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Do small samples underestimate mean abundance?  
It depends on what type of bias we consider
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Abstract: Former authors claimed that, due to parasites’ aggregated distribution, small samples underestimate the true population mean 
abundance. Here we show that this claim is false or true, depending on what is meant by ‘underestimate’ or, mathematically speaking, 
how we define ‘bias’. The ‘how often’ and ‘on average’ views lead to different conclusions because sample mean abundance itself ex-
hibits an aggregated distribution: most often it falls slightly below the true population mean, while sometimes greatly exceeds it. Since 
the several small negative deviations are compensated by a few greater positive ones, the average of sample means approximates the 
true population mean. 
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In case of natural infections, parasites always exhibit 
an aggregated (right-skewed) distribution across host in-
dividuals: most hosts harbour a few if any parasites, while 
a few hosts harbour many parasite individuals (Crofton 
1971). This distribution pattern influences several aspects 
of the ecology and evolution of host-parasite interactions 
(Krasnov 2008, Poulin 2011, Schmid-Hempel 2011, Clay-
ton et al. 2016), and it may also cause a plethora of meth-
odological problems in sampling design and statistical 
analysis (Rozsa et al. 2000).

In their pioneering study, Gregory and Woolhouse 
(1993) analysed how small sample size may bias the sam-
ple estimates of the population mean abundance (as de-
fined by Bush et al. 1997) and other statistical measures of 
parasite burdens. Using computer simulations, they found 
that the smaller the sample size, the more often sample 
mean abundance underestimates the true population mean 
abundance. Intuitively, smaller samples are more likely to 
contain only individuals from the non-infected and slightly 
infected majority of the whole population, while the few 
heavily-infected individuals tend to be totally absent from 
small samples. They interpreted these results by conclud-
ing that “as sample size decreases values of sample mean 
parasite burden (…) are (…) systematically underestimat-
ed”. Several subsequent authors (see e.g. Poulin 1996, 
Cunha-Barros et al. 2003, Marques and Cabral 2007, Mla-
dieno et al. 2012) have reached similar conclusions. The 
purpose of our present account here is to explain that this 

is an over-interpretation of results. The bias of an estimate 
can be defined in several ways, of which two widely used 
definitions will be considered below. When speaking about 
underestimation or bias, one must clarify in which sense 
the statement is meant. 

In mathematical statistics, an estimator is called ‘unbi-
ased’ if the estimates are on average equal to the population 
parameter of interest. The term ‘on average’ is meant here 
in an abstract sense, that is taking (virtually) the average of 
all possible samples (which is typically an infinite set). The 
mathematical notion for this theoretical average is the ‘ex-
pectation’ or ‘expected value’. Practically, unbiasedness 
means that taking a large number of random samples, the 
average of the sample estimates approximates the popula-
tion parameter. However, if an estimate has a right-skewed 
sampling distribution, its unbiasedness implies that more 
than 50% of the estimates are smaller than the population 
parameter. Typically, there are several small negative devi-
ations and a few large positive ones, so the median of the 
estimates is located below the population parameter. If it is 
required that 50% of the estimates lie left and 50% right of 
the population parameter, other estimators have to be used, 
which are not unbiased in the above sense. 

As there have been many cases in which just this was 
required, also this property got its own name: this is the so-
called ‘median unbiasedness’. The difference between un-
biasedness and median unbiasedness lies in the fact that the 
average is sensitive to the magnitude of deviations while 
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the median ignores the magnitude, just counts the positive 
and negative deviations. A sufficient condition for an esti-
mator to be both unbiased and median unbiased at the same 
time is that its sampling distribution is symmetrical. 

Switching back to Gregory and Woolhouse (1993), they 
were right to point out that the majority of small samples 
underestimate the true population mean abundance, and 
only a minority of them will overestimate it. Unfortunately, 
they reported this result by claiming that population mean 
abundance is ‘systematically underestimated’ without 
specifying what does this exactly mean. Taking the sam-
ple from a host population exhibiting an aggregated (right-
skewed) distribution of parasites, the sample mean abun-
dance itself shows an aggregated distribution. This means 
that most sample mean abundances slightly underestimate 
the true population mean abundance, while a few of them 
greatly overestimate it. Thus the theoretical mean of the 
sample means equals the true population mean abundance: 
the sample mean is an unbiased estimate of the popula-
tion mean. (Note that unbiasedness of the sample mean can 
also be proven theoretically, irrespective of the distribution 
of data.) Contrarily, the median of the sample mean abun-
dances indeed underestimates the true population parame-
ter, particularly in case of small sample sizes. 

If the sample size tends to infinity, the distribution of 
sample means tends to the normal distribution. This phe-
nomenon is expressed mathematically by the ‘central limit 
theorem’ (Rice 2007). Since the median of the normal dis-
tribution is equal to its mean, increasing the sample size 
reduces the difference between the mean and median of the 
sample mean abundance, and in limit the difference van-
ishes. 

MATERIALS AND METHODS
Please note that below the terms ‘mean’, ‘median’, ‘sample 

size’ and ‘distribution’ are used on three different levels: (i) sim-
ulated population of hosts, (ii) samples of hosts derived from the 
simulated population, and (iii) means of these samples. To avoid 
potential confusions, we do our best to separate these measures 
as clearly as possible. 

To illustrate the different effects of small sample sizes on the 
mean versus the median of sample means, we made a computer 
simulation using R 3.0.2 (R Core Team 2013). Using R functions 
written by ourselves, we created a virtual population of hosts 
(N = 100,000), harbouring parasites exhibiting a negative bino-
mial distribution (a widely used mathematical model for aggre-
gated parasite distributions) with mean abundance = 10 and ex-
ponent k = 0.05. This means that our virtual host-parasite system 
exhibited a highly aggregated distribution of parasites across host 
individuals. In the whole host population, 88% of individuals car-
ried infections lighter than the population mean abundance. Then 
we took 10,000 random samples (sampling with replacement) of 
different sample sizes from the above host population.

RESULTS
We show results for arbitrarily chosen sample sizes (10, 

30, 100 and 300) that roughly cover the range of sample siz-
es typically used in most practical studies. For sample sizes 
of 10, 30, 100 and 300, the sample mean abundance was 

Fig. 1. A – a virtual population of hosts harbouring parasites 
exhibiting a highly aggregated negative binomial distribution 
(N = 100,000, mean abundance = 10, exponent k = 0.05) used 
as a model system; B–E – the distribution of sample mean abun-
dances for sample sizes of 10, 30, 100 and 300 (each based on 
10,000 random samples). For small samples the median of sam-
ple means (open triangle) greatly underestimates the true popu-
lation abundance, whereas their mean (closed triangle) does not. 
With increasing sample size, the distribution becomes more and 
more symmetric, and the difference between the median and the 
mean of sample estimates vanishes.

below the population mean in 68%, 61%, 56% and 53% of 
the samples, respectively. This indicates that sample mean 
abundance values themselves were aggregated, although 
less aggregated than the distribution of abundance in the 
whole population. Further, this bias was more emphasised 
at small sample sizes, and the distribution of sample mean 
abundance values tended toward a normal distribution (but 
did not reach it) when we increased sample size (Fig. 1). 
Moreover, in Fig. 2 we also illustrate how the mean, medi-
an, 5% and 95% quantiles of the sample mean abundances 
depended on sample size. Please note that the sampling 
bias phenomena discussed above are caused exclusively 
by the aggregated nature of the distribution we modelled. 
Therefore, arguably, other aggregated distributions would 
yield qualitatively similar results.

Finally, due to the asymmetry of distribution, symmetri-
cal CIs based on normal distribution do not work well for 
aggregated parasite distributions. For the virtual population 
we used in the present study, the actual coverage at a nom-
inal level of 95% was 84%, 88% and 90% for sample sizes 
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Fig. 2. Ten thousand random samples were taken (with replacement) from the virtual population shown in Fig. 1, and the mean (solid), 
median (dashed), and the 5% and 95% quantiles (dotted) of sample mean abundances are depicted as functions of sample size. The 
mean of sample means is very close to 10, the true population mean abundance, even for small samples. Contrarily, the median of sam-
ple mean abundances clearly underestimates it. The quantiles show the asymmetry of the distribution, which decreases with increasing 
sample size.

n = 100, 200 and 300, respectively.  A usual solution to ob-
tain better CIs is applying the bootstrap that is supposed to 
result in coverage probabilities closer to the nominal. Best 
coverage can be expected from the bias corrected (BCa) 
CI proposed by Efron (1987), which resulted in coverage 
probabilities of 90%, 92% and 93% for n = 100, 200 and 
300, respectively, when applied to our data.  This means 
that for reliable CI construction one needs large samples if 
the distribution is extremely aggregated.

DISCUSSION
To our best knowledge, Poulin (1996, 2011) published 

the only simulation study that contradicted our present 
conclusions. He found that the mean of sample mean abun-
dances consistently underestimated the true population 
mean abundance at small sample sizes. Through private 
communications, however, the author informed us that 
those simulations were carried out using a software that 

could not be retrieved later on. Presumably, its results were 
caused by unknown artefacts, e.g. due to the small number 
(25–25) of samples in each sample size categories.

In conclusion, Gregory and Woolhouse (1993) – and 
several further authors following them – were correctly 
describing the ‘median bias’ phenomenon, more sample 
means falling below the population mean then above it. 
While this may be important to consider when estimating 
the population mean abundance from small samples, we 
caution against over-interpreting this phenomenon. Wheth-
er or not small samples tend to underestimate the popula-
tion mean abundance depends on which type of bias we are 
talking about. 

Acknowledgements. Thanks to Robert Poulin for private corre-
spondence on this subject. Our work was supported by the grants 
from the National Scientific Research Fund of Hungary (OTKA/
NKFI grant no. 108571) and GINOP-2.3.2-15-2016-00057. 

St
at

is
tic

s 
of

 s
am

pl
e 

m
ea

ns

Sample size

0                         50                      100                     150                     200                     250                     300

30 

20 

10 

0



doi: 10.14411/fp.2017.025 Reiczigel and Rózsa: Sample size and sample bias

Folia Parasitologica 2017, 64: 025 Page 4 of 4

REFERENCES

Received 28 April 2017 Accepted 29 June 2017 Published online 26 July 2017

Cite this article as: Reiczigel J., Rózsa L. 2017: Do small samples underestimate mean abundance? It depends on what type of 
bias we consider. Folia Parasitol. 64: 025.

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997: 
Parasitology meets ecology on its own terms: Margolis et al. re-
visited. J. Parasitol. 83: 575–583.

Clayton D.H., Bush S.E., Johnson K.P. 2016: Coevolution of 
Life on Hosts: Integrating Ecology and History. University of 
Chicago Press, Chicago, 294 pp.

Crofton H.D. 1971: A quantitative approach to parasitism. Para-
sitology 62: 179–193.

Cunha-Barros M., Van Sluys M., Vrcibradic D., Galdino 
C.A.B., Hatano F.H., Rocha C.F.D. 2003: Patterns of infesta-
tion by chigger mites in four diurnal lizard species from a restin-
ga habitat (Jurubatiba) of Southeastern Brazil. Braz. J. Biol. 63: 
393–399.

Efron B 1987. Better bootstrap confidence intervals. J. Am. Stat. 
Assoc. 82: 171–185.

Gregory R.D., Woolhouse M.E.J. 1993: Quantification of par-
asite aggregation: a simulation study. Acta Trop. 54: 131–139.

Krasnov B.R. 2008: Functional and Evolutionary Ecology of 
Fleas: a Model for Ecological Parasitology. Cambridge Universi-
ty Press, Cambridge, 593 pp.

Marques J.F., Cabral H.N. 2007: Effects of sample size on fish 
parasite prevalence, mean abundance and mean intensity esti-
mates. J. Appl. Ichthyol. 23: 158–162. 

Mladineo I., Šimat V., Miletić J., Beck R., Poljak V. 2012. 
Molecular identification and population dynamic of Anisakis pe-
greffii (Nematoda: Anisakidae Dujardin, 1845) isolated from the 
European anchovy (Engraulis encrasicolus L.) in the Adriatic 
Sea. Int. J. Food Microbiol. 157: 224–229.

Poulin R. 1996: Measuring parasite aggregation: defending the 
index of discrepancy. Int. J. Parasitol. 26: 227–229. 

Poulin R. 2011: Evolutionary Ecology of Parasites. Princeton Uni-
versity Press, Princeton, 332 pp.

R Core Team 2013: R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, 
Austria. World Wide Web electronic publication, www.R-pro-
ject.org, 04/2017.

Rice J.A. 2007: Mathematical Statistics and Data Analysis. Thom-
son Higher Education, Belmont, 603 pp. 

Rozsa L., Reiczigel J., Majoros G. 2000: Quantifying parasites 
in samples of hosts. J. Parasitol. 86: 228–232.

Schmid-Hempel P. 2011: Evolutionary Parasitology: the Integrat-
ed Study of Infections, Immunology, Ecology, and Genetics. Ox-
ford University Press, Oxford, 516 pp.


