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A B S T R A C T

The mechanical resistance of a bonded joint depends on the adhesive interaction onto the substrate and the
mechanical properties of the adhesive itself. Many existing tests can be useful for measuring the adherence or
evaluating mechanical adhesive response. All these tests do not provide the same information: in particular,
adherence measurements can be split into initiation tests and propagation ones. In this paper, three adherence
tests have been considered for the evaluation of the fracture initiation between a poly-epoxide adhesive (a
mixture of pure epoxy and amine) and an aluminum surface (AA 2024-T3), namely the Pull-Off, Single Lap Joint
(SLJ) and Three-Point Bending tests. Various surface preparation protocols before bonding have been tested and
optimized for aluminum substrates, including mechanical and chemical surface treatments, followed by the
application of an appropriate primer before bonding. This study paves the way for the future development of
adhesive systems as it provides reliable surface preparation protocols for aluminum surfaces and gives an insight
into the choice of an adequate adherence test dedicated to high-performance adhesives. The load at break (FMax),
the experimental error, the failure mode and statistical studies according to the Weibull model and Principal
Component Analysis (PCA) were studied on each surface preparation configuration. It has been shown that the
application of a primer, especially a sol-gel product increases the load at break and provides more reliable
results. Then, this paper shows that the two tests can quantify the failure initiation and distinguish the different
surface preparation efficiency, are the Single Lap Joint test (mode II or mode I + II) and the Three-Point Bending
test (mode I), with an increase of the results reliability with the latter one. The Pull-Off test (mode I) is useful as a
routine checking, and particularly interesting because its response does not depend on the substrate thickness,
even though it cannot highlight the difference between all surface preparations.

1. Introduction

Structural adhesives are commonly used in engineering structures to
bond pieces with various morphological, physical and chemical prop-
erties. In the automotive and aerospace industries, epoxy-based ther-
mosets are one of the most widely used adhesives, thanks to their good
mechanical properties (resistance to compression, peeling, shear and
fatigue) and a good reduction of stress concentrations in fastened
structures [1]. Most importantly, epoxy-amine systems are known for
their excellent adhesion properties [2]. While the chemical design of an
adhesive material is essential for the elaboration of a bonded joint with
required properties, the surface preparation of the substrate plays a
crucial role in the achievement of a strong bond between the adhesive

and the substrate [3]. For aluminum surfaces, the removal and re-
placement of a new oxide layer on top of the aluminum plate lead to a
strong, stable and homogeneous bond between the aluminum and an
epoxy-amine adhesive system. The surface treatment can be considered
as mechanical (grit-blasting or sandblasting), physical (laser- and
plasma-treatment), chemical (acidic or alkaline etching) or electro-
chemical (anodization and electrodeposition) [4]. For example, the
removal of the aluminum oxide layer (Al2O3) is usually obtained with a
chemical surface treatment, such as sulfuric acid etching or nitric acid
sodium sulfate etching [4,5].

Thus, the adhesion of the polymer on the substrate is a key para-
meter, which strongly influences the final properties of the bonded
joint. Nevertheless, the precise and reliable measurement of the fracture
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initiation is not trivial. Among the various methods evaluated in lit-
erature [6], the Pull-Off test [7–13] (mode I) and Single Lap Joint (SLJ)
test [14–18] (mode II or mode I + II) have been widely employed for
the development of commercial products in the aerospace and auto-
motive industries since they present the advantages to be normative
(ASTM D 4541 and NF EN 2243-1 respectively), very simple, cost-ef-
fective and to offer the flexibility to test large groups of specimens for
statistical assurance. The main difference between the two tests, after
the opening mode, is that for SLJ measurements, the mechanical re-
sponse depends on the thickness of the adhesive or the substrate [15],
contrary to the Pull-Off test, provided that the substrate is thick enough
not to be deformed during the test [10,13]. Despite the above-men-
tioned advantages, the evaluation and quantification of the adherence
cannot always be performed with such tests. Hence, a failure in the
adhesive itself (i.e. cohesive failure) is often reported for strong ad-
herent bonding elements, which typically let us notice the mechanical
properties of the adhesive itself but prohibits the use of these techni-
ques to measure the fracture initiation. In addition, the main source of
error in these two tests stems from misalignments that can introduce
peel forces leading to a non-uniform stress concentration at the edge of
the bonded joint [6]. Then, a third adherence test was used: The Three-
Point Bending test (AFNOR, ISO 14679:1997). It always provides the
quantification of the adherence in an adhesively bonded structure,
whatever the affinity of the adhesive to the substrate is. Indeed, ad-
hesive fracture initiation is always expected and localizable [8,19–22].
But, as for SLJ, the fracture initiation force depends on the substrate
thickness.

Experimental data and its study give information on the load at
break (FMax), the variability of results and the failure mode. But, a large
amount of the raw data emerging from the adherence measurements is
noticed, so that the interpretation of tests’ reliability, and the relevance
of surface preparations are quite difficult. In order to assess the varia-
bility, the most widely reported analysis of brittle materials is the dis-
tribution function proposed by Weibull [23]. In this model, the bonded
interphase is considered as a chain of several links, in which the failure
of the materials is led by the weakest link. Thus, the dispersion of cri-
tical defects can be evaluated and the reliability of adherence tests or
experimental conditions (i.e. the Weibull modulus m) can be defined
[24–27]. Finally, in order to confirm the correlation of the measured
properties by each adherence test, the Principal Component Analysis
(PCA) has been used. Usually, it is one of the most widely used math-
ematical tools of multivariate analysis, but it can sometimes reveal
hidden or non-trivial interactions between the raw data by the identi-
fication of the principal components: here, the adherence.

2. Experimental and theoretical details

2.1. Materials and coupons preparations

2.1.1. Substrates
The metallic substrate used was a commercial bare Aluminum Alloy

2024-T3 (AA 2024-T3), with a thickness of 1.600±0.005 mm from

Rocholl GmbH (Germany) for Pull-Off test. The bare AA 2024-T3 sub-
strate had a thickness of 1.000± 0.005 mm from Rocholl GmbH
(Germany) for Single Lap Joint, and from Kaiser Aluminum (U.S.A.) for
Three-Point Bending tests. The nominal chemical composition by
weight percentage of this alloy is 3.8–4.9 Cu, 1.2–1.8 Mg, 0.3–0.9 Mn,
0.50 Si, 0.50 Fe, 0.25 Zn, 0.15 Ti, 0.10 Cr and fewer than 0.15 of other
elements. The aluminum surface has been considered as identical since
the chemical composition and the temper conditions of the material are
also the same while the rugosity is the same considering measurement
error. Aluminum plates were received as 1 dm² panels from the supplier
and were then cut depending on the test specifications (see Section 2.2).

2.1.2. Surface preparation
The surface preparation protocols evaluated in this study are com-

posed of three surface treatments with or without two primer applica-
tions (see Table 1).

The first surface treatment, named “hydrochloric acid etching”,
consisted of immersing the aluminum plate into a solution of 3.7 vol%
of hydrochloric acid for five minutes at room temperature
(23 °C± 2 °C), rinsing in distilled water for two minutes at room tem-
perature and drying at 50 °C in an oven for thirty minutes. The second
surface treatment, named “degreasing followed by nitric acid deox-
idizing”, consisted of degreasing the surface with an alkaline solution
(10 vol% of SOCOCLEAN A3431 in distilled water) at 45 °C for fifteen
minutes, rinsing in distilled water for two minutes at room temperature,
deoxidizing the surface with an acidic solution (40 vol% of SOCOSURF
A1858 + 10 vol% of SOCOSURF A1806 in distilled water) at 50 °C for
five minutes, rinsing in distilled water for two minutes at room tem-
perature and drying at 50 °C in an oven for thirty minutes. Once treated,
aluminum panels have been primed or bonded within 8 h, in order to
preserve the surface treatment effectiveness. The third surface treat-
ment, named “abrasion”, consisted of abrading the surface for thirty
seconds with a Scotch-brite® pad, cleaning with acetone-saturated wipes
and then with dry wipes.

After the surface treatment, either the substrates were bonded as
treated (see “None” in the column “Applied primer” in Table 1) or two
different commercial primers were applied onto the surface. The first
one was a chromated modified epoxy corrosion inhibiting primer
named BR® 127 by Cytec; called Cr-primer. This primer was chosen as it
is a standard in the aerospace industry to protect the prepared surfaces
from further oxidation before bonding. It was applied by spraying to a
dry primer thickness of 2 µm, then air dried for thirty minutes, prior to
being cured in an oven at 120 °C for thirty minutes. The second one was
a Sol-gel conversion product (zirconium salts activated by an organo-
silicon compound), named SOCOGEL B0102 by Socomore. It was ap-
plied by spraying onto the surface until it was completely wetted, but
without product flowing. It was dried for one hour at room temperature
to a dry sol-gel thickness of 100 nm.

2.1.3. Adhesive and bonding thermal curing
The aluminum substrates were adhesively bonded by applying a

mixture of an epoxy pre-polymer and an amine curing agent. The epoxy

Table 1

Surface preparations.

Series number Surface treatment Applied primer

1 Hydrochloric acid etching (3.7 v.%) None
2 Cr-primer (BR® 127)
3 Sol-gel (SOCOGEL B0102)
4 Degreasing followed by nitric acid deoxidizing (10 vol% of SOCOCLEAN A3431 + 40% vol% of SOCOSURF A1806/A1858) None
5 Cr-primer (BR® 127)
6 Sol-gel (SOCOGEL B0102)
7 Abrasion (Scotch-brite®) None
8 Cr-primer (BR® 127)
9 Sol-gel (SOCOGEL B0102)



pre-polymer is a bisphenol A diglycidyl ether (DGEBA or BADGE, Epoxy
Equivalent Weight = 171–175 g eq−1, D.E.R.™ 332 from Dow
Chemicals) and the hardener is the triethylenetetraamine (TETA, Amine
Hydrogen Equivalent Weight = 24 g eq−1, D.E.H.™ 24 from Dow
Chemicals). The “model adhesive” used in this study was a stoichio-
metric mixture of DGEBA with 13.9 parts per hundred grams of resin
(phr) of TETA. After bonding following each test conditions, coupons
were kept at room temperature for three hours, prior to being cured in
an oven. Coupons were heated from room temperature up to 60 °C, at
5 °C min−1 for thirty minutes, then heated up to 90 °C at 5 °C min−1 for
thirty minutes, followed by a heating step up to 150 °C at 5 °C min−1

for thirty minutes, and cooled down to room temperature at
2 °C min−1. This curing cycle allowed us to achieve a complete poly-
merization of the adhesive (i.e. conversion rate = 1). It has been
evaluated by Dynamic Scanning Calorimetry as the onset of the glass
transition temperature (Tg) has reached the maximum glass transition
temperature of the “model adhesive” (i.e. Tg = Tg∞ where Tg∞ =
138 °C).

2.2. Adherence tests

For adherence measurement, three test methods have been used: the
SLJ, the Pull-off and the Three-Point bending tests. Commonly, Pull-off
and SLJ results are often strength terms (in Mega Pascals), while Three-
Point bending results are force terms (in Newtons). In this paper, all the
results have been expressed only as force terms. This is possible because
it has been shown that strength at break is mainly governed by the
edge, more than the bonded area [28] and that for small areas, the use
of force and strength give the same information on adherence mea-
surement [8].

2.2.1. Single Lap Joint test (AFNOR, NF EN 2243-1)
The Single Lap Joint (SLJ) test applies a force enabling a crack to

initiate and propagate with a sliding mode (type II fracture mode). In
this configuration, stresses have been shown as concentrated at the end
of the overlap especially by finite element so that the mechanical re-
sponse of this test strongly depends on the substrate and adhesive
thicknesses [16,29] along with the adhesive thickness imperfections
[30]. Additionally, a lot of studies have been published in order to
describe the effect of the bending moments [18,29,31,32]. It is well
described that the bending moments around the edges can become
predominant and are induced by the eccentric geometry (i.e. adherend
and adhesive thickness) and the applied load. In such a case, the cracks
propagate with a type I + II fracture mode. The SLJ test was considered
according to the NF EN 2243-1. The panels previously described were
die-cut to the correct required dimension (25.0± 0.5 mm by
75.0±5.1 mm), using a strip cutter (Promattex, France). After the
chosen surface preparation of the aluminum surface has been per-
formed, the DGEBA-TETA liquid mixture was applied onto the surface
by ensuring that it was done across the entire surface. In conformity
with the normative reference, the joint had an overlap of
12.5±0.5 mm and a width of 25.0±0.5 mm as shown in Fig. 1. Once
assembled, the excess of adhesive has been removed with a spatula.

By using metallic packers, the applied adhesives had a thickness of
0,15±0,05 mm, controlled after assembly and curing with a digital
caliper to be in the given range. Series of twelve coupons were prepared
and tested for each configuration. SLJ test was performed with a tensile
machine (INSTRON 3369, Élancourt, France) and was carried out at
room temperature (23 °C±2 °C using a 5000 N full-scale load cell with

a sensitivity of 0.5% of the measured values. The ends of the coupons
were tightly gripped in the jaws of the tensile machine. Packers were
used so that the jaws are aligned and an imaginary straight line passes
through the two points of fixing and the center of the bonded area. Each
coupon was gripped 50.0±5.0 mm from the joint edge. In accordance
with the normative reference, the rate loading has to be between 2800
and 5000 N min−1, and it has been chosen in this study to be
3000 N min−1. The recorded curve is typically a load-strain curve
where the load at break (FMax) was measured. Usually, the ultimate load
is then divided by the overlap to evaluate the lap shear strength (σMax in
MPa), but it has been shown that the shear strength in a SLJ is mainly
governed by the leading edge, and not by the bonded area [28]. In other
words, for a very small variation of the surface, the load at break study
makes sense.

2.2.2. Pull-Off test (AFNOR, ASTM D 4541)
The Pull-off test is often used to determine the adhesion from the

force required to pull a tested adhesive off a surface. A large number of
studies has been performed in order to determine the several factors
affecting the measured load at break. Adherend thickness affects sig-
nificantly the tensile strength and the failure mode. The lower the
thickness is, the more the strength at break decreases while the more
the failure is adhesive (interfacial) [10,33]. The thickness used in this
study is that given in the standard of the test (i.e. 1.6 mm). According to
the literature, for this adherend thickness, the deformation of the sub-
strate is limited [10]. Another source of variance results from mis-
alignments of the applied force that can introduce bending forces so
that stresses can be concentrated on the edge and lead to a reduction of
the measured strength [6]. However, the adhesive thickness has been
shown to have little to do with the adherence strength or force [8].

The Pull-Off test was performed with a self-aligning tensile machine
(PosiTest AT-A Automatic, by Defelsko) according to the ASTM D 4541.
Pure aluminum studs of 10.0±0.1 mm diameters were used, with a
displacement speed of 1 MPa s−1. For this test, the substrate needs not
to be cut before the adhesive application. After the chosen surface
preparation of the aluminum surface has been performed, 0.05 g of the
DGEBA-TETA liquid mixture was applied onto the surface by ensuring
that it was done across the entire surface. Then aluminum studs were
adhesively bonded on the applied adhesive (see Fig. 2) and by applying
a constant lead (4,000 g for 1 s). Finally, the adhesive has to be
squeezed out, and the excess was cleaned around the fixture. The
thickness of the adhesive is then measured with a digital caliper, and
accepted if it is 0,15±0,05 mm (the same as the one for SLJ test).

Series of twelve samples were prepared and tested for each con-
figuration. The recorded value given by the device is expressed in MPa.
For the same reason as SLJ test, the strength (MPa) is converted to load
(N), by multiplying the strength at break by the bonded surface (i.e.
78.5 mm²).

2.2.3. Three-Point Bending test (AFNOR, ISO 14679:1997)
The Three-Point Bending test was performed according to the nor-

mative reference AFNOR, ISO 14679:1997, and the Three-Point
Bending test was previously described from a mechanical point of view
[8,19]. The aluminum panels previously described were die-cut to the
correct dimensions. The epoxy-amine adhesive was applied onto cut
(10.0±0.1 mm by 40.0± 0.1 mm) and prepared AA 2024-T3 (see
Section 2.1.2) by applying 0.5 mL with a syringe in a silicon mold be-
tween two clamping plates to form an adhesive block with 25 by 5 by
4 mm3 dimensions [8,19,21]. Series of twelve samples were prepared

Fig. 1. Single Lap Joints geometry (not to scale, dimensions in mm). Fig. 2. Pull-Off geometry (not to scale, dimensions in mm).



and tested for each configuration. This test was performed with a tensile
machine (INSTRON 3369, Élancourt, France), fitted with a 500 N full-
scale load cell with a sensitivity of 0.5% of the measured values and was
carried out at room temperature (23 °C±2 °C). The displacement rate
was 0.500±0.003 mm min−1 in the Three-Point configuration (see
Fig. 3). The ultimate load, FMax, was considered as the failure initiation
measurement.

The two main parameters of the adherence force have been shown
to be the substrate thickness and the shape of the adhesive cube [34].

2.3. Statistical analysis of failure

The study of raw data can give information concerning the load at
break (FMax), the variability of the results or the failure mode (initiation
and crack propagation). Beyond this interpretation, a statistical study
can give additional information. For that purpose, two statistical studies
regarding the Weibull model and the Principal Component Analysis
have been performed.

2.3.1. Weibull analysis
Even if the tested adhesive is macroscopically homogeneous, the

fracture has to be considered as a consequence of a probability of
failure. This observation can only be considered for brittle materials.
Let us note that this criterion is applicable for DGEBA-TETA adhesives
since no plastic deformation occurs during mechanical testing. Based on
the concept that the failure is led by the most serious flaw [35], the
cumulative distribution function of the Weibull distribution is given by:

⎜ ⎟= − ⎡
⎣⎢
− ⎛

⎝
− ⎞

⎠
⎤
⎦⎥

P 1 exp V
σ σ

σ
u

0

m

(1)

where P is the failure probability for the stress σ, σ0 is a normalizing
factor, σu is the stress below which there is zero probability of failure, m
is the Weibull modulus and V is the volume of the tested specimen.

For estimating the Weibull distribution parameters, various
methods are proposed: the least square method (LSM), the weighted
least square method (WLSM), the maximum likelihood method (MLM)
and the method of moments (MOM). For a small sample size (about
ten), it has been shown that the LSM and WLSM outperform the MLM
and the MOM [36]. Considering the sample size in this study (twelve)
and the fact that both methods are very simple, the LSM has been
chosen for estimating the Weibull distribution. According to the LSM,
many estimators have been proposed to calculate Pj of the jth strength.
Among all the proposed estimators [35], two are commonly known and
used:

=
+

P
j

N 1 (2)

= −
P

j 0.5

N (3)

where N is the number of tested samples.
BERGMAN [35] has shown that the choice of the most reliable es-

timator is led by the sample size. When the number of samples is quite

low (i.e. less than 50), the most reliable estimator is the Eq. (3). This
estimator has been used for the Weibull analysis in this study. It is ra-
ther difficult to estimate the threshold strength below which the failure
probability is zero (σu). To avoid an overestimation of this factor, it is
widely recommended to consider σu = 0 for brittle materials [35]. By
considering σu = 0 for better reliability, the logarithm of the opposite
logarithm of Eq. (1) gives the result as follows:

− − = − +ln( ln(1 P)) m. ln(σ) m. ln(σ ) ln (V)0 (4)

If the term − −ln ln P( (1 )) is plotted as a function of ln σ( ), a linear
function is obtained in which m (i.e. the Weibull modulus) is the slope
of the best straight-line relationship. The Weibull modulus is used to
describe the variability in strength of brittle materials. If the failure is
led by the weakest defect, then the Weibull modulus measures the
distribution of these defects. The higher the Weibull modulus is, the
lower the dispersion of defect is. For a same tested configuration among
the three tests, a higher Weibull modulus would reveal that the test is
the most reliable for measuring the adherence.

2.3.2. Principal component analysis (PCA)
Initially, the main purpose of PCA is to reduce the number of inter-

correlated variables into a smaller number of non-correlated variables
[37]. For a better visualization, two or three variables (for a display in
two or three dimensions) is preferable. In this study, the principal
component analysis was used to confirm if the variables (here the ad-
herence tests) were correlated (without reducing their number). The
two principal components (PC1, the largest variance and PC2) are
plotted orthogonal to each other. This result is obtained by using
XLSTAT (Addinsoft, 2016; XLSTAT 2016: Data Analysis and Statistical
Solution for Microsoft Excel. Paris, France (2016)). The active variables
are given by the average of FMax within the three tests, the individuals
are given by the nine FMax (obtained with the various surface treat-
ment). Thus, the individuals show the robustness of the surface treat-
ments when the active variables represent the robustness of the adhe-
sion tests.

3. Results and discussion

This study has been conducted using a model adhesive DGEBA-
TETA system applied onto AA 2024-T3 substrates. The impact of the
surface preparation on the adherence properties of the bonding ele-
ments has been investigated by treating the aluminum panels with ei-
ther a chemical or a mechanical treatment, followed or not by the ap-
plication of an adherence promoting primer before bonding (see the
Table 1, previously described). For each surface preparation and test
envisaged, twelve samples have been prepared in order to obtain reli-
able results. After testing, the failure mode of one sample for each
configuration has been determined by characterizing the morphology of
the fractured surfaces either with optical study or Scanning Electron
Microscopy (SEM). All the results related to the adherence tests were
then combined and statistically compared with two studies: The Wei-
bull analysis and the Principal Component Analysis (PCA).

Fig. 3. Three-Point Bending geometry (not
to scale, dimensions in mm).



3.1. Impact of surface preparation on adherence

The fracture initiation has been evaluated by measuring the load at
break (FMax) with three characterization tests namely the Pull-Off, SLJ
and Three-Point Bending tests. Then, after each testing, failure modes
have been determined by characterizing the fractured surfaces mor-
phology with optical microscopy for Three-Point Bending and SLJ and
SEM for Pull-Off and Three-Point Bending test (Fig. 4). Let us note that
on these pictures, a porosity can be observed when the volume of the
adhesive used is important (i.e. in the case of the pull-off test and Three-
Point Bending). This porosity cannot be easily controlled and results
from air entrapment when the DGEBA-TETA mixture is made (blend of
a high viscosity prepolymer and a low viscosity hardener). The failure
mode is representative of the difference between the cohesive and ad-
hesive resistance of the DGEBA-TETA system. Since the failure occurs at
the point of least resistance, fracture initiation can be adhesive or co-
hesive. Let us remind that we are interested in only failure initiation.
Adhesive failure shows a fracture initiation occurring between the ad-
hesive and the substrate, when cohesive failure is representative of a
fracture initiation occurring in the bulk adhesive. Let us note the dual
type failure is representative as a part of adhesive failure and another
one cohesive with a non-localizable failure initiation. Thus, it is

impossible to conclude and quantify the adherence when the failure
mode is dual.

In this study, adhesive failures were observed on fractured samples
resulting from Three-Point Bending and SLJ tests, denoting a fracture
initiation between the adhesive and the substrate (Fig. 4A and C).
Fractured samples resulting from Pull-Off test showed an unknown
fracture initiation (Fig. 4B).

The Fig. 5 presents the average FMax obtained with the three tests,
for each surface preparation evaluated. On all the histograms, black
columns highlight the unknown fracture initiation when gray ones
point out the adhesive fracture initiation. When unknown fracture in-
itiations are observed, the adherence force is equal to or higher than
FMax but cannot be quantified in this particular case.

Let us focus on the surface preparation impact. Looking at the his-
tograms related to each test, the same trend was observed. Without any
primer, a progressive increase of FMax was measured from the chemical
acidic HCl treatment, to the mechanical abrasion treatment and finally
the degreasing/deoxidizing surface treatment. This result was expected
since the importance of an appropriate deoxidizing treatment has al-
ready been demonstrated before bonding [2,38,39]. An increase in FMax

has been measured for all surface treatments after the application of a
primer, but the trend previously discussed between the different surface

Fig. 4. (A) Pictures of the adhesive fracture initiation
by Single Lap Joint test; (B) Picture of adhesive
fracture initiation after Three-Point bending test; (C)
Picture of adhesive initiation after pull-off test; (D)
Picture of an unknown initiation fracture after pull-
off test.



treatments was maintained. For all tests evaluated, the application of a
sol-gel after a surface treatment led to a higher increase in FMax com-
pared to the use of a Cr-primer. Few authors have investigated the effect
of a primer application before bonding (as Br®127) [40] and the im-
provement of adherence by silanes (sol-gel) application has often been
investigated [41].

Let us focus on the adherence tests impact. Considering the
minimum value of FMax (i.e. the load at break obtained for HCl surface
treatment without primer) and the maximum value of FMax (i.e. the load
at break obtained for degreasing followed by nitric acid deoxidizing
surface treatment with a sol-gel conversion, the ratio of these two FMax

is different between the Pull-Off test and the two other tests. It is equal
to 2.0 for Pull-Off; 4.5 and 4.1 for SLJ and Three-Point Bending re-
spectively. In other words, it appears that Pull-Off test is less selective
than the two other tests. In addition, when the fracture initiation is
unknown (i.e. black column in Fig. 5), the FMax measured is roughly the
same (except for the test series with a degreasing followed by nitric acid
deoxidizing without any primer). In these cases, neither the adherence
of the system nor the intrinsic mechanical properties have been mea-
sured. Thus, the Pull-Off test is not an appropriate method to quantify
the adherence of a DGEBA-TETA adhesive onto an aluminum substrate,
treated or not. However, the simplicity of the method and the trends
observed in Fig. 5 compared to the two other tests prove that this
method is an adequate tool for comparative purposes. Concerning the
SLJ and Three-Point Bending tests, failure modes were always adhesive.
Unlike Pull-Off results, the standard deviations in FMax resulting from
the tests with SLJ and Three-Point Bending tests are lower than the
difference of measured adherence between two configurations. In other
words, a quantitative evaluation of the adherence has been obtained

with these two tests. The interesting observation is that the adherence
measurement has the same tendency for the three tests, even if the
fracture modes are not the same. Indeed, fracture modes have been
shown by finite element to be mode I for Pull-Off [10,11,42] and the
Three-Point Bending [21], mode II for SLJ.

3.2. Comparison of the three adherence tests

To assess these observations about qualitative and quantitative
evaluation of the adherence with the three methods used, the FMax

obtained by SLJ and Pull-Off as a function of those obtained by Three-
Point Bending are presented in Fig. 6A. For a complete reading, the
Fig. 6B presents the FMax obtained by Pull-Off test expressed in a
function of those obtained by SLJ.

Between the SLJ and Three-Point Bending tests, a linear function,
with a slope error of 16% ( =∆a

a

3

19
) can be found so that when the

adherence of a system is increasing, it can be measured in the same way
by Three-Point Bending and SLJ tests. Despite a similar tendency which
can also be noticed between Three-Point Bending results and that of
Pull-Off, the linear function is less obvious and reliable. Indeed, when
the Pull-Off results are expressed in function of Three-Point Bending,
the error is 30% ( =∆a

a

0,32

0,95
). The error is 50% ( =∆a

a

0,017

0,036
) when the

Pull-Off test results are expressed in function of those of SLJ. This lack
of reliability can also be noticed between the loads at break obtained by
Pull-Off tests and those obtained by Single Lap Joint (Fig. 6B). These
observations confirm that the adherence measurement by Pull-Off test
is qualitative, contrary to the adherence measured by SLJ or Three-
Point Bending which is quantitative.

Fig. 5. Average load at break measured by the Pull-Off, SLJ and Three-Point Bending tests, where gray columns represent an adhesive fracture initiation and black ones an unknown
fracture initiation.



3.3. Statistical analysis

A difference between tests' reliability has been shown. In order to
quantify the reliability of each test, the determination of the Weibull
modulus according to the LSM has been used. This allows us to quantify
the reliability of each adherence test and each surface preparation.

It has also been confirmed that the adherence measurement could
be qualitative or quantitative depending on the used adherence test.
The Principal Component Analysis has been used to analyze the cor-
relation between each variable (here the adherence tests) and be able to
confirm if each adherence test gives the same information (i.e. the ad-
herence).

3.3.1. Weibull analysis
The main information studied in the Weibull analysis is the modulus

m, which gives information on the reliability of the results. The Weibull
modulus is generally reported to characterize the variability in strength
of brittle materials (let us remind that this criterion is applicable to
DGEBA-TETA adhesives since no plastic deformation occurs during
mechanical testing). If the failure is led by the weakest defect, then the
Weibull modulus measures the distribution of these defects [24–26,43].
The higher the Weibull modulus is, the lower the dispersion of the
defect is. Consequently, by comparing the Weibull modulus of two tests
conducted with the same configuration, a higher Weibull modulus is
associated with a higher reliability for a test (i.e. sample preparation +
mechanical testing) compared to the other one for the evaluation of the
adherence. The Fig. 7 shows an example of Weibull plots obtained with
the three tests on an abraded and primed surface with sol-gel and
Table 2 shows the calculated Weibull moduli following the Eq. (1) and
the estimator given in the (Eq. (3), for each tested configuration ac-
cording to the three different tests. Let us note that the slopes of the
Fig. 7 are reported as bold and underlined values on the Table 2.

The horizontal reading of Table 2 can give information about the
surface preparation effect on the reliability. It can be noticed that the
Weibull modulus is higher for primed samples. It is especially the case
for samples with sol-gel: on average, the Weibull modulus is 6.5 for Cr-
primer samples and 8.4 with sol-gel. On the other hand, there has been
no apparent relationship between the surface treatment and the Weibull
moduli: on average, m give 6.6 for HCl, 7.0 for abrasion and 6.6 for
Degreasing/HNO3 surface treatment. In other words, a good surface
preparation (i.e. a good surface treatment combined with a good primer
application) not only increases the load at break FMax but it also in-
creases the reliability of the results.

A vertical reading of Table 2 gives information about the effect of
the adherence test on the results reliability. For any surface

preparation, the highest Weibull moduli m are given for Three-Point
Bending test (7.6 on average). Concerning the two other adherence tests
(i.e. SLJ and Pull-Off test), the tendency is not always the same: the
highest m value is given by SLJ for abraded and HCl surface treatment
and given by the Pull-Off test for degreasing/HNO3 samples. In other
words, the most reliable adherence test is the Three-Point Bending test.

3.3.2. Principal Component Analysis
In order to confirm if the three variables (i.e. the three test results)

are correlated (i.e. measure the fracture initiation in the same way), a
principal component analysis was performed. The objective is to qualify
the robustness of the adherence. Thus, the Fig. 8 can be representative
of the robustness of the adherence test while Fig. 9 represents the ro-
bustness of the surface preparation. Now, let us consider the Fig. 8,
showing the active variables (calculated from the average FMax) in
function of PC1 and PC2, orthonormal to each other.

SLJ and Three-Point Bending test results are strongly correlated to
the principal component 1 (around 10° from the PC1 axis). Then, SLJ
and Three-Point Bending test results appear to be correlated as an angle
of 5° can be observed between the two variables, whereas the Pull-Off
test results are nearly totally non-correlated with the two others (more
than 45°). In other words, by using Pull-Off or SLJ/Three-point-bending
tests, the measured properties are totally different. It can be supposed
that the principal component 1 (PC1) represents the fracture initiation
(i.e. adherence) when the PC2 can represent the intrinsic mechanical
properties of the adhesive (i.e. cohesion). As a reminder, the fracture

Fig. 6. (A) Single Lap Joint and Pull-Off loads at break expressed in function of Three-Point Bending load at break; (B) Pull-Off loads at break expressed in function of SLJ loads at break.

Fig. 7. Weibull plot of the three tests according to abraded and primed with sol-gel
samples.



initiation observed after SLJ and Three-Point Bending test was ad-
hesive, when the fracture initiation was either adhesive or unknown
concerning the Pull-Off test. Concerning the axis 2 (PC2), the SLJ and
Three-Point Bending (negative correlation) can be opposed to the Pull-
Off (positive correlation). Thus, it is an opposition axis between mea-
surement of the intrinsic properties of the adhesive (i.e. cohesion) and
the pure adherence.

The Fig. 9 shows the individuals plot in function of the PC1 and
PC2, in order to explain the meaning of PC1 and PC2. In this figure, the
correlation between PC1 and PC2 is expressed for each surface pre-
paration (surface treatment and primer application). Thus, for a parti-
cular point, for example "HCl + None", all the data collected are those
in Lap Single Lap Joint, Pull-off and Three-Point Bending tests.

It can be firstly noticed that the individuals are strongly correlated
to PC1. The correlation of the results following the axis PC1 leads up to
the same tendency and results as the FMax study (see Fig. 5 and asso-
ciated section). Thus, it can be considered that PC1 represents the ad-
herence. Regarding the axis 2, the interpretation is more difficult, but it
likely represents the intrinsic mechanical properties of the adhesive (i.e.
cohesion). Even if at first, there does not seem to be a correlation be-
tween the primer application and PC2, if combined with fracture in-
itiation (see Fig. 5), it can be noticed that when the fracture initiation is

unknown, the correlation with PC2 is more important. Finally, Fig. 9
shows the robustness of the surface treatments. A robust surface
treatment is a treatment of which dependence on PC1 is the most im-
portant and of which the dependence on PC2 is close to 0. Here, the
most robust surface treatment is Degr./Deox. + Sol-gel.

4. Conclusion

In this paper, three tests were used to study the adherence of an
epoxy-amine “model” adhesive bonded onto an AA 2024-T3 surface,
having been treated in nine different ways. After testing, the load at
break FMax, the variability of the results as well as the failure mode were
studied. Then, two statistical study analyses in accordance with the
Weibull analysis and the Principal Component Analysis (PCA) have
been conducted.

Regarding the surface treatment, it has been shown that the load at
break was increased with an abraded surface compared to a simple
Hydrochloric acid etching, and even better with a degreasing followed
by nitric acid deoxidizing. In the same way, the application of a primer
increased the load at break, as well as the reliability. The comparison of
the three adherence tests has been made. It has been noticed that the
fracture initiation was always adhesive for SLJ (Mode II or I + II) and
Three-Point Bending test (Mode I), and unknown for the Pull-Off test
(Mode II). Despite this difference, the same tendency has been observed
between the three adherence tests. Let us note that the measurement
scale is more important for SLJ and Three-Point Bending test leading us
to a better differentiation between the various adherence levels.
However, the Pull-Off test remains efficient as a routine test because the
mechanical response does not depend on the thickness of the adhesive
or the substrate, provided that the substrate is thick enough not to be
deformed during the test (i.e. try out various adhesive systems and
various substrates).

The Weibull analysis showed that the more reliable test was the
Three-Point Bending test, in comparison with the SLJ and Pull-Off test.
Thanks to the PCA, it has been shown that the Pull-Off test measures the
balance between the intrinsic properties (i.e. cohesion) and the ad-
herence of the adhesive, when the SLJ and Three-Point Bending tests
are only measuring the adherence.

Table 2

Experimental Weibull moduli (m) with an associated error of maximum 5% for all the tested surface preparation according to the three adherence tests.

HCl Abrasion Degreasing/HNO3

None Cr-primer Sol-gel None Cr-primer Sol-gel None Cr-primer Sol-gel

Pull-Off 4.0 6.5 8.6 5.9 5.8 5.6 7.4 8.4 8.2
SLJ 4.4 5.5 8.8 6.0 5.9 6.9 2.3 4.9 8.0
Three-Point Bending 4.4 5.8 11.4 8.4 9.4 9.5 4.1 6.7 9.9

-1

0

1

-1

P
C

2
 (

1
0

,5
 %

)

0
PC1 (87,4 %%)

Pull-Of

Single L

(FMax)

Three-P

Bendin

1

ff (FMax )

Lap Joint 

Point 

ng (FMax)

Fig. 8. Circle of correlations and plot of the loadings of the active variables (FMax) with
principal components 1 and 2 (respectively PC1 and PC2).

Fig. 9. PCA classification of the FMax average from the nine sur-
face preparations.
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