
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/17977

Rachelson, Emmanuel and Lagoudakis, Michail G. On the Locality of Action Domination in Sequential Decision

Making. (2010) In: 11th International Symposium on Artificial Intelligence and Mathematics (ISIAM 2010), 6 January

2010 - 8 January 2010 (Fort Lauderdale, United States).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/132277686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Locality of Action Domination in Sequential Decision Making

Emmanuel Rachelson and Michail G. Lagoudakis
Department of Electronic and Computer Engineering

Technical University of Crete
Chania, 73100, Crete, Greece

{rachelson, lagoudakis}@intelligence.tuc.gr

Abstract

In the field of sequential decision making and reinforcement
learning, it has been observed that good policies for most
problems exhibit a significant amount of structure. In prac-
tice, this implies that when a learning agent discovers an ac-
tion is better than any other in a given state, this action ac-
tually happens to also dominate in a certain neighbourhood
around that state. This paper presents new results proving
that this notion of locality in action domination can be linked
to the smoothness of the environment’s underlying stochastic
model. Namely, we link the Lipschitz continuity of a Markov
Decision Process to the Lispchitz continuity of its policies’
value functions and introduce the key concept of influence ra-
dius to describe the neighbourhood of states where the dom-
inating action is guaranteed to be constant. These ideas are
directly exploited into the proposed Localized Policy Itera-
tion (LPI) algorithm, which is an active learning version of
Rollout-based Policy Iteration. Preliminary results on the In-
verted Pendulum domain demonstrate the viability and the
potential of the proposed approach.

1 Introduction
Behaving optimally in uncertain environments requires an-
ticipating the future outcomes of actions in order to choose
what to do in the present situation. This general problem of
sequential decision making under uncertainty is addressed
as a planning or a learning problem, depending on the as-
sumption made as to the availability of the environment’s
model. In either case, the underlying representation of the
interaction between the decision maker and the environment
relies on Markov Decision Processes (MDPs), which for-
malize stochastic transitions from one state to another given
the actions chosen in each state and how transitions between
states can be valued in the short- and in the long-term.

Our focus in the present work stems from the simple in-
tuition that, if the environment properties do not change too
quickly across states and actions, an optimal decision policy
should present areas over the state space where the optimal
action choice is uniformly constant. For example, if action
a is the best choice in state s and the effects of all actions
are “similar” in the area “around” s, then we expect that a
will also be the best choice everywhere in that area. Con-
sequently, finding a good action in state s actually provides

information about state s itself, but also about some neigh-
bourhood around s. We would like to exploit precisely these
notions of model smoothness and state neighbourhood and
translate them into policy smoothness. If this connection is
made possible, then continuous-state MDPs could be tack-
led using their inherent decomposition, rather than some a
priori discretization (e.g. tile coding) or some abstract ap-
proximation scheme (e.g. linear architectures). Therefore,
the intuition sustaining our approach states that one can link
the smoothness of the environment’s model to a measure of
the actions’ local validity and exploit this link to learn local-
ized improving actions whose influence could collectively
cover the whole state space.

The work presented in this paper formalizes the notion
of smoothness and regularity in the model and derives the-
orems allowing to define locality properties for good ac-
tions. A similar approach was developed by Fonteneau et
al. (2009) in the restrictive case of deterministic models and
deterministic policies with finite horizon. The results pre-
sented here span the general case of MDPs with determin-
istic or stochastic Markovian policies and infinite horizon
discounted criterion. For this purpose, we start by measur-
ing the smoothness of MDPs using notions such as Lipschitz
continuity and Kantorovich distance (Section 2). Then, we
prove that, under some conditions, the value function asso-
ciated with a given decision policy is also Lipschitz con-
tinuous (Section 3). This result allows us to introduce the
notion of influence radius of a state-action pair (s, a), where
a is the best action in s, and define a volume around s in
the state space where one can guarantee that a remains the
best action (Section 4). Then, we propose Localized Policy
Iteration (LPI), a rollout-based policy learning method that
actively seeks to cover efficiently the state space (Section 5),
and we test it on the Inverted Pendulum domain (Section 6).
Finally, we review related work (Section 7) and conclude by
discussing our results and suggesting future research direc-
tions (Section 8).

2 Markov Decision Processes
2.1 Definitions and notations
In the last two decades, Markov Decision Processes (MDPs)
have become a popular model to describe problems of op-
timal control under uncertainty. An MDP is generally de-

scribed as a 4-tuple 〈S,A, p, r〉, where S is the set of states
and A is the set of actions, both of which we assume to be
metric spaces for the sake of generality. Whenever an agent
undertakes action a in state s, the process triggers a transi-
tion to a new state s′ with probability p(s′|s, a) according
to the Markovian transition model p and the agent receives
a reward r(s, a) according to the reward function r. Solving
an MDP problem corresponds to finding an optimal control
policy π indicating which action to undertake at every step of
the process. Optimality is defined through the use of objec-
tive criteria, such as the discounted criterion, which focuses
on the expected, infinite-horizon, γ-discounted, sum of re-
wards obtained when applying a given policy. Then, one can
define a value function V π , which maps any state s to the
evaluation of a policy π, when starting from state s (Equa-
tion 1). It is known that there exists an optimal policy for the
discounted criterion which is deterministic, Markovian, and
stationary, mapping states to actions (Puterman 1994).

V π(s) = Esi∼p, ai∼π, ri∼r

(∞∑
i=0

γiri

∣∣∣s0 = s

)
(1)

Many algorithms (Bertsekas & Tsitsiklis 1996; Sutton &
Barto 1998) have been developed in the planning or learn-
ing literature in order to infer optimal policies from knowl-
edge of the MDP’s model or from interaction with the en-
vironment. They all rely on the Bellman optimality equa-
tion, which states that the optimal policy’s value function
V π
∗ ≡ V ∗ obeys Equation 2 for all states s:

V ∗(s) = max
a∈A

r(s, a) + γ

∫
s′∈S

p(s′|s, a)V ∗(s′)ds′

 (2)

This equation expresses the well-known dynamic program-
ming idea that if a policy’s value function V π is known, then
finding an improving action to perform can be done by opti-
mizing the one step lookahead gain over policy π. This can
be expressed by introducing the Qπ-function of a policy π
defined over all state and action pairs (s, a) as

Qπ(s, a) = r(s, a) + γ

∫
s′∈S

p(s′|s, a)V π(s′)ds′ (3)

Clearly, V ∗(s) = maxa∈AQ∗(s, a). The action yielding the
highestQ-value in a state s is called the dominating action in
state s. The well-known Policy Iteration algorithm for solv-
ing MDPs begins with some arbitrary policy π, computes its
Qπ function by substituting V π(s) = Qπ

(
s, π(s)

)
in Equa-

tion 3 and solving the linear system, builds a new policy π′
by selecting the dominating action in each state, and iter-
ates until convergence to a policy that does not change and
is guaranteed to be an optimal policy (Howard 1960).

In the general case of infinite or continuous state spaces,
exact solution methods, such a Policy Iteration, are not ap-
plicable. Solution methods in this case rely on approximat-
ing the value function with an arbitrary discretization of the
state space. These discretizations often prove themselves too
coarse or too fine and do not really adapt to the properties of

the problem. Our purpose here can be seen as lifting some
assumptions as to the discretization step by exploiting the
inherent properties of the environment’s underlying model.
To simplify the notation, we shall write

a∗(s) = a∗π(s) = arg max
a∈A

Qπ(s, a)

for the dominating action in state s improving on policy π.
Also, for the sake of simplicity, we suppose there are no
ties among actions1 and we shall also write a+(s) for the
second-best action in s, defined by the max2 operator:

a+(s) = argmax2
a∈A

Qπ(s, a) = arg max
a∈A\{a∗π(s)}

Qπ(s, a) .

Finally, we call domination value in state s, when improving
on policy π, the positive quantity

∆π(s) = Qπ
(
s, a∗(s)

)
−Qπ

(
s, a+(s)

)
.

2.2 Lipschitz continuity of an MDP
Our analysis is based on the notion of Lispchitz continuity2.
Given two metric sets (X, dX) and (Y, dY), where dX and
dY denote the corresponding distance metrics, a function f :
X → Y is said to be L-Lipschitz continuous if:

∀(x1, x2) ∈ X2, dY
(
f(x1)− f(x2)

)
≤ LdX(x1 − x2) .

We also introduce the Lipschitz semi-norm ‖ · ‖L over the
function space F(X,R) as:

‖f‖L = sup
(x,y)∈X2, x 6=y

|f(x)− f(y)|
dX(x, y)

We suppose the S and A sets to be normed metric spaces
and we write dS(s1, s2) = ‖s1 − s2‖ and dA(a1, a2) =
‖a1−a2‖ to simplify the notation. Finally, we introduce the
Kantorovich distance on probability distributions p and q as:

K(p, q) = sup
f

{∣∣∣∣∫
X

fdp−
∫
X

fdq

∣∣∣∣ : ‖f‖L ≤ 1
}

Lastly, to generalize our results to stochastic policies, we
shall write dΠ

(
π(s1), π(s2)

)
for the distance between ele-

ments π(s1) and π(s2)3.
Then, our analysis is based on the assumption that the

transition model isLp-Lipschitz continuous (Lp-LC), the re-
ward model is Lr-LC and any considered policy is Lπ-LC4:
∀(s, ŝ, a, â) ∈ S2 ×A2,

K
(
p(·|s, a), p(·|ŝ, â)

)
≤ Lp

(
‖s− ŝ‖+ ‖a− â‖

)∣∣r(s, a)− r(ŝ, â)
∣∣ ≤ Lr(‖s− ŝ‖+ ‖a− â‖

)
dΠ

(
π(s)− π(ŝ)

)
≤ Lπ‖s− ŝ‖

1Ties can be handled by considering subsets of tied actions.
2A similar reasoning can be held for more complex formula-

tions, such as Holder continuity.
3dΠ

`
π(s1), π(s2)

´
= dA

`
π(s1)− π(s2)

´
for deterministic π.

4We define d
`
(s, a), (ŝ, â)

´
= ‖s− ŝ‖+‖a− â‖. This a priori

choice has little impact on the rest of the reasoning, since most of
our results will be set in the context of a = â.

The main goal of this work is to prove that given an
(Lp, Lr)-LC MDP and an Lπ-LC policy, the dominating ac-
tion a∗(s) in state s also dominates in a neighbourhood of
s, which we try to measure. Our reasoning takes two steps.
First, we shall present the conditions under which one can
prove the Qπ-function to be Lipschitz continuous. Then, we
shall use this LQ-LC Qπ-function to define how far, from a
state s, action a∗(s) can be guaranteed to dominate.

3 Lispchitz Continuity of Value Functions
The first step of our approach aims at establishing the Lip-
schitz continuity (LC) of the Qπ-function, given an Lπ-LC
policy in an (Lp, Lr)-LC MDP. Before stating the main the-
orem, we need to prove two lemmas. The first lemma simply
states the intuition that if Qπ is Lipschitz continuous, so is
the value function V π , under an Lπ-LC policy π.

Lemma 1 (Lipschitz continuity of the value function).
Given an LQ-Lipschitz continuous Q-function Qπ and an
Lπ-Lipschitz continuous policy π, the corresponding value
function V π is [LQ(1 + Lπ)]-Lipschitz continuous.

Proof. Recall that V π(s) = Qπ
(
s, π(s)

)
. Hence

|V π(s)− V π(ŝ)| =
∣∣Qπ(s, π(s))−Qπ

(
ŝ, π(ŝ)

)∣∣
≤ LQ

(
‖s− ŝ‖+ ‖π(s)− π(ŝ)‖

)
≤ LQ (1 + Lπ) ‖s− ŝ‖

and so V π is [LQ(1 + Lπ)]-Lipschitz continuous.

Given that the step from Qπ to V π maintains Lipschitz
continuity, the second lemma establishes the preservation of
Lipschitz continuity over multiple steps.

Lemma 2 (Lipschitz continuity of the n-step Q-value).
Given an (Lp, Lr)-Lipschitz continuous MDP and an Lπ-
Lipschitz continuous, stationary policy π, the n-step, finite
horizon, γ-discounted value function Qπn is LQn -Lipschitz
continuous and LQn obeys the recurrence relation

LQn+1 = Lr + γ (1 + Lπ)LpLQn .

Proof. We prove the lemma by induction. Let s and ŝ be
two states in S and a and â be two actions in A. For n = 1,
Qπ1 is simply the immediate reward received in that one step:∣∣Qπ1 (s, a)−Qπ1 (ŝ, â)

∣∣ =
∣∣r(s, a)− r(ŝ, â)

∣∣ .
Hence LQ1 = Lr is a possible Lipschitz constant for Qπ1
(not necessarily the smallest possible, but it suffices to prove
the Lipschitz continuity). Thus, the property holds for n =
1. Let us now suppose that the property holds for horizon n,
that is, there exists LQn ∈ R+, such that∣∣Qπn(s, a)−Qπn(ŝ, â)

∣∣ ≤ LQn(‖s− ŝ‖+ ‖a− â‖
)
.

By Lemma 1, the corresponding value function V πn is also
Lipschitz continuous with LVn = LQn(1 + Lπ). For sim-
plicity, we write ∆π

n for the left-hand side of the inequal-

ity above. Using Equation 2 and the definition of the Kan-
torovich distance, we have:
∆π
n+1 =

˛̨
Qπn+1(s, a)−Qπn+1(ŝ, â)

˛̨
=

˛̨̨̨
˛r(s, a)− r(ŝ, â)+

γ

Z
s′∈S

`
p(s′|s, a)− p(s′|ŝ, â)

´
V πn (s′)ds′

˛̨̨̨
˛

≤
˛̨
r(s, a)− r(ŝ, â)

˛̨
+

γLVn

˛̨̨̨
˛̨ Z
s′∈S

`
p(s′|s, a)− p(s′|ŝ, â)

´V πn (s′)

LVn
ds′

˛̨̨̨
˛̨

≤
˛̨
r(s, a)− r(ŝ, â)

˛̨
+

γLVn sup
‖f‖L≤1

8<:
˛̨̨̨
˛̨ Z
s′∈S

`
p(s′|s, a)− p(s′|ŝ, â)

´
f(s′)ds′

˛̨̨̨
˛̨
9=;

=
˛̨
r(s, a)− r(ŝ, â)

˛̨
+ γLVnK

`
p(·|s, a), p(·|ŝ, â)

´
≤ Lr

`
‖s− ŝ‖+ ‖a− â‖

´
+ γLVnLp

`
‖s− ŝ‖+ ‖a− â‖

´
≤
`
Lr + γ (1 + Lπ)LpLQn

´`
‖s− ŝ‖+ ‖a− â‖

´
where we have used the fact that

∥∥∥∥V πn (s′)
LVn

∥∥∥∥
L

≤ 1.

Lemma 2 allows us to state the following theorem.
Theorem 1 (Lipschitz-continuity of the Q-values). Given
an (Lp, Lr)-Lipschitz continuous MDP and an Lπ-Lipschitz
continuous, stationary policy π, if γLp (1 + Lπ) < 1, then
the infinite horizon, γ-discounted value function Qπ is LQ-
Lipschitz continuous, with:

LQ =
Lr

1− γLp(1 + Lπ)

Proof. This proof takes two steps. First, we prove that if
the sequence of LQn Lispchitz constants is convergent, then
it converges to the LQ value. Then, we show that this se-
quence is indeed convergent.
If the LQn sequence is convergent, then its limit LQ
is a fixed point of the recurrence relation introduced in
Lemma 2, hence

LQ = Lr + γ (1 + Lπ)LpLQ .

Consequently, if this limit exists, it is necessarily equal to

LQ =
Lr

1− γLp(1 + Lπ)
.

Consider now the sequence of Ln = LQn values. Let us
write, for simplicity, α = γLP (1 + Lπ). Then the (Ln),
n ∈ N, sequence is defined by:

Ln+1 = Lr + αLn

L1 = Lr

Hence,

Ln = Lr

n−1∑
i=0

αi =
1− αn

1− α
Lr

This sequence is only convergent if |α| < 1. Since α is
non-negative, this boils down to α < 1, which is true, by
hypothesis. Consequently, Ln is a convergent sequence.

The only restrictive hypothesis introduced above is the
γLp (1 + Lπ) < 1 criterion. Not verifying this criterion
simply implies one does not have the guarantee of an LQ-
LC Q-function, but the loss of this guarantee does not mean
the Q-function will never be Lipschitz continuous. If one
has a way of evaluating an upper bound on LQ directly from
the Q-function, then it is as good (and probably even better
in practice) than this theoretical result. In particular, in the
next section, we shall conclude on the use of this Lipschitz
bound for characterizing locality in the process of improv-
ing the current policy; this can be based either on the above
theoretical bound or on some experimental result providing
a value for LQ.

4 Influence Radius
Theorem 1 allows us to define what we call the influence
radius of a sample. Imagine that somehow, an oracle pro-
vides samples of an improved policy stating that in state s,
action a∗(s) dominates with a domination value of ∆π(s)
improving on policy π. Since we have been trying to ex-
press the fact that the MDP does not change too abruptly
over the state (and action) space, one could expect this re-
sult of a∗(s)’s domination to be true in the surroundings of
s as well. Hence, we search for the maximum radius ρ(s) of
a hyperball, centered on s, within which one can guarantee
that a∗(s) is the dominating action. This radius ρ(s) is the
influence radius of sample

(
s,∆π(s), a∗(s)

)
.

Theorem 2 (Influence radius of a sample). Given an LQ-
Lipschitz continuous value function Qπ of a policy π and
a sample

(
s,∆π(s), a∗(s)

)
, the a∗(s) action is the dom-

inating action in all states s′ belonging to the hyperball
B
(
s, ρ(s)

)
, centered on s and having radius

ρ(s) =
∆π(s)
2LQ

.

Proof. The intuition behind the proof is straightforward.
The value of a∗(s) can only decrease by LQρ(s) in
B
(
s, ρ(s)

)
, while the value of any other action, including

a+(s), can only increase by LQρ(s). So, the shortest dis-
tance from s needed for an action to “catch up” with the
value of a∗(s) corresponds to the case where Qπ(ŝ, a∗(s))
decreases linearly with slope −LQ and where Qπ(s, a+(s))
increases linearly with slope LQ. In this case, the two values
will intersect at a distance ∆π(s)

2LQ
from s, which is precisely

the value of ρ(s).
Formally, since Qπ is LQ-Lipschitz continuous, for any

state ŝ ∈ S and for any action a ∈ A, one can write:∣∣Qπ(s, a)−Qπ(ŝ, a)
∣∣ ≤ LQ‖s− ŝ‖ .

In particular, if ŝ ∈ B
(
s, ρ(s)

)
, then ‖s− ŝ‖ ≤ ρ(s) and∣∣Qπ(s, a)−Qπ(ŝ, a)
∣∣ ≤ LQρ(s)

or, equivalently

Qπ(s, a)− LQρ(s) ≤ Qπ(ŝ, a) ≤ Qπ(s, a) + LQρ(s) ,

which simply states that, as ŝ moves away from s, the value
Qπ(ŝ, a) stays within symmetric bounds that depend on the
distance ρ(s). These bounds hold also for a = a∗(s):

Qπ
`
s, a∗(s)

´
−LQρ(s) ≤ Qπ

`
ŝ, a∗(s)

´
≤ Qπ

`
s, a∗(s)

´
+LQρ(s).

By definition, for all actions a 6= a∗(s),

Qπ(s, a) < Qπ
(
s, a∗(s)

)
,

so domination of a∗(s) in the neighbourhood of s can be
guaranteed as long as the lower bound on Qπ

(
ŝ, a∗(s)

)
is

greater than the upper bound on Qπ(ŝ, a) for any action a 6=
a∗(s). The influence radius of a∗(s) can extend up to the
point where they become equal,

Qπ(s, a) + LQρ(s) = Qπ
(
s, a∗(s)

)
− LQρ(s) ,

which implies that

ρ(s) =
Qπ
(
s, a∗(s)

)
−Qπ(s, a)

2LQ
≥

∆π(s)
2LQ

,

given the definition of ∆π(s).

Combining Theorems 1 and 2 indicates that, under the
assumptions of Theorem 1, the influence radius of a sample(
s,∆π(s), a∗(s)

)
is at least:

ρ(s) =
∆π(s)
2LQ

=
∆π(s)

(
1− γLp (1 + Lπ)

)
2Lr

Finally, this result implies that whenever we have identified
a sample

(
s,∆π(s), a∗(s)

)
which improves on the current

policy π, all states ŝ included in the hyperball B
(
s, ρ(s)

)
can be safely discarded from future querying to the oracle.
In practice, this finding can be very useful in rollout meth-
ods (Lagoudakis & Parr 2003b; Dimitrakakis & Lagoudakis
2008) for guiding the distribution of rollout states.

5 Localized Policy Iteration
This section illustrates the practical use of the previous theo-
rems. We define an active learning method (Angluin 1988)
which deliberately chooses in which state to query an or-
acle in order to efficiently learn an improved policy over
a base policy. At the very least, such an approach can re-
duce the computational efforts needed to build the improved
policy by focusing on important samples first. We call this
method Localized Policy Iteration (LPI). The idea of this
generic algorithm is to progressively cover the whole (con-
tinuous) state space by using the above defined influence
radii. In practice, it corresponds to defining the volumes
in the state space where improving actions have been found
for sure (i.e. the volumes covered by the influence spheres
of previous samples) in order to orient the queries made to
the oracle towards the yet-uncovered regions. Algorithm 1
summarizes a generic version of the LPI method with an ab-
stract oracle, called GETSAMPLE, and a set of hyperballs B.
A state s is chosen from some yet-uncovered region and a

Algorithm 1: Generic LPI algorithm
Input: threshold εc, initial policy π0

V = VOLUME(S), n = 0
while πn 6= πn−1 do

n← n+ 1
c = 1, T = ∅
while c > εc do(

s, a∗(s),∆πn−1(s)
)
← GETSAMPLE(πn−1)

B ← B ∪
{
B
(
s, ρ(s)

)}
T ← T ∪

{(
B
(
s, ρ(s)

)
, a∗(s)

)}
c = 1− VOLUME(B)/V

πn = POLICY(T)

new ball around s is added to B until the state space is cov-
ered sufficiently. The policy is built from the set T of pairs(
B
(
s, ρ(s)

)
, a∗(s)

)
.

Combined with an efficient rollout-based oracle, LPI
yields the Rollout Sampling LPI (RS-LPI) algorithm pre-
sented in Algorithm 2. A rollout is a long Monte-Carlo sim-
ulation of a fixed policy π for obtaining an unbiased sample
of V π(s) or Qπ(s, a) for any initial state s and initial ac-
tion a. The oracle starts with a “working set” W of states
sampled from a distribution of density d(). For each state
s ∈ W it maintains a utility function U(s), such as the
UCB1 and UCB2 functions used in RSPI (Dimitrakakis &
Lagoudakis 2008), which gives high value to states s with
large estimated domination values ∆π(s). The oracle fo-
cuses its rollout computational efforts on states with high
utility. Whenever a state s ∈ W has accumulated enough
rollouts to be statistically reliable, the oracle returns the
found (s, a∗(s),∆π(s)) sample. After computing ρ(s) and
updating the set of hyperballs by insertion of B(s, ρ(s)), a
new state is picked from S \B to replace s and keep the pop-
ulation of the working set constant. In addition, all states of
W contained in the dominated area B(s, ρ(s)) are replaced
with new states from S \ B. When B covers sufficiently the
state space, a new round of policy iteration begins. Note that
because the oracle focuses in priority on states providing a
large domination value ∆π(s), the first samples collected
have the largest possible influence radii. Hence, in the very
first steps of the algorithm, the volume of the B set increases
rapidly, as the radii found are as large as possible. Then,
when the largest areas of the state space have been covered,
the oracle refines the knowledge over other states outside
B, still focusing on outputting the largest domination values
first. Note that the actual “shape” of the hyperballs defined
byB(s, ρ(s)) depends on the norm used in the state space S.
In particular, if the Lipschitz continuity was established us-
ing an L∞ norm in S, i.e. if ‖s− ŝ‖ = ‖s− ŝ‖∞, then these
hyperballs are hypercubes. Using the standard (weighted)
Euclidean L2 norm is common for Lipschitz continuity as-
sessments, but might not be the most appropriate choice for
paving the state space.

The remaining key question in LPI-like methods is the
computation of LQ. Indeed, this might be the crucial bot-
tleneck of this result. We discuss how to go around its de-

Algorithm 2: Rollout sampling LPI (RS-LPI)
Input: threshold εc, initial policy π0, number of states m
V = VOLUME(S), n = 0, W = DRAW(m, d(), S)
while πn 6= πn−1 do

n← n+ 1
c = 1, T = ∅
while c > εc do(

s, a∗(s),∆πn−1(s)
)
←GETSAMPLE(πn−1,W)

B ← B ∪
{
B
(
s, ρ(s)

)}
T ← T ∪

{(
B
(
s, ρ(s)

)
, a∗(s)

)}
W ←

(
W − {s}

)
∪
{

DRAW(1, d(), S \ B)
}

for all s′ ∈W ∩B
(
s, ρ(s)

)
do

W ←
(
W −{s′}

)
∪
{

DRAW(1, d(), S \B)
}

c = 1− VOLUME(B)/V
πn = POLICY(T)

GETSAMPLE(π,W)
while TRUE do

select state s in W with highest utility U(s)
run one rollout from s for each action a ∈ A
update Qπ(s, a),∆π(s), U(s), statistics
if there are sufficient statistics for s then

return
(
s, a∗ (s) ,∆π (s)

)

termination. The first possible problem arises when one has
discontinuous p, r and π. This happens rather often, espe-
cially for π, and in this case, one cannot provide the global
Lipschitz continuity bounds of the equations in Section 2.2.
However, one can define local Lipschitz constants5 Lp(s),
Lr(s) and Lπ(s) and derive the same theorems as above,
hence solving this problem in most of the state space. This
approach provides an interesting case of relaxation of the
previous theorems application conditions. Another impor-
tant consequence of this statement is that, for discrete action
spaces, since the policies we consider present large chunks
of constant actions, one can safely write that Lπ(s) = 0
locally, in most of the state space; and thus get rid of the
policy-dependent part in the computation of ρ(s). Then, the
most interesting result is that Theorem 1’s restrictive condi-
tion boils down to γLp < 1, which in a way implies that
the environment’s spatial variations (Lp) need to be com-
pensated by the discount on temporal variations (γ) to obtain
smoothness guarantees on the Q-function.

In the most common case though, one does not wish
to compute the model’s Lipschitz constants and we would
like to find a direct way of evaluating the constant part
ρ0 = 1

2LQ
= 1−γLp

2Lr
in the computation of ρ(s). Even

though evaluation from sampling will be subject to the same
uncertainty in precision as in the common discretization
approaches, one can take a different option by making a
reasonable or even optimistic assumption on the value of

5These constants are relative to the continuity of the function
seen from s. An even more local version corresponds to constants
defined relatively to s and all states ŝ reachable in one step from s.

ϑ

Figure 1: The Inverted Pendulum domain.

ρ0. Then, running LPI with this value of ρ0 leads to us-
ing ρ(s) = ∆π(s)ρ0 influence radii. In order to check the
hypothesis’ consistency, at regular periods one can get some
extra random cross-validation samples inside the B volume
in order to test them against a prediction by T and ensure that
the hypothesis was correct. If this cross-validation test high-
lights some inconsistencies, then ρ0 is decreased by a certain
factor β (similar to a learning rate) using ρ0 ← ρ0(1 − β),
the influence spheres inB are updated accordingly, and some
further sampling is performed in order to fill in the volumes
left open by the radii’s decrease. Moreover, if one allows
ρ0 to vary across the state space, this can lead to a localized
learning process of the policy’s smoothness, hence resulting
in a more sparse and adaptive representation of the policy.

6 Experimental Results
We ran an RS-LPI algorithm on a noise-less version6 of the
Inverted Pendulum domain in order to evaluate our approach
and visualize its advantages and drawbacks. In this domain,
one tries to balance a pendulum, hanging from a cart fixed on
an horizontal rail, around the vertical unstable equilibrium
point (Figure 1). Whenever the pendulum falls below the
horizontal plane, the episode terminates. Negative reward
proportional to the angular deviation from the equilibrium
point is given at each time step. The state space consists
of the angle θ of the pendulum with respect to the upright
position and its angular velocity θ̇. The actions available are
to push the cart to the left, to the right, or not at all, in order
to compensate for the pendulum’s fall. State transitions are
governed by the nonlinear dynamics of the system (Wang,
Tanaka, & Griffin 1996), which depend on the current state
(θ, θ̇) and the current control u:

θ̈ =
g sin(θ)− αml(θ̇)2 sin(2θ)/2− α cos(θ)u

4l/3− αml cos2(θ)
,

where g is the gravity constant (g = 9.8m/s2), m is the
mass of the pendulum (m = 2.0 kg), M is the mass of the
cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5
m), and α = 1/(m+M). A discrete control interval of 100
msec was used.

6The absence of noise conveniently minimizes the amount of
required simulation, since a single rollout suffices for obtaining the
dominating action and its advantage in any state. In the presence of
noise, multiple rollouts and a statistical test are needed to establish
action domination reliably (Dimitrakakis & Lagoudakis 2008).

The sequence of policies derived with RS-LPI for this do-
main are represented in Figure 2, where the abscissa repre-
sents angles θ within the range [−π/2;π/2] and ordinates
are angular velocities θ̇ within [−6; 6]. These policies are
shown as a set of colored balls, blue for “push left”, red for
“push right”, and green for “do nothing”. The initial policy
was a dummy, non-balancing policy represented with just 5
balls. Areas not covered by the balls are white. If a policy is
queried in a state within the white area, it performs a nearest-
neighbour search and outputs the action of the closest ball
center. All policies π1 − π5 are able to balance the pendu-
lum indefinitely when starting at a random state around the
equilibrium point. In addition, policies π4 and π5 resemble
closely the known optimal policy for this domain (Rexakis
& Lagoudakis 2008).

In this experiment, the influence radius learning rate β
was set to zero, so a constant pessimistic ρ0 was used
throughout the iterations without questioning it. We use
this experiment as a proof of concept for the use of influ-
ence radii: the large central red, green, and blue stripes were
found very early in the optimization process and knowl-
edge of their radii allowed to quickly move learning efforts
to other areas. Each policy is composed of 8000 influence
spheres. The yellow stars one can see near the corners cor-
respond to the elements of W when learning was stopped;
these have been rapidly pushed away from the already cov-
ered regions. Many small influence spheres were found even
in large areas of constant actions, because actions were al-
most equivalent in those states, which in turn led the domi-
nation values to be low and the influence radii to be small.
Locally learning the ρ0(s) value might help overcome the
appearance of small balls in such areas.

7 Related work
Even though the implications of our results span both cases
of discrete and continuous (and hybrid) state spaces, they
have an immediate, intuitive interpretation in terms of con-
tinuous state spaces. Dealing with continuous spaces in
stochastic decision problems raises the crucial question of
representation. How does one represent probability density
functions, value functions, and policies over a continuous
state space? Existing approaches to solving continuous state
space MDPs differ both in their algorithmic contributions,
but also crucially in their representational choices, which
eventually lead to compact representations of either value
functions or policies.

A large class of methods for handling continuous state
spaces focuses on obtaining finite, compact representations
of value functions. Within this class, one can distinguish be-
tween two trends. The first trend, popular in planning prob-
lems, establishes conditions for compact MDP model repre-
sentations that allow closed-form Bellman backups (Boyan
& Littman 2001; Feng et al. 2004; Li & Littman 2005;
Rachelson, Fabiani, & Garcia 2009) and therefore yield an-
alytical (closed) forms of value fuctions. The other trend,
mostly popular in learning problems, investigates approx-
imation methods directly for value functions through var-
ious parametric approximation architectures (Ormoneit &

(a) Initial policy π0 (b) Policy π1 (c) Policy π2

(d) Policy π3 (e) Policy π4 (f) Policy π5

Figure 2: RS-LPI generated policies for the pendulum domain over the (θ, θ̇) state space.

Sen 2002; Lagoudakis & Parr 2003a; Hauskrecht & Kve-
ton 2006), such as state aggregation, linear architectures, tile
codings, and neural networks. In either case, policies over
the continuous state space are dynamically inferred by quer-
ing the compactly stored value function.

Another large class of methods for handling continu-
ous state spaces focuses on obtaining finite, compact rep-
resentations of policies directly, rather than value functions.
Among these approaches, one can distinguish the ones based
on some parametric, closed-form representation of policies,
whose parametres are optimized or learned using policy gra-
dient (Sutton et al. 2000; Konda & Tsitsiklis 2000) or ex-
pectation maximization (Vlassis & Toussaint 2009) meth-
ods. On the other hand, a number of approaches rely on
some unparameterized policy representation, such as classi-
fiers (Lagoudakis & Parr 2003b; Fern, Yoon, & Givan 2004;
2006; Dimitrakakis & Lagoudakis 2008), learned using a fi-
nite set of correct training data. All these policy-oriented
approaches rely on heavy sampling for correct estimates.

Among all these methods, our approach is related to
the last category of methods representing unparameterized,
classifier-based policies. These methods usually suffer from
the pathology of sampling; the relevance and validity of
a sampled piece of information is difficult to assert, both
from the statistical point of view (is the sample statisti-
cally correct?) and from the generalization point of view
(is the sample representative of a large neighbourhood in the
state space?). The key contribution of this paper lies within

the fact that this is —to the best of our knowledge— the
first approach to provide guarantees as to the spatial out-
reach and validity of the inferred improving actions, over
some mesurable areas in the state space, instead of sampling
points only. This also allows to safely avoid a priori unin-
formed discretizations and instead relocate the learning re-
sources to where are needed most (active learning).

However, once again, it is important to recall that the key
result exposed here reaches beyond the intuitive case of con-
tinuous state spaces. It provides a measure of locality for
the validity of improving actions in a certain neighbourhood
of the state space. The existence of such a neighbourhood
only requires the state space to be measurable and, thus, our
results apply to the general case of mesurable state spaces
(including discrete and hybrid ones). In particular, in the
discrete case, they allow to group together states presenting
strong similarities without further sampling. Along these
lines, recent work by Fern et al. (Fern et al. 2006) describes
a similar analysis in order to compute the similarities be-
tween MDP problems.

8 Conclusion and Future Work
Our purpose in this paper was to exploit smoothness prop-
erties of MDPs in order to measure the neighbourhood of s,
where the dominating action a∗(s) still dominates. To this
end, we introduced continuity measures on MDP models
and defined conditions that guarantee the Lipschitz continu-

ity of value functions. This led to the key notion of influence
radius ρ(s) of a sample (s, a∗(s),∆π(s)), which defines a
ball around s where a∗(s) is guaranteed to dominate. Using
this knowledge, we introduced the active learning scheme
of Localized Policy Iteration and tested it on a standard In-
verted Pendulum problem. While the formulas derived from
Theorems 1 and 2 do not yield a direct evaluation of ρ(s)
(because the model’s Lipschitz constants are rarely known),
they still guarantee its existence and its linear dependence on
∆(s). This is the key result which opens the door to learning
the ρ0(s) policy smoothness parameter from experience.

Our work also opens many new research directions.
Among them, one implies defining influence ellipsoids in-
stead of influence spheres, using dot products with a matrix
D to define distances in the state space, instead of using the
identity matrix. Also, in the pendulum domain, many small
influence spheres were found in large areas of constant ac-
tions, because of small domination values. Hence, investi-
gating the learning process of ρ0 (and of matrix D) and the
possibility to locally define some ρ0(s) (and D(s)) is an im-
portant line of future research.

Acknowledgments
This work was fully supported by the Marie Curie International
Reintegration Grant MCIRG-CT-2006-044980 within the EU FP6.

References
[1] Angluin, D. 1988. Queries and concept learning. Machine

Learning 2(4):319–342.

[2] Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

[3] Boyan, J. A., and Littman, M. L. 2001. Exact Solutions to
Time Dependent MDPs. Advances in Neural Information Pro-
cessing Systems 13:1026–1032.

[4] Dimitrakakis, C., and Lagoudakis, M. G. 2008. Rollout Sam-
pling Approximate Policy Iteration. Machine Learning 72(2).

[5] Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R. 2004.
Dynamic Programming for Structured Continuous Markov De-
cision Problems. In Conference on Uncertainty in Artificial In-
telligence.

[6] Fern, N.; Castro, P. S.; Precup, D.; and Panangaden, P. 2006.
Methods for Computing State Similarity in Markov Decision
Processes. In Uncertainty in Artificial Intelligence.

[7] Fern, A.; Yoon, S.; and Givan, R. 2004. Approximate pol-
icy iteration with a policy language bias. Advances in Neural
Information Processing Systems 16(3).

[8] Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy
iteration with a policy language bias: Solving relational Markov
decision processes. Journal of Artificial Intelligence Research
25:75–118.

[9] Fonteneau, R.; Murphy, S.; Wehenkel, L.; and Ernst, D. 2009.
Inferring bounds on the performance of a control policy from
a sample of trajectories. In IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning.

[10] Hauskrecht, M., and Kveton, B. 2006. Approximate Linear
Programming for Solving Hybrid Factored MDPs. In Interna-
tional Symposium on Artificial Intelligence and Mathematics.

[11] Howard, R. A. 1960. Dynamic Programming and Markov
Processes. Cambridge, Massachusetts: The MIT Press.

[12] Konda, R., and Tsitsiklis, J. 2000. Actor-Critic Algorithms.
In Advances in Neural Information Processing Systems.

[13] Lagoudakis, M., and Parr, R. 2003a. Least-Squares Policy
Iteration. Journal of Machine Learning Research 4:1107–1149.

[14] Lagoudakis, M. G., and Parr, R. 2003b. Reinforcement learn-
ing as classification: Leveraging modern classifiers. In Proceed-
ings of the 20th International Conference on Machine Learning
(ICML), 424–431.

[15] Li, L., and Littman, M. L. 2005. Lazy Approximation for
Solving Continuous Finite-Horizon MDPs. In National Confer-
ence on Artificial Intelligence.

[16] Ormoneit, D., and Sen, S. 2002. Kernel-Based Reinforce-
ment Learning. Machine Learning Journal 49:161–178.

[17] Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, Inc.

[18] Rachelson, E.; Fabiani, P.; and Garcia, F. 2009. TiMDPpoly
: an Improved Method for Solving Time-dependent MDPs. In
International Conference on Tools with Artificial Intelligence.

[19] Rexakis, I., and Lagoudakis, M. G. 2008. Classifier-based
Policy Representation. In Proceedings of the 2008 IEEE In-
ternational Conference on Machine Learning and Applications
(ICMLA’08), 91–98.

[20] Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. The MIT Press, Cambridge, MA.

[21] Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In Advances in Neural Infor-
mation Processing Systems.

[22] Vlassis, N., and Toussaint, M. 2009. Model-free reinforce-
ment learning as mixture learning. In Proceedings of the 26th
International Conference on Machine Learning (ICML), 1081–
1088.

[23] Wang, H. O.; Tanaka, K.; and Griffin, M. F. 1996. An ap-
proach to fuzzy control of nonlinear systems: Stability and de-
sign issues. IEEE Transactions on Fuzzy Systems 4(1):14–23.

