
Datapath Synthesis Using Adiabatic Logic

LÁSZLÓ VARGA, GÁBOR HOSSZÚ, FERENC KOVÁCS

Department of Electron Devices

Budapest University of Technology and Economics
Goldmann Gy. 3, H-1111 Budapest

HUNGARY
vargal@nimrud.eet.bme.hu http://nimrud.eet.bme.hu/vargal

Abstract: - We present an integer linear programming formulation and a heuristic scheduling approach for
high-level synthesis to synthesize pipeline datapaths using adiabatic logic. Adiabatic logic families that rely on
charge recovery is attractive to achieve low energy dissipation, and these circuits are most suitable for DSP
applications. However, existing scheduling techniques are incapable to deal with scheduling of adiabatic
circuits, since they do not take multiplexer delay into account. We also present a description technique to
perform functional simulation of the synthesized adiabatic datapath together with the other part of a digital
system.

Key-Words: - Low power logic, adiabatic computing, high-level synthesis, scheduling

1 Introduction
Power dissipation becomes a major concern in VLSI
design as the feature size decreases and the
corresponding chip density increases. The trend is
driven primarily by the expensive packaging
requirements and by the demand for portable
devices, where the battery life is of primary concern.
 The adiabatic charge recovery logic is a
promising approach to design VLSI circuits with
extremely low energy dissipation. Such logic
circuits achieve low energy consumption by
restricting the currents to flow across devices, and
by recycling the energy stored in their capacitors.
This requires an ac power supply rather than dc. The
adiabatic charge recovery logic have substantial
advantages in energy consumption over static
CMOS especially at low operating frequencies.
Although this gain diminishes at higher frequencies,
the adiabatic circuits well above 200 MHz are still
about 2 times more energy-efficient than static
CMOS [1]. In addition, their energy-efficiency for a
given frequency can be improved by transistor size
optimization [2].
 In recent years several adiabatic techniques have
been proposed [3][4][5]. These adiabatic logic
families are functionally complete, and they are
most suitable for arithmetic functions. A low-power
adiabatic microprocessor [6] and an adiabatic FIR
filter [7] show their potential for real applications.
Although previous work implemented various logic
functions with adiabatic circuits, no work was done
to support automatic synthesis of complete adiabatic
system. While the adiabatic logic is not suitable for

memory intensive applications, due to its inherent
micropipeline structure it is especially attractive for
embedded DSP functions, where a sequence of
operations are performed on consecutively initiated
data. Time often plays an important role in these
real-time embedded systems. Obviously, increasing
the clock frequency is one way to improve the
throughput, but adiabatic circuits cannot be clocked
at very high frequencies. However, architectural
optimizations, such as parallelism exploitation and
pipelining are much more effective in increasing
throughput than bare clock speedup. Therefore, it is
important to be able to provide a synthesis system
producing high-quality application-specific
datapaths. Pipeline scheduling techniques can be
found in the literature [8][9]. However, these
techniques are incapable to deal with scheduling of
adiabatic circuits, since they do not take multiplexer
delay into account.
 In this paper we describe an integer linear
programming (ILP) formulation and a heuristic
scheduling technique to synthesize pipeline datapath
using adiabatic circuits. The time constraints are
given in data initiation interval and the maximal
allowed schedule length. Both approaches produce a
pipeline schedule using a minimal number of
functional units, but the heuristic approach may fail
to schedule all operation within the allowed
schedule length in some cases. We also present a
description technique to perform functional
simulation of the synthesized adiabatic datapath
together with the other part of a digital system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/132277074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Target architecture
In adiabatic logic, the flow of data through cascaded
gates is controlled by multi-phase clock. The
adiabatic logic computes only one logic level per
phase, therefore we need multiple phases to
implement a multilevel logic function. We use four-
phase clock with 90° phase lag, where each clock
phase repeats the charge, hold, discharge and the
wait periods [10]. The inputs of a logic gate must be
stable during the charge period, and the logic gate
maintains a valid output during the hold period. The
discharge period is used to recover the energy stored
in the output capacitor, and during the wait period
new inputs are being prepared by the previous gate,
which is in the charge period. In this way, the logic
gates are pipelined without any pipeline registers.

2.1 Functional units
The functional units (FUs) are designed in a pipeline
structure by using buffers for maintaining the
pipeline. In this way, an adiabatic FU is itself a
pipeline, it can execute a new operation for every
clock cycle (cycle of four periods), but its latency is
usually larger than a clock cycle. For example, the
carry-lookahead adder (CLA), which is the best
suitable adder for adiabatic implementation, requires
O(log N) stages, where N is the bit width of the
adder. A 16-bit CLA requires six stages, so its
latency is 1.5 clock cycle, but it accepts new inputs
for every clock cycle.

2.2 Multiplexers
Up to 4 to 1 multiplexer can be efficiently
implemented in one complex gate, which requires
one stage. If additional multiplexer input is needed,
we use cascaded multiplexers.

2.3 Registers
Registers are built using flip-flops. An adiabatic
flip-flop can be implemented by a ring of four logic
gates. One gate contains logic to write in a new
value, while the remainder gates are buffers to
propagate the correct logic value. Instead of a ring
of gates, a chain of buffers can also be used to
temporarily store and propagate a logic value. There
is no need control signal in this case, but it requires
as many buffers as the delay of the chain.

2.4 Control Unit
The control unit is also implemented with adiabatic
logic gates to control the adiabatic multiplexers. It
consists of one or more rings of gates, where the
number of logic gates in a ring is equal to the data
initiation interval (DII). There are DII/4 complex
gates in a ring, which are used to reset to the
appropriate logic value, while the other gates are
only buffers.

3 The ILP formulation
First, we give a list of notations which will be used
throughout this paper:

oi --- the i. operation in the input description

si --- earliest (as soon as possible) execution
time of the operation oi

li --- latest (as late as possible) execution time
of the operation oi

xi,t --- is one if oi starts in the clock phase t;
otherwise it is zero.

ti --- the number of clock phases required by oi
to complete its task

di --- the number of clock phases required by the
multiplexer before oi

L --- the maximal allowed schedule length in
clock phase

DII --- data initiation interval in clock phase

Mk --- the number of functional units of type k

3.1 Scheduling constraints
All operation has to be scheduled between their
earliest and latest execution times. Since we don’t
know the multiplexer delays a priori, we can
determine the time frames of the operations without
considering the multiplexers only, using the as soon
as possible (ASAP) and the as late as possible
(ALAP) schedules. Incorporating the multiplexers
into scheduling the actual time frame will be tighter.
However, we use the ASAP and ALAP values to
remove a number of trivial zero variables, thus
reducing the complexity. So:

3.2 Dependency constraints
An FU receives its operands through multiplexer to
perform the operation assigned to the unit. As
described earlier, a multiplexing takes at least one

. allfor , 1 , ix
i

i

l

st

ti∑
=

=

clock phase depending on the size of the
multiplexer, therefore we must take its delay into
account in scheduling. To keep the dependencies
between operations as in the input description, an
operation can start only if its predecessors have
finished their operation. The corresponding
inequalities are as follows:

3.3 Pipelining overlap constraints
An FU, which starts a calculation at time t, can
accept the next data at time t+4 due to its pipeline
structure. An operation started at time T is
considered to be occupying one FU for T≤ t<T+4.
This can be described using the following function
for all i:

The simultaneously used FUs of type k at time t is
equal to the number of operations of type k which
occupy an FU at time t. The required number FUs of
type k is the maximal number of simultaneously
used FUs of type k at any time. This is described by
the following set of functions:

3.4 Multiplexer constraints
We need an expression to calculate the number of
multiplexer inputs for the FUs of type k as a
function of the number of FUs of that type. Let this
value be denoted by Sk. At the beginning Sk=0. From
the input description we create a list, in which we
collect all the different sources, form where the
operations of type k receive operands, and count the
number of occurrences (denoted by Ea) for each
different source. For each list element we do the

following: if the operand source is an input port,
then Sk=Sk+Ea. If the operand source is an operation
of type i, then Sk=Sk+min(Ea,Mi). If the operand
source is a constant value, then Sk=Sk+1. This
means, that a constant value can be selected among
other constants in time, because it does not depend
on other operations. An example of this calculations
using the 16-point FIR filter is the following: the
addition operations receive operands from 16 input
ports, from 8 multiplication and from 6 addition
operation. The multiplication operations receive
operands from 8 addition operation and they
receives 8 constant value. So
S+=16+min(8,M*)+min(6,M+) and S*=min(8, M+)+1.
An FU of type k has two inputs, and we have Mk
FUs of type k.

4 The heuristic algorithm
The algorithm is based on the uniformly distribution
of the multiplexer inputs among the same type of
FUs. To determine the size of the multiplexers
before each FU, we need to know the number of
FUs of each type, and the number of sources from
where a certain FU receives operands. We first
calculate the minimal number of FUs of each type
without the actual scheduling, while satisfying the
DII constraint. Then, based on the number of
resources, the sizes and the delays of the
multiplexers can be determined by analyzing the
dependencies in the input description.
 The minimal number of FUs of type k can be
calculated by Mk=Nk/DII, where Nk is the number
of operation of type k in the input description. Now,
we can determine the size of the multiplexers by
calculating the Sk values for each type of FUs as
described in the previous section. Since an FU has
two inputs, and we have Mk FUs of type k, the final
number for Sk will be: Sk =Sk/(2*Mk). This assumes
a balanced distribution of the different operand
sources among the same type of FUs, which will the
task of the module allocation. We calculate the delay
of the multiplexer before FUs of type k as the
following: dk=(log(Sk)/log(2))/2.
 For scheduling purpose, a multiplexer before an
FU can be seen as the execution time of the
operation is increased by the delay of the
multiplexer: t’i= ti+ di. We perform a modified list
scheduling to schedule each operation. We calculate

ji

l

st

tj

l

st

iiti

oo

jixtdtxt
j

j

i

i

 ofr predecessodirect a is that

such , allfor , 0,, ≤∗−++∗ ∑∑
==

sucessor. a havenot does t tha

such allfor , 1,

i

ii

l

st

ti

o

iLdtxt
i

i

≤−++∗∑
=

otherwise. 0

4 if 1' ,

=
++<≤+= iiti dTtdTx

. typeof is and , 0

 where, , allfor 'max
/

1
,

koDIIj

kjixM

i

DIIL

t

DIItjik

<≤

= ∑
=

∗+

ko

kd

i

M

k

d

o

i

k

k

i

 typeof is ere wh

 allfor , 4
2

S

1

k ∑∑
=

≤≤

the ASAP and ALAP values for each operation to
determine its mobility using the t’i values for the
execution times. Our modified list scheduler
maintains a reservation table for each type of FUs,
which has Mk rows and as many columns as the
maximal allowed schedule length. If an operation of
type k is scheduled to begin its operation in the
clock phase t, then the scheduler places a mark in
every column of the table, which satisfies
Ck=t+4*n*DII, where Ck is the number of the
column of the reservation table for the FUs of type
k, and n is integer number and 0<n<L/DII. If this
operation is the first occurrence of the type k, then
the scheduler fully fills every other column with
mark. The former takes care for pipeline operation,
since the original list scheduling is incapable of deal
with pipelined execution, and the later ensures, that
all FUs of same type will begin their operation in the
n*L shift of the same phase of the clock, which is
necessary for sharing FUs among operations. An
operation of type k can be scheduled into the clock
phase t only, if the Ct has empty place.

5 Results
We applied the described algorithms to schedule the
16-point FIR filter benchmark. We assumed a
datapath width of 16 bit, in which the latency of an
adder and a multiplier is 6 and 9 clock phase
respectively. We generated different schedules by
varying DII from 1 to 3 clock cycle (4 to 12 clock
phase). The results of the ILP scheduling are in
Table 1. Table 2. shows the results of the heuristic
scheduling algorithm. The columns of the table are
the data initiation interval, the number of adders and
multipliers, the multiplexer inputs, the number of
buffers, and the obtained schedule length. Both
schedules use a minimal number of FUs, but the
heuristic schedule is longer and requires more
buffers. This is, because it schedules all the same
types of operations to begin at a shift of a same
clock phase. The number of buffers decreases
significantly if we do not apply a long series of
buffers, but a ring of four gates to build registers.

DII M+ M* Mux in. Buffers L

4 15 8 - 126 57

8 8 4 34 156 70

12 5 3 30 180 72

Table 1: ILP scheduling result

DII M+ M* Mux in. Buffers L

4 15 8 - 126 57

8 8 4 34 192 75

12 5 3 30 208 75

Table 2: Heuristic scheduling result

5 Simulation

It is an important task during the design of
application specific integrated circuits to checks
whether the design fulfills its specification. The
specification of the circuit by a hardware description
language (HDL), and the simulation of the HDL
code is a typical validation technique of current
industry practice. The design is defined at the
algorithmic level and later refined down to the
register transfer level (RT-level). Among the
different HDLs for digital circuit design, VHDL is
the most widely used and standardized. VHDL can
capture the design at several abstraction levels and
conveniently represent both the behavioral
specification and the RT-level design.
 The determination of the cycle-by-cycle behavior
of the design and the timing refinement from the
causal to clock-related level enable performance
simulation. Full system simulations are required to
validate the overall system concept. We need
description technique to model the clock-phase
controlled behaviour of the adiabatic logic and
simulate together with the other part of a digital
system. A clock related, but still behavioral model is
needed to achieve acceptable simulation times.
 We describe each different datapath component
by a VHDL entity. The entity declaration specifies
the name and the input/output port structure of the
component. The architecture body is used to specify
the functionality and timing of the component. In
Listing 1. we show a fragment of the description of a
16 bit adiabatic adder in our library. For brevity we
only show the signals for the two less significant bit
of the adder.
 The pf1, pf2, pf3 and the pf4 signals are the clock
phase signals, which controls the flow of data
through the cascaded gates. The logic functions of
the gates are represented by the VHDL blocks. The
block is “guarded”, wherein “guarded” concurrent
signal assignments are present. The concurrent
signal assignments statements describes the data
dependency among the logic levels. The
assignments are executed if the “guard” expression
changes to a true value or if the “guard” expression
is true and in the same time there is an event on the
signal in the right side. This describes the behavior

of the adiabatic logic, where any input change
during the active phase signal ruins the calculation.
The “guard” expressions are controlled by the clock
phase signals. The datapath is built up by component
instantiation from the library. The clock phase
signals are connected to each component in the
appropriate order. The I/O ports of the design
entities are connected by signals, which can also be
used to capture the simulation data of the internal
logic.

entity adder16 is

port (pa, pb: in std_logic_vector(0 to 15);

 pf1, pf2, pf3, pf4 : in std_logic;

 py: out std_logic_vector(0 to 16)); end

adder16;

architecture DFB of adder16 is

signal P1, G1, P2, G2, P3, G3, P4, G4, P5,

G5, P6, G6 : std_logic_vector(0 to 15);

begin

 dfb1:block (pf1='1') begin

 P1(0)<=guarded pa(0) xor pb(0);

 G1(0)<=guarded pa(0) and pb(0);

 P1(1)<=guarded pa(1) xor pb(1);

 G1(1)<=guarded pa(1) and pb(1);

 end block;

 dfb2:block (pf2='1') begin

 P2(0)<=guarded P1(0);

 G2(0)<=guarded G1(0);

 P2(1)<=guarded P1(1);

 G2(1)<=guarded (G1(0) and P1(1)) xor

G1(1);

 end block;

 dfb3:block (pf3='1') begin

 P3(0)<=guarded P2(0);

 G3(0)<=guarded G2(0);

 P3(1)<=guarded P2(1);

 G3(1)<=guarded G2(1);

 end block;

 dfb4:block (pf4='1') begin

 P4(0)<=guarded P3(0);

 G4(0)<=guarded G3(0);

 P4(1)<=guarded P3(1);

 G4(1)<=guarded G3(1);

 end block;

 dfb5:block (pf1='1') begin

 P5(0)<=guarded P4(0);

 G5(0)<=guarded G4(0);

 P5(1)<=guarded P4(1);

 G5(1)<=guarded G4(1);

 end block;

 dfb6:block (pf2='1') begin

 py(0)<=guarded P5(0);

 py(1)<=guarded G5(0) xor P5(1);

 end block; end DFB;

Listing 1: Code fragment of the VHDL model
 of a 16-bit adiabatic adder

6 Conclusions
This paper presented an integer linear programming
formulation and a heuristic scheduling technique for
high-level synthesis, which are capable of

scheduling operations implemented with adiabatic
logic. Both approaches produce a pipeline schedule
using a minimal number of resources, but the
heuristic approach results in longer schedule, which
may not fit in the allowed schedule length in some
cases. We have also presented a VHDL description
technique to model the clock-phase controlled
behaviour of the adiabatic logic and simulate
together with the other part of a digital system,
which is also described in VHDL.

References:

[1] S. Kim, M. C. Papaefthymion: "True Single-
Phase Energy-Recovering Logic for Low-Power,
High-Speed VLSI", ISLPED, 1998, pp. 167-172

[2] F. Kovács, L. Varga, G. Hosszú: "Circuit
Optimization of Adiabatic Charge-Recovery
CMOS PLAs", joint meeting of the 4th World
Multiconference on Systemics, Cybernetics and
Informatics, SCI2000 and the 6th International
Conference on Information Systems Analysis
and Synthesis, ISAS2000, Orlando, Florida,
USA, July 23-26, 2000, Vol. IX. pp. 153-156.

[3] A . Kramer, J. S. Denker, S. C. Avery, A. G.
Dickinson, T. R. Wik: "Adiabatic Computing
with the 2N-2N2D logic family", IEEE Symp.
On VLSI Circuits, 1994, pp. 25-26.

[4] Y. Moon, D. Jeong: "An Efficient Charge
Recovery Logic Circuit", IEEE Journ. Solid-
State Circuits, vol-31, No 4, April. 1996, pp.
514-522.

[5] J. Lim, D. G. Kim, S. I. Chae: "A 16-bit Carry-
Lookahead Adder Using Reversible Energy
Recovery Logic for Ultra-Low-Energy Systems"
IEEE Journ. Solid-State Circuits, vol-34, No.6,
June 1999, pp. 898-903.

[6] W. C. Athas, N. Tzartzanis, L. J. Svensson, L.
Peterson: "A Low-Power Microprocessor Based
on Resonant Energy", IEEE Journ. Solid-State
Circuits, Nov. 1997, pp. 1693-1701.

[7] W. C. Athas, W-C Liu, L. J. Svensson: "Energy-
Recovery CMOS for Highly Pipelined DSP
Design"

[8] C. Y. Roger Chen, M. Z. Moricz: "Data Path
Scheduling for Two-Level Pipelining", Design
Automation Conf., 1991, pp. 603-606.

[9] H. S. Jun, S. Y. Hwang: "Design of a Pipelined
DataPath Synthesis System for Digital Signal
Processing", IEEE Trans. on VLSI Systems, Sep.
1994, pp. 292-303.

[10] L. Varga, F. Kovács, G. Hosszú: "An Efficient
Adiabatic Charge-Recovery Logic” accepted at
Southeastcon, 2001

