
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/17980

Rachelson, Emmanuel and Fabiani, Patrick and Garcia, Frederick Approximate Policy Iteration for Generalized Semi-

Markov Decision Processes: an Improved Algorithm. (2008) In: 8th European Workshop on Reinforcement Learning

(EWRL), 30 June 2008 - 3 July 2008 (Villeneuve d'Ascq, France).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/132277689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approximate Policy Iteration for Generalized

Semi-Markov Decision Processes: an Improved

Algorithm

Emmanuel Rachelson1, Patrick Fabiani1, and Frédérick Garcia2

1 ONERA-DCSD
2, avenue Edouard Belin, F-31055 Toulouse, FRANCE
emmanuel.rachelson, patrick.fabiani@onera.fr,

2 INRA-BIA
Chemin de Borde Rouge, F-31326 Castanet-Tolosan, FRANCE

fgarcia@toulouse.inra.fr

Abstract. In the context of time-dependent problems of planning under
uncertainty, most of the problem’s complexity comes from the concurrent
interaction of simultaneous processes. Generalized Semi-Markov Decision
Processes represent an efficient formalism to capture both concurrency
of events and actions and uncertainty. We introduce GSMDP with ob-
servable time and hybrid state space and present an new algorithm based
on Approximate Policy Iteration to generate efficient policies. This al-
gorithm relies on simulation-based exploration and makes use of SVM
regression. We experimentally illustrate the strengths and weaknesses of
this algorithm and propose an improved version based on the weaknesses
highlighted by the experiments.

1 Introduction

Generalized Semi-Markov Decision Processes (GSMDP) [18] are an efficient and
elegant formalism to describe planning problems that present the three features
of decision under uncertainty, continuous time and concurrent activities. Imag-
ine, for instance, having to plan the exploitation of a subway network, where
available actions only consist in introducing or removing trains from service. In
this problem, the goal is to maximize the number of passengers going through the
network while minimizing the exploitation cost of the subway. Passenger arrival
times, movements going in and out of the trains and possible delays in the system
make the outcome of every action uncertain with regard to the next state and
the date of the next decision epoch. On top of that, the flow of passengers and
their destinations depend greatly on the time of day. Another problem that com-
bines the difficulties of planning under uncertainty, hard temporal constraints
and concurrent events and actions is airplanes taxiing management. Finally, co-
ordinating an autonomous UAV’s plan with regard to its environment is easily
described as a planning problem where the dynamics result from the concurrent
interaction of exogenous processes (other agents, environment evolution, mission
change, . . .). All these processes can be easily captured as GSMDP.

We present the GSMDP formalism in section 2 and illustrate how we include
time as an observable variable in order to deal with time dependent problems.
We also put GSMDP in perspective with standard Markov Decision Processes
(MDP), approaches for dealing with continuous variables and modelling ap-
proaches for concurrent stochastic processes. Then, in section 3, we present the
simulation-based reinforcement learning algorithm we developped in order to
deal with the inherent difficulties of planning in GSMDP. Section 4 focuses on
the evaluation of this algorithm and highlights its main weakness. Finally we
introduce an improved version of the algorithm in section 5.

2 Generalized Semi-Markov Decision Processes

2.1 Time, concurrency and uncertainty

MDP [12] have become a popular model for describing problems of planning
under uncertainty. Formally, an MDP is composed of a 4-tuple < S, A, P, r >,
where S is a countable set of states for the system, A is the countable set
of possible actions, P (s′|s, a) is a probability distribution function providing
the transition model between states and r(s, a) is a reward value associated
with the (s, a) transition, used to build criteria and to evaluate actions and
policies. Solutions to MDP problems are often given as Markovian policies π,
namely functions that map current states to actions. One can introduce criteria
to evaluate these policies, as the discounted reward criterion given in equation
1. Criteria permit definition of the value function V π associated with a policy.
An important result concerning MDP is that for any history-dependent policy,
there exists a Markovian policy which is at least as good with regard to a given
criterion. Consequently, one can safely search for optimal control policies in
the restricted space of Markovian policies without loss in optimality. Finally,
algorithms as value iteration or policy iteration rely on the fact that the optimal
policy’s value function V ∗ obeys Bellman’s optimality equation (equation 2) [1].

V π
γ (s) = E

(

∞
∑

δ=0

γδr(sδ , π(sδ)

)

(1)

V ∗(s) = max
a∈A

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

(2)

Among the different approaches designed to include time in the MDP frame-
work, one could mention Semi-MDP [12], Time-dependent MDP [2] and more
recently XMDP [15]. Additionnaly, dealing with observable time can take ad-
vantage of algorithms designed to manage continuous or hybrid state spaces as
in [7] or [5] for instance. For a more detailed overview of the relationship be-
tween time and MDP, we refer the reader to [14]. All these models rely on the
introduction of a continuous variable in the model in order to incorpor ate the
time dependency into the transition function. However, writing transition and
duration functions for such models is often a very complex task and requires a lot

of engineering. For instance, the effect of a RemoveT rain action on the global
state of the subway problem is the result of several concurrent processes: passen-
ger arrivals, trains movements, removal of one train, etc.; all compete to change
the system’s state and there is no simple way to summarize all these processes’
concurrent stochastic influence into the transition and duration functions.

In the stochastic processes litterature, concurrent Markov processes are mod-
elled as Generalized Semi-Markov Processes (GSMP) [6]. A GSMP is a natural
representation of several concurrent SMP affecting the same state space. [18]
introduced Generalized Semi-Markov Decision Processes (GSMDP) in order to
model the problem of decision under uncertainty where actions compete with
concurrent uncontrolable stochastic events. A GSMDP describes a problem by
factoring the global transition function of the process by the different stochastic
contributions of concurrent events. This makes GSMDP an elegant and efficient
way of describing the complexity of time-dependent stochastic problems. We
introduce the formal definition of GSMDP in the next section and focus on
GSMDP with continuous observable time in the rest of the paper.

MP SMP GSMP

MDP SMDP GSMDP

+ continuous
sojourn time + concurrency

+ actions

Fig. 1. From MP to GSMDP

2.2 GSMDP

We start from the stochastic process point of view, with no decision making.
Formally, a GSMP [6] is described by a set S of states and a set E of events. At
any time, the process is in a state s and there exists a subset Es of events that are
called active or enabled. These events represent the different concurrent processes
that compete for the next transition. To each active event e, we associate a clock
ce representing the duration before this event triggers a transition. This duration
would be the sojourn time in state s if event e was the only active event. The
event e∗ with the smallest clock ce∗ (the first to trigger) is the one that takes the
process to a new state. The transition is then described by the transition model
of the triggering event: the next state s′ is picked according to the probability
distribution Pe∗(s′|s). In the new state s′, events that are not in Es′ are disabled
(which actually implies setting their clocks to +∞). For the events of Es′ , clocks
are updated the following way:

– If e ∈ Es \ {e
∗}, then ce ← ce − ce∗

– If e 6∈ Es or if e = e∗, pick ce according to Fe(τ |s
′)

The first active event to trigger then takes the process to a new state where the
above operations are repeated. One first important remark concerning GSMP

is that the overall process does not retain Markov’s property anymore: knowing
the current state s is not sufficient to predict the distribution on the next state
of the process. [10] showed that by augmenting the state space with the events’
clocks, one could retain the Semi-Markov behaviour for a GSMP, we will discuss
this issue in the next section. Introducing action choice in a GSMP yields a
GSMDP as defined by [18]. In a GSMDP, we identify a subset A of controlable
events or actions, the remaining ones are called uncontrolable or exogeneous
events. Actions can be enabled or disabled at will and the subset As = A ∩ Es

of activable actions is never empty since it always contains at least the “idle”
action a∞ (whose clock is always set to +∞) which, in fact, does nothing and
lets the first exogeneous event take the process to a new state. As in the MDP
case, searching for control strategies on GSMDP implies defining rewards r(s, e)
or r(s, e, s′) associated to transitions and introducing policies and criteria.

2.3 Controlling GSMDP

As mentionned before, the transition function for the global semi-Markov process
does not retain the Markov property without augmenting the state space. In the
classical MDP framework, one can make use of the Markov property of the
transition function to prove that there exists a Markovian policy (depending
only on the current state) which is at least as good as any history-dependent
policy [12]. In the GSMDP case however, this is no longer possible and in order
to define criteria and to find optimal policies, we need - in the general case -
to allow the policy to depend on the whole execution path of the process. An
execution path [18] of length n from state s0 to state sn is a sequence σ =
(s0, t0, e0, s1, . . . , sn−1, tn−1, en−1, sn) where ti is the sojourn time in state si

before event ei triggers. As in [18], we define the discounted value of σ by:

V π
γ (σ) =

n−1
∑

i=0

γTi

(

γtik(si, ei, si+1) +

∫ ti

0

γtc(si, ei)dt

)

(3)

where k and c are traditional SMDP lump sum reward and reward rate functions,
and Ti =

∑i−1

j=0
tj. One can then define the expected value of policy π in state s

as the expectation over all execution paths starting in s: V π
γ (s) = Eπ

s

[

V π
γ (σ)

]

.
This provides a criterion for evaluating policies. The goal is now to find poli-

cies that maximize this criterion. The main problem here is that it is hard to
search the space of history-dependent policies. On the other hand, the supple-
mentary variable technique is often used to transform non-Markovian processes
into Markovian ones. It consists in augmenting the state space with just enough
variables so that the distribution over future states only depends on the current
values of these variables. In [10], Nielsen augments the natural state s of the
process with all the clock readings and shows that this operation brings Markov
behavior back to the GSMP process. We will note this augmented state space
(s, c) for convenience. Unfortunately, it is unrealistic to define policies over this
augmented state space since clock readings contain information about the future

of the system. From here, several options are possible:

– One could decide to sacrifice optimality and to search for “good” policies
among a restricted set of policies, say the policies defined on the current
natural state only.

– One could also search for representation hypothesis that simplify the GSMDP
model and that make natural state Markovian again.

– One could compute optimal policies on the augmented state space (s, c) and
then derive a policy on observable variables only.

– Finally, one could look for a set of observable variables which retain Markov’s
property for the process, for example the set composed of the natural state
of the process s, the duration for which each active event ei has been active
τi and its activation state si. We will note this augmented state (s, τ, sa)

[18] is based on the second option listed above. In the next section, we intro-
duce a new reinforcement learning method based on simulation-guided approxi-
mate policy iteration, designed to deal with large state spaces for GSMDP with
continuous observable time and that can be adapted to the three other options.
For a more detailed discussion about the motivations of this approach, see [14].

3 Simulation-based Approximate Policy Iteration for

GSMDP

3.1 Approximate Policy Iteration

Our algorithm belongs to the Approximate Policy Iteration (API) family of al-
gorithms. Policy Iteration is an algorithm for solving MDP which searches the
policy space in a two-step fashion as illustrated in equation 4. Given a policy
πn at step n, the first step consists in computing the value of πn. The second
step then performs a Bellman backup in every state of the state space, thus im-
proving the policy. An important property of policy iteration is its good anytime
behaviour: at any step n, policy πn will be at least as good as any previous pol-
icy. Policy Iteration usually converges in less iterations than the standard Value
Iteration algorithm but takes longer since the evaluation step is very time con-
suming. To deal with real problems, one needs to allow for approximate policy
evaluation (as in [8]) since exact computation is often infeasible. There are few
theoretical guarantees on convergence and optimality of API, as explained in [9].

πn+1(s) = argmax
a∈A

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V πn(s′)

]

(4)

The baseline of our algorithm is to start with an initial policy defined over
what we chose as the observable state space for a GSMDP and incrementaly
improve its quality on the states that are relevant to the current problem.

3.2 Algorithm

Partial state space exploration. We deal with continuous - possibly hybrid
- state spaces, therefore, unless we make strong hypothesis of the shape of the

transition and reward functions (as in [2] or [18]) it is not possible to compute the
exact value of policy πn. Instead, we decide to sample the state space in order to
obtain an evaluation of V πn . We perform N0 simulations of the current policy πn

starting from the current state of the process and we store the triplets of states,
times and rewards (sδ, tδ, rδ) obtained. Thus, by summing all the rewards from
one state to the end of the simulation, one execution path σi yields a value
function Vi over the discrete set of states explored during simulation (equation
3). All the value functions issued from simulation yield a training set {(s, v)}, s ∈
S, v ∈ R, from which we wish to generalize a value function Ṽ over all states. It is
important to note that since time is a state variable and because of the causality

principle, the only possible loops in the state dynamics are instantaneous loops
(the process doesn’t go back in time) and there is a zero probability of an infinite
sequence of instantaneous loops. Consequently, simulations come to an end when
they reach the absorbing states at t = horizon. As N0 → ∞, the subspace
explored by the simulations tends to the reachable subspace from s0 and each
state is visited with a probability corresponding to the stationary Markov chain
defined by (s0, c0, πn) [10]. Therefore:

∀s ∈ Reachable(s0), lim
N0→∞

∑N0

i=1
Vi(s)

N0

= V πn(s) (5)

We can summarize this approach by saying that we let the current policy guide
our sampling in the state space in order to reach a good approximation of the
curent policy’s value function over all reachable states.

Value function generalization. Unfortunately, we cannot perform an infinite
number of simulations and we are left with a finite set of samples for the value
function evaluation. Consequently, we wish to generalize this information in order
to interpolate the value function over all states. We use th samples as a training
set for a regression method that will generalize it to the entire state space. Several
approaches to regression based reinforcement learning have been proposed in the
machine learning community - methods based on trees [4], evolutionary functions
[17], kernel methods [11], etc. - but few have been coupled with policy simulation.
We chose to focus on support vector regression (SVR) because of its ability to
handle the large dimension spaces over which our samples are defined. SVR
belong to the family of kernel methods and can be used for both regression
and classification (SVC). Training a standard SVR over a given training set
corresponds to looking for a hyperplane interpolating the samples in a higher
dimensional space called feature space. Practically, SVR take advantage of the
kernel trick to avoid expressing the feature space explicitely. For more details
on SVR and SVC, we refer the reader to [16]. In our case, we call Ṽn(s) the
interpolated value function of policy πn.

Online policy instanciation. Finally, while simulation-based exploration and
SVR generalization of the value function are techniques dedicated to improve

the evaluation step of approximate policy iteration, the third specificity of our
algorithm deals with improving the optimization step. For large and possibly
continuous state spaces, it might be very long or impracticable to compute the
one-step improvement of the policy. Indeed, most of the time, computing a com-
plete policy is irrelevant since most of this policy will never be used for the
simulation-based evaluation step. This idea is the basis of asynchronous policy
iteration. Instead, it might be easier to compute online the one-step lookahead
best action in the current state with respect to the stored value function. More
precisely, in a standard MDP, the optimization step consists in solving equation
6 in every state:

πn+1(s)← argmax
a∈A

Q̃n+1(s, a) (6)

with: Q̃n+1(s, a) = r(s, a) +
∑

s′∈S

P (s′|s, a)Ṽn(s, a)

For continuous state spaces, computing πn+1 implies being able to compute
integrals over P and Ṽn. We wish not make hypothesis on the model used and
therefore will perform a discretization for evaluation of the integral. Finally,
since the model of P is not necessarily known to the decision maker and since
we have a simulator of our system, we will make a second use of this simulator
for the purpose of evaluating the expected reward Q̃n+1(s, a) associated with
performing action a in state s with respect to value function Ṽn (equation 7). At
the end of the evaluation phase, the value function Ṽn is stored and no policy
is computed from it. Instead, we immediately enter a new simulation phase
but whenever the policy πn+1 is asked for the action to perform in the current
state s it performs online the estimation of all Q-values for state s and then
choses the best action to perform. The speed up in the execution of the policy
iteration algorithm is easy to illustrate for discrete state space problems since we
replace |S| evaluations of the Q-values for policy update by the number of states
visited during one simulation. This is especially interesting in the case of time
dependent problems since a state is never visited twice (except for instantaneous
loops). Consequently, Q̃n+1(s, a) is calculated by simply simulating Na times the
application of a in s and observing the set of {(ri, s

′

i)} as in equation 7. Then
the policy returns the action which corresponds to the largest Q-value. We call
this online instanciation of the policy “online approximate policy iteration”.

Q̃n+1(s, a) =
1

Na

Na
∑

i=1

[

ri + Ṽn(s′i)
]

(7)

To summarize, the improvement of the current policy is performed online: for
each visited state (starting in s0) we perform one Bellman backup using the value
function evaluation from the previous step, then apply the best action found to
move on to the next state. This can also be seen as letting the policy guide the
choice for the subset of states over which we improve the policy at step n + 1.

Algorithm 1 Online-ATPI

main:

Input : π0 or Ṽ0, s0

loop

TrainingSet ← ∅
for i = 1 to N0 do

{(s, v)} ← simulate(Ṽ , s0)
TrainingSet← TrainingSet ∪ {(s, v)}

end for

Ṽ ← TrainApproximator(TrainingSet)
end loop

simulate(Ṽ , s0):
ExecutionPath← ∅
s← s0

while horizon not reached do

action← ComputePolicy(s, Ṽ)
(s′, r)← GSMDPstep(s, action)
ExecutionPath← ExecutionPath ∪ (s′, r)

end while

convert execution path to value function {(s, v)} (eqn 3)
return {(s, v)}

ComputePolicy(s, Ṽ):
for a ∈ A do

Q̃(s, a) = 0
for j = 1 to Na do

(s′, r)← GSMDPstep(s, a)

Q̃(s, a)← Q̃(s, a) + r + γt′−tṼ (s′)
end for

Q̃(s, a)← 1
Na

Q̃(s, a)
end for

action← arg max
a∈A

Q̃(s, a)

return action

Algorithm overview and implementation. The online Approximate Tem-

poral Policy Iteration (online-ATPI) algorithm is presented in algorithm 1.

Note that in algorithm 1, s actually denotes the part of the state that is
observable to the policy. This makes online-ATPI adaptable to any of the sets
of policy variables presented in section 2.3. We implemented a version of online-
ATPI on the natural state of the process. It will be important, in future work,
to test the algorithm on the (s, c) and (s, τ, sa) Markovian states. In the current
version of the algorithm, the generated value function is usable “as is” in order
to derive a greedy policy for the problem. In the case of the (s, c) state space,
one more step is necessary in order to build an estimator of the current clocks
to make such a policy usable.

4 Evaluation

4.1 The subway control problem

We tested online-ATPI on a simple instance of the subway problem which had
4 trains and 6 stations. In this problem, the goal is to optimize the exploita-
tion cost of the subway over a whole day. Events such as trainMovement and
actions such as addTrain cost money (for the energy consumption) while every
passenger exiting the subway brings positive rewards (ticket price). The problem
was formalized using the following concurrent events (which can be disabled in
non-relevant states):

– passengerArrivali: passenger arrival in station i - exogeneous.
– trainMovementj: movement of train number j, only enabled if the train is

in service. This event actually also includes passengers going in and out of
the train - exogeneous.

– addTrainj : adds train j in station 0 - controlable.
– removeT rainj : removes train j from service, only enabled if train j is in

station 0 - controlable.
– a∞: NoOp - controlable.

The state space included continous (time), discrete (train position), and boolean
(redundant variables as NoTrainAtStationj) variables. Finally the problem had
19 concurrent events and a hybrid state space of dimension 22. Depending on
the time of day, the transition functions for each event described the continuous
evolution of passenger flows, destinations, arrival frequencies, etc.

This series of experiments used the VLE multimodel simulation engine [13],
based on the DEVS [19] formalism. We developped GSMP and GSMDP exten-
sions to the VLE platform and used them for all simulation tasks. This allowed
us to take advantage of the interoperability of DEVS models. More specifically,
it allows for simulation of coupled models, ie. if an event or a whole system inter-
acts with our GSMDP but is not written as a GSMP itself, then DEVS coupling
would still allow for simulation of the whole system, retaining the properties of
event-driven discrete event simulation. This does not have an immediate impact
on the current algorithm but extends its application scope to discrete events dy-
namic systems. We used N0 = 20 simulations per policy iteration and Na = 15
samples per action (Cf. algorithm 1). The SVR was a standard ǫ-SVR, adapted
from the LIBSVM library [3], with Gaussian kernels and σ2 = 20. After N0 sim-
ulations, the training set for the SVR had around 45000 points. The experiments
were ran on a 1.7 Ghz single core processor with 884Mio of RAM.

4.2 Discussion

Figures 2(a) to 2(d) present the simulation results when the algorithm is initial-
ized with a default policy that sets all the trains to run all day long. Figure 2(a)
and 2(d) illustrate the fact that the number of support vectors in the SVR is the
factor that greatly handicaps the simulation time. This could be solved by using

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

si
m

ul
at

io
n

tim
e

(s
ec

)

iteration number

(a) Simulation Time

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

SV
R

 tr
ai

ni
ng

 ti
m

e
(s

ec
)

iteration number

(b) SVR Training Time

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 0 2 4 6 8 10 12 14

in
iti

al
 s

ta
te

 v
al

ue

iteration number

stat
SVR

(c) Policy quality

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14

SV
 n

um
be

r

iteration number

(d) Number of suport vectors

other SVR techniques as ν-SVR. However, since N0 simulations always gener-
ate approximately the same number of training samples, the number of support
vectors we have to store is bounded. The most interesting features highlighted
by these experiments come from in figure 2(c).

First of all, between iteration 1 and 8, the expected value for the initial state
rises, as one could expect from a “policy iteration”-like algorithm. As a matter
of fact, this increase is not necessarily linear and depends on the problem’s
structure. If the policy takes the simulation to states that are “far” from explored
states (states for which the interpolated value might be erroneous) and that
provide very bad rewards, it can happen that the initial state’s expected value
drops for one iteration. This is the drawback from partial exploration of the state
space and interpolation: very good or very bad regions of the state space might
be discovered late in the iterations (or might not be discovered at all).

Secondly, one can notice that online-ATPI quickly (in less than ten iterations)
finds policies with positive expected values. This actually means that - with the
hard economical constraints we put on the problem - it was still possible to find
a policy that makes the subway profitable while the best “hand-made” policy
we tested so far had an expected value of zero for s0.

Finally, this same result illustrates the main weakness of this first version
of the algorithm. After finding a good policy π8, the initial state’s expected
value drops dramatically at the next iteration which is in contradiction with the
monotonicity of the value function’s expected evolution. This phenomenon is

due to the fact that outside the region explored at the last iteration (outside of
the region where samples are dense), the SVR over-estimates the expected gain
because it does not have any training samples in these regions (because they are
indeed bad regions for expected values, the good policy avoided them and we
did not keep track of these regions). Consequently, during the next improvement
step, whenever the algorithm asks for the value of a state which is outside of this
“confidence region”, the value returned by the SVR is too high and the SVR
cannot act as an admissible heuristic anymore. This pulls the policy back towards
these bad regions of the state space. From this new (bad) policy, the improvement
process starts again and the value of s0 rises again between iterations 9 and 14.

Section 5 shows how we modify the algorithm to deal with this problem.

5 Avoiding policy degradation

In order to keep the interest of online-ATPI and to retain the monotonicity of the
value function’s evolution, we need to guarantee that we will never overestimate
the expected value of a state with regard to the current policy. The main idea
here is to keep track of previous optimizations for the policy, even on states that
are not visited anymore, and to define confidence regions for the last exploration.

5.1 Keeping track of the global policy

In order not forget previous policy optimizations, we keep a history of all op-
timized actions throughout the iterations. Practically, we build a classifier on
the pairs (s, a) (a regressor in the case of continuous actions) which generalizes
the optimized actions to their neighbourhood in the continuous state space.
This raises two issues: firstly, when to replace an action by another in the
classifier, secondly when to use the optimized policy (and not the initial pol-
icy). These two issues are adressed the same way: we need a function defining
whether we trust our interpolation in a given state or not. In other words, we
need to define a confidence function, which indicates if the classifier has had
enough samples around the current state in order to learn a clever action and
return a reasonable solution. This notion of confidence function is crucial to
the improved version of online-ATPI, we will develop it more in the next para-
graph. Finally, this is how we modify the algorithm. We maintain a database
actionDB of x = (s, a), thus keeping track of all explored states. At itera-
tion n, the N0 simulation provide us with a new set of optimized actions on
the traversed state space actionDB′. We remove any sample x from actionDB

such that confidence(actionDB′, x) = true, add all samples from actionDB′ to
actionDB, then train the classifier π̃ on the updated actionDB database. Prac-
tically, we use standard SVC for the same reasons we used SVR for regression.
During simulation, we use the confidence function again to know if the region
has ever been visited: if so, we use π̃, if not, we use π0.

5.2 When to trust the SVR evaluation of the value function

However, keeping track of previous optimizations does not protect us from over-
estimating the expected value in poorly explored regions. When an improvement
step takes us far from previously explored states, the SVR value function out-
puts a value which tends to the average of the explored values. The confidence

function we defined in the previous paragraph can be reused here to define the
confidence we have in the SVR estimation. Therefore we can determine a thresh-
old on the confidence value under which we consider the SVR Ṽ as non-reliable.
This does not guarantee the SVR to be an admissible heuristic in the confidence
region, but insures that its value is close to the real expected value of every
sample state in the confidence region (within ǫ for ǫ-SVR). In order to define
this confidence function, we store all the (s, v) samples from the last iteration
in a valueDB database. These samples correspond to the evaluation of the last
policy. When the ComputePolicy function requests the value of a state s′, if
confidence(valueDB, s′) = true, then we use the value returned by Ṽ . Else, we
run N1 simulations from s′, using π̃ (or π0 if π̃ is not relevant) in order to enrich
the valueDB database and to adapt Ṽ . We stop these simulations as soon as
they enter the confidence region again (this speeds up simulation time and avoids
refining the database in non necessary regions). This provides a good estimation
of V (s′), refines the global Ṽ function and extends its confidence region.

We provide a proof sketch for the question of the value function’s monotonous
evolution. Suppose we are performing iteration n + 1 from state s. We want to
prove that V πn+1(s) ≥ V πn(s). For convenience we neglect the approximation
error in the confidence region. If s is inside the confidence region of valueDB,
then the result is immediate. If s is outside this region then we can decompose
an execution path starting in s into the path outside eout and the first state to
enter the confidence region again sin. We have V πn+1(s) = V (eout)+V (sin), but
V (eout) = V πn(eout) and V (sin) ≥ V πn(sin). Therefore V πn+1(s) ≥ V πn(s).

Practically, there are several different ways of defining the confidence func-
tion: we have turned towards local linear density estimators and one-class SVR,
but previous work from the statistical learning community could probably apply
here. This area is still a domain of future research. However, it is important to no-
tice that a very selective confidence function will yield very large databases and
SVM and will provide very fine-grained estimations of the value function and the
policy, while softer confidence functions will reduce the number of simulations to
perform but will deteriorate the estimator’s quality. Therefore, this confidence
function defines the granularity of our value function and policy. Lastly, we use
ǫ and ν-SVR for regression, but the training set used for learning is regularly
refined when we perform new simulations in an unknown state, we can thus take
advantage of incremental batch SVR learning which is still a very hot topic in
SVR research. This last topic is particularly important to online-ATPI since
early experiments with the improved algorithm showed that the refining and
retraining process slowed heavily the policy learning process.

The improved online-ATPI algorithm is presented on algorithm 2.

Algorithm 2 Modified online-ATPI

main:

Input : π0 or Ṽ0, s0

loop

valueDB.reset(), newActionDB.reset()
for i = 1 to N0 do

σ.reset()
mainProcess.s← s0

while horizon not reached do

a =bestAction(s), activateEvent(a)
(s′, r)← mainProcess.step(), σ.add(s, a, r)

end while

valueDB.convertExecutionPathToValueFunction(σ)
newActionDB.add(σ)

end for

Ṽ ← TrainSVR(valueDB), π̃ ← TrainSVC(actionDB)
end loop

bestAction(s):
for a ∈ As do

Q̃(s, a) = 0
for j = 1 to Na do

Q̃(s, a) = Q̃(s, a)+ simulateWithStop(s, a)
end for

Q̃(s, a) = Q̃(s,a)
Na

return arg max
a∈A

Q̃(s, a)

end for

simulateWithStop(s, a):

activateEvent(a), (s′, r)← mainProcess.clone().step()
Q← r, s← s′

while horizon not reached & confidence(s)=false do

a = π̃(s), activateEvent(a)
(s′, r)← mainProcess.clone().step()
Q← Q + r, s← s′

end while

Q = Q + Ṽ (s)
valueDB.update(), Ṽ ← TrainSVR(valueDB)
return Q

6 Conclusion

We presented a new method for policy search in large dimension, hybrid state
space GSMDP. Our method relies on partial exploration of the state space,
guided by the current policy, and tries to retain the monotonicity of the value
function’s evolution, provided by the Policy Iteration algorithm. This results in
a specific Approximate Policy Iteration algorithm which we called online-ATPI.

In its current version, online-ATPI makes an extensive use of SVR and SVC
in order to generalize discrete samples information to the continuous or hybrid
state space. It also relies on a notion of granularity in the policy search, via
the use of confidence functions regarding the pertinence of the SVM estimators.
Future work will deal with evaluation of the improved algorithm.

References

1. Bellman R. E. (1957). Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey.

2. Boyan J. & Littman M. (2001). Exact solutions to time dependent MDPs. Ad-

vances in Neural Information Processing Systems, 13, 1026–1032.
3. Chang C.-C. & Lin C.-J.(2001). LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
4. Ernst D., Geurts P. & Wehenkel L. (2005). Tree-based batch mode reinforce-

ment learning. JMLR, 6, 503–556.
5. Feng Z., Dearden R., Meuleau N. & Washington R. (2004). Dynamic pro-

gramming for structured continuous markov decision problems. In 20th Conference

on Uncertainty in AI, p. 154–161.
6. Glynn P. (1989). A GSMP formalism for discrete event systems. Proc. of the

IEEE, 77.
7. Hauskrecht M. & Kveton B. (2006). Approximate linear programming for solv-

ing hybrid factord MDPs. In 9th Int. Symp. on AI and Math.
8. Lagoudakis M. & Parr R. (2003). Least-squares policy iteration. JMLR, 4,

1107–1149.
9. Munos R. (2003). Error bounds for approximate policy iteration. In Int. Conf. on

Machine Learning.
10. Nielsen F. (1998). GMSim: a tool for compositionnal GSMP modeling. In Winter

Simulation Conference.
11. Ormoneit D. & Sen S. (2002). Kernel-based reinforcement learning. Machine

Learning, 49, 161–178.
12. Puterman M. (1994). Markov Decision Processes. John Wiley & Sons, Inc.
13. Quesnel G., Duboz R., Ramat E. & Traore M. (2007). VLE - A Multi-

Modeling and Simulation Environment. In Proc. of Summer Simulation Conf. 07
14. Rachelson E., Fabiani P., Garcia F. & Quesnel G.(2008). Une Approche

basée sur la Simulation pour l’Optimisation des Processus Décisionnels Semi-
Markoviens Généralisés (english version). In CAp08.

15. Rachelson E., Garcia F. & Fabiani P. (2008). Extending the Bellman equation
for MDP to continuous actions and continuous time in the discounted case. In 10th

Int. Symp. on AI and Math.
16. Vapnik V., Golowich S. & Smola A. (1996). Support vector method for function

approximation, regression estimation and signal processing. Advances in Neural

Information Processing Systems, 9, 281–287.
17. Whiteson S. & Stone P. (2006). Evolutionary function approximation for rein-

forcement learning. JMLR, 7, 877–917.
18. Younes H. & Simmons R. (2004). Solving generalized semi-markov decision

processes using continuous phase-type distributions. In AAAI.
19. Zeigler B. P., Kim D. & Praehofer H. (2000). Theory of modeling and simu-

lation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Aca-
demic Press.

