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a b s t r a c t

The ply to ply interlock fabric preform enables to manufacture, by R.T.M. process, thick composite parts

that are resistant to delamination and cracking. Numerical simulation of interlock reinforcement forming

allows to determine conditions for feasibility of the process and above all to know the position of fibres in

the final composite part. For this forming simulation, specific hexahedral finite elements made of seg-

ment yarns are proposed. Position of each yarn segment within the element is taken into account. This

avoids determination of a homogenized equivalent continuous law that would be very difficult consider-

ing the complexity of the weaving. Transverse properties of fabric are taken into account within a hyp-

oelastic constitutive law. A set of 3D interlock fabric forming simulations shows the efficiency of the

proposed approach.

1. Introduction

1.1. Layer interlock weaves

Laminated composites with 2D layered reinforcements have

been used with outstanding success for several decades in aircraft

[1,2], high performance automotive [3] maritime craft [4] and civil

engineering [5,6]. Nevertheless the use of these laminated compos-

ites is restricted by manufacturing problems and some inferior

mechanical properties. When the thickness of a composite part is

large, the high labour requirement in manual lay up of plies can

be expensive. In addition, achievement of complex shapes often

needs to build them from several laminated parts that must be

joined. Application of 2D laminated composites has been restricted

by their low resistance to delamination cracking due to their poor

interlaminar fracture toughness. This possible brittle fracture is

unacceptable in some critical parts, especially in aerospace appli-

cations. In order to overcome these difficulties, composites with

3D fibre architecture have been proposed. Among these 3D fibre

architectures, the ply to ply interlock fabric is one of the most

interesting [7–10]. The basic architecture of an interlock fabric is

shown in Fig. 1. Two layers of weft yarns are joined by the weaving

of the warp yarns. Consequently, all the yarns through the thick-

ness are joined by the weaving. The resulting material is 3D with

no third yarn set in the transverse direction but the properties

through the thickness are much improved. Above all, the possible

delaminations of the 2D laminated composites are overcome.

If Fig. 1 shows the basic architecture of layer interlock weaves,

the recent advances in the field of computer controlled Jacquard

looms allow to obtain much more complicated interlock weavings.

The path of warp yarns around weft yarns can be non-periodic; the

sections of the yarns can be different in various places of the rein-

forcement. Finally the number of weft yarns can vary along the

part. The resulting preform is a complex 3D assembly of yarns such

as shown in the example diagram Fig. 2. These complex architec-

tures of interlock fabrics have great benefits. First thickness of

the preform can be large (up to 100 mm) (Example in Fig. 3). Above

all, design of the weaving can be optimized in order to obtain opti-

mal mechanical properties. The architecture of the weaving can be

changed to reduce damage in a critical area of the structure. These

advantages added to the fact that interlock fabrics are damage tol-

erant due to the resistance offered by interlacing tows to crack

propagation, lead to use this technology for some aeronautical

applications such as aero engine fan blades (see Fig. 4).

1.2. R.T.M. Process. Objective of the current work

From the interlock fabric preform, composite parts are obtained

by R.T.M. process (Resin Transfer Moulding) [11–13]. This process

is composed of two main stages (Fig. 5). First, the interlock fabric is

formed in order to obtain the geometry of the final part that can be

complex (for instance in Fig. 4). In particular when this geometry is

double curved, shear strains are necessary to reach the shape.

Analysis and simulation of this preforming stage in case of the

interlock 3D reinforcements is the purpose of this present paper.

Subsequently, resin (usually thermoset) is injected within porous

fibrous reinforcement. The composite structure obtained is this

way can be thick, without layer stacking and with complex shapes.
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They have improved mechanical properties especially resistance to

crack propagation. Furthermore the finishing is good.

Preforming stage has important consequences on the following.

First it conditions injection stage. Strains change the permeability

of the interlock fabric. Shear strains tend to ‘‘close” channels of

the flow and compression of the reinforcement in the mould are

necessary to avoid flows between the fabric and the tools and to

set prescribed thickness of the part. Above all, preforming stage

determines the position of yarns in the final composite part. This

position and especially direction of fibers plays a predominant role

in the mechanical properties of the composite structure. It must be

taken very accurately into account in structural analyses (rigidity,

damage, fracture, vibrations. . ..) that must be performed on the

composite part especially if it is a critical structure. Thus simula-

tion of the preforming stage has two main goals:

– Determine if the preforming process is possible or what are

the manufacturing conditions that make it possible. In particu-

lar, strains of the reinforcement must not exceed some limits.

Angle variations between warp and weft yarns are limited

(30–50° depending on the reinforcement). Tensile strain of

yarns must remain very small. All strains and especially com-

pressive strain must insure that there is no local or global

buckling.

– Provide fiber directions and densities after the preforming in

order to be able to simulate resin injection and structural

behaviour of the final composite part.

The objective of this present paper is to propose a simulation

method for 3D interlock fabric forming. The different methods pro-

posed for draping simulations of thin fabrics (2D) [14–18] cannot

be used in this 3D problem. The proposed simulation method is

based on a specific hexahedral finite element that is composed of

yarns segments. Position of each yarn is taken into account in

accordance with the geometry obtained after the weaving process.

Tensile rigidities of yarns lead to the main part of the element stiff-

ness. Beside this stiffness, the other rigidities of the interlock pre-

form due to transverse properties of the yarns and frictions are

second-order. Nevertheless they can be important especially in

the direction where a deformation can occur without yarn stretch-

ing. These rigidities are supposed to be those of an isotropic hypo-

elastic material. A set of elementary tests (bias test and picture

frame test) and of forming processes shows the efficiency of the

proposed approach.

1.3. Notations

Tensors are denoted by underlined letter (X is a first order ten-

sor, X is a second-order tensor. . .). Matrices of components in the

basic frame are denoted by a bold letter X. When necessary, the ba-

sis is specified as ½X�ei . Time derivative of X is denoted X
�

¼ dX
dt

and

X
��

¼ d2X
dt2

.

Fig. 3. Large thickness preform.

Fig. 4. Plane motor blade (Courtesy of Snecma, Groupe Safran).

Fig. 1. Basic architecture of an interlock fabric.

Fig. 2. Example of complex layer interlock weave.



2. Interlock fabrics preforming simulation

2.1. The problem to solve and the different possible approaches

The interlock fabrics under consideration are those presented in

Fig. 2. The preform is thick and the mechanical problem is 3D. The

position of yarns is arbitrary and generally there is no periodicity.

On the other hand, position of each yarn is known and can be pre-

cisely given after the weaving process.

As for all textile reinforcement forming simulation, the multi-

scale nature of the reinforcement allows us to consider a continu-

ous or a discrete approach for the simulation [19]. The textile

reinforcement is not strictly continuous because some sliding oc-

curs between fibres and yarns when the fabric is strained. Never-

theless, a continuous material superimposed on the fibrous

material can be postulated. Such approaches are numerous for

the composite reinforcement [15–17,20–22]. If these models can

easily be implemented in standard finite elements, identification

of the homogenized material parameters remains a difficult and

open problem because finite strains and fiber orientations update

must be taken into account. Furthermore, in the present case of

complex interlock fabrics (Fig. 2), there is no periodicity and the

homogenized material should be determined at each point of the

reinforcement.

The opposite approach is to see the fibrous reinforcement as a

set of elements at lower scales, such as the yarns, woven cells, fi-

bers, etc. The FE analysis is then concerned with those elements

that are in contact or are linked by springs [23–30]. The advantage

over the continuous approach is that description of internal struc-

ture of the reinforcement naturally accounts for some aspects of

the material, such as directions of fibers and contact between fi-

bers. Nevertheless, it is difficult to define models that are efficient

enough at mesoscale but simple enough to be able to analyze a

forming process. In the case of 3D interlock weave preforming sim-

ulations, a discrete approach would need finite element modeling

of each yarn. The kinematics of each tow should describe the trans-

verse section crushing. Furthermore the contact with all neigh-

bouring yarns should be taken into account. Considering the

number of yarns in a preform, such a finite element analysis can

be hardly foreseen today within large deformations. (There may

be 10 thousands of yarns in a complex preform).

The proposed approach that is described below is a compromise

between continuous and discrete approaches [18,19]. It associates

a 3D finite element approximation to a discrete description of

yarns within the element. It uses exact initial position of yarns

within the preform that is known after the weaving, does not need

a homogenized mechanical behaviour and requires a reasonable

number of 3D finite elements from a computational point of view.

2.2. Specific dynamic equation. Explicit scheme

Mechanical behaviour of the structure realized with layer inter-

lock weaves is very specific. Stiffness of a yarn made of a very large

number of small continuous fibres (usually 3 K to 48 K fibres) is

mainly a tensile rigidity in the direction tangent to the yarn.

Accounting for the very small fibre diameter (5 lm to 20 lm for

carbon aramid or glass fibres) and for possible relative motions be-

tween fibres and yarns, bending stiffness, but also transverse com-

pression and shear rigidities are small in comparison to tensile

stiffness. Deformation of the interlock fabric during the preforming

process is mainly led by yarns under tension. The other rigidities

and corresponding strain energies only play a second-order role.

This must be nevertheless moderated because in some directions,

stiffness due to yarn tensions can be negligible and in this case

other rigidities play a major role.

Within the virtual work principle, the internal virtual work of

tension W t
int and the other internal virtual works Wo

int are

distinguished:

W t
intðgÞ þWo

intðgÞ ÿWextðgÞ ¼ ÿWaccðgÞ ð1Þ

"g a virtual displacement field such as g = 0 on the boundary with

prescribed displacements. Wext and Wacc are the virtual works due

to exterior loads and acceleration quantities. Because the forming

is mainly led by yarns in tension accounting for their rigidities that

are much larger than others, the modelling effort will mainly con-

cern the tension part W t
int. In this term the complete geometry of

each yarn will be taken into account. The second-order term Wo
int

may be described in a more simple way. In the present work, a sim-

ple form will be considered for this part in order to render identifi-

cations of material data simpler and because complexity of the

interlock preform is included in the tension term.

Although most forming process are quasi-static, majority of

codes (and especially commercial ones) for material forming sim-

ulations are based on explicit dynamic approaches [19,32,33] that

have proved to be numerically more efficient than implicit ones.

This explicit approach will be used in the present work. It will be

checked that dynamic effects are small enough not to modify re-

sults of simulation.

Within a finite element approximation, the dynamic Eq. (1)

written in the set of degrees of freedom leads to:

M€un ¼ Fext ÿ Fint ð2Þ

with WaccðgÞ ¼ g
T
nM€un WextðgÞ ¼ g

T
nFext ð3Þ

W t
intðgÞ þW0

intðgÞ ¼ g
T
nFint ¼ g

T
n Ft

int þ Fo
int

ÿ �

ð4Þ

un and gn are single column matrix of nodal displacement and vir-

tual displacement components. M is the mass matrix, Fext and Fint

Fig. 5. The two main steps of R.T.M process (a) forming of the fibrous part; (b) resin injection and polymerisation and (c) final composite part.



are single column matrix of components of the exterior and interior

nodal loads. Fext is given by the exterior loads on the structure.

On a time step Dti, from ti to ti+1, the central difference scheme

gets the solution uiþ1
n from ui

n by:

uiþ1
n ¼ ui

n þ _uiþ1=2
n Dti ð5Þ

_uiþ1=2
n ¼ _uiÿ1=2

n þ
1

2
ðDtiÿ1 þ DtiÞ€ui

n ð6Þ

€ui
n ¼ Mÿ1

D ðFi
ext ÿ Fi

intÞ ð7Þ

MD is the lumped mass matrix [34]. The time step size has to

ensure stability condition of the integration scheme, accounting

for element size and material data [31].

Definition of the specific finite element for interlock fabric

forming will consist in giving expression of the interior loads vec-

tors due to tension stiffnesses Ft
int and to other rigidities Fo

int in or-

der to apply the explicit scheme (5)–(7).

3. Specific hexahedral finite element

3.1. Nodal loads due to tensions in yarns

3.1.1. Finite element containing fibrous yarns

The 3D interlock woven preform is meshed in a set of 3D finite

elements such as the one shown in Fig. 6. Yarn segments are cross-

ing the hexahedral element. The interpolation functions of the ele-

ment are the classical tri-linear functions of the height node

hexahedral finite element. In order to be consistent with this inter-

polation, the yarn segments are straight. This assumption and its

consequences will be discussed below (Section 3.1.3). The finite

element is Lagrangian (as it is standard in solid mechanics). Mate-

rial in an element is constant during the deformation and positions

of yarn in the reference frame of the element (i.e. in the material

frame) are constant. Knowledge of these positions is an important

data of the problem and influence stiffness and damage properties

[35]. After the weaving, the position of each yarn in the preform is

known and consequently determines the position of yarn segments

in the element when the preform is meshed in 3D finite elements.

In practice, the weaver can provide a record of yarn position that it

needs for the weaving process.

3.1.2. Tensile nodal loads

hp
1 is the unit vector in the direction of the number p yarn. The

tension vector in the yarn p is defined as follows:

Tp ¼

Z

SP
rp

11dSh
p
1 ð8Þ

where rp
11 ¼ hp

1:ðr
P � hp

1Þ is the axial component of the Cauchy stress

in the direction of the yarn p and Sp is the section of the yarn p. The

virtual internal work due to tension of the yarn segment p is:

W tp
intðgÞ ¼

Z

Lp
TP

epðgÞdL ð9Þ

Lp is the length of the yarn segment number p and

epðgÞ ¼ hp
1:ðr

SðgÞ:hp
1Þ is the component of the symmetrical gradient

of the virtual displacement g in the direction of the yarn. For the

number e element:

W te
intðgÞ ¼

X

nye

p¼1

Z

Lp
TP

epðgÞdL ¼ g
eT
n Fte

int ð10Þ

where nye is the number of yarn segments in the element e and Fte
int

is the single column matrix of elementary tensile nodal loads.

The global tensile nodal loads Ft
int of Eq. (4) is the assembly of

Fte
int on all elements.

The virtual strain ep(g) will now be expressed as a function of

nodal virtual displacements in order to determine Fte
int. Derivatives

of the position x of a point within the finite element relatively to

natural coordinates in the reference element (n1, n2, n3) 2 [ÿ1, 1]3

or material coordinates define the covariant material vectors:

gi ¼
ox

oni
i ¼ 1 to 3 ð11Þ

The corresponding contravariant vectors gi are such as

gi � gj ¼ dij. The vector hp
1 is known for each yarn segment p and

its components in the frame defined by the covariant vector gi
are denoted ap

i :

hp
1 ¼

X

3

i¼1

ap
i gi ap

i ¼ hp
1 � g

i ð12Þ

The interpolation functions of the eight node hexahedral ele-

ment are the standard tri-linear functions:

Nkðn1; n2; n3Þ ¼
1

8
ð1� n1Þð1� n2Þð1� n3Þ ð13Þ

The element is isoparametric: displacement and position of a

point M within the element are interpolated in function of nodal

quantities:

uðMÞ ¼
X

8

k¼1

Nkðn1; n2; n3Þuk uðMÞ ¼ Nue
n ð14Þ

xðMÞ ¼
X

8

k¼1

Nkðn1; n2; n3Þxk xðMÞ ¼ Nxe
n ð15Þ

The covariant vectors gi depend on nodal positions:

gi ¼
X

8

k¼1

oNk

oni
xk in a matrix form gi ¼ Gix

e
n ð16Þ

The components of the symmetrical displacement gradient are

function of the covariant vectors:

rSðgÞ ¼
1

2

og

onj
� gi þ

og

oni
� gj

� �

gi 
 gj ¼ �eijðgÞg
i 
 gj ð17Þ

i:e: �eijðgÞ ¼ Bijg
e
n ð18Þ

Fig. 6. Height node hexahedral finite element containing fibrous yarns (a) Initial and (b) Deformed.



where the single line Bij matrix is:

Bij ¼
1

2
xeT
n GT

j Gi þ GT
i Gj

� �

ð19Þ

For the yarn segment number p, the virtual strain in the yarn

direction hp
1 is:

epðgÞ ¼ hp
1: rSðgÞ � hp

1

� �

¼ �eijðgÞ gi � hp
1

� �

gj � hp
1

� �

ð20Þ

epðgÞ ¼ ap
i a

p
j Bijg

e
n ð21Þ

The elementary tensile nodal load is given by:

Fte
int ¼

X

nye

p¼1

Z

Lp
TPap

i a
p
j B

T
ijdL ð22Þ

and eventually, taking the into account Eq. (19),

ap
i a

p
j Bij ¼

1
2

ap
i a

p
j x

eT
n GT

j

� �

Gi þ ap
i a

p
j x

eT
n GT

i

� �

Gj

� �

¼ ap
i x

eT
n GT

i

� �

ap
j Gj

� �

¼ h
pT ap

j Gj

� � ð23Þ

and Eq. (22) becomes,

Fte
int ¼

X

nye

p¼1

Z

Lp
TPap

i G
T
i h

p
dL ð24Þ

3.1.3. Yarn tension update

The explicit scheme (5)–(7) gives nodal displacement and

velocity fields at time ti+1. The value of the tension in the yarn

Tp i+1 at time ti+1 must be computed, in particular in order to pre-

form the next time step. In each yarn segment of the element e:

Tp iþ1 ¼ Tp i þ DTp ð25Þ

with

DTp ¼ Cp i L
p iþ1 ÿ Lp i

Lp i
ð26Þ

Cp is the tensile stiffness of the yarn. If Cp is constant during the

preforming, then:

Tp iþ1 ¼ Cp

Z tiþ1

0

dL

L
¼ CpLog

Lp iþ1

Lp0
ð27Þ

In this case, the tensile law relates tension to the logarithmic

strain in the yarn direction.

3.2. Nodal loads due to other rigidities

3.2.1. Rate constitutive equations

Main part of mechanical behaviour of the interlock preform

during the forming process is due to tensile stiffness of yarns. Nev-

ertheless other aspects such as transverse compression rigidity of

yarns, friction between yarns and fibres add some stiffness to the

preform. These rigidities are second-order in comparison with ten-

sile rigidities of yarns; still, they can be important, especially in the

directions in which tensile stiffness of yarns does not generate a

rigidity of the preform. In particular, that is the case for global

transverse compression of the preform and some shear strains.

Geometrical and physical descriptions of yarns, fibres, interfaces

concerned in these rigidities are very complex. Since it is about

second-order rigidities, their modelling has to be simple. Complex-

ity of the preform has been taken into account in the principal part

of rigidity due to tensile stiffness of yarns. Consequently it is as-

sumed that second rate rigidities can be modelled by those of an

isotropic hypoelastic material. These constitutive models (also

called rate constitutive equations) are widely used in F.E. codes

to model isotropic mechanical behaviour of continuous material

at large strain [32,33,37,38]. They can conveniently be extended

to plasticity [33,39,40] (This point will be briefly discussed in Sec-

tion 3.2.2).

An objective derivative of Cauchy stress r
or is calculated from

the strain rate D:

ror ¼ Co
: D ð28Þ

In the same way as in Eqs. (1) and (4), the superscript o refers to

properties of the preform that are complementary to those due to

yarn tensile properties. Co is an isotropic elastic tensor. Objective

derivative is a derivative for an observer who is fixed in the rotated

frame that is following as much as possible material during defor-

mation. In the present work objective derivative is Jaumann’s one

[41]:

ror ¼ Q :
d

dt
Q T :ro:Q

� �

� �

:Q T ¼ ro
�

þro:XÿX:ro ð29Þ

Q is the rotation of the corotational (or spinless) frame which

corresponds to the material spin:

X ¼
1

2
ru

�
ÿru

� T
� �

¼ Q
�

:Q T ð30Þ

At the end ti+1 of the time step, the mid-rule integration scheme

of Hughes and Winget [36] gives the stress at ti+1 from the strain

increment:

½ro nþ1�enþ1
i

¼ ½ro n�en
i
þ ½Co nþ1=2�

e
nþ1=2

i

½De�
e
nþ1=2

i

ð31Þ

The orthonormal frame ei is the local frame rotated by Q.

De ¼ Dnþ1=2
Dt ¼ Bðue

nÞ
�

nþ1=2Dt ð32Þ

where B is the standard strain interpolation matrix of the 8 node

hexahedral element.

From stress, the internal nodal loads Fo
int of Eq. (4) are obtained

as assembly on the preform of the elementary nodal load vectors

Foe
int such as:

Foe
int ¼

Z

Ve
BT

r
odV ð33Þ

A reduced integration (i.e. a single Gauss point at the centre of

the hexahedral element) is used to compute this integral.

3.2.2. Plasticity

An advantage of splitting the strain energy into two parts (4) is

to allow to consider an elastic behaviour for yarn tensions and an

elasto-plastic behaviour for other rigidities. Actually, during the

forming of the interlock fabric, yarns stretching are small and have

an elastic behaviour. Forming simulation allows to check that yarn

extensions do not exceed the tension fracture limit. For the other

parts of mechanical behaviour, there are generally permanent

strains especially for global transverse compression and shear of

the preform. These permanent deformations are due to friction be-

tween fibres and mechanical behaviour can be modelled by elasto-

plastic models.

The main benefit of the hypoelastic models such as presented in

Section 3.2.1 is that they are suitable for extension to plasticity

(28) can be extended to:

r
or ¼ Co

: Dÿ DP
� �

with DP ¼ k
� of

or
ð34Þ

DP is the plastic stain rate, f is the yield function and k
�

the plastic

multiplier. Efficient prediction-correction algorithms such as the

so-called ‘‘radial return” method have been developed to compute

Cauchy stress from strain increment [33,39,42]. Identification of

yield function in the case of interlock fabrics will be presented in



a future work. In the examples presented below, the behaviour is

assumed to be elastic and the final state under consideration in

the simulation of the forming process corresponds to the end of

the tool displacement.

4. Simulations of standard tests

4.1. Tension, pure shear and simple shear elementary tests

Several elementary tests (Fig. 7) have been performed to vali-

date ourmethod for taking into account yarns tension contribution:

elements in tension, simple shear and pure shear. Error between

simulated and analytical solution has been calculatedwith imposed

displacements (Fig. 7e) or loads (Fig. 7f) for different yarns orienta-

tion in the element: yarns in direction x, y, z, and combined. The

theoretical solution has been established considering an elastic

relation between Cauchy stress and Hencky strain. Then, it has been

checked that all unstretched yarns remain with a tension equal to

zero, especially for transverse yarns in tension tests and for pure

shear test. The results (Fig. 7) are sufficiently accurate to validate

both method and implementation of a finite element able to take

into account tension contribution of a discrete weaving of yarns.

4.2. Bias test

After those elementary tests, standard tests used for fabric rein-

forcement shear characterization have been simulated. The bias

test is a traction test on a sample oriented at 45°. It is much used

and analyzed for the determination of composite reinforcement

mechanical behaviour [17,43–48]. At the beginning of the test,

yarns make a 45° angle with the deformation direction. This kine-

matics implies seven areas with three different behaviours; two

are unsheared, one is sheared and the four others are half sheared

(Fig. 8a–b). In those kinds of loadings, parameters that give stiff-

ness are Young modulus and Poisson ratio from the hypoelastic

model. Numerical simulation of a 3D woven specimen gives a

deformation very close from the real test, and simulated behaviour

compared with the measured one shows a good accuracy of the

hypoelastic model especially knowing that it represents second-or-

der terms. This test allows to validate the shearing contribution of

our model.

5. 3D interlock fabric forming simulations

5.1. Hemispherical deep drawing

Deep drawing simulations for 3D interlock fabrics have been

performed. Fibre orientations clearly drive deformation as shown

in Fig. 9, for two different orientations of yarns. This test have been

intensively studied in the case of thin fabric reinforcements

[23,49]. The simulation gives after forming the position of each

yarn in the preform (Fig. 9b). This is important for further resin

flow simulation and finite element analysis of the final composite

part.

Fig. 7. Elementary tests (a) tension; (b) tension disoriented yarns; (c) simple shear; (d) pure shear; (e) error: imposed displacements and (f) error: imposed loads.



Fig. 8. Bias test (a) computed deformed shape; (b) bias test experiments; (c) computed load versus displacement and (d) measured load versus displacement.

Fig. 9. Hemispherical deep drawing of a thick interlock preform (a) fibers orientation: +0° +90° and (b) fibers orientation: +45° ÿ45°.



5.2. Forming of a twisted plate

The objective of this model is to simulate forming of complex

parts like motor blades with complex deformations, combination

of shearing and twisting, and with varying thickness. A twisted

plate forming simulation is performed as shown in Fig. 10. Compar-

isons with experimental 3D interlock forming are now in progress.

The simulation gives the conditions for the feasibility of the forming

process and above all, the position of fibers in the final part. These

positions are essential for further structural computation.

6. Conclusions

A hexahedral finite element made of yarn segments has been

proposed for the simulation of 3D interlock fabric forming. The po-

sition of each yarn within the finite element is taken into account.

The rigidities due to transverse properties of the yarns are second-

ary. They are taken into account within a rate constitutive equa-

tion. These transverse phenomena are generally irreversible

while the yarn tensile strains are elastic. The hypo-elasticity used

to model the transverse properties can be conveniently extended

to elasto-plasticity. The identification of the yield function in the

case of interlock fabrics will be the next step of this work.
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