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SUMMARY

The extended finite element method (X-FEM) has proven to be an accurate, robust method for solving
problems in fracture mechanics. X-FEM has typically been used with elements using linear basis functions,
although some work has been performed using quadratics. In the current work, the X-FEM formulation
is incorporated into isogeometric analysis to obtain solutions with higher order convergence rates for
problems in linear fracture mechanics. In comparison with X-FEM with conventional finite elements of
equal degree, the NURBS-based isogeometric analysis gives equal asymptotic convergence rates and equal
accuracy with fewer degrees of freedom (DOF). Results for linear through quartic NURBS basis functions
are presented for a multiplicity of one or a multiplicity equal the degree. Copyright q 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Dynamic crack propagation is a major challenge for structural analysis due to the singularity

at the crack tip, and the propagation of a crack adds the challenge of modifying a Lagrangian

mesh to accommodate the evolving geometry. Several numerical methods have been developed

during the past decade to address these issues, and most build on the classical finite element

method (FEM). Arbitrary Lagrangian–Eulerian formulations [1] and re-meshing [2] are standard

approaches to extending FEM to a dynamically changing domain. Both the methods are time

consuming and complicated because of the necessity to go back to the geometry definition in one

case and because of the convection step in the other. One alternative to re-meshing is the use of

meshless methods [3–5]. Another is the extended FEM (X-FEM) [6, 7] which allows modeling

cracks with an incompatible mesh through the introduction of discontinuous-enrichment functions

[7]. Coupled with the level set method, X-FEM provides a mean for propagating cracks without

remeshing [8]. Optimal convergence rates are obtained by introducing tip-enrichment functions

from the asymptotic crack tip displacement field [9]. The accuracy of the stress-intensity factor

can also be improved by combining a meshfree formulation with the crack tip enrichment [10].

Non-uniform rational B-splines (NURBS) are widely used in computer aided design (CAD)

because of their ability to exactly represent complex geometries. Isogeometric analysis uses the

same functions for analysis [11], eliminating the traditional intermediate step of mesh generation

for FEM. This bridge between CAD and numerical simulation permits an exact description of the
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geometry even on coarse meshes. The solution refinement procedure, analogous to adaptivity (h

and p-refinement methods), is enhanced as well with the introduction of k-refinement [11]. NURBS

basis functions avoid dealing with the geometrical approximations of classical finite element (FE)

meshes. They also possess the higher order continuity required for a rotation-free shell formulation

[12], permit explicit time integration with higher order elements without the usual FEM stable

time step size penalty [13], and generally add robustness to the computations [14]. NURBS are

attractive in various fields of mechanics, from turbulence and fluid–structure interaction [15–17]

to incompressible problems [18] or digital image correlation [19].

In this paper we propose an isogeometric formulation using NURBS basis functions that are

enriched via X-FEM to solve linear fracture mechanics problem with incompatible meshes. Section

1 briefly reviews the isogeometric and X-FEM concepts. The reference problem is described

in Section 2 along with two methods for accurately imposing the boundary conditions with

the NURBS basis functions and the crack-enrichment functions. Convergence is verified for the

imposed Dirichlet conditions. The X-FEM formulation with strongly discontinuous enrichment

functions and NURBS is described in Section 3; different support options for the enrichment are

tested and a solution is outlined concerning the choice of this support. A singular enrichment is

introduced in Section 4 from the theoretical asymptotic solution from mode I linear fracture, and

different compatibility techniques are discussed. The proposed method reaches optimal conver-

gence for linear through quartic NURBS shape functions with a multiplicity of 1 or equals to

the degree, and the NURBS functions are more accurate in terms of DOF compared with the FE

basis functions. Some conclusions and perspectives are given in Section 5. Finally, the generalized

element formulation [13] used to investigate the solutions and perform the computations is briefly

described in the Appendix.

1.1. Non uniform rational B-Splines (NURBS)

The classical FEM builds a continuous approximation from the interpolation of a set of nodal

values as illustrated by Equation (1), where s is a coordinate in the parametric space, NA is the

Lagrange or serendipity basis function associated with node A, and xA are the nodal coordinates;

N are all the indices of the basis functions on the computational mesh:

x(s, t)=
∑
A∈N

NA(s)xA(t) (1)

This contribution to x will be called the classical part of the approximation in the remainder of

the paper regardless of whether Lagrangian polynomials or NURBS are used.

Because of the partition of unity and the Kronecker-delta property in Equation (2), the approx-

imate field interpolates the nodes: x(sA)=xA:

NA(s
B )=dAB (2)

The boundary conditions are therefore easy to impose because each node is located in the problem

domain. The nodes are directly driven with a displacement equal to the desired displacement field

(depending only on the position of the node) to impose Dirichlet boundary conditions.

In this paper, we consider a set of basis functions widely used in CAD, and recently introduced

for computational mechanics [11], called NURBS. Some examples of NURBS basis functions

are presented in Figure 1 for 5 elements with various orders of multiplicity in the knot vector.

The term element deserves here a clarification; in the classical FEM, each element refers to a

single ‘parent element’ or ‘reference element’ with its own parametric variables in [−1,1] or

[0,1] depending on the kind of element considered. An integration strategy is then defined and

applied for each element. With NURBS, the definition of an element describes as well the unique

integration strategy (when a discontinuity is not present), but the notion of parent element no

longer exists. However, with NURBS, the elements are intimately linked to the knot vector as

they are defined as the interval between two distinct adjacent knot values. In Figure 1, the basis

functions related to 5 elements are illustrated. When the multiplicity equals the degree in Figures

1(a) and (c), a pattern can be determined as in the FEM, but in Figures 1(b) and (d), if the number



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
(c) (d)

(a) (b)

Figure 1. One-dimensional basis functions for 5 elements on the parametric domain. (a)
N= [0,0, .2, .4, .6, .8,1,1] degree 1, multiplicity equal to 1; (b) N= [0,0,0, .2, .4, .6, .8,1,1,1] degree 2,
multiplicity equal to 1; (c) N= [0,0,0, .2, .2, .4, .4, .6, .6, .8, .8,1,1,1] degree 2, multiplicity equal to 2;

(d) N= [0,0,0,0, .2, .2, .4, .4, .6, .6, .8, .8,1,1,1,1] degree 3, multiplicity equal to 2.

of basis functions still equals the degree plus one, a single ‘parent elements’ cannot be extracted.

The main advantages of these basis functions are:

• Their use in CAD shortens the design-to-analysis process by reducing or eliminating the mesh

generation time, the most time-consuming step in the FE analysis.

• The ability to exactly represent basic geometries like circles even with coarse meshes.

• The higher order continuity of the basis functions, which is generally C p−1 where p is the

degree of the basis function. For example, quadratic NURBS are C1 continuous across the

mesh.

An approximate solution can then be constructed using these basis functions:

x(s, t)=
∑
A∈N

NA(s)qA(t) (3)

NURBS do not fulfill the Kronecker-delta property in Equation (2), and therefore the control

points are no longer called nodes because they generally are not points in the problem domain,

and the location of a control point is denoted by q to emphasize this property. Using open knot

vectors ensures the Kronecker-delta property in the extremum points which simplify the imposition
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Figure 2. Bivariate, degree 2 NURBS basis functions for 5×5 elements and a knot vector:
N×H= [0,0,0, .2, .4, .6, .8,1,1,1]×[0,0,0, .2, .4, .6, .8,1,1,1].

of boundary conditions in most cases. The parametrization is defined via the knot vector and the

multiplicity of each knot value may change locally, and therefore alter locally the continuity of the

approximation. In general, for NURBS of degree p with a multiplicity of n at knots, the derivatives

are continuous up to order p−n. Examples in Figures 1(a) and (c) illustrate that when the knot

multiplicity equals the degree of the basis functions that C0 interfaces are introduced between the

elements. In this particular case, the NURBS basis functions are close to the Lagrange polynomial

basis functions classically used in the FEM because the control points interpolate the solution

on the sides (or the corners) of the elements and span the same approximation space within the

elements. This particular knot vector with a uniform knot multiplicity that equals the degree will

be called FE solution while the NURBS solution will refer to a multiplicity of 1 in the knot vector.

The two-dimensional span of the basis functions, generated from an outer product, is illustrated

in Figure 2 for 5×5 quadratic elements.

1.2. The extended finite element method (X-FEM)

The accuracy of the FEM for singular problems may be increased, and its convergence rate

improved, by adding additional basis functions to the solution space provided they satisfy the

requirements set forth by the partition of unity method (PUM) [20]. In practice, the classical

solution (Equation (1) for FE and (3) for NURBS) is usually enhanced with a set of enrichment

functions motivated by the form of the analytical solution for a model problem. The analytical

function /, for example, may be introduced in Equation (4) using a set of basis functions Ñ

to build a partition of unity. The enrichment can be restricted to a specific area with X-FEM

[6, 7] to improve efficiency. In general, the Ñ basis functions are different from the ones used

for the classical solution. For higher order basis functions, a linear Ñ may be preferred [21, 22].

The indices of the basis functions used for the enrichment are denoted as S and x̃ are the (few)

additional DOF associated with them:

x(s, t)=
∑
A∈N

NA(s)xA(t)+/(s)
∑

A′∈S
ÑA′ (s)̃xA′ (t) (4)

The analytical field / can take many forms, and the range of application for X-FEM is wide,

ranging from crack growth simulations without re-meshing [6] to contact problems in multi-material



arbitrary Lagrangian Eulerian formulations [23]. Typical enrichment functions used in X-FEM are:

• The Heaviside function H , defined in Equation (23), was used in [24] for meshless methods.

This step function introduces a strong discontinuity in the solution, and permits cracks incom-

patible with the mesh. We will use this enrichment in Section 3 with NURBS.

• The distance function that introduces a weak discontinuity in the displacement for multi-

material problems with discontinuous material properties and shear band formation.

• The singular asymptotic field near the tip of a crack, Equation (11). This enrichment will be

used in Section 4 for mode I linear fracture analysis.

An detailed review of the X-FEM method can be found in [25].

1.3. X-FEM with NURBS

NURBS are particularly suitable for problems with smooth solutions because of their higher

order continuity. By introducing X-FEM enrichment functions, the advantages of X-FEM and

isogeometric analysis are combined: complex geometries are represented exactly and accurate

solutions are obtained for discontinuous or singular problems with only a few additional DOF.

Using the NURBS basis functions and the corresponding control points with X-FEM gives

x(s, t)=
∑
A∈N

NA(s)qA(t)+/(s)
∑

A′∈S
ÑA′ (s)̃qA′ (t) (5)

The subscript A′ in S refers to the enriched basis functions. The choice of the enriched subdo-

main will be discussed later. Two techniques, blending and the shifting, are commonly used to

guarantee compatibility between the enriched and the un-enriched subdomains. These techniques

are discussed in Sections 3.2 and 4.2.

2. THE MODEL PROBLEM—A CRACK IN AN INCOMPATIBLE MESH

The model problem consists of a square domain with a crack running from the middle of the

left boundary to the center of the domain. Displacement boundary conditions consistent with the

asymptotic solution for a pure mode I crack are imposed. The crack faces are traction free and

there are no imposed displacement boundary conditions on them. An odd number of elements are

used in the vertical direction so that the crack runs down the middle row of elements.

2.1. The governing continuum equations

The problem domain X is subjected to body forces bd , imposed displacements Ud on section

of the boundary denoted LX1 and imposed tractions Fd on the complementary LX2 (so that

LX1

⊕
LX2=LX). The crack in X is traction free, making the two faces of the crack part of LX2

with Fd =0. The strong form of the momentum equation is given by

∇.r+bd =qẍ in X (6)

where ∇. is the divergence operator, r the Cauchy stress tensor, q the density, and ẍ is the

acceleration. The boundary conditions are given by:

u=Ud on LX1, r.n=Fd on LX2 (7)

The mechanical behavior of the material is governed by a linear elastic constitutive law where C

is the Hookean elastic tensor, k and l are the Lamé coefficients:

r=C :ǫ=ktr (ǫ)I+2lǫ (8)

The infinitesimal strain tensor is the symmetric part of the displacement gradient,

ǫ= 1
2
(∇u+∇Tu) (9)



(a) (b) (c)

Figure 3. Displacement on the boundary of the domain for pure mode I and a stress-intensity factor
K1=100. (a) X displacement; (b) Y displacement; and (c) magnified deformation

The corresponding weak form, Equation (10), is obtained multiplying Equation (6) with a virtual

displacement u∗ ∈U0, U0={u,u=0 on LX1}, the homogeneous space associated with the admis-

sible displacements space U={u,u=Ud on LX1}, then integrating over the volume X, and using

the divergence theorem.

∫

X

r :ǫ(u∗)dX=
∫

X

(bd −qẍ).u∗ dX+
∫

LX2

Fd .u
∗ dS ∀u∗ ∈U0 (10)

2.2. Asymptotic analytical solution for pure mode I fracture

The asymptotic field near the tip in pure mode I is given in polar coordinates centered at the crack

tip by Equation (11), where r is the distance to the tip and h is the signed angle to the direction

of propagation of the crack.

u∞
K1
(r,h)=

√
r

2
√
2pl




(
−1

2
+k

)
cos

h

2
−cos

3h

2(
1

2
+k

)
sin

h

2
−sin

3h

2


 (11)

with k=3−4m for plane strain and k= (3−m)/(1+m) for plane stress. The corresponding displace-

ment for a stress-intensity factor K1 is

u(r,h)=u∞
K1
(r,h)K1 (12)

The X and Y components of the imposed displacements are shown in Figures 3(a) and (b), and

the distorted geometry in Figure 3(c).

2.3. Boundary displacements imposition

Since NURBS, like most meshfree basis functions, do not satisfy the Kronecker-delta property,

driving the control points according to their coordinates, in contrast to nodes with Lagrange basis

functions, may not be accurate enough in some high-performance applications. In many cases such

as a rigid motion imposition or clamping a portion of the domain, Dirichlet boundary conditions

may be applied directly especially when combined with open knot vectors. Nevertheless, when

dealing with complicated fields, and when accuracy is a main concern, some specific techniques

have to be used. Two different approaches for imposing arbitrary Dirichlet boundary conditions

were evaluated:

• Interpolating points were introduced as linear functions of the control points. They were

driven by the displacement of those points based on their spatial location with Equation (12).

• The control point displacements are calculated by minimizing an approximation of the L2

displacement error on the boundary.



2.3.1. Interpolating points. Given a set of m points chosen on the boundary of the domain (equal

to n, the number of control points involved in the boundary condition), a linear system can be

written in a matrix form after renumbering the associated N and q from 1 to n,




N1
1 . . . N1

n

...
. . .

...

Nm
1 . . . Nm

n







q1x q1y q1z

...
...

...

qnx qny qnz


=




x1x x1y x1z

...
...

...

xmx xmy xmz


 (13)

where NA(s
m ) is denoted by Nm

A . For clarity, n and m are kept distinct even though they have to

be equal. In matrix form,

Nq=x (14)

Taking advantage of the isoparametric nature of isogeometric analysis, the same N matrix is

applicable for the generalized displacements uq=q(t)−q(0),

Nuq=u (15)

Using Equation (12) for all the interpolating points (and denoting u∞
K1
(x) the 2×n vector containing

for each point the value of the asymptotic field),

ud =K1u
∞
K1
(x) (16)

The control point displacements are determined by introducing Equation (17) as a system of

constraint equation during the analysis.

Nuq−ud =0 (17)

Ideally, the system N is invertible, i.e. the correct number of interpolating points has to be chosen

(the same as the number of unknowns including the enrichment functions that are non-zero on the

boundary) and they have to be adequately distributed.

This method has been tested for some particular cases (the FE case and the case for a multiplicity

of 1 on the interior knots values) and gives good results. An optimal convergence rate (equal

to p+1 in the L2 norm given by Equation (18)) for imposition of the displacement boundary

condition has been verified for this method as shown in Figures 4(a) and (b);

eL2
= ‖u−uex‖L2

‖uex‖L2

(18)

Figure 5 illustrate the method used to pick the correct number of constraints (some equivalent

patterns can be found using Greville abscissae [26, 27]). In the presence of a Heaviside enrichment

(see in Section 3), the number of interpolation points is doubled locally. Generalizing this approach

for all possible multiplicities in the knot vectors and the presence of the enrichment functions is

difficult, if we want to test a wide range of enrichment techniques.

2.3.2. Least-squares minimization. Instead of attempting to strongly impose the constraints on the

control points via the exact number of required interpolating points on the boundary, the least-

squares method naturally introduces a corresponding weak form. The least-squares error function

J for a set of interpolating points on the boundary of the domain {xm,m∈M}, where M is the

set of points is

J = 1
2

∑
m∈M

∥∥∥∥∥
∑

A∈Am

NA(s
m)qA−ud(x

m)

∥∥∥∥∥

2

(19)
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Figure 4. Error in the L2 norm on the displacements imposed at the boundary, using the
interpolating points method, for FE and NURBS. (a) Interpolating points method (element

size) and (b) interpolating points method (DOF).
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Figure 5. Location of the interpolating points for the linear constraints; degree 1 and 2, FE and NURBS.
(a) Location for FE case and (b) location for NURBS case.

where A
m represents the indices of basis functions that are non-zero for the mth interpolation

point. Minimizing J gives the linear system

LJ

LqB
=
∑

m∈M

(
∑

A∈Am

NA(s
m)qA−ud(x

m)

)
NB (s

m)=0 ∀B∈A={∪Am,m∈M}. (20)

Or equivalently,

∑
m∈M

∑
A∈Am

NB (s
m )NA(s

m )qA =
∑

m∈M
ud(s

m)NB (s
m ) ∀B∈A (21)
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Figure 6. Error in the L2 norm on the displacements imposed at the boundary, using a least-square mini-
mization, for FE and NURBS. (a) Least-square minimization method (element size) and (b) least-square

minimization method (DOF).

Re-numbering N and q, Equation (21) becomes in a matrix form:

∑
m∈M




Nm
1 Nm

1 . . . Nm
1 Nm

n

...
. . .

...

Nm
n Nm

1 . . . Nm
n Nm

n







q1x q1y q1z

...
...

...

qnx qny qnz


=

∑
m∈M




umx N
m
1 umy N

m
1 umz N

m
1

...
...

...

umx N
m
n umy N

m
n umz N

m
n


 (22)

In the previous equation, n equals card(A), the total number of basis functions involved in the

boundary displacements. Most of the basis functions N are actually null because of the local

support of the basis functions. Enough points have to be taken for the system to be invertible. A

direct solver for symmetric definite matrices is used to compute the control points displacements

qA. Verification of the optimal convergence rate of p+1 in the L2 norm on the displacements for

the Dirichlet boundary condition problem is illustrated in Figures 6(a) and (b) for FE and NURBS

for p=1 through p=4.

A sensitivity study regarding the number of interpolation points has been performed. Accuracy

increases with the number of points until it equals the number of unknowns and then remains

constant. Regarding the tip-enrichment strategy described in Section 4, the tip enrichment must

not be active on the boundaries to avoid constraining the tip-enrichment DOF. For all practical

purposes, using 2×(p+1) points on each element edge on the boundary of the domain for basis

functions of degree p is sufficient to determine all the unknowns. The case needing the highest

number of equations is for a single enriched element; p+1 points are needed corresponding to

the number of classical shape functions and p+1 additional ones for the Heaviside enrichments.

This method is more flexible than the strong imposition method through the interpolating points

constraints in the sense that a given number of evaluation points can be determined for a given

degree of shape functions regardless of the particular multiplicities in the knot vector and specially

regardless of whether an element is enriched or not.

The NURBS are slightly less efficient in term of the element size (see Figures 4(a) and 6(a))

but in terms of DOF, they are much more efficient (see Figures 4(b) and 6(b)). This difference

in performance occurs for many of the comparisons in the remainder of this paper: based on the

element size, FE appears superior, but based on the DOF, isogeometric analysis is superior. This

difference stems from isogeometric analysis having a lower number of DOF per element than

FE. Note that the cost of the analysis for implicit calculations is mainly due to the linear algebra

which is a function of the band with and the number of equations in the stiffness matrix. Both



these values are function of the number of DOF; hence, decreasing the number of DOF decreases

the computational cost. Note also that fewer DOF allows the use of fewer integration points [13]

reducing the cost of explicit dynamic analysis.

3. STRONGLY DISCONTINUOUS ENRICHMENT AND CRACK COMPATIBILITY

3.1. Hansbo basis

Consider a 1D domain cut into two independent subdomains at x=0.45 as shown in Figure 7.

To compute without any loss of accuracy in the two subdomains, two sets of basis functions are

required with independent variables for the left and the right subdomains. Each cut basis function

needs two independent control points: one for the left side and one for the right side. In one

dimension this duplication introduces one additional DOF for each cut basis function. This choice

of duplicating the basis function on either side of the cut is referred to as the Hansbo basis [28].

Using the Heaviside function H , defined in Equation (23), and its complement, denoted H ,

H (s)=
{
1 if s is on the right side of the crack

0 if s is on the left side
(23)

H (s)= 1−H (s) (24)

the Hansbo basis may be formally expressed as:

x(s, t)=
∑
A∈N

NA(s)(H (s)qA(t)+H (s)qA(t)) (25)

3.2. Heaviside enrichment

The modified Heaviside function H is defined as:

H (s)=
{

+1 if s is on one side of the crack

−1 if s is on the other side
(26)
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Figure 7. Hansbo basis functions in one dimension for 5 linear finite elements and 5
quadratic NURBS cut at x=0.45. (a) Hansbo basis for linear basis functions and (b)

Hansbo basis for quadratic NURBS basis functions.



-1

-0.5

 0

 0.5

 1

 0 0.2  0.4  0.6  0.8  1

Elements
Crack

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

Elements
Crack

(a) (b)

Figure 8. Enriched basis functions for (a) 5 linear finite elements and
(b) 5 quadratic NURBS cut at x=0.45.

A solution equivalent to the Hansbo basis is generated by augmenting the continuous basis func-

tions {NA} (Figure 1) by the independent discontinuous vectors HNA (Figure 8). The HNA are

independent from {NA} if they are cut by the discontinuity. The X-FEM approximation with

NURBS basis functions is given by Equation (27) for the Heaviside enrichment:

u=
∑
A∈N

NA(s)qA+H (s)
∑

A′∈H
ÑA′ (s )̃qA′ (27)

Two options have been investigated for Ñ , the partition of unity used as a support for the enrichment

functions:

• Use linear basis functions compatible with the NURBS elements,

• Use the basis functions N used in the classical part of the solution.

H contains the indices of every basis function belonging to the elements cut or partially cut by

the discontinuity. With this enrichment technique, the basis functions whose index is in H build

a partition of unity on the cut elements and a natural blending from the compact support of the

basis functions (Figures 8 and 9). The support of the enrichment,
∑

ÑA′ for A′ in H, is shown

in Figure 9 with a dashed line. It is equal to 1 on the element cut by the crack (x from 0.4 to 0.6)

where the partition of unity is realized, it transitions from 1 to 0 in the blending elements, and it

remains 0 outside the blending elements. Depending on the degree of the basis functions, and on

the multiplicity of the knot values in the knot vector, this blending layer can span several elements

(two in the case of quadratic NURBS with a multiplicity equal to 1, as shown in Figure 9(b)).

The proposed X-FEM formulation was tested with a strong discontinuity for enrichment using

the model linear fracture problem. One difficulty with this test is localizing the tip position. With

standard FE, the last element is only partially enriched with the heaviside enrichment (two nodes of

four for linear elements in 2-D) forcing the crack to end on the un-enriched side. In one formulation

[29], the elements are continuously cut in order to smoothly propagate a crack using only Heaviside

enrichments. For NURBS, the basis functions can span several elements. The position of the tip is

controlled by using a weighting function for the Heaviside enrichment, denoted BH in Equation

(28) as shown in Figure 10. The resulting BHH
∑

N is represented in Figure 11; this enrichment

technique allows handling the discontinuity introduced by the crack as well as ensuring an accurate

position of the tip.

u=
∑

NA(s)qA+BHH (s)
∑

A′∈H
ÑA′ (s )̃qA′ (28)

A∈N .
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Figure 9. Enriched domain for 5 elements cut at x=0.45. (a) Linear basis functions and (b) quadratic
NURBS basis functions.

Crack

Blending elements

Weight function

Heaviside enrichment

Figure 10. Enriched areas and weight function BH used to localize the tip for FE and NURBS with the
Heaviside enrichment only.
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Figure 11. Heaviside enrichment for degree 2 NURBS weighted with the ramp function: BHH
∑

N . (a)
Perspective view; (b) X–Z projection: blending due to BH; and (c) Y–Z projection: blending due to

∑
N .

This is an application of blending, a technique that will be discussed in detail in Section 4.2.1.

A convergence study with only the Heaviside enrichment shows convergence for FE and NURBS

only if the support for the Heaviside function is the same as the one used for the classical solution,



i.e. Ñ =N . With FE, for linear Ñ , the solution converges, but increasing the degree of N does

not improve the solution (Figure 12(b)). With NURBS, linear Ñ produces a slow divergence. This

is illustrated in Figure 12 for NURBS and FE with p=3 for the classical solution, and a linear

Ñ for the Heaviside enrichment (Figures 12(a) and (b)) and for the same basis functions for both

the classical part and the Heaviside enrichment (Figures 12(c) and (d)). The discontinuity on the

ǫyy in Figure 12(a) is obvious, and it prevents the NURBS from converging. The reason for the

lack of convergence will be discussed in detail in Section 4.3, but in brief, the presence of the C0

lines between each element allows the classical continuous part of the solution to accommodate

the discontinuity in the displacement introduced with the enrichment. Although increasing the

degree improves the results in Figure 12(d), the convergence rate on the H1 norm (Equation (29))

is limited to 0.5 because of the singular characteristic of the problem:

eH1
= ‖u−uex‖H1

‖uex‖H1

(29)

3.3. Element integration

The integration is performed using Gauss quadrature. This method is efficient for polynomial func-

tions and k integration points integrate exactly polynomial of degree (2×k−1) in one dimension,

but it gives poor accuracy for discontinuous fields. To overcome this issue, the elements containing

the discontinuity are subdivided as illustrated in Figure 13(b). The classical Gauss quadrature also

gives poor accuracy for the singular enrichment used near the tip (in Section 4). The best results

were obtained by using almost polar integration [21] for the element containing the crack tip

enrichment. This integration method splits the quadrilaterals into triangles to concentrate the Gauss

points near the tip as illustrated in Figure 13(c), giving a regular distribution of the integration

points in terms of radius and angle (the polar coordinates relative to the tip). Figure 14 illustrates

the integration efficiency for degree 3 and degree 4 NURBS shape functions enriched with the

asymptotic field. Some optimal results have shown that very few integration points are needed to

integrate NURBS shape functions [30]: half the number of shape functions is an indicative value

for how many integration points are needed regardless of the degree of approximation. However,

the presence of enrichments can highly penalize the integration efficiency. In our case, satisfactory

accuracy has been reached with 52 integration points with the almost polar integration for degree 3

NURBS while the basic method hardly converges with 202 integration points (Figure 14(a)). With

degree 4 NURBS, 162 integration points are needed with the almost polar integration in order to

achieve convergence while the basic method does not guarantee enough precision (Figure 14(b)).

This big increase is due to our particular problem where degree 4 NURBS perform really well;

the integration error dominates in that case, and the integration effort is required to evaluate the

convergence of the method in the presence of the tip enrichment. The 162 integration points will

be used in the remainder for degree 4 shape functions, and for degree p shape functions when p

is lower than 4, (2× p)2 integration points are used.

4. TIP ENRICHMENT

4.1. Combined Heaviside and singular crack tip enrichment

The convergence rate is limited with the Heaviside enrichment because of the singularity near the

crack tip. For improved accuracy, the theoretical asymptotic field in mode I, given by Equation

(11), is introduced into the solution space. The enrichment strategy in Equation (30) is based on

X-FEM for higher order FEs [31, 32].

u=
∑
A∈N

NAqA+H (s)
∑

A′∈H
NA′ q̃A′ +u∞

K1
(s)q̄

∑
A′′∈T

NA′′ (30)

Only one additional DOF q̄ is introduced to enrich the solution close to the tip with the theoretical

asymptotic field. T contains the indices of every basis function used for the support of the tip
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Figure 12. Influence of the Heaviside enrichment support: ǫyy strain component for 7×7 element with
cubic NURBS basis functions and the Heaviside enrichment (element and sub-elements for integration are
plotted; see in Section 3.3 for definitions), and convergence results. (a) ǫyy for NURBS shape functions
for the classical part and a linear support for the Heaviside enrichment; (b) convergence with FE and

linear Ñ for the Heaviside enrichment but divergence for the NURBS; (c) ǫyy for NURBS shape functions
for the classical part and the support of the Heaviside enrichment; and (d) convergence when the basis

functions for the enrichment and the continuous part are the same.

enrichment. The singular enrichment function is not completely orthogonal to the NURBS basis

functions, and therefore the contribution of the NURBS basis functions to the displacement field

is not exactly zero even when the boundary displacement is driven by a pure mode I displacement

field. As a consequence, the value of q̄ does not exactly equal the stress-intensity factor K1
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Figure 13. Integration strategy. (a) Initial; (a) sub-cells; and (c) almost polar.
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Figure 14. Integration efficiency: effect of the almost polar integration on the convergence. (a) Degree 3
NURBS shape functions and (b) degree 4 NURBS shape functions.

representing the total displacement field. The actual stress-intensity factor is found by minimizing

J (K1)=
∫
XT

(uh −u∞
K1

K1)
2 dX where XT is a domain surrounding the tip. Approximating the

integration with the Gauss quadrature, with GT the Gauss points located in a neighborhood of the

tip, introducing the integration weights wg , and setting dJ/dK1=0, the expression for the value

of K1 based on the calculated displacement field is

K1=
∑

g∈GT
wgu

h(xg).u
∞
K1
(xg)∑

g∈GT
wgu

∞
K1
(xg).u

∞
K1
(xg)

(31)

The results in Table I show the convergence for both the mode I stress-intensity factor K1

computed according to Equation (31) and the tip-related DOF. Nevertheless the first option leads

to an improved error estimate due to the fact that the contribution of the continuous part and the

Heaviside enrichment are not necessary equal to zero near the tip. In order to illustrate it, the

contribution from the continuous part is plotted in Figure 15 for the different techniques investigated

in the remainder. We can see that the total displacement is partitioned into the continuous part

and the various enrichments even in the central part where the tip enrichment is present as the

continuous contribution is not necessarily zero.

As pointed out in the previous section, the support for the enrichment functions is the same as

the one used for the classical continuous contribution. The only set of basis functions remaining

is the NA where A is in N for the classical continuous part, in H for the Heaviside enrichments,



Table I. Error on the stress-intensity factor computed with Equation (31) and on the
tip-related DOF denoted q̄ Equation (30) for linear and cubic NURBS shape functions

and C0 lines as illustrated in Figure 21.

Degree 1 Degree 3

Element Tip-related DOF Computed K1 Tip-related DOF Computed K1

5×5 6.08E−03 3.88E−03 8.55E−05 2.94E−05
25×25 3.50E−04 5.49E−04 2.76E−07 1.34E−07
45×45 1.36E−04 1.81E−04 3.26E−08 1.92E−09
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Figure 15. Norm of the contribution from the classical continuous part of the displacement relative to the
norm of the total displacement for a mesh of 15×15 elements with quadratic NURBS. (a) One DOF for
the tip enrichment; (b) one DOF for each shape function involved in the support of the tip enrichment;
(c) one DOF for the tip enrichment and projected blending; and (d) one DOF for each shape function

involved in the support of the tip enrichment and projected blending.

and in T for the tip enrichments. The subdomains enriched with the crack tip asymptotic solution

and the Heaviside function, and the corresponding blending subdomains are shown in Figure 16.

The fully enriched subdomains are the ones where the support of the enrichment functions fulfills

a partition of unity. The blending subdomains incorporate a transition to ensure compatibility

between the two enrichment functions and with the un-enriched domain.
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Figure 16. Heaviside plus tip enrichment subdomains.

4.2. Compatibility enforcement

Compatibility has to be enforced at the boundaries of the enriched subdomains. Two techniques

are commonly used:

• Blending: Multiply the enrichment function by a bubble function so that it goes to zero on

the boundaries of the enriched subdomain [33].

• Shifting: Subtract from the enrichment functions linear combinations of a subset of the N so

that their value on the boundaries of the enriched subdomain will be zero [34].

4.2.1. Blending. Two different blending techniques are considered. The first one takes advantage

of the evanescence of the basis functions. Compatibility between the two enrichment functions is

enforced by removing the redundant basis function indices from H or T so that H∩T={⊘}. In
practice, T is constructed by including every index of a basis function belonging to the subdomain

where we want the tip enrichment to be active, as illustrated in Figure 9, then each index of a

basis function cut by the crack that is not in T is added to H as illustrated in Figure 17(b).

This technique is very simple and guarantees compatibility between the various subdomains. A

convergence study revealed that the different subdomains vary in area according to the degree of

mesh refinement, leading to suboptimal convergence rates. In Figure 18, the order of convergence

is limited to 1 even with the higher degree basis functions. The explanation is that the blending area

increases with the degree of the basis functions because NURBS of degree p span p+1 elements

(see Figure 9 for an increasing order) but the area of the crack tip enrichment decreases as the

mesh is refined (the support of the basis functions is reduced). This problem has been observed

by others [32]. To circumvent it, the blending functions BH for the Heaviside and BT for the

tip-enrichment functions are introduced [33, 32] (Figure 19).

u=
∑
A∈N

NAqA+BHH
∑

A′∈H
NA′ q̃A′ +BTu∞

K1
q̄
∑

A′′∈T
NA′′ (32)

The region for the tip enrichment is therefore controlled by where the blending function BT is

nonzero (Figure 19) and made independent of the degree of the basis functions and the degree

of mesh refinement. The blending function decreases with the distance from the crack tip to

enforce compatibility with the unenriched subdomains. For the Heaviside enrichment, the strategy

developed in Section 3 is used. The basis functions cut by the discontinuity are extracted and

enriched. The compatibility with the unenriched area is guaranteed via the evanescence of the

selected basis functions. To ensure the compatibility between the tip and the Heaviside enrichment

functions, BH+BT=1 around the crack tip subdomain and BT decreases radially depending on

the distance from the tip. T is therefore not used to define the region of the crack tip enrichment,

and the NA′′ form a partition of unity on the whole support of BT. Equation (32) can therefore

be simplified to

u=
∑

NAqA+BHH
∑

A′∈H
NA′ q̃A′ +BTu∞

K1
q̄. (33)

A∈N 



(a) (b) (c)

Figure 17. Heaviside H, and tip T, indices of enriched control points regarding the chosen blending
technique. (a) Inclusion of H, index of Heaviside-enriched control points, into N; (b) H∩T={⊘}

blending by selection of the basis functions; and (c) H∩T 6= {⊘} with blending functions.
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Figure 18. Convergence with blending by the selection of the basis functions and with no shifting.
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Figure 19. Linear blending functions for the Heaviside enrichment BH, and the tip enrichment BT.

For simplicity, the blending functions were chosen to be linear (bi-linear in two dimensions) as

illustrated in Figure 19.

4.2.2. Shifting. The other option to enforce compatibility is to shift the enrichment functions as

first described by Belytschko [34]. The shifted enrichment function is generated by subtracting

a projection of the enrichment function on to the basis functions within the enriched subdomain

from the enrichment function, thereby guaranteeing that the shifted enrichment function is zero on

the boundary of the enriched subdomain.

u=
∑
A∈N

NAqA+BH
∑

A′∈H
(H−bA′ )NA′ q̃A′ +BTq̄

∑
A′′∈T

(u∞
K1

−bA′′ )NA′′ (34)

For the standard FEM, the projection consists of the interpolant of the enrichment function. Taking

advantage of the Kronecker-delta property, bA′ =H (xA′ ), the value of the Heaviside function at
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Figure 20. Convergence in the H1 norm as a function of the element size and the number of DOF using
Equation (33) with the blending function.

the node and bA′′ =u∞
K1
(xA′′ ), the value of the asymptotic crack tip field. For NURBS, using this

technique with the control point instead of the node will be called basic shifting. This method

for the Heaviside enrichment can be applied in a straight forward manner to NURBS because the

Heaviside function is piecewise constant. Solving for the bA′′ by minimizing ‖u∞
K1

−
∑
bA′′ NA′′‖

via a least-squares minimization is referred to as improved shifting. This shifting technique is

applied only to the tip enrichment using a single DOF.

4.3. Convergence study

The convergence of Equation (33), using the blending function illustrated in Figure 19 and without

shifting, is shown in Figure 20. The NURBS basis functions do not converge or converge slowly.

Optimal convergence is obtained when each knot has its multiplicity increased until the multiplicity

is equal to the degree. This solution is denoted ‘FE’ because the continuity between the elements is

only C0 and the basis functions span the same space as the traditional Lagrangian basis functions

of the same degree. This limitation is due to the ‘incompatibility’ of the degree of continuity

between the basis functions and the blending functions for the NURBS. For example, the blending

functions illustrated in Figure 19 are C0 while the NURBS are C p−1. This difference in continuity

forces the kinks introduced by the enrichment functions to remain in the final solution as the

NURBS cannot accommodate this C1 discontinuity, and leads to poor convergence for the higher

degree NURBS. This can be overcome in two ways:

• Add C0 lines (Figure 21) to separate the enriched, unenriched, and blending subdomains.

• Introduce a blending function that is compatible with the higher order basis functions used in

the classical part of the solution, and additional DOF for the tip enrichment, as in Equation (35).

4.3.1. C0 lines. The first option to guarantee the compatibility of the blending functions with the

classical approximation is to introduce C0 lines along the slope discontinuities of the blending

functions as illustrated in Figure 21. These C0 lines are naturally present with the classical FE and

permit the solution to accommodate the weak discontinuity introduced via the blending function.

The C0 lines are generated by raising the multiplicity of the corresponding knot values to equal the

degree of the approximation. Figure 22 shows optimal convergence for both the NURBS and the

FE case with this strategy. Unfortunately, this option imposes some constraints on the knot vector

as a multiplicity equal to the degree should be found at the weak discontinuities of the blending

function. This option is not flexible enough to use with arbitrary meshes. This operation is not
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Figure 21. Mesh refinement with C0 lines at k=0.2,0.4,0.6 and 0.8, and corresponding 1D NURBS
basis functions of degree 3. (a) Initial; (b) First refinement; (c) 1D basis functions.
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Figure 22. Convergence in the H1 norm as a function of the element size and the number of DOF with

C0 lines compatible with the blending functions, formulation of Equation (33).

Table II. Order of convergence on the H1 norm for an h-refinement with NURBS shape

functions and C0 lines as illustrated in Figure 21.

Degree Without blending With blending

1 1.00 1.00
2 2.02 2.09
3 3.13 3.49
4 4.51 5.26

Equation (34) is used with the improved shifting technique. In that case, the compatibility is
already achieved, but some blending can still be used.

strictly a remeshing as the number of elements remains the same, but the basis functions and their

number are changed. Nevertheless, this option improves the order of convergence for the NURBS

from degree 1 to 4. The results are shown in Table II with some super-convergence evident for the

higher degree NURBS.
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Figure 23. Convergence on the H1 norm as a function of the element size and the number of DOF for
the projected blending function formulation of Equation (35).

4.3.2. Projected blending function. Instead of using the blending functions introduced in Equations

(32) and (33), the support for the enrichment functions is modified by projecting the blending

function on the shape functions. The scalars BH

A′ and BT

A′′ are as follows:

u=
∑
A∈N

NAqA+H
∑

A′∈H
BH

A′ NA′ q̃A′ +u∞
K1
q̄
∑

A′′∈T
BT

A′′ NA′′ (35)

These constants are calculated so that
∑

BH

A′ NA′ and
∑

BT

A′′ NA′′ match as closely as possible

the previous blending functions BH and BT (illustrated in Figure 19). The BT

A′′ are determined

by first setting them to 0 for the basis functions spanning the unenriched domain, to 1 over the

fully enriched domain, and the remaining values are obtained from a least-squares minimization

for the basis functions spanning only the blending domain. The BH

A′ are then calculated so that

BH

A +BT

A =1 on the blending domain between the tip and the Heaviside-enrichment functions. This

formulation, illustrated in Figure 23, performs better than the one with the weakly discontinuous

blending functions in Equations (32) and (33).

Additional accuracy is obtained for the formulations given by Equations (32) and (33) when

an additional DOF is introduced for each enriched basis function in Equation (36) as shown

in Figure 24.

u=
∑
A∈N

NAqA+BHH
∑

A′∈H
NA′ q̃A′ +BTu∞

K1

∑
A′′∈T

NA′′ q̄A′′ (36)

Even better convergence, however, is obtained when using the projected blending function and

introducing an additional DOF for each enriched basis function in Equation (37) as shown in

Figure 25:

u=
∑
A∈N

NAqA+H
∑

A′∈H
BH

A′ NA′ q̃A′ +u∞
K1

∑
A′′∈T

BT

A′′ NA′′ q̄A′′ (37)

5. CONCLUSION

The combination of isogeometric analysis with X-FEM produces high levels of accuracy with

optimal convergence rates for linear fracture mechanics. The most convenient method for imposing

Dirichlet boundary conditions was found to be a least-squares procedure. Several options for
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Figure 24. Convergence on the H1 norm as a function of the element size and the number of DOF for
formulation of Equation (36), where there is an additional DOF for each tip-enriched shape function.
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Figure 25. Convergence on the H1 norm as a function of the element size and the number of DOF for the
projected blending function and an additional DOF for each tip-enriched shape function, Equation (37).

blending and shifting the enrichment function are proposed, and the convergence rates were found

to be very sensitive to them. The best solutions were obtained by using a modified projection

method to generate the blending functions and independent degrees of freedom for each basis

function NA′′ in the crack tip-enrichment subdomain. The full potential of the method should be

revealed when dealing with complex geometries as well as curved cracks. Indeed, NURBS offers

the possibility for describing exactly a given geometry regardless of the mesh coarseness. The

primary difficulty with curved cracks is the integration of the cut elements requires some special

treatment. One way of dealing with this complexity is the NURBS-enhanced FEM [35]. This will

be explored in a future paper.

APPENDIX A: IMPLEMENTATION USING GENERALIZED ELEMENTS

The isogeometric X-FEM was implemented using the generalized element formulation [13]. This

option, available in LS-DYNA, permits the investigation of a broad range of X-FEM options



without any additional programming. The formulation is briefly summarized here with an emphasis

on how the anisotropic crack tip-enrichment functions are handled. For brevity and simplicity, the

details associated with the blending and shifting functions are omitted.

A traditional isoparametric FE formulation is defined in terms of its parametric coordinate

system s, its basis functions NA(s) and their derivatives LNA/Ls for A=1,n, and a numerical

integration rule over the element domain defined in terms of the locations of the integration points

sg and their weights wg for g=1,ngp points. The numerical evaluation of the stiffness matrix and

the residual only needs the numerical values of the basis functions and their derivatives at the

integration points, i.e. their analytical form is never needed for numerical calculations. An element

formulation may therefore be specified entirely through the input file containing the required values

of wg , NA(s
g), and LNA(s

g)/Ls.

The kinematics of the generalized element have the standard form,

x(s, t)=NA(s)qA(t) (A1)

where q(t) is a time dependent vector of generalized coordinates. This form leads to the usual

definitions and forms for the Jacobian matrix J and the discrete gradient operatorB. The contribution

of the stress to the internal force is therefore

F=
∫

V

BTrdV =
∑
g
BT(sg)r(sg)wg det(J) (A2)

and differentiation of the internal force gives the stiffness matrix.

Equation (A1) requires that the dimension of q to be the same as the number of spatial dimensions

and uses the same basis functions in each spatial direction, two conditions that are not met by the

enrichment functions used for the crack tip. To incorporate them within the generalized element

framework, two additional basis functions are introduced,

N∞
1 =

∑
A

NA

√
r

2
√
2pl

{(
−1

2
+k

)
cos

(
h

2

)
−cos

(
3h

2

)}
(A3)

N∞
2 =

∑
A

NA

√
r

2
√
2pl

{(
+1

2
+k

)
sin

(
h

2

)
−sin

(
3h

2

)}
(A4)

and the displacement field is enriched with a surplus of DOF,

u∞
K1

=N∞
1





u∞
11

u∞
12

u∞
13





+N∞
2





u∞
21

u∞
22

u∞
23





(A5)

The desired displacement field is

u∞
K1

=N∞
1





K1

0

0





+N∞
2





0

K1

0





(A6)

and it is obtained by equating the terms in Equations (A5) and (A6) to generate the constraint

equations

u∞
11−u∞

22 = 0 (A7)

u∞
12 = 0 (A8)

u∞
13 = 0 (A9)

u∞
21 = 0 (A10)

u∞
23 = 0 (A11)



Unlike most basis functions, the crack tip enrichment uses both the parametric coordinates s

and the physical coordinates x. The required derivatives are evaluated in the parametric coordinate

system via the chain rule, e.g.

LNAu
∞
K1

Ls
= LNA

Ls
u∞
K1

+NA

Lu∞
K1

Lx
· Lx
Ls

. (A12)
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