̄(pt )

¥

°º
≥

S
'̄(pt )+k
'̄(pt )+1

¥

∑º(P '̄(pt )) and 0 ∑º
≥

eSk
(p)

¥

°º
≥

S
'̄(pt )+k
'̄(pt )+1

¥

∑º(P̃ )

which gives |eHp (k)° bHp (k)| ∑ º(fP )+º(P '̄(pt )). Since this bound is uniform in k and

both fP and P '̄(pt ) converge weakly (by Corollary 5.7), multiplying by "p and letting
p !1 gives the result. ⇤

We now turn to the proof of Proposition 6.1. Let in the rest of the proof ¢p ='(pt )°
'̄(pt ). Since by definition

'(pt ) = inf
©

k ∏ 1 : 2V (k °1)°H(k) ∏ pt
™

and '̄(pt ) = inf
©

k ∏ 1 : 2V (k) ∏ pt
™

,

it follows that

¢p = inf
©

k ∏ 0 : 2V ('̄(pt )+k °1)°H('̄(pt )+k) ∏ pt
™

.

Defining V̄p (k) = V ('̄(pt )+k)°V ('̄(pt )) for k ∏°1, we obtain

¢p = inf
©

k ∏ 0 : 2V̄p (k °1)°H('̄(pt )) ∏H('̄(pt )+k)°H('̄(pt ))° (2V ('̄(pt ))°pt )
™

and so according to Proposition 5.2,

(6.5) ¢p = inf{k ∏ 0 :

2V̄p (k °1)°H('̄(pt )) ∏º
≥

S
'̄(pt )+k
'̄(pt )

¥

°DL(k)±#'̄(pt )

≥

S
'̄(pt )
0

¥

° (2V ('̄(pt ))°pt )
o

.

Since Dk (∫) ∏ 0 and 2V ('̄(pt )) ∏ pt , we obtain by definition of bHp that

¢p ∑ inf
©

k ∏ 0 : 2V̄p (k °1)°H('̄(pt )) ∏ bHp (k)
™

.

In particular, ifæp = [¥H('̄(pt ))] then in order to prove the result it is enough to show
that Pp

°

2V̄p (æp °1)°H('̄(pt )) ∏ bHp (æp )
¢

! 1 which we rewrite as

Pp
°

2V̄p (æp °1)°æp /¥∏ bHp (æp )
¢

°!
p!1

1.

Since for any ∞> 0, we have

Pp
°

2V̄p (æp °1)°æp /¥∏ bHp (æp )
¢

∏Pp
°

2V̄p (æp °1)°æp /¥∏ ∞/"p ∏ bHp (æp )
¢

the desired convergence is implied by the following two relations:

(6.6) "p bHp (æp ) ) 0 and liminf
p!1

Pp
°

2V̄p (æp °1)°æp /¥∏ ∞/"p
¢

°!
∞!0

1.

Let us begin by proving the first relation "p bHp (æp ) ) 0. Since Hp
fdd) H1, Proposi-

tion 6.2 shows that "pæp ) ¥H1('1(t )), and since p"p !1 it follows that æp /p ) 0.
Since eHp is equal in distribution to H by Lemma 6.7 and æp is independent of eHp , we
obtain in view of Remark 3.2 that "p eHp (æp ) ) 0. The second part of Lemma 6.7 finally
entails the desired result "p bHp (æp ) ) 0.

We now prove the second convergence in (6.6). By construction, V̄p is a renewal pro-
cess independent ofH('̄(pt )), and thus independent ofæp . Combined with Lemma 6.4,
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one thus obtains that V̄p (æp°1)/æp )Ø§. Since, as already mentioned, "pæp ) ¥H1('1(t )),
we get

liminf
p!1

Pp
°

2V̄p (æp °1)°æp /¥∏ ∞/"p
¢

∏P
°

(2Ø§¥°1)H1('1(t )) ∏ ∞
¢

.

Since (2Ø§¥°1) > 0 and H1('1(t )) > 0 a.s., the result follows by letting ∞! 0.

6.4. Proof of Proposition 6.3. Let as in the previous subsection ¢p = '(pt ) ° '̄(pt ).
Proposition 5.2 gives

(6.7) Hp ('p (t ))°Hp ('̄p (t )) = "pº
≥

S
'(pt )
'̄(pt )

¥

°"p DL0
p (¢p )

≥

S
'̄(pt )
0

¥

,

where we have defined L0
p (k) = L(k)±#'̄(pt ). We now show that each term of the right-

hand side of (6.7) vanishes, and we start with the second one, i.e., we show that

(6.8) "p DL0
p (¢p )

°

S'̄(pt )¢) 0.

Since DL0
p (k)(S

'̄(pt )
0 ) is non-decreasing in k and the sequence ("p¢p , p ∏ 1) is tight, it is

enough to show that

(6.9) "p DL(tp )±#'̄(pt )

≥

S
'̄(pt )
0

¥

) 0

for some deterministic integer-valued sequence (tp ) with "p tp ! 1: we will consider
tp = [(p/"p )1/2], which satisfies in addition tp /p ! 0. In order to prove (6.9), we fix until
further notice ∞,∞0 > 0 and two integer-valued sequences (∞p ), (∞0p ) such that ∞p /p ! ∞

(in particular tp /∞p ! 0) and ∞0p /(p"̄p ) ! ∞0. Since both Dk (S'̄(pt )
0 ) and L(k)±#'̄(pt ) are

non-decreasing with k, it follows that for p large enough such that tp ∑ ∞p , we have

Pp

≥

"p DL(tp )±#'̄(pt ) (S'̄(pt )
0 ) ∏ ¥

¥

∑Pp

≥

L(∞p )±#'̄(pt ) ∏ ∞0p
¥

+Pp

≥

"p D∞0p (S'̄(pt )
0 ) ∏ ¥

¥

.

By definition of L and S, the first term is equal to

Pp

≥

L(∞p )±#'̄(pt ) ∏ ∞0p
¥

=Pp

√

min
i=0,...,∞p

'̄(pt )+i
X

k='̄(pt )
(|Pk |°1) ∑°∞0p

!

.

Isolating the term |P '̄(pt )| °1 and using that the Pk ’s for k ∏ '̄(pt )+1 are i.i.d., we
further get

Pp

≥

L(∞p )±#'̄(pt ) ∏ ∞0p
¥

∑Pp

√

|P '̄(pt )| ∑ °
∞0p
2

+1

!

+Pp

√

min
i=1,...,∞p

i
X

k=1
(|Pk |°1) ∑°

∞0p
2

!

.

The first term vanishes by Corollary 5.7 and since p"p !1, and so dividing the sec-
ond term by p"̄p and using (H1), we obtain

limsup
p!1

Pp

≥

L(∞p )±#'̄(pt ) ∏ ∞0p
¥

∑P
µ

inf
0∑t∑∞

S1(t ) ∑°∞
0

2

∂

.

By letting first p !1 and then ∞ # 0, we thus have at this point

limsup
p!1

Pp

≥

"p DL(tp )±#'̄(pt ) (S'̄(pt )
0 ) ∏ ¥

¥

∑ limsup
p!1

Pp

≥

"p D∞0p (S'̄(pt )
0 ) ∏ ¥

¥

.

Fix now some 0 < ±< t/(2Ø§): by definition (5.2) of D ,

D∞0p (S'̄(pt )
0 ) ∑

0

@

X

i :0<T (i )∑ø∞0p

Y(i )

1

A±#'̄(pt )

and so in the event {ø∞0p ±#
'̄(pt ) ∑ [p±]}, we get

D∞0p (S'̄(pt )
0 ) ∑

√

eT °1([p±])
X

i=1
Y(i )

!

±#'̄(pt ) =º
≥

S
'̄(pt )
'̄(pt )°[p±]

¥

,
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where we have used (2.10) to derive the last equality. In particular,

Pp

≥

"p D∞0p (S'̄(pt )
0 ) ∏ ¥

¥

∑Pp

≥

ø∞0p ±#
'̄(pt ) > [p±]

¥

+Pp

≥

"pº
≥

S
'̄(pt )
'̄(pt )°[p±]

¥

> ¥
¥

and since by definition we have

Pp

≥

ø∞0p ±#
'̄(pt ) > [p±]

¥

=Pp

√

sup
k=0,...,[p±]

S(k)±#'̄(pt ) ∑ ∞0p

!

,

Corollary 5.7 implies that

limsup
p!1

Pp

≥

"p D∞0p (S'̄(pt )
0 ) ∏ ¥

¥

∑P
µ

sup
0∑t∑±

S1(t ) ∑ ∞0
∂

+P
°

H1(±) ∏ ¥
¢

.

Letting first ∞0 ! 0 and then ±! 0 concludes the proof of (6.9), and so also of (6.8).

We now show that the first term in the right-hand side of (6.7) also vanishes. In view
of (6.5) and using 2V ('̄(pt ))°pt ∑ 2V'̄(pt ), we obtain

"pº
≥

S
'(pt )
'̄(pt )

¥

∑ "p
°

2V̄p (¢p °1)°H('̄(pt ))
¢

+"p DL(¢p )±#'̄(pt )

≥

S
'̄(pt )
0

¥

+2"pV'̄(pt ).

We have just proved that the second term vanishes (in law), and since the third term
also vanishes by Corollary 5.7 it only remains to control the first term. Since V̄ is an
increasing sequence, for any ∞,¥> 0 we have

Pp
°

"p
°

2V̄p (¢p °1)°H('̄(pt ))
¢

∏ ∞
¢

∑Pp
°

¢p > ¥H('̄(pt ))
¢

+Pp
°

"p
°

2V̄p ([¥H('̄(pt ))])°H('̄(pt ))
¢

∏ ∞
¢

.

Choose now ¥ > 1/(2Ø§), so that the first term vanishes by Proposition 6.1. For the
second term, we note that V̄ is independent from H('̄(pt )) to obtain with similar argu-
ments as in the proof of Proposition 6.1

limsup
p!1

Pp
°

"p
°

2V̄p ([¥H('̄(pt ))])°H('̄(pt ))
¢

∏ ∞
¢

∑P
°

(2Ø§¥°1)H1('1(t )) ∏ ∞
¢

.

Since P(H1('1(t )) > 0) = 1, letting ¥! 1/(2Ø§) concludes the proof.

7. PROOF OF THEOREM 1.9

We assume in this section that conditions G, Y, VP and V hold and we prove Theo-
rem 1.9.

Lemma 7.1. Let (`(p), p ∏ 0) be a deterministic sequence inR+ going to 1. Then for every
t > 0 we have

"p

≥

D`(p)(S
[pt ]
0 )°Æ§D`(p)(S

[pt ]
0 ±G )

¥

) 0.

Proof. Let eT °1
p = eT °1(min(ø`(p), [pt ])) and Rp = (0 < ø`(p) ∑ [pt ])º(µ`(p)), so that by

definition (5.2) of D we have

D`(p)(S
[pt ]
0 ) =

0

@

eT °1
p

X

i=1
Y(i )

1

A±#[pt ] °Rp ±#[pt ].

Using the various facts that D`(p)(S
[pt ]
0 ±G ) = D`(p)(S

[pt ]
0 )±G , thatY(i )±G =º(µ`)±G = 1,

that eT °1
p and ø`(p) are genealogical quantities and finally that #[pt ] and G commute,

composing on the right with G in the previous display gives

D`(p)(S
[pt ]
0 ±G ) =

≥

eT °1
p ° (ø`(p) ∑ [pt ])

¥

±#[pt ].

By duality, we therefore only have to show that the three quantities

"p Rp , "p (ø`(p) ∑ [pt ]) and "p

eT °1
p

X

k=1

≥

Y(k)°E(Y§
p )

¥
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converge weakly to 0. The second one obviously does since "p ! 0. For the third one
we proceed similarly as in the proof of Theorem 3.1: indeed, "p eT °1

p is tight (because

it is smaller than "p eT °1([pt ]) by monotonicity of eT °1, which is equal in distribution
to Hp (t )), which is the only assumption necessary for the proof of Theorem 3.1 to go
through.

We now prove that "p Rp ) 0, which will conclude the proof. First of all, let ° such
that ø`(p) = T (°): then by definition,µ`(p) =µ0±µT (°°1) and soº(µ`(p)) =º±µ0±µT (°°1) =
Y(°°1). In addition, if ø`(p) ∑ [pt ] then°∑ eT °1([pt ]) and so Rp ∑ maxk=1,..., eT °1([pt ])Y(k).
Next, we fix some N ∏ 0, consider Np = [N /"p ] and use the previous inequality to write

(7.1) Pp

√

"p max
k=1,..., eT °1([pt ])

Y(k) ∏ ¥

!

∑Pp
°

eT °1([pt ]) ∏ Np
¢

+Pp

µ

max
k=1,...,min(Np ,G°1)

Y(k) ∏ ¥p

∂

where G = inf{k ∏ 0 : T (k) =1} and ¥p = ¥/"p . For the first term of the right-hand side,
we note that eT °1([pt ]) is by duality equal in distribution to H (pt ) to get

limsup
p!1

Pp
°

eT °1([pt ]) ∏ Np
¢

= limsup
p!1

Pp
°

Hp (t ) ∏ "p Np
¢

°!
N!1

0.

It remains to control the second term in the right-hand side of (7.1): since the (Y(k),k =
1, . . . ,G °1) are i.i.d. by Lemma 2.12, we have

Pp

µ

max
k=1,...,min(Np ,G°1)

Y(k) ∏ ¥p

∂

∑ 1°
h

1°P
≥

Y§
p ∏ ¥p

¥iNp
.

This last bound vanishes because NpP(Y§
p ∏ ¥p ) ! 0 as a direct consequence of the

uniform integrability of the Y§
p together with the following bound:

NpP
≥

Y§
p ∏ ¥p

¥

∑ N

¥
E

µ

Y§
p ;Y§

p ∏ ¥

"p

∂

.

The proof is complete. ⇤

In the sequel for 0 ∑ u ∑ v we define

M (u, v) = inf
u∑t∑v

C (t ) and M(u, v) = inf
u∑t∑v

C(t ).

Corollary 7.2. For any 0 < a < b we have

"p
°

M(K[pa],K[pb])°Æ§M (2pa,2pb)
¢

) 0.

Proof. First of all, we note that

"p
°

M (2pa,2pb)°M(K[pa],K[pb])±G
¢

) 0.

Indeed, this follows from rewriting M (2Ø§pa,2Ø§pb) = inf
©

Cp (t ) : 2a ∑ t ∑ 2b
™

and

M(K[pa],K[pb])±G = inf

Ω

Cp (t ) :
1

p
K[pa] ±G ∑ t ∑ 1

p
K[pb] ±G

æ

,

together with the following two facts: 1) Cp )C1 with C1 continuous and 2) p°1K[pa]±
G ) 2a. Therefore, in order to prove the result we only have to prove that

"p
°

M(K[pa],K[pb])°Æ§M(K[pa],K[pb])±G
¢

) 0.

To prove this, we define Lp = L([pb]° [pa])±#[pa] and apply Corollary 5.4 to write

"p
°

M(K[pa],K[pb])°Æ§M(K[pa],K[pb])±G
¢

= "p
°

H([pa])°Æ§H ([pa])
¢

°"p

≥

DLp (S[pa]
0 )°Æ§DLp (S[pa]

0 )±G
¥

.



30 EMMANUEL SCHERTZER AND FLORIAN SIMATOS

The first term on the right-hand side vanishes by Theorem 3.1, so we are left with the
second term. Since Lp is a genealogical quantity, this term is equal to

"p

≥

DLp (S[pa]
0 )°Æ§DLp (S[pa]

0 )±G
¥

= "p

≥

DLp (S[pa]
0 )°Æ§DLp (S[pa]

0 ±G )
¥

and we can now invoke Lemma 7.1 to conclude that this term vanishes, as Lp is inde-

pendent of S[pa]
0 and converges weakly to 1. This proves the result. ⇤

Proof of Theorem 1.9. In order to prove Theorem 1.9 we have to prove that

"p
°

M(ps, pt )°Æ§M (2'1(ps),2'1(pt ))
¢

) 0.

Since for any t 2R+ we have p°1K[pt ] ) 2Ø§t , for any 0 < ∞< t we have Pp (Ep (t ,∞)) ! 1
as p !1 where Ep (t ,∞) is the event

Ep (t ,∞) =
©

K['1(pt°p∞)] ∑ pt ∑ K['1(pt+p∞)]
™

.

Thus in the sequel, for any 0 < ∞< s < t we can assume that the event Ep (s,∞)\Ep (t ,∞)
holds. By monotonicity, in this event we have

M
°

K['1(ps°p∞)],K['1(pt+p∞)]
¢

∑M
°

ps, pt
¢

∑M
°

K['1(ps+p∞)],K['1(pt°p∞)]
¢

.

Thus defining a = '1(ps), b = '1(pt ), a± = ['1(ps ±p∞)] and b± = '1(pt ±p∞), we
have

Ø

ØM(ps, pt )°Æ§M
°

2'1(ps),2'1(pt )
¢

Ø

Ø

∑
Ø

ØM (Ka+ ,Kb° )°Æ§M (2a,2b)
Ø

Ø+
Ø

ØM (Ka° ,Kb+ )°Æ§M (2a,2b)
Ø

Ø

and pursuing with the triangular inequality, we obtain

Ø

ØM(ps, pt )°Æ§M
°

2'1(ps),2'1(pt )
¢

Ø

Ø

∑
Ø

ØM (Ka+ ,Kb° )°Æ§M
°

2a+,2b°¢

Ø

Ø+
Ø

ØM (Ka° ,Kb+ )°Æ§M
°

2a°,2b+¢

Ø

Ø

+Æ§ Ø

ØM
°

2a+,2b°¢

°M (2a,2b)
Ø

Ø+Æ§ Ø

ØM
°

2a°,2b+¢

°M (2a,2b)
Ø

Ø .

Multiplying by "p , the two terms of the second line vanish as p !1 by Corollary 7.2; let-
ting then ∞! 0 makes the terms of the third line disappear by virtue of the convergence
Cp )C1 with C1 continuous. The proof of Theorem 1.9 is complete. ⇤

8. SOME EXAMPLES WHERE TIGHTNESS FAILS

We show in this section that, for the chronological processes, the gap between con-
vergence of finite-dimensional distributions and functional convergence is more sig-
nificant than in the genealogical case. In particular, the chronological processes may
converge in the sense of finite-dimensional distributions but not in a functional sense
in a non-triangular setting.

We consider a simple family of Crump–Mode–Jagers processes which are caracter-
ized by the offspring distribution ª, namely

≥

V §
p ,P §

p

¥

=
°

1+ª, (ª°1)+≤1 + (ª∏ 1)≤ª
¢

.

The corresponding CMJ tree is then almost a Galton-Watson tree with offspring distri-
bution the distribution of ª, except that:

• each edge is extended by a length equal to one plus the number of children of
the corresponding individual;

• for each individual, its children are born at time 1 except for one child born at a
time equal to the number of children.
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Assume that E(ª) = 1 and P(ª ∏ x) ª cx°Æ as x ! 1 for some constant c 2 (0,1).
Then it is known that condition G holds for the choice "p = p°(1°1/Æ). In particular, Sp

has jumps of the order of one which means that, typically, some nodes have of the order
of p"p = p1/Æ children: these nodes are called macroscopic.

Moreover, E(V §
p ) = 2 and

E(Y§
p ) = E

µ

Z1

0
uP §

p (du)

∂

= E (ª°1+ª;ª∏ 1) = 1+P(ª= 0).

Since in addition we are not in a triangular setting, this implies that conditions Y, VP
and V holds. In particular, all the results of the paper hold and Hp and Cp converge in
the sense of finite-dimensional distributions: we now show that they cannot converge
in a functional sense.

By construction, macroscopic nodes have edges with length of the order of p1/Æ.
When the particle traveling along the edges meets such an edge, this makes C go up
and then down at rate ±1 for a duration p1/Æ, so that during this time interval C has
variation of the order of p1/Æ. Because of the scalingCp (t ) = p°(1°1/Æ)C(pt ), such a time
interval corresponds for Cp to a time interval of size p1/Æ £ (1/p) = p°(1°1/Æ), during
which Cp has variation of the order of p1/Æ£p°(1°1/Æ) = p2/Æ°1. Since Æ 2 (1,2), in the
limit we see that each macroscopic node should induce an infinite jump of Cp . Since
macroscopic nodes are dense, this strongly proscribes the tightness of Cp .

Moreover, because of the last child born at time ª, the exact same phenomenon af-
fectsHp .

APPENDIX A. PROOF OF LEMMA 2.3

In this section we prove Lemma 2.3: first consider the following lemma.

Lemma A.1. For any n ∏ 0 with L(n)±µn > 0, we have

(A.1) T (T °1(n)) = n +øL(n) ±µn and Q(T °1(n)) =µL(n) ±µn .

Considering this lemma with n = n ° m, composing to the right with #n and us-
ing µn°m ±#n = #m by (1.12), this lemma gives Lemma 2.3 except for the fact that n °
T (T °1(n ° m)) ± #n (or m ° øL(n°m) ± #m) is equal to m^n. Thus, in order to prove
Lemma 2.3 we first prove Lemma A.1 and then prove that m^n = n°T (T °1(n°m))±#n .

A.1. Proof of Lemma A.1. Let n ∏ 0 with L(n)±µn > 0. Simple computation shows that

(A.2) L(n)±µn = max
i=0,...,n

S(°i )±µn = max
{0,...,n}

S °S(n)

and so L(n) ±µn > 0 means that n is not a weak ascending ladder height time of S, in
which case by definition of T °1(n) we have

T (T °1(n)) = inf

Ω

k > n : S(k) ∏ max
{0,...,n}

S

æ

.

The right-hand side is always equal to n +øL(n) ±µn : indeed,

øL(n) ±µn = inf{k > 0 : S(k) ∏ L(n)}±µn

= inf{k > 0 : S(k)±µn ∏ L(n)±µn}

= inf

Ω

k > 0 : S(n +k)°S(n) ∏ max
{0,...,n}

S °S(n)

æ

= inf

Ω

k > n : S(k) ∏ max
{0,...,n}

S

æ

°n.

This proves the first identity in (A.1), and we now prove the second one. Define the
random time °= T (T °1(n)°1): recalling the definition Q(k) = µ0 ±µT (k°1), we see that
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we have to prove that µ0 ±µ° = µL(n) ±µn (under the assumption L(n) ±µn > 0). Going
back to the definition of µk =®≥k

(Pøk°1), we see that

µ0 ±µ° =®≥0±µ°
°

Pø0±µ°+°°1
¢

and µL(n) ±µn =®≥L(n)±µn

°

PøL(n)±µn+n°1
¢

and so it is enough to show that

≥0 ±µ° = ≥L(n) ±µn and ø0 ±µ°+°= øL(n) ±µn +n.

We first show the second identity. Since ø0 = T (1) and T (1)±µT (k) +T (k) = T (k +1) for
any k ∏ 0, considering k = T °1(n)° 1 yields ø0 ± µ° +° = T (T °1(n)) which is equal to
øL(n) ±µn +n as has been argued above.

Using this equality, we now prove that ≥0±µ° = ≥L(n)±µn which will conclude the proof
of Lemma A.1. Since ≥L(n) = L(n)°S(øL(n)°1), L(n)±µn = max{0,...,n} S°S(n) by (A.2) and

S(øL(n) °1)±µn = S
°

øL(n) ±µn +n °1
¢

°S(n) = S
°

T (T °1(n))°1
¢

°S(n),

we get
≥L(n) ±µn = max

{0,...,n}
S °S

°

T (T °1(n))°1
¢

.

Moreover,

≥0 ±µ° =°S(ø0 °1)±µ° = S(°)°S(ø0 ±µ°+°°1) = S(°)°S
°

T (T °1(n))°1
¢

.

Since the condition L(n) ± µn > 0 means that n is not a weak ascending ladder height
time of S, we have T °1(n) = eT °1(n)+1 and in particular, ° = T ( eT °1(n)). Thus, S(°) =
max{0,...,n} S by definition of eT °1(n) which concludes the proof.

A.2. Proof of m^n = n °T (T °1(n °m))±#n . Let 0 ∑ m ∑ n with L(n °m)±#m > 0 and
define ∑= n°T (T °1(n°m))±#n : in order to conclude the proof of Lemma 2.3, we now
prove that m^n = ∑. Since on the one hand∑= n°T (T °1(n°m))±#n , it follows from the
definition of A (n) that ∑ 2 A (n). Moreover, øL(n°m) is by definition a weak ascending
ladder height time, i.e., for every k ∏ 0 there exists ° such that øk = T (°): in particular,
∑= m °øL(n°m) ±#m also belongs to A (m). In order to conclude the proof it remains to
show that ∑∏Æ for any Æ 2A (m)\A (n). By definition, we can write such an Æ as

Æ= n °T (°)±#n = m °T (°0)±#m

for some °, °0 ∏ 0. In particular,

T (°)±#n = n °m +T (°0)±#m ∏ n °m

and so by definition of T °1, we have °±#n ∏ T °1(n°m)±#n . Since the weak ascending
ladder height times form an increasing sequence, this implies T (°) ±#n ∏ T (T °1(n °
m))±#n and so Æ∑ ∑, which concludes the proof.

APPENDIX B. PROOF OF LEMMA 2.5

Let n ∏ 0, m = n °ø0 ±#n , i = ≥0 ±#n and assume that m ∏ 0: we have to prove that
i 2 {0, . . . , |Pm | ° 1} and ¬(m, i ) = n. Let us first prove that i 2 {0, . . . , |Pm | ° 1}. Since
Pm = Pn°ø0±#n = Pø0°1 ±#n , this follows from the fact that ≥0 = °S(ø0 ° 1) ∑ S(ø0)°
S(ø0 °1) = |Pø0°1|°1 and then composing on the right with #n .

Let us now prove that ¬(m, i ) = n. By definition of ¬ and since S only makes negative
jumps of size °1, we have to prove that

(B.1) S(n) = S(m +1)° i

and that

(B.2) S(`) > S(m +1)° i , `= m +1, . . . ,n °1.

Let us first prove (B.1). By definition of m and i we have

S(m +1)° i = S
°

n °ø0 ±#n +1
¢

°≥0 ±#n = S
°

n °ø0 ±#n +1
¢

+S(ø0 °1)±#n
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which by (2.3) (applied with ° = ø0 ° 1) implies (B.1). Let us now prove (B.2): in view
of (B.1) we have to prove that

min{S(k) : k = m +1, . . . ,n °1} > S(n)

which directly follows from the fact that

min{S(k) : k = m +1, . . . ,n °1} = S(n)°max{S (k) : k = 1, . . . ,T (1)°1}±#n .

APPENDIX C. PROOF OF PROPOSITIONS 5.5 AND 5.6

C.1. Coupling between random walks. We present here the coupling of Lemma 9.21 in
Kallenberg [13] between two random walks with the same step distribution and possibly
different initial distributions. The coupling starts from the following stochastic primi-
tives, which are assumed to be mutually independent:

• Æ and Æ0, two independent real-valued random variables;
• (ªk ), i.i.d. sequence of real-valued random variables;
• (%k ), i.i.d. sequence with P(%k =±1) = 1/2.

Let

fW (n) =Æ0 °Æ+
n
X

k=1
%kªk , n ∏ 0,

so that fW is a critical random walk with initial distribution Æ0 °Æ and step distribution
%1ª1. Fix in the rest of this subsection "> 0 and define the following quantities:

• A" = inf
©

n ∏ 0 : fW (n) 2 [0,"]
™

;
• %0k = (°1) (k∑A")%k ;
• ∑1 < ∑2 < ·· · the values of k with %k = 1 and ∑01 < ∑02 < ·· · the values of k with
%0k = 1;

• and finally

W (n) =Æ+
n
X

j=1
ª∑ j and W 0(n) =Æ0 +

n
X

j=1
ª∑0j

.

Lemma C.1. W , respectively W 0, is a random walk with step distribution ª1 and initial
distribution Æ, respectively Æ0.

Proof. See the proof of Lemma 9.21 in Kallenberg [13]. ⇤
Thus we have constructed a coupling of two random walks with the same step dis-

tribution, as promised. The interest of this coupling lies in the following result, which
exhibits an event in which many increments of W and W 0 are equal. In the sequel we
define:

• æ= |{ j : ∑ j ∑ A"}|, æ0 = |{ j : ∑0j ∑ A"}| and

∞= max

µ

max
k=0,...,æ

W (k), max
k=0,...,æ0

W 0(k)

∂

;

• √(t ) = inf{n ∏ 0 : W (n) ∏ t } and √0(t ) = inf{n ∏ 0 : W 0(n) ∏ t } for t ∏ 0;
• ¢k =W (k)°W (k °1) and ¢0

k =W 0(k)°W 0(k °1) for k ∏ 1.

Lemma C.2. For any m 2N and t ," 2R+, in the event
©

∞< t
™

\
©

√(t ) > A"+m
™

\
©

W 0(√0(t )) ∏ t +"
™

,

we have ¢√(t )°k =¢0
√0(t )°k for any k = 0, . . . ,m.

Proof. Let W and W
0

be the processes W and W 0 shifted at time æ and æ0, respectively,

i.e., defined by W (n) =W (æ+n) and W
0
(n) =W 0(æ0 +n). Then for any n ∏ 0, we have

(C.1) W (n) =W
0
(n)°fW (A"),
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see [13, Lemma 9.21] for details. Assume in the rest of the proof that ∞< t ,√(t ) > A"+m
and W 0(√0(t )) ∏ t +". By definition, ∞< t implies that √(t ) ∏æ and so we can write

√(t ) = inf{n ∏æ : W (n) ∏ t } =æ+ inf
n

n ∏ 0 : W (n) ∏ t
o

.

In particular, using (C.1) we obtain

√(t ) =æ+ inf
n

n ∏ 0 : W
0
(n) ∏ t +fW (A")

o

and since ∞< t implies √0(t ) ∏æ0 as well, a symmetric reasoning finally entails

√(t )°æ=√0°t +fW (A")
¢

°æ0.

Since by definition fW (A") ∑ " and since we assume W 0(√0(t )) ∏ t +", we further get that
√0(t + fW (A")) =√0(t ), which finally proves that √(t )°æ=√0(t )°æ0. Consider now any
k = 0, . . . ,m+1, so that√(t ) ∏ k+æ and√0(t ) ∏ k+æ0 as a consequence of the assumption
√(t ) >æ+m and the fact that √(t )°æ=√0(t )°æ0: then we have

W (√(t )°k) =W (√(t )°æ°k) (by definition of W )

=W (√0(t )°æ0 °k) (by √(t )°æ=√0(t )°æ0)

=W
0
(√0(t )°æ0 °k)°fW (A") (by (C.1)),

which finally gives
W (√(t )°k) =W 0(√0(t )°k)°fW (A")

by definition of W
0
. This last equality readily implies the desired result. ⇤

C.2. Stationary renewal processes on R. In this subsection and the following one, we
fix some p ∏ 1. We enrich the probability space LZ to LZ £R+ £ (0,1) and denote by
(!,d°,d+) 2 LZ£R+£ (0,1) the canonical sequence. We then define

W±(n) = d±+
n
X

k=1
V±k , n ∏ 0,

as well as the following point process on R£M :

Z =
X

n∏0
≤(W+(n),Pn ) +

X

n∏0
≤(°W°(n),P°n°1).

For ¬ a probability distribution on R+£(0,1)£M , let P¬p be the probability measure
under which:

• ((Vn ,Pn),n 2Z\ {0}) are i.i.d. with common distribution (2V §
p ,P §

p );
• (d°,d+,P0) is independent from this sequence and has distribution ¬.

Under P¬p , V0 will not play a role. We consider £t the shift operator acting on measures
on R£M as follows: for any measure ∫ on R£M and any Borel sets B ΩR and M ΩM ,

£t∫(B £M) = ∫((t +B)£M).

Note that Z uniquely characterizes the canonical sequence (!,d°,d+) and so with a
slight abuse of notation, we will sometimes consider that we are working on the canoni-
cal space of locally finite point measures on R£M , that Z is the canonical measure and
that ! and d± are functional thereof, e.g., d+ = inf{t > 0 : Z ({t }£M ) > 0}. In particular,
the notation P¬p ±£°1

p makes sense, which is rigorously to be understood as the law of

£t Z under P¬p .

For a random variable V > 0 with finite mean, we define V̂ as follows:

P(V̂ ∏ x) = 1

E(V )

Z1

x
P(V ∏ y)dy, x ∏ 0.

Let (V̂ §
p ,U§

p ,P̂ §
p ) be such that, conditionally on V̂ §

p = v :

• P̂ §
p is independent from U§

p and is distributed like P §
p conditionally on V §

p = v ;
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• if V §
p is non-arithmetic, U§

p is a uniform random variable on [0, v];
• if V §

p is arithmetic with span h, U§
p is a uniform random variable on {0,h, . . . , v}.

Let ¬p be the law of (0,2V §
p ,P §

p ) and ¬̂p the law of (2(V̂ §
p °U§

p ),2U§
p ,P̂ §

p ). The following
result corresponds to Theorem 2.1 in Miller [20].

Theorem C.3. The measure P
¬̂p
p is shift invariant, i.e.:

• if V §
p is non-arithmetic, then P

¬̂p
p ±£°1

t =P¬̂p
p for every t 2R;

• if V §
p is arithmetic with span h, then P

¬̂p
p ±£°1

i h =P¬̂p
p for every i 2Z.

The coupling presented in the previous section can be extended to the case of a
marked random walk to give the following result. In the sequel, let hp 2 R+ be the span
of V §

p in the arithmetic case, and with a slight abuse in notation let hp : R+ ! R+ be
the function such that hp (t ) = t in the non-arithmetic case and hp (t ) = hp [t/hp ] in the
arithmetic case.

Lemma C.4. For any m 2N, t 2R+ and f :R£M m+1 ! [0,1] measurable, the inequality

Ø

Ø

Ø

E
¬p
p ±£°1

t

£

f (d++d°,P0,P°1, . . . ,P°m)
§

°E¬̂p
p

£

f (d++d°,P0,P°1, . . . ,P°m)
§

Ø

Ø

Ø

∑P
≥

U§
p < "/2

¥

+P
≥

U§
p ∏ t 0

¥

+3Pp
°

V (m +n) ∏ hp (t )/2° t 0
¢

+2P
°

Ap
" ∏ n

¢

,

holds for any n 2N and t 0," 2R+, where Ap
" is the random variable defined in Section C.1

for Æ and ª1 equal in distribution to 2V §
p and Æ0 to 2U§

p .

Proof. First of all, note that by definition of hp (t ) the law of (d+ +d°,P0,P°1, . . . ,P°m)

is the same under P
¬p
p ±£°1

t and P
¬p
p ±£°1

hp (t ). In particular, we can assume without loss

of generality that t = hp (t ), which allows us to use Theorem C.3 to get P
¬̂p
p ±£°1

t =P¬̂p
p .

Next, considering the notation of Section C.1, we consider the coupling described
there with Æ and ª1 equal in distribution to 2V §

p and Æ0 to 2U§
p . We modify this coupling

in two ways: (1) we extend W (n) and W 0(n) for n ∑ °1 arbitrarily; (2) we consider an
additional sequence (∫k ) of marks, whereby W (n), resp. W 0(n), is given the mark mn =
∫∑n , resp. m0

n = ∫∑0n . This way, in addition to the conclusions of Lemma C.2 we obtain
that m√(t )°k = m0

√0(t )°k for any k = 0, . . . ,m in the event described there. In particular, if

marks take value in M then for any measurable function f :R£M m+1 ! [0,1] we obtain

Ø

Ø

Ø

E
£

f (¢√(t ),∫√(t ), . . . ,∫√(t )°m)
§

°E
h

f (¢0
√0(t ),∫

0
√0(t ), . . . ,∫0√0(t )°m)

i

Ø

Ø

Ø

∑P
°

∞∏ t
¢

+P
°

√(t ) ∑ Ap
" +m +1

¢

+P
°

W 0(√0(t )) < t +"
¢

.

WhenÆ,Æ0 and ª1 are as prescribed above and the ((ªk ,∫k ),k 2N) are i.i.d. with com-
mon distribution (V §

p ,P §
p ), we get the identities

E
£

f (¢√(t ),∫√(t ), . . . ,∫√(t )°m)
§

= E¬p
p ±£°1

t

£

f (d++d°,P0,P°1, . . . ,P°m)
§

and

E
h

f (¢0
√0(t ),∫

0
√0(t ), . . . ,∫0√0(t )°m)

i

= E¬̂p
p ±£°1

t

£

f (d++d°,P0,P°1, . . . ,P°m)
§

.

Since P
¬̂p
p is shift-invariant, we thus get the bound

Ø

Ø

Ø

E
¬p
p ±£°1

t

£

f (d++d°,P0,P°1, . . . ,P°m)
§

°E¬̂p
p

£

f (d++d°,P0,P°1, . . . ,P°m)
§

Ø

Ø

Ø

∑P
°

∞∏ t
¢

+P
°

√(t ) ∑ Ap
" +m

¢

+P
°

W 0(√0(t )) < t +"
¢
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and so in order to conclude the proof, it remains to show that

P
°

∞∏ t
¢

+P
°

√(t ) ∑ Ap
" +m

¢

+P
°

W 0(√0(t )) < t +"
¢

∑P
≥

U§
p < "

¥

+P
≥

U§
p ∏ t 0

¥

+3Pp
°

V (m +n) ∏ t/2° t 0
¢

+2P
°

Ap
" ∏ n

¢

.

First of all, by definition we have P(W 0(√0(t )) < t +") =P¬̂p
p ±£°1

t (d+ < ") and so since

P
¬̂p
p is shift-invariant, we obtain

P
°

W 0(√0(t )) < t +"
¢

=P¬̂p
p (d+ < ") =P

≥

2U§
p < "

¥

=P
≥

U§
p < "/2

¥

.

Further, since in the present case W and W 0 are increasing and æ,æ0 ∑ A≤ by con-
struction, we get

P
°

∞∏ t
¢

=P
°

W (æ) ∏ t or W 0(æ0) ∏ t
¢

∑P
°

Ap
" ∏ n

¢

+P (W (n) ∏ t )+P
°

W 0(n) ∏ t
¢

.

Since W (n) is equal in distribution to 2V (n) (underPp ), W 0(0) is equal in distribution
to 2U§

p and W 0(n)°W 0(0) is equal in distribution to 2V (n °1), we obtain

P (W (n) ∏ t )+P
°

W 0(n) ∏ t
¢

∑P
≥

U§
p ∏ t 0

¥

+2Pp
°

V (m +n) ∏ t/2° t 0
¢

.

Finally, since

P
°

√(t ) ∑ Ap
" +m

¢

∑P
°

√(t ) ∑ m +n
¢

+P
°

Ap
" ∏ n

¢

and P
°

√(t ) ∑ m +n
¢

= P(W (m +n) ∏ t ) = Pp (2V (m +n) ∏ t ) ∑ Pp (V (m +n) ∏ t/2° t 0),
gathering the previous inequalities gives the desired result. ⇤

C.3. Proof of Propositions 5.5 and 5.6. Let

Yp =
°

2V'̄(pt ),P '̄(pt ), . . . ,P '̄(pt )°[p±]
¢

and Ŷp =
≥

2V̂ §
p ,P̂ §

p ,P §
p (1), . . . ,P §

p ([p±])
¥

.

Then by definition of P
¬p
p and P

¬̂p
p , we have

Ep
£

f
°

Yp
¢§

= E¬p
p ±£°1

pt

£

f
°

d++d°,P0,P°1, . . . ,P°[p±]
¢§

and

E
£

f
°

Ŷp
¢§

= E¬̂p
p

£

f
°

d++d°,P0,P°1, . . . ,P°[p±]
¢§

and so for any n 2 N, t 0," 2 R+ and f : R+ £M [p±]+1 ! [0,1] measurable, Lemma C.4
gives

(C.2)
Ø

ØEp
£

f
°

Yp
¢§

°E
£

f
°

Ŷp
¢§

Ø

Ø∑P
≥

U§
p < "/2

¥

+P
≥

U§
p ∏ t 0

¥

+3Pp
°

V ([p±]+n) ∏ hp (pt )/2° t 0
¢

+2P
°

Ap
" ∏ n

¢

.

Let p !1, and assume for a moment that the previous upper bound vanishes by suit-
ably playing on the free parameters ", t 0 and n (after having taken the limit p !1): by
considering

f (v,∫0, . . . ,∫[p±]) = f (v/2,∫0)

with f :R+£M !R+ continuous bounded for Proposition 5.5, and f = g ±•[p±] with g :
R! R continuous and bounded for Proposition 5.6, this would give the desired result.
We now explain how to make the upper bound in (C.2) vanish.

First of all, note that hp (t ) ª pt as p !1: in the non-arithmetic case this is trivial,
while in the arithmetic case, this follows from the fact that supp hp <1 (which follows
from the assumption V §

p ) V §
1 with V §

1 arithmetic). Therefore, the weak triangular

law of large numbers implies that Pp
°

V ([p±]+n) ∏ hp (pt )/2° t 0
¢

! 0 as p ! 1, for
±< t/(2Ø§) and fixed n and t 0.



HEIGHT AND CONTOUR PROCESSES OF CRUMP-MODE-JAGERS FORESTS (I) 37

To deal with the other terms, define U§
1 and A1

" from V §
1 similarly as U§

p as Ap
" from

V §
p , respectively. Under conditions VP and V we have V̂ §

p ) V̂ §
1. Thus we obtain that

U§
p )U§

1 and so letting t 0 !1 after p !1, we obtain

(C.3)
Ø

ØEp
£

f
°

Yp
¢§

°E
£

f
°

Ŷp
¢§

Ø

Ø∑ limsup
p!1

P
≥

U§
p < "/2

¥

+2limsup
p!1

P
°

Ap
" ∏ n

¢

.

We further distinguish the arithmetic and non-arithmetic cases.

Arithmetic case. In this case, we have Ap
0 ) A1

0 and since U§
p ∏ 0, considering (C.3) with

"= 0 gives
limsup

p!1

Ø

ØEp
£

fp
°

Yp
¢§

°E
£

fp
°

Ŷp
¢§

Ø

Ø∑ 2P
°

A1
0 ∏ n

¢

.

Since A1
0 is almost surely finite, letting n !1 gives the result.

Non-arithmetic case. In this case, we have Ap
" ) A1

" for any "> 0 and since U§
1 is abso-

lutely continuous with respect to Lebesgue measure, (C.3) with "> 0 gives

limsup
p!1

Ø

ØEp
£

fp
°

Yp
¢§

°E
£

fp
°

Ŷp
¢§

Ø

Ø∑P
°

U§
1 < "/2

¢

+2P
°

A1
" ∏ n

¢

.

Since A1
" is almost surely finite (for " > 0) and U§

1 does not put mass at 0, letting first
n !1 and then "! 0 finally achieves the proof.
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!0 !1 !2 !3 !4 !5 !6 !7 !8 !9

FIGURE 1. Sequence of sticks used in the next figures: this sequence
corresponds to one chronological tree.
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n = 0 n = 1 n = 2 n = 3 n = 4

n = 5 n = 6

n = 10

FIGURE 2. Sequential construction of the chronological tree from the
sequence of sticks of Figure 1: as long as there is a stub availabe, we
graft the next stick at the highest one. At n = 10 the construction is
complete (there is no more stub available) and the next stick will there-
fore start the next tree in the forest.
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Chronological tree.

Associated chronological contour process C.

Associated chronological height processH.

FIGURE 3. Chronological height and contour processes associated to
the chronological tree constructed from the sequence of sticks of Fig-
ure 1.
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Genealogical tree associated with the chronological tree of the previous figure.

Associated genealogical contour process C .

Associated genealogical height process H .

Associated Lukasiewicz path S.

FIGURE 4. The genalogical tree of the chronological tree of the previ-
ous figure, together with the genealogical processes S, H and C . The
genealogical tree is obtained by applying the mapping G to the initial
sequence of sticks, which amounts to resizing all the sticks to unit size
and putting all the atoms at one. The (genealogical) height and con-
tour processes are then obtained as before, but from the genealogical
tree.
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!7

Y(2)±#7

Y(1)±#7

Chronological tree with the spine of the 7th individual in thick lines.

S7
0 = ( , )

Value of the spine process at time n = 7.

FIGURE 5. Illustration of the random variables Y(k) ±#n and of the
spine process Sn

0 : the figure presents these objects for n = 7. The
7th individual has two ancestors, so the spine process at time n is of
length 2 and is made, according to Proposition 2.4, of the two mea-
sures corresponding to the thick lines in this figure. The random vari-
able Y(1) ±#n = Sn

0 (2) records the part of the life of the first ancestor
that is currently or has not been visited yet,Y(2)±#n =Sn

0 (1) the part of
the life of the second ancestor that is currently or has not been visited
yet.
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n = 0 n = 1 n = 2 n = 3 n = 4

n = 5 n = 6

n = 10

FIGURE 6. Same construction as in Figure 2, but now with the spine
highlighted in thick line. This allows to differentiate three kinds of
atoms:

Cross: represents a stub and corresponds to an atom on the spine
whose subtree has not been explored yet;

Circle: represents an atom on the spine whose subtree is being ex-
plored;

Square: represents an atom whose subtree has been explored and
that is no longer on the spine.
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S0
0 = ( ) S1

0 = ( ) S2
0 = ( , ) S3

0 = ( , , )

S4
0 = ( , ) S5

0 = ( ) S6
0 = ( , ) S7

0 = ( , )

FIGURE 7. Evolution of the spine process for n = 0, . . . ,6. At each time,
the sequence of sticks (for instance, making up S4

0) is made up of the
thick lines, together with their atoms, of Figure 6, and so Sn

0 indeed
encodes the spine of n.
This sequence can also be obtained by iteration of the dynamic (2.1)
to the initial sequence of sticks of Figure 1: each time, either we add a
new stick, or if the next stick has no atom, we remove the highest stub
of the current last stick (possibly iteratively, thereby removing several
sticks at once).
In the classical exploration process of Le Gall and Le Jan, one only
counts the number of stubs (minus one, since we know that there
must be at least one): one does not need to record their positions since
they are all at the deterministic location one.
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n

T (1)±#n

ª(1)±#n

FIGURE 8. The n °T (k) ±#n are n’s ancestors. To compute the con-
tribution of the kth ancestor to the spine of n, i.e., to compute
Sn

0 (H (n)°k) =Y(k)±#n , we do as follows:

• look at the Lukasiewicz path backward in time from n and stop
at the kth record time T (k)±#n ;

• in the construction of the chronological tree, this time corre-
sponds to the addition of the stick PT (k)°1 ±#n ;

• the overshoot (for the process forward in time) ª(k) ±#n rep-
resents the number of children of the kth ancestor of n that
have already been explored;

• thus, the remaining contribution of this ancestor to the spine
is obtained by deleting this number of atoms from PT (k)°1 ±
#n .
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`

ø` ±#n

≥` ±#n

D2(S5
0)

º(µ2)±#5

FIGURE 9. Two graphical representations when ø` ±#n ∑ n of the ran-
dom variable D`(Sn

0 ) defined in (5.2). The `th stub on the spine of
n belongs to the ancestor, say Æ, corresponding to the jump at time
n °ø` ±#n . Thus to compute the distance of the `th stub to the end of
the spine, one needs to:

(1) add up the lengths of the first ø` ±#n sticks on the spine pro-
cess, which is what the sum (

P

i :0<T (i )∑ø`Y(i ))±#n does;
(2) this brings us to the bottom of Æ’s stick, and so we need to

compensate for the stubs of Æ that have already been ex-
plored: there are ≥`±# such stubs, and so we need to add back
A≥` (Pø`°1)±# which is exactly the term º(µ`)±#n .


