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Abstract

In order to allow the temporal coordination of two indepen-
dent communicating agents, one needs to be able to plan in a
time-dependent environment. This paper deals with the mod-
eling and solving of such problems through the use of Time-
dependent Markov Decision Processes (TiMDPs). We pro-
vide an analysis of the TiMDP model and exploit its prop-
erties to introduce an improved asynchronous value iteration
method. Our approach is evaluated on a UAV temporal coor-
dination problem and on the well-known Mars rover domain.

Introduction
Recent advances in planning under uncertainty are moving
the field one step closer to real-world applications. One
of the remaining obstacles with the modeling of planning
tasks as Markov Decision Processes (MDPs) deals with the
integration of temporal extensions of actions and domains.
These temporal extensions can consist in action durations
(stochastic or deterministic) but also in the modeling of
time-dependency in the planning problem. In this paper, we
start from a practical problem of mono-agent planning in
a time-dependent environment and explore the advantages
and drawbacks of using Time-dependent MDPs (TiMDPs,
(Boyan and Littman 2001)) to model and solve it.

(Rachelson, Garcia, and Fabiani 2008) has shown that in-
troducing an observable time variable in an MDP model im-
plied using an extended optimality equation which differs
from the classical Bellman equation only by a γt factor. This
allows to derive algorithms which are similar to the ones for
standard MDPs. This also allows to unify in a single frame-
work previous algorithms for dealing with continuous vari-
ables in MDPs, from (Boyan and Littman 2001), (Feng et al.
2004) and (Li and Littman 2005).

This investigation comes from a practical UAV (un-
manned air vehicle) coordination problem. We first present
this problem and its implications for single-agent planners.
Then, we recall the TiMDP model of Boyan and Littman
and show why it is relevant to our problem. The main part
of the paper introduces the mono-agent planning algorithm
which extends the one of Boyan and Littman and meets with
previous results from Feng et al. and Li and Littman. We
finally present some optimisation results on the UAV coor-
dination problem and an application of our algorithm on an

adapted version of the well-known Mars rover planning do-
main (Bresina).

The UAV coordination problem

We consider the problem where two independent agents
need to coordinate their plans of action without delegating
their decision process to each other. This is the case, for
instance, when two heterogeneous agents such as an un-
manned air vehicle (UAV) and a ground rover need to co-
ordinate their actions online, for a common set of goal tasks.
More specifically, suppose the UAV has its own individual
mission of patroling over a burning forest in order to observe
some areas at certain times; while the rover tries to cross the
forest and relies on the UAV’s informations about roads for
that. In the setup we consider, none of the agents has the op-
portunity to decide what the other agent will do. However,
they are able to communicate when they are close enough,
and can exchange goal-related information about their in-
tentions and plans. This information is timed and consists
in messages concerning the time-dependent availability of
common goals or features of the environment. For instance,
the UAV can declare that it will fulfill the task of patroling
over an area at a certain time, or it can communicate infor-
mations about the evolution of the fire to the rover through a
predefined communication protocol.

We consider this problem from the single-agent planning
point of view and suppose that there exists a communication
protocol which allows the exchange of information between
agents. The effect of this communication protocol is to intro-
duce time-dependent goals, rewards and transition dynam-
ics in the planning domain. The problem each agent has to
solve is a problem of decision under uncertainty within a
time-dependent environment. The uncertainty in the prob-
lem comes from the model of each agent’s dynamics, from
the fire’s evolution and from the other agent’s actions. On
top of that, the exchange of timed-messages between agents
introduces time-dependent rewards and goals.

Hence, we focus on the question of generating plans for
each agent separately, given the uncertainty in the environ-
ment and its time-dependency. We cast this problem as a
Time-dependent Markov Decision Process (TiMDP) plan-
ning problem for each agent.



Time-dependency and uncertainty in planning
We first recall the definition and common results about
Markov Decision Processes. Then we compare differ-
ent approaches to planning under uncertainty with time-
dependency and present the TiMDP model of (Boyan and
Littman 2001).

Markov Decision Processes
A Markov Decision Process is given by the tuple 〈S,A, P, r〉
where S is the set of possible states for the agent, A is a set
of available actions for the agent at each decision epoch,
P (s′|s, a) is a Markovian transition model providing the
probability of reaching state s′ after undertaking action a
in s and r(s, a) (or r(s, a, s′)) is a reward model describing
the reward obtained during transition (s, a) (or (s, a, s′)).

In order to control the MDP, one usually defines a Marko-
vian control policy π, mapping states to actions. Optimiz-
ing such a policy then corresponds to defining a criterion
measuring the policy’s quality and searching for the policy
which maximizes the criterion. Common criteria are the dis-
counted or total reward criteria which provide the expected
γ-discounted cumulative reward of applying policy π over
an infinite horizon, starting in a given state s.

V π(s) = E

( ∞∑
δ=0

γδr(sδ, π(sδ))|s0 = s

)
, γ ∈ [0; 1]

An important issue illustrated by this criterion’s definition
is that a policy is optimized on the basis of a unit duration for
all actions. However, in the problems we wish to consider,
the uncertainty often affects both the action outcomes and
the sojourn times in successive states.

Time-dependent MDPs
Several extensions to discrete-event dynamic systems ex-
ist to take durative actions and time-dependency into ac-
count for decision optimization. For instance, one could
refer to the SMDP (Howard 1963) or STDN (Wellman,
Ford, and Larson 1995) frameworks. Recent deterministic
or stochastic modelling efforts have been devoted to such
systems (Younes and Simmons 2004; Cushing et al. 2007;
Pralet and Verfaillie 2008; Rachelson 2009). In this paper,
we will focus on a straightforward way of including time
in the state space of an MDP. This approach, introduced by
(Boyan and Littman 2001), is known as TiMDPs.

A TiMDP is described by a set of discrete states S and
a set of actions A as in a standard MDP. However, when-
ever one performs action a in s and at time t, an outcome
µ, among the set M of outcomes, is triggered with probabil-
ity L(µ|s, t, a). Each outcome is described by a destination
state sµ and a duration model Pµ characterizing the sojourn
time before the transition to sµ triggers. This duration model
can either be relative — it then provides the probability den-
sity function (pdf) on the sojourn time (or transition dura-
tion) — or absolute — giving the pdf on the transition date.
Figure 1 illustrates the previous definition of TiMDPs.

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

Figure 1: Time-dependent MDP

Optimality equation
(Rachelson, Garcia, and Fabiani 2008) provide insight on
the mathematical foundations of the optimality equations for
TiMDPs given in (Boyan and Littman 2001) which we recall
and comment here:

U(µ, t) =
{∫∞
−∞ Pµ(t′)[R(µ, t, t′) + V (s′µ, t

′)]dt′∫∞
−∞ Pµ(t′ − t)[R(µ, t, t′) + V (s′µ, t

′)]dt′

(1)

Q(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · U(µ, t) (2)

V (s, t) = max
a∈A

Q(s, t, a) (3)

V (s, t) = sup
t′≥t

(∫ t′

t

K(s, θ)dθ + V (s, t′)

)
(4)

U is the expected value of outcome µ while Q is the
expected value of undertaking a in (s, t). Note that with
TiMDPs, policy values have to be manipulated as functions
of t in each state s, instead of simple scalar values as in
the MDP case. V (s, t) is the value of the best action in
(s, t) given all the Q functions and, finally, V (s, t) is the ex-
pected value function in s if one allows for a specific wait
action which leaves the discrete state unchanged and deter-
ministically moves forward in time with a time-dependent
reward rate K(s, t). This wait action is a second specificity
of TiMDPs: on top of having a state space composed of dis-
crete and continuous components, it also leaves room for the
duration parameter τ of a continuous wait action, on top of
all the other discrete actions.

The UAV as a TiMDP
We can cast a simple version of the UAV planning problem
as a navigation TiMDP. The UAV has to move over a grid
of geographical positions and its goals are given as reward
rates, corresponding to the importance of patroling over the
corresponding cells at specific times of day. These reward
rates correspond to the priority of the patrolling task, as de-
fined by the communication protocol. The UAV’s available
actions are the four movements and the wait action, which
is the only one providing rewards. The transition model is
also made time-dependent based on the weather and wind
forecast, affecting the transition probabilities from one cell
to the other. Hence, optimizing the movement policy for the
agent corresponds to deciding which cell to monitor, given
the non-stationary reward and transition models and the pos-
sible compromise to make between goals (communication
can result in conflicting goals by defining non-zero reward



rates on overlapping intervals, hence forcing the agent to
compute the optimal compromise). Figure 2 illustrates this
planning problem.
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Figure 2: UAV patrol grid

Planning algorithm
(Boyan and Littman 2001) illustrate that with piecewise con-
stant (PWC) L functions, piecewise linear (PWL) reward
models and discrete Pµ distributions, one could perform the
value iteration Bellman backups inspired by equations 1 to 4
exactly. (Feng et al. 2004) builds on this idea to compute so-
lutions to continuous state MDPs and (Li and Littman 2005)
explore the practical resolution of value iteration using PWC
functions with the Lazy Approximation algorithm. The ap-
proach we present in this paper for TiMDPs relates to the
Lazy Approximation scheme. Our results complement and
extend (Li and Littman 2005) in several ways. More specif-
ically, in this section, we first present a new general result
about planning horizon in TiMDPs, then we focus on the
computation of Bellman backups and restate a previous re-
sult from the litterature in a more general fashion. This leads
to a better understanding of approximation for TiMDP value
functions. Finally, we focus on asynchronous value func-
tion updates to speed up the resolution. The union of these
contributions provides our TiMDPpoly algorithm.

Planning horizon vs. temporal horizon
In (Feng et al. 2004) and (Li and Littman 2005), whenever
time is included as a state variable, the optimization process
is presented as a finite horizon MDP where the value func-
tion is optimized for a limited number of consecutive de-
cision epochs. However, this restriction can be avoided by
distinguishing between planning horizon and temporal hori-
zon. The planning horizon, as usually defined, is the number
of sequential decision epochs of the agent. Deciding with a
finite planning horizon restricts the number of steps an agent
can perform. MDPs are usually optimized for an unbounded
horizon. On the other hand, the temporal horizon T corre-
sponds to the initial value of a non-replenishable time re-
source. Whenever this resource becomes depleted, the pro-
cess enters an absorbing state providing zero reward and rep-
resenting the end of the episode. Hence, every episode is
defined between times 0 and T and we are mostly interested
in the policy and value function between these two times.

For real-life, observable time processes such as TiMDPs,
the time-dependency of the problem is only known until a
given temporal horizon T . This implies that in most reason-
able cases1, only a finite — but initially unknown — number
of actions can be performed before reaching this temporal
horizon. This distinction allows us to make the following
conjecture:

Conjecture 1. For observable time problems, such as
TiMDPs, with a bounded temporal horizon, there exists a
finite planning horizon N such that the N step look-ahead
optimized value function is equal to the unbounded-horizon
optimal value function on the temporal interval [0, T ]. One
can rephrase this statement: for a TiMDP with temporal
horizon T , there exists a value N such that the value func-
tion on the [0, T ] interval of the best N -step policy is equal
to the value function of the best (N + k)-step policy. Hence,
with π∗N the optimal N -step value function, we write:

∀t ∈ [0, T ], V π
∗
N (s, t) = V π

∗
∞(s, t)

This intuitive conjecture can be proven in a more general
framework with specific modelling hypothesis but this result
is beyond the scope of this paper. We will simply settle for
the proof’s intuition which relies on the fact that actions are
durative and can be grouped into sequences having a mini-
mal, strictly positive duration.

Consequently, instead of searching for a N -step plan-
ning horizon solution, one can search for the stationary
value function of an infinite planning horizon programming
method, on [0, T ]. This function is a fixed point of the Bell-
man operator for observable-time MDPs. This brings us to
performing value iteration-like Bellman backups on the con-
tinuous V (s, t) value functions, where t is the time resource.

Closed-form Bellman backups
We draw inspiration from the value iteration scheme of
(Boyan and Littman 2001) which updates a function Vs(t) =
V (s, t) every time the discrete state s is updated, using equa-
tions 1 to 4. Boyan and Littman show that each of these
Bellman backups can be performed analytically, computing
Vn+1(s, t) in closed-form, based on Vn(s, t), under the four
following assumptions:

1. Pµ(t′) and Pµ(τ) are discrete distributions.

2. L(µ|s, t, a) is a PWC function of t.

3. R(µ, t, t′) = rt(t) + rt′(t′) + rτ (t′ − t).

4. rt, rt′ and rτ are PWL functions.

Feng et al. adapt this idea to the general case of continu-
ous state MDPs: they keep the same hypothesis on the shape
of the functions but extend them to rectangular partitions in
a continuous state space. These partitions are described and
modified using kd-trees. Li and Littman define a similar al-
gorithm called Lazy Approximation which allows the use of

1See (Rachelson, Garcia, and Fabiani 2008; Rachelson 2009)
for a complete discussion on the mathematical assumptions neces-
sary for a sound inclusion of time as a state variable in MDPs.



PWC distributions for Pµ and iteratively approximates all
successive value functions obtained through Bellman back-
ups by PWC functions. Our contribution analyzes why such
PWC, PWL or discrete distributions are well-suited for such
problems with continuous variables and builds on this anal-
ysis to improve the resolution mechanism.

In order to generalize on the previous hypothesis, we con-
sider the case of piecewise polynomial (PWP) functions and
distributions. We writePm the set of PWP functions of max-
imum degree m and:

1. Pµ ∈ PA
2. rt, rt′ , rτ ∈ PB
3. L ∈ PC

Then, we can write:
Result 1 (Value function degree). The sequence of value
functions issued by the application of the Bellman backups
corresponding to equations 1 to 4 has the degree:

d◦(Vn) = B + n(A+ C + 1) (5)

where n is the iteration number.

Proof. This follows from establishing that the convolution
of two PWP functions of degree m and n yields a PWP of
degree m+n+1. Then, taking equations 1 to 4 step by step
and observing the functions’ degrees provides the result.

This leads to the immediate consequence:
Corollary. In order to have a closed-form solution of the
Bellman equation throughout the value iterations, one needs
to insure A+ C = −1.

While this is not possible for purely PWP functions, one
needs to remember that A is indeed the degree of a PWP
distribution (and not a PWP function). Analyzing equa-
tions 1 to 4 shows that if Pµ is a discrete distribution, then
it behaves as a “P−1” distribution with respect to the con-
volution operation of equation 1. Then, one can reach the
A + C = −1 condition with A = −1 and C = 0. Hence,
this result shows that Boyan and Littman exact closed-form
resolution of TiMDPs cannot be directly extended to PWP
distributions.

However, this investigation also provides some insight on
how to perform the analytical operations of the Bellman
backups. One can still implement these operations, they
just do not result in a closed-form solution anymore. Conse-
quently, any projection scheme on a lower PWP degree func-
tion space which provides error bounds on the approxima-
tion error could fit an approximate value iteration method for
TiMDPs (and more generally for continuous state MDPs).

Another side-consequence which becomes almost imme-
diate through the observation of equations 1 to 4 is that the
exact resolution conditions of (Boyan and Littman 2001) can
only be slightly extended. The previous result imposed con-
ditions on the degrees A and C, the next one bounds the
value of B:
Result 2 (Exact closed-form resolution conditions). In or-
der to analytically perform all operations for Bellman back-
ups, one also needs to exactly compute the roots of PWP

functions (more specifically the intersection of PWP func-
tions in equation 3) and thus, the exact resolution conditions
for PWP representations are:

A = −1, C = 0, B ≤ 4

Similarly to the previous remarks, having a reward
model’s degree larger than 4 does not imply that one can-
not perform the Bellman backups. However, these backups
will become approximate because of the approximate root
finding procedure necessary to solve equation 3.

Finally, in practice, the convolution, multiplication, sum-
mation and intersections operations of equations 1 to 4 im-
ply subdividing the definition intervals of the different PWP
functions to obtain the next Vn+1 value function:
Conjecture 2. Bellman backups on PWP representations
result in a linear increase in the number of pieces necessary
to describe the value function, even in the exact resolution
case.

Consequently, in practice, to avoid numerical inconsisten-
cies such as intervals of length tending to zero, one necessar-
ily needs to make use of approximation at some point. More-
over, experience shows that these very small intervals often
have very close values and, hence, can be easily merged into
larger intervals if one allows for an L∞-bounded approxi-
mation scheme.

This initial analysis of the Bellman backup operator for
TiMDPs provides us with a good generalization of the re-
sults presented in (Feng et al. 2004) and (Li and Littman
2005). Based on these results, we are still able to perform
analytical Bellman backups on the extended PWP represen-
tations and need a projection scheme in order to keep a prac-
tical shape to the obtained value functions. This generalizes
what the Lazy Approximation method does with PWC func-
tions and opens the door to richer representations such as
spline approximation (Ahlberg, Nielson, and Walsh 1967).

An approximation method for value functions
We implemented a specific case of approximation method
in order to interpolate any PWP of degree k by a PWP of
fixed degree l with a low number of definition intervals. In
order to be able to use the standard error bounds for value
iteration, one needs to bound the L∞ approximation error of
the projection method.

Finding an optimal interpolation of a continuous function
by a PWP in terms of number of intervals and degree is a
difficult problem to solve. Thus, our method implements
the sub-optimal (but efficient) following ε-approximation
scheme. This methods proceeds in two steps: first it con-
siders a single “piece” of the input function pin, ie. an in-
terval over which pin has a continuous polynomial defini-
tion. Over this interval, which we write I, it calls an in-
terpolation method interpolate(pin, I, l, ε) where l is
the maximum degree allowed and ε the L∞ approximation
tolerance. This method computes an interpolation polyno-
mial of degree at most l over I and outputs it along with
the largest approximation error emax and the abscissa tmax
where emax is reached. If emax is smaller than ε, then the
output PWP pout is set to the interpolation polynomial over



I and the algorithm moves on to the second phase. Else,
I’s upper bound is shifted to tmax and the process restarts.
Once a suitable interpolation has been found on the reduced
I, then a new I is defined by taking the uncovered part or the
initial I and the same method is applied until the algorithm
reaches the upper bound of the initial I. This approximation
scheme is illustrated with maximum degree l = 1 on fig. 3.

I
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first attempt
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Figure 3: Refinement phase of the projection method

Then the second phase of the approximation allows to
keep the number of intervals low by trying to merge any
consecutive intervals after the end of I into a larger interval
using an interpolating PWP of degree l and an approxima-
tion error of ε at most. If it fails, it returns to the first phase.

This procedure is repeated until T is reached and an in-
terpolation PWP pout is output. Our method finally has the
following nice properties:

1. Since the interpolatemethod is free, it is easy to pre-
serve the continuity of the function for l ≥ 1 (and eventu-
ally its smoothness if l is large enough).

2. It always outputs a PWP function pout ∈ Pl.
3. The output function has a suboptimal (but good) number

of intervals.

4. The approximation error ε is controlable and one has the
guarantee that: ‖pin − pout‖∞ ≤ ε.

5. Experience showed that the output function was close to
an optimal approximation in terms of intervals number
with a significant reduction in computational effort.

Ordering Bellman backups
With the analytical computation of Bellman backups and
the previous approximation method, one has a straightfor-
ward way of performing value iteration on TiMDPs. A third
contribution of this paper on solving TiMDPs builds on the
properties implied by conjecture 1. Since the value function
we are looking for corresponds to the fixed point of an infi-
nite horizon dynamic programming operator, we can avoid
updating each state sequentially as in simple value iteration.

Instead, we can try to reduce the computational effort in-
duced by PWP operations by ordering the states in which
we perform the Bellman backups such that convergence to
an ε-optimal value function is quick.

There are many ways of implementing such an ordering
method, all of them relate to the general conditions of asyn-
chronous value iteration (Bertsekas and Tsitsiklis 1996). As
long as every state is chosen infinitely often for update (as
the number of state updates tends to∞) one can show that
the value function converges to the optimal value function.
Hence, the state ordering for Bellman backups does only im-
pact the convergence speed to the optimal value function.
A well-known and efficient method for ordering Bellman
backups in standard MDPs is Prioritized Sweeping (Moore
and Atkeson 1993).

Prioritized Sweeping maintains a priority list on states.
The first state in the list (the highest priority) is the next state
to update. Every time a state’s value is updated, the ampli-
tude of the value change ∆V is computed. Parent states
of s are states from which there exists an action allowing
to reach s in one step. When s is updated, a priority of
P (s|s−, a−)∆V is applied to each parent state s− (with a−
the action allowing to reach s with highest priority). If this
priority is higher than another previously defined priority, it
replaces it. Else, this operation has no effect. Thus, every
time a state’s value is updated, the amplitude of this update
is propagated to neighbour states and the priority list is up-
dated too. This method results in propagating the largest
value function changes in priority throughout the state space.

We adapted the prioritized sweeping scheme to TiMDPs
in order to minimize the number of Bellman backups nec-
essary before reaching an ε-optimal value function. How-
ever, prioritized sweeping is defined for discrete state spaces
MDPs and we are dealing here with a hybrid state space and
with functions Vs(t) in every discrete state instead of values.
Hence, the prioritized sweeping scheme needs to be adapted
to these hybrid state spaces. On top of that, in the algorithm
of (Moore and Atkeson 1993), the ∆V quantity is computed
once and propagated by multiplying it with the correspond-
ing parent transition’s probability. For TiMDPs, because of
equations 1 and 2, this priority computation is not as simple
and we have to turn back to calculating separately a ∆Q for
each transition.

The adapted prioritized sweeping algorithm for TiMDPs
is presented in algorithm 1 and commented below.

Our version of prioritized sweeping for TiMDPs main-
tains both a record of the value functions Vs(t) and of the
Q-functions Qs,a(t). When the first state in the priority
queue is selected for update, it is removed from the queue.
We call it s′. The BellmanBackup() procedure applies
equations 3 and 4 in order to update V s′(t) and Vs′(t) with
respect to their child transitions’ Qs′,a(t) functions. Then,
as soon as s′ is updated, all parent Q-functions are also up-
dated, hence insuring consistency between the Q and their
destination state’s V functions. This is done through the
BellmanUpdate() procedure which computes the result
of equations 1 and 2. Note that if memory is not an issue, one
can also keep track of the U -functions to increase the calcu-
lation’s efficiency. Finally, the priority affected to the par-



Algorithm 1: Prioritized Sweeping for TMDPs
Init: V ← 0
Init: priority queue← UnprioritizedVI()
Init: continue = true
while continue = true do

while priority queue 6= ∅ do
Remove the top state s′ from priority queue.
Vs′(t).BellmanBackup()
foreach (s, a) ∈ predecessors(s′) do

Qs,a(t).BellmanUpdate()
Prio(s, a) = ‖Qs,a(t)−Qolds,a(t)‖∞
if Prio(s, a) > ε and
Prio(s, a) > Prio(s) then

Insert s in priority queue with
Prio(s) = Prio(s, a)

priority queue← UnprioritizedVI()
if max priority(priority queue) < ε then

Either take a smaller ε or set continue = false.

ent states correspond to the largest amplitude of Q-function
change and the priority queue is updated.

This process is repeated until no priority is larger than a
given ε. In algorithm 1, only states with priorities larger than
ε are inserted in the priority queue and the procedure stops
whenever this queue becomes empty.

This priority queue can be initialized by hand if one has
some prior knowledge about the problem’s structure, or it
can be built from a single pass of unprioritized value iter-
ation through the state space (the UnprioritizedVI()
procedure). In order to insure that no states are left out dur-
ing the optimization process, whenever the priority queue
becomes empty, a new pass of unprioritized value iteration
is performed. If this pass only generates priorities lower than
ε, the algorithm terminates. Upon termination of the algo-
rithm, one has the guarantee that the global value function
V (s, t) found is at least ε-optimal for the TiMDP problem.

The TiMDPpoly algorithm
By putting together the three separate improvements pre-
sented above, one obtains a more general algorithm which
we call TiMDPpoly. This algorithm makes use of:

1. Analytical (eventually approximate) Bellman Backup cal-
culations on PWP representations.

2. PWP degree reduction and interval simplification.

3. Adapted prioritized sweeping for hybrid variables as pre-
sented on algorithm 1.

TiMDPpoly generalizes on common features with Lazy
Approximation and the algorithm of (Feng et al. 2004). Like
these methods, it makes use of analytical operations for per-
forming Bellman backups; however, it extends the class of
functions these methods were able to deal with to the gen-
eral case of PWP representations. The simplification phase
was already present in the previous methods but was sepa-
rate from the optimization and it could only take PWC func-

tions into account: TiMDPpoly generalizes it to general PWP
functions and merges the operations of degree reduction and
interval simplification. Finally, TiMDPpoly introduces and
justifies the use of the adapted prioritized sweeping method
for the hybrid state space at hand, which reduces the com-
putational effort required for value function update and im-
proves convergence speed to the optimal value function.

Moreover, TiMDPpoly takes into account the specific
wait action of TiMDPs which was left out by the previous
methods. It optimizes the continuous parameter of this ac-
tion, the same way it computes the results of value function
backups. Hence, it is important to recall that TiMDPs are a
specific class of MDPs with both a hybrid state and action
space. This shades a different light upon TiMDPpoly as a
solving algorithm for a very specific class of hybrid, para-
metric actions and hybrid state problems.

Experiments
The TiMDPpoly algorithm was implemented as a general
purpose C++ library for TiMDP problem specification and
solving. This implementation relies on a specific PWP func-
tion C++ library called POLYTOOLS which we developed
in order to handle the PWP functions and operations neces-
sary to the analytical computation of Bellman backups. We
tested TiMDPpoly on two benchmarks: the first is the UAV
problem presented earlier, the second is an adapted version
of the Mars rover domain (Bresina et al. 2002).

Prioritizing is useful: we compared a run of TiMDPpoly
with an optimization scheme using the same Bellman back-
ups but with unprioritized value iteration, as in (Boyan and
Littman 2001). The temporal horizon T was 100. The pre-
cision on t imposed for approximate PWP operations was
10−3, the approximation tolerance for PWP degree reduc-
tion and simplification was 5 · 10−2 and the algorithm was
stopped when all priorities became smaller than 10−1 which
corresponds to ∼ 10−3 times the highest priority encoun-
tered during optimization. The value function was initial-
ized to zero in all cases. The results appear in table 1. Prior-
itizing the states upon which we perform Bellman backups
retains its property of convergence acceleration. Hence, this
provides experimental validation to the way we compute the
priorities on discrete states and confirms the interest of pri-
oritizing in TiMDPpoly. An interesting feature to note is that
the UAV problem is defined on a 10 × 10 grid, so the num-
ber of discrete states is 100; since TiMDPpoly finishes the
optimization after performing 531 Bellman backups in indi-
vidual states, it means it only needs visiting each state 5.31
times on average to decrease the update maximum priority
by a factor 10−3. This confirms the fact that asynchronously
performing the Bellman backups in order to structure the
dynamic programming optimization saves a lot on computa-
tional resources.

Algorithm number of Bellman backups
TiMDPpoly 531

Value Iteration 33000

Table 1: Number of state Bellman backups



Impact of the PWP functions’ maximum degree: we tried
defining different shapes of PWP for the transition and
duration models of the problem to analyze how the de-
gree of the model’s functions affects the computational re-
sources needed for resolution. Preliminary results show that
while the number of required Bellman backups remained
low, the computation became more complex with higher de-
grees. However, this is not a final conclusion and it relies
more on the current POLYTOOLS implementation than on
TiMDPpoly itself. To illustrate this, we can compare the
resolution of the UAV problem with discrete Pµ and with
piecewise linear Pµ. In the first case, the resolution required
531 Bellman backups and 13.90 seconds while in the second
case, the 824 Bellman backups required 740.17 seconds 2.

Approximation is necessary: we tried to run TiMDPpoly
in the exact resolution case, without the interval simplifica-
tion scheme. On the simple but non-trivial example of the
UAV patrol problem, the number of intervals in value func-
tion definition increased steadily and eventually caused nu-
merical problems before the value function converged to the
optimal value function. This leads us to conclude — from
experience — that even within the exact resolution condi-
tions, for non-trivial problems, approximation through inter-
val simplification is necessary, thus confirming conjecture 2.
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Figure 4: Maximum priority vs. iteration number

Policy quality evolution: figure 4 shows the evolution of
the maximum priority with the Bellman backup number.
One can use this maximum priority as an asymptotic, ap-
proximate measure of the current policy’s quality since the
priorities are related to the Bellman error. This figure il-
lustrates that priorities follow a global decreasing trend un-
til an ε-optimal value function is reached. However, it also
shows that this evolution is not necessarily monotonous. A
detailed discussion concerning the monotonicity of the max-
imum priority decrease can be found in (Rachelson 2009).
Nevertheless, one can distinguish three phases on this graph:
first, the large value changes are propagated to the whole
state space as fast as possible (backups 1 to ∼170) then the
global shape of the value function is found by making the

2experiments were ran on a 1.8 Ghz PC with 1GB of RAM.

compromise between Q functions (iteration∼171 to∼300)
and finally, the value function is refined in order to get close
to the optimal value function. Figure 5 illustrates the shape
of the different functions found, using the example of the
158th Bellman backup, occurring in state (5, 4).

Figure 5: Illustrating V , V andQ, backup #158, state (5, 4)

In the second domain, an autonomous rover needs to plan
its course of action in order to navigate, collect ground sam-
ples and take pictures on Mars. Actions are durative and
uncertain and the model is time-dependent. The rover can
navigate between nodes of a navigation graph, take pictures,
recharge its batteries, etc. Figure 6 illustrates the value func-
tion and optimal policy found in a given location (p = 3),
when none of the mission goals have been completed yet, as
a function of the current time and energy level.

Figure 6: Rover’s value function and policy

This adapted version of the Mars rover problem has 1968



discrete states and one continuous variable (time) ranging
from 0 to 70. It also has between one and six discrete ac-
tions available per state, plus the continuous wait action.
TiMDPpoly required about 35000 Bellman backups on func-
tions to find the ε-optimal value function and took 1690 sec-
onds. These numbers can be related to the number of state
updates necessary if one discretized the time variable on a
unit-duration basis and solved the approximate problem us-
ing finite-horizon dynamic programming. Such a process
would require 139728 Bellman backups on state values. On
the other hand, with 35000 Bellman backups on functions,
we obtain the continuous-time solution, which can be a good
tradeoff if the resolution needed for the time variable is even
smaller than one.

From figure 6, one can remark that, even though there is a
gain in considering a continuous time, it might be desirable
to obtain a similar gain on the reasoning concerning the en-
ergy variable. In particular, it would allow for a more com-
pact representation and reasoning about the plateau observed
at the left of the time axis. However, hypercube representa-
tions might not be the most adapted here since the edge of
the plateau is not parallel to the energy axis: it seems to
follow a straight line, so a triangular representation, for ex-
ample, might be more flexible and more compact in order to
describe the different parts of the value function. This takes
the problem to the more general case of continuous variable
partitionning in MDPs and constitutes an important issue for
future research.

Conclusion
In this paper, we introduced a new algorithm called
TiMDPpoly designed to find control policies for the observ-
able time, hybrid state and action MDPs called TiMDPs.
This algorithm builds on the TiMDP framework introduced
in (Boyan and Littman 2001) and is related to previous work
from (Feng et al. 2004; Li and Littman 2005). TiMDPpoly
introduces three distinct features:

1. It generalizes the possibility of performing analytically
the Bellman backup operations on PWP representations.

2. It introduces an approximation scheme based on degree
reduction and interval simplification, guaranteeing L∞
bounds on the approximation error. This approximation
scheme makes methods as value iteration possible and im-
prove their efficiency by keeping the number of definition
intervals low.

3. It performs an asynchronous value iteration optimization
by assigning priorities to discrete state updates, in order to
let the value function converge faster to the optimal V ∗.
Future work implies writing complexity bounds for the

approximation method and relating them to the general algo-
rithm’s complexity. This might help finding good compro-
mises between PWP degree and number of pieces. Gener-
alization of this work implies application to spline functions
in general. Experimental work on TiMDPpoly also implies
testing on a full version of the Mars rover domain closer to
the one tested in (Li and Littman 2005) for instance.

A remarkable feature of the UAV domain resides in the
necessary adaptation and replanning when communications

are received. The prioritied sweeping scheme of TiMDPpoly
is an appopriate answer to this feature since it allows3 to
update the problem as the optimization is running.

Going from one continuous variable to several can be
done as in (Feng et al. 2004) or (Li and Littman 2005).
Then, more general questions arise such as how to define
partitions in the state space. (Feng et al. 2004) used kd-trees
to define hypercubes but other partitioning methods, such
as the Kuhn triangulations of (Munos and Moore 2002),
might be more relevant and flexible. Another question is
to determine how these representations scale to the curse of
dimensionality, when the number of variables in the prob-
lem increases. Finally, adapting the asynchronous prioritiza-
tion scheme for value iteration is almost straightforward and
might help in the general case of continuous state spaces.
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