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Összefoglaló 

 

A maximum súlyú párosítás egy természetes általánosítását tanulmányozzuk cikkünkben. 

Adott egy irányítatlan páros gráf G = (A u P, E), amelyben minden él súlyozott és minden P-

beli csúcson egy alsó és felső kvóta van. Célunk egy maximális súlyú b-párosítás keresése, 

amiben az A-beli csúcsok foka legfeljebb 1, míg a P-belieké vagy 0 vagy a csúcs alsó és felső 

kvótája közt van. Ezt a problémát WMLQ-nak nevezzük. Fő motivációja egyetemi 

csoportbeosztásokban keresendő, amelyeknél csoportonként adott egy minimum- és 

maximumlétszám. Cikkünkben lefolytatjuk a WMLQ-probléma bonyolultságának teljes 

vizsgálatát, kitérve mind a klasszikus polinomiális algoritmusokra, mind a fix-paraméter 

kezelhetőségre, mind a közelítő algoritmusokra. Meghúzzuk a NP-nehéz polinomiális esetek 

közti választóvonalat maximális fokszámban és kvótában kifejezve és hatékony 

algoritmusokat adunk a megoldható esetekre. Ezen felül alacsony favastagságú gráfokra is 

bemutatunk egy polinomiális algoritmust. Egy közelítő algoritmust is adunk WMLQ-ra, 

amelyről azt is belátjuk, hogy a lehető legjobb. Végül kifejtjük, hogy eredményeink hogyan 

általánosíthatók sok-a-sokhoz párosításokra. 
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Matchings with lower quotas:
Algorithms and complexity

Ashwin Arulselvan · Ágnes Cseh ·
Martin Groß · David F. Manlove ·
Jannik Matuschke

Abstract We study a natural generalization of the maximum weight many-
to-one matching problem. We are given an undirected bipartite graph G =
(A ∪̇P,E) with weights on the edges in E, and with lower and upper quotas on
the vertices in P . We seek a maximum weight many-to-one matching satisfying
two sets of constraints: vertices in A are incident to at most one matching edge,
while vertices in P are either unmatched or they are incident to a number of
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matching edges between their lower and upper quota. This problem, which
we call maximum weight many-to-one matching with lower and upper quotas
(wmlq), has applications to the assignment of students to projects within
university courses, where there are constraints on the minimum and maximum
numbers of students that must be assigned to each project.

In this paper, we provide a comprehensive analysis of the complexity of
wmlq from the viewpoints of classical polynomial time algorithms, fixed-
parameter tractability, as well as approximability. We draw the line between
NP-hard and polynomially tractable instances in terms of degree and quota
constraints and provide efficient algorithms to solve the tractable ones. We
further show that the problem can be solved in polynomial time for instances
with bounded treewidth; however, the corresponding runtime is exponential
in the treewidth with the maximum upper quota umax as basis, and we prove
that this dependence is necessary unless FPT = W[1]. The approximability of
wmlq is also discussed: we present an approximation algorithm for the gen-
eral case with performance guarantee umax + 1, which is asymptotically best
possible unless P = NP. Finally, we elaborate on how most of our positive
results carry over to matchings in arbitrary graphs with lower quotas.

Keywords maximum matching · many-to-one matching · project allocation ·
inapproximability · bounded treewidth

1 Introduction

Many university courses involve some element of team-based project work. A
set of projects is available for a course and each student submits a subset of
projects as acceptable. For each acceptable student–project pair (s, p), there is
a weight w(s, p) denoting the utility of assigning s to p. The question of whether
a given project can run is often contingent on the number of students assigned
to it. Such quota constraints also arise in various other contexts involving the
centralized formation of groups, including organizing team-based activities
at a leisure center, opening facilities to serve a community and coordinating
rides within car-sharing systems. In these and similar applications, the goal is
to maximize the utility of the assigned agents under the assumption that the
number of participants for each open activity is within the activity’s prescribed
limits.

We model this problem using a weighted bipartite graph G = (A ∪̇P,E),
where the vertices in A represent applicants, while the vertices in P are posts
they are applying to. So in the above student–project allocation example, A
and P represent the students and projects respectively, and E represents the
set of acceptable student–project pairs. The edge weights capture the cardinal
utilities of an assigned applicant–post pair. Each post has a lower and an upper
quota on the number of applicants to be assigned to it, while each applicant can
be assigned to at most one post. In a feasible assignment, a post is either open
or closed : the number of applicants assigned to an open post must lie between
its lower and upper quota, whilst a closed post has no assigned applicant. The
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objective is to find a maximum weight many-to-one matching satisfying all
lower and upper quotas. We denote this problem by wmlq.

In this paper, we study the computational complexity of wmlq from var-
ious perspectives. We begin by defining the problem formally in Section 2.
Then in Section 3, we show that wmlq can be solved efficiently if the degree
of every post is at most 2, whereas the problem becomes hard as soon as posts
with degree 3 are permitted, even when lower and upper quotas are all equal
to the degree, and every applicant has a degree of 2. Furthermore, we show
the tractability of the case of pair projects, i.e., when all upper quotas are at
most 2. In Section 4, we study the fixed parameter tractability of wmlq. To
this end, we generalize the known dynamic program for maximum indepen-
dent set with bounded treewidth to wmlq. The running time of our algorithm
is exponential in the treewidth of the graph, with umax, the maximum up-
per quota of any vertex, as the basis. This yields a fixed-parameter algorithm
when parameterized by both the treewidth and umax. We show that this ex-
ponential dependence on the treewidth cannot be completely separated from
the remaining input by establishing a W [1]-hardness result for wmlq param-
eterized by treewidth. Finally, in Section 5, we discuss the approximability of
the problem. We show that a simple greedy algorithm yields an approxima-
tion guarantee of umax + 1 for wmlq and

√
|A| + 1 in the case of unit edge

weights. We complement these results by showing that these approximation
factors are asymptotically best possible, unless P = NP. We briefly comment
on the generalizability our aforementioned results in Section 6 for matchings
in arbitrary graphs with lower quotas.

1.1 Related work

Among various applications of centralized group formation, perhaps the as-
signment of medical students to hospitals has received the most attention. In
this context, as well as others, the underlying model is a bipartite matching
problem involving lower and upper quotas. The Hospitals / Residents problem
with Lower Quotas (hrlq) [4, 14] is a variant of wmlq where applicants and
posts have ordinal preferences over one another, and we seek a stable match-
ing of residents to hospitals. Hamada et al. [14] considered a version of hrlq
where hospitals cannot be closed, whereas the model of Biró et al. [4] per-
mitted hospital closures. Strategyproof mechanisms have also been studied in
instances with ordinal preferences and no hospital closures [9, 12, 13].

The Student / Project Allocation problem [24, Section 5.6] models the as-
signment of students to projects offered by lecturers subject to upper and
lower quota restrictions on projects and lecturers. Several previous papers
have considered the case of ordinal preferences involving students and lec-
turers [1, 16, 25] but without allowing lower quotas. However two recent pa-
pers [18, 26] do permit lower quotas together with project closures, both in
the absence of lecturer preferences. Monte and Tumennasan [26] considered
the case where each student finds every project acceptable, and showed how
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to modify the classical “serial dictatorship” mechanism to find a Pareto opti-
mal matching. Kamiyama [18] generalized this mechanism to the case where
students need not find all projects acceptable, and where there may be ad-
ditional restrictions on the sets of students that can be matched to certain
projects. This paper also permits lower quotas and project closures, but our
focus is on cardinal utilities rather than ordinal preferences. Cardinal utilities
can facilitate a more flexible representation of preferences and they occur natu-
rally in various matching problems, such as the solution of symmetric indefinite
systems [31], the organization of Chess tournaments [28] or car sharing [15].
Moreover, various methods for converting ordinal preferences into cardinal
utilities are known, such as the normalized Borda score [30].

The unit-weight version of wmlq is also closely related to the D-matching
problem [8, 23, 33], a variant of graph factor problems [29]. In an instance of
the D-matching problem, we are given a graph G, and a domain of integers
is assigned to each vertex. The goal is to find a subgraph G′ of G such that
every vertex has a degree in G′ that is contained in its domain. Lovász [22]
showed that the problem of deciding whether such a subgraph exists is NP-
complete, even if each domain is either {1} or {0, 3}. On the other hand, some
cases are tractable. For example, if for each domain D, the complement of D
contains no consecutive integers, the problem is polynomially solvable [33]. As
observed in [32], D-matchings are closely related to extended global cardinal-
ity constraints and the authors provided an analysis of the fixed-parameter
tractability of a special case of the D-matching problem; see Section 4 for
details.

The problem that we study in this paper corresponds to an optimization
version of the D-matching problem. We consider the special case where G is
bipartite and the domain of each applicant vertex is {0, 1}, whilst the domain
of each post vertex p is {0} ∪ {`(p), . . . , u(p)}, where `(p) and u(p) denote the
lower and upper quotas of p respectively. Since the empty matching is always
feasible in our case, our aim is to find a domain-compatible subgraph G′ such
that the total weight of the edges in G′ is maximum.

2 Problem definition

In this section we provide a formal definition of the maximum weight many-
to-one matching problem with lower quotas (wmlq).

Basic notation Let G = (V,E) be a graph. For a subset of vertices U ⊆ V we
denote by δ(U) = {{v, w} ∈ E : v ∈ U,w ∈ V \U} the set of edges incident to
exactly one vertex in U . For a vertex v ∈ V , we write δ(v) = δ({v}), and for
a subset of edges F ⊆ E we write degF (v) = |δ(v) ∩ F |. By Γ (v) = {w ∈ V :
{v, w} ∈ E} we denote the neighborhood of v, i.e., the set of vertices that are
adjacent to v.

In our problem, a set of applicants A and a set of posts P are given. A
and P constitute the two vertex sets of an undirected bipartite graph G =
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(V,E) with V = A ∪̇P and E represents the set of acceptable applicant-post
pairs. Each edge carries a weight w : E → R≥0, representing the utility of
the corresponding assignment. The set of posts is equipped with functions
` : P → Z≥0 and u : P → Z≥0 such that `(p) ≤ u(p) for every p ∈ P .
Here `(p) is called the lower quota of p and u(p) is called the upper quota
of p. These functions bound the number of admissible applicants for the post
(independent of the weight of the corresponding edges). Furthermore, every
applicant can be assigned to at most one post. Thus, an assignment is a subset
M ⊆ E of the edges such that |δ(a) ∩M | ≤ 1 for every applicant a ∈ A and
|δ(p) ∩M | ∈ {0, `(p), `(p) + 1, ..., u(p)} for every p ∈ P . With respect to an
assignment M , a post is said to be open if the number of applicants assigned
to it is greater than 0, and closed otherwise. The size of an assignment M ,
denoted |M |, is the number of assigned applicants, while the weight of M ,
denoted w(M), is the total weight of the edges in M , i.e., w(M) =

∑
e∈M w(e).

The goal is to find an assignment of maximum weight. Formally, we define the
wmlq problem as follows.

Problem 1 wmlq
Input: I = (G,w, `, u); a bipartite graph G = (A ∪̇P,E) with edge weights w,
lower quotas ` and upper quotas u.
Task: Find an assignment of maximum weight.
If w(e) = 1 for all e ∈ E, we refer to the problem as mlq.

Remark 1 Note that when lower quotas are present but posts cannot be closed,
we obtain the Degree Constrained Subgraph Problem (DCS); a maximum
weight matching in an instance of DCS can be found in polynomial time
[10]. In the special case that lower quotas are absent, DCS is referred to as
the Upper Degree Constrained Subgraph Problem (UDCS) [10].

Some trivial simplification of the instance can be executed right at the
start. If u(p) > |Γ (p)| for a post p, then u(p) can be replaced by |Γ (p)|. On
the other hand, if `(p) > |Γ (p)|, then post p can immediately be deleted, since
no feasible solution can satisfy the lower quota condition. Moreover, a post
p with `(p) = 1 behaves identically to the case that `(p) = 0, so we assume
that no post p has `(p) = 1. From now on we assume that the instances have
already been simplified this way.

3 Degree- and quota-restricted cases

In this section we characterize the complexity of wmlq in the presence of
upper bounds placed on vertex degrees or the posts’ upper quotas. Section 3.1
deals with degree-restricted cases, whilst Section 3.2 studies cases involving
bounded upper quotas.
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3.1 Degree-restricted cases

In this subsection we will consider wmlq(i, j), the special case of wmlq in
which |Γ (a)| ≤ i for all a ∈ A, and |Γ (p)| ≤ j for all p ∈ P . That is, every
applicant submits at most i applications and every post receives at most j
applications. In order to establish our first result, we reduce the maximum
independent set problem (mis) to mlq. In mis, a graph with n vertices and m
edges is given and the task is to find an independent vertex set of maximum
size. mis is not approximable within a factor of n1−ε for any ε > 0, unless
P = NP [35]. The problem remains APX-complete even for cubic (3-regular)
graphs [2].

Theorem 1 mlq(2,3) is APX-complete.

Proof First of all, mlq(2,3) is in APX because the problem has a 4-approx-
imation that can be found in polynomial time (see Theorem 7).

To each instance I of mis on cubic graphs we create an instance I ′ of mlq
such that there is an independent vertex set of size at least K in I if and only
if I ′ admits an assignment of size at least 3K, yielding an approximation-
preserving reduction. The construction is as follows. To each of the n vertices
of graph G in I, a post with upper and lower quota of 3 is created. The m
edges of G are represented as m applicants in I ′. For each applicant a ∈ A,
|Γ (a)| = 2 and Γ (a) comprises the two posts representing the two end vertices
of the corresponding edge. Since we work on cubic graphs, |Γ (p)| = 3 for every
post p ∈ P .

First we show that an independent vertex set of size K can be transformed
into an assignment of at least 3K applicants. All we need to do is to open
a post with its entire neighborhood assigned to it if and only if the vertex
representing that post is in the independent set. Since no two posts stand for
adjacent vertices in G, their neighborhoods do not intersect. Moreover, the
assignment assigns exactly three applicants to each of the K open posts.

To establish the opposite direction, let us assume that an assignment of
cardinality at least 3K is given. The posts’ upper and lower quota are both set
to 3, therefore, the assignment involves at least K open posts. No two of them
can represent adjacent vertices in G, because then the applicant standing for
the edge connecting them would be assigned to both posts at the same time.

Note that every solution of the constructed instance of mlq serves an
integer multiple of 3 applicants. In particular, the mlq instance has a solution
serving 3K applicants if and only if there is an independent set of size K in
the mis instance. Hence, this reduction preserves the approximation factors.
Since mlq(2,3) belongs to APX and mis is APX-complete in cubic graphs, it
follows that mlq(2,3) is APX-complete. ut

So far we have established that if |Γ (a)| ≤ 2 for every applicant a ∈ A
and |Γ (p)| ≤ 3 for every post p ∈ P , then mlq is NP-hard. In the following,
we also show that these restrictions are the tightest possible. If |Γ (p)| ≤ 2 for
every post p ∈ P , then a maximum weight matching can be found efficiently,
regardless of |Γ (a)|. Note that the case wmlq(1,∞) is trivially solvable.
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Theorem 2 wmlq(∞,2) is solvable in O(n2 log n) time, where n = |A|+ |P |.

Proof After executing the simplification steps described at the end of Section 2,
we apply two more changes to derive our helper graph H. Firstly, if `(p) = 0,
u(p) = 2 and |Γ (p)| = 2, we separate p’s two edges, splitting p into two
posts with upper quota 1. After this step, all posts with u(p) = 2 also have
`(p) = 2. All remaining vertices are of upper quota 1. Then, we substitute all
edge pairs of posts with `(p) = u(p) = 2 with a single edge connecting the two
applicants. This edge will carry the weight equal to the sum of the weights of
the two deleted edges.

Clearly, any matching in H translates into an assignment of the same
weight in G and vice versa. Finding a maximum weight matching in a general
graph G = (V,E) can be done in O(|V |(|E| + |V | log |V |)) time [11], which
reduces to O(|V |2 log |V |) in our case. ut

3.2 Quota-restricted cases

In this section, we consider restrictions of wmlq with bounded upper quotas.
Note that Theorem 1 already tells us that the case of u(p) ≤ 3 for all posts
p ∈ P is NP-hard to solve. We will now settle the complexity of the only
remaining case, where we have instances with every post p ∈ P having an
arbitrary degree and u(p) ≤ 2. This setting models posts that need to be
assigned to none, one or pairs of applicants.

Here we present a solution for wmlq with u(p) ≤ 2. Our algorithm is based
on f -factors of graphs. In the f -factor problem, a graph G and a function f :
V → Z≥0 is given. A set of edges F ⊆ E is called an f -factor if degF (v) = f(v)
for every v ∈ V , where degF (v), as per our earlier definition, is the degree
of v in the graph (V, F ). Constructing an f -factor of maximum weight in a
graph with n vertices and m edges or proving that none exists can be done in
O(φ(m+n log n)) time, where φ is the sum of all f -values in the graph [10, 11].

Theorem 3 wmlq with u(p) ≤ 2 for every p ∈ P can be solved in O(nm +
n2 log n) time, where n = |V | and m = |E|.

Proof We partition P into P1 and P \ P1, where P1 denotes the set of posts
with u(p) = 1. For posts in P \ P1 we can assume that `(p) = u(p) = 2 for
every post p. For, a post p with `(p) = 0 and u(p) = 2 can be transformed into
a post with `(p) = u(p) = 2 by giving it two dummy edges with zero weight,
allowing us to pick the dummy edges in order to make up for the raised lower
quota.

The graph G′ = (V ′, E′) of the constructed f -factor instance contains the
graph G = (V,E) of our wmlq instance, as shown in Fig. 1. We add a dummy
post pd to V ′ and connect it to every applicant in A. We connect every post
pi ∈ P1 to pd. For every post pi ∈ P\P1 we add two dummy vertices q1i and
q2i and a triangle on the vertices pi, q

1
i and q2i . All new edges in E′ \ E carry

zero weight.
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We set f(pd) = K, f(p) = u(p) for every p ∈ P and f(v) = 1 for the
rest of the vertices. In the initial version of our algorithm, we solve a weighted
f -factor problem for every K ∈ {0, 1, ..., |A| + |P1|}, and later we will show
a slightly modified version of the f -factor instance so that it is sufficient to
construct only two instances.

pd p1 p2 p3 p4 p5

a1 a2 a3 a4 a5 a6

q11 q21 q14 q24 q15 q25

Fig. 1 The transformation from wmlq to an f -factor problem. The solid edges form G,
while the dotted edges are the added ones, carrying weight 0. Here, P1 = {p2, p3} and
P\P1 = {p1, p4, p5}.

First we show that if there is a feasible assignment M in G so that the
number of unmatched applicants and the number of closed posts in P1 add up
to K, then it can be extended to an f -factor M ′ of the same weight in G′. We
construct M ′ starting with M and then adding the following edges to it:

– {pd, ai} for every applicant ai that is unmatched in M ;
–
{
q1i , pi

}
and

{
q2i , pi

}
for every post pi ∈ P\P1 that is closed in M ;

–
{
q1i , q

2
i

}
for every post pi ∈ P\P1 that is open in M ;

– {pd, pi} for every post pi ∈ P1 that is closed in M ;

For all vertices v 6= pd, it immediately follows from the construction that
degM ′(v) = f(v). The same holds for pd as well, because an edge is assigned to
it either because an applicant is unmatched or because a post in P1 is closed
and we assumed that these add up to K.

It is easy to see that if there is an f -factor M ′ in G′, then its restriction
to G is a feasible assignment M of the same weight so that the number of
unmatched applicants and the number of closed posts in P1 add up to K.
Since every post pi ∈ P1 is connected to pd and f(pi) = 1, it is either the case
that pi is open in M or {pd, pi} ∈M ′. Regarding posts outside of P1, we need
to show that the two edges incident to them are either both in G or neither
of them are in G. Assume without loss of generality that {pi, q1i } ∈ M ′ and
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{pi, q2i } /∈M ′ for some pi /∈ P1. Since f(q2i ) = 1 and degM ′(q
2
i ) = 0, M ′ cannot

be an f -factor.

So far we have shown that it is sufficient to test |A| + |P1| + 1 values
for f(pd), and collect the optimal assignments given by the maximum weight
f -factors. Comparing the weight of these locally optimal solutions delivers a
global optimum. A slight modification on the the graph corresponding to the
f -factor instance will allow us to solve the problem by constructing just two
instances, as against |A|+ |P1|+ 1 instances. Similar to the triangles attached
to posts in P \ P1, triangles are added to pd as well. The added vertices have
f -value 1 and the added edges carry weight 0. The number of such triangles

hanging on pd is
⌈
|A|+|P1|

2

⌉
. These triangles can take up all the f -value of pd

if necessary, but by choosing the edge not incident to pd they can also allow
pd to fill up its f -value with other edges. Since a triangle either takes up 0 or
2 of pd’s f -value, we need to separate the two different parity cases. Thus, to
cover all the |A|+ |P1|+ 1 cases for possible values for f(pd), in one instance
we set f(pd) to |A|+ |P1|+ 1 and in the other instance f(pd) = |A|+ |P1|. ut

4 Bounded treewidth graphs

In this section, we investigate wmlq from the point of view of fixed-parameter
tractability and analyze how efficiently the problem can be solved for instances
with a bounded treewidth. Graphs with bounded treewidth occur frequently
in real-life instances of various problems, such as expert systems, evolution
theory, or natural language processing [5]. More specifically, wmlq could be
used as a potential modeling approach to handle load balancing in telecom-
munication networks that requires throughput maximization. In WLAN and
P2P networks, servers have limited capacities and in addition the loads need
to be reasonably balanced among the active servers [3]. This could be quite
efficiently modeled using the upper and lower quotas. Moreover, certain P2P
and WLAN networks have bounded treewidth [19].

Fixed-parameter tractability. This field of complexity theory is motivated by
the fact that in many applications of optimization problems certain input
parameters stay small even for large instances. A problem, parameterized by
a parameter k, is fixed-parameter tractable (FPT) if there is an algorithm
solving it in time f(k) ·φ(n), where f : R→ R is a function, φ is a polynomial
function, and n is the input size of the instance. Note that this definition not
only requires that the problem can be solved in polynomial time for instances
where k is bounded by a constant, but also that the dependence of the running
time on k is separable from the part depending on the input size. On the other
hand, if a problem is shown to be W[1]-hard, then the latter property can only
be fulfilled if FPT = W[1], which would imply NP ⊆ DTIME(2o(n)). For more
details on fixed-parameter algorithms see, e.g., [27].
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Treewidth. In case of wmlq we focus on the parameter treewidth, which, on
an intuitive level, describes the likeness of a graph to a tree. A tree decomposi-
tion of graph G consists of a tree whose nodes—also called bags—are subsets
of V (G). These must satisfy the following three requirements.

1. Every vertex of G belongs to at least one bag of the tree.
2. For every edge {a, p} ∈ E(G), there is a bag containing both a and p.
3. If a vertex in V (G) occurs in two bags of the tree, then it also occurs in all

bags on the unique tree-path connecting them.

The width of a tree decomposition with a set of bags B is maxB∈B |B| −
1. The treewidth of a graph G, tw(G), is the smallest width among all tree
decompositions of G. It is well known that a tree decomposition of smallest
width can be found by a fixed-parameter algorithm when parameterized by
tw(G) [6].

Nice tree decomposition. A nice tree decomposition is a tree decomposition
with the following additional properties: The decomposition tree has a root
bag R, and every bag in the tree (including R) is of one of the four types
below.

– leaf bag: |B| = 1 and B has no child;
– introduce bag: B has exactly one child B1, so that B1 ⊂ B and |B\B1| = 1;
– forget bag: B has exactly one child B1, so that B ⊂ B1 and |B1 \B| = 1;
– join bag: B has exactly two children B1 and B2, so that B = B1 = B2.

For every tree decomposition with a specific treewidth, a nice tree decomposi-
tion of the same treewidth can be found in linear time [20]. We will henceforth
assume we are given such a nice tree decomposition.

In the following, we show that wmlq is fixed-parameter tractable when
parameterized simultaneously by the treewidth and umax, whereas it remains
W [1]-hard when only parameterized by the treewidth. A similar study of
the fixed-parameter tractability of the related extended global cardinality con-
straint problem (egcc) was conducted in [32]. egcc corresponds to the special
case of the D-matching problem where the graph is bipartite and on one side of
the bipartition all vertices have the domain {1}. In contrast with wmlq, egcc
is a feasibility problem (note that the feasibility version of wmlq is trivial,
as the empty assignment is always feasible). The authors of [32] provided a
fixed-parameter algorithm for egcc when parameterized simultaneously by the
treewidth of the graph and the maximum domain size, and they showed that
the problem is W[1]-hard when only parameterized by the treewidth. These
results mirror our results for wmlq, and indeed both our FPT-algorithm for
wmlq and the one in [32] are extensions of the same classic dynamic program
for the underlying maximum independent set problem. However, our hardness
result uses a completely different reduction than the one in [32]. The latter
makes heavy use of the fact that the domains can be arbitrary sets, whereas
in wmlq, we are confined to intervals.
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4.1 Algorithm for bounded treewidth graphs

We will now describe an algorithm for solving wmlq in polynomial time for
graphs with constant treewidth. The algorithm is a dynamic program that
inductively computes a set of partial solutions for each bag of the nice tree
decomposition and each possible degree profile within that bag. It starts at
the leaf bags and then generates partial solutions for each inner node bag by
combining or extending partial solutions of its children. The final solution can
then be obtained from the root bag. We now formalize the concepts of a partial
solution and its corresponding degree profile.

Partial assignments. For any bag B, let VB ⊆ V denote the set of vertices
contained in the union of bags present in the subtree rooted at B. We define
the graph GB = (VB , EB) with EB := E[VB ] \ E[B], where E[U ] denotes
the set of edges with both endpoints in U ⊆ V . A partial assignment for
the subtree rooted at a bag B (or partial assignment for B in short) is an
assignment M ⊆ EB of GB such that degM (v) = 0 or `(v) ≤ degM (v) ≤ u(v)
for all v ∈ VB\B.1 Note that this definition allows applicants and posts in B to
have an arbitrary assignment, which is not restricted by their corresponding
quota and that by definition of GB , no vertex in B is assigned to another
vertex in B.

Degree profiles. A degree profile for bagB is a vector α ∈ XB := {0, . . . , umax}B .
We say a partial assignment M for B agrees with a degree profile α ∈ XB , if
α(v) = degM (v) for all v ∈ B. For every bag B and every α ∈ XB , letMB(α)
be the set of partial assignments for B that agree with α and let

WB(α) := max {w(M) : M ∈MB(α)} ∪ {−∞}

denote the optimal value of any assignment that agrees with α for the graphGB
(note that a value of −∞ implies that no partial assignment M agrees with α).
We further denote the set of optimal partial assignments agreeing with α by

M∗B(α) := {M ∈MB(α) : w(M) = WB(α)}.

In the following, we will provide a series of lemmas that reveals how to
efficiently obtain an element of M∗B(α) for every α ∈ XB for a bag B (or
showing M∗B(α) = ∅), assuming such representatives for each set M∗B′(α′)
have already been computed for every child B′ of B and each α′ ∈ XB′ .

1 For ease of exposition, we define `(a) := u(a) := 1 for all a ∈ A. Also recall that
degS(v) := |δ(v) ∩ S|.
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Notation. Before we proceed with the formal statement of the lemmas, we
introduce some useful notation. For U ′ ⊆ U and α ∈ ZU define α|U ′ as the
restriction of α to U ′, i.e., α|U ′ ∈ ZU ′ and α|U ′(v) = α(v) for all v ∈ U ′. For
v ∈ V \U and i ∈ Z let further [α, i]v be the extension of α to U ∪{v} defined
by [α, i]v(v

′) := α(v′) for all v′ ∈ U and [α, i]v(v) := i. For a set of edges S we
define the vector αS,U ∈ ZU by αS,U (v) := degS(v) for all v ∈ U .

We first observe that for leaf bags, the only partial assignment possible is
the empty assignment.

Lemma 1 Let B = {v} be a leaf bag and let α ∈ XB. If α(v) = 0, then
M∗B(α) = {M∅}, where M∅ is the empty assignment. If α(v) 6= 0, thenM∗B(α) = ∅.

Proof This follows directly from the fact that EB = ∅ for all leaf bags and
thus the only assignment in GB is the empty assignment. ut

For introduce bags, the set of partial assignments is identical to that of its
child, extending the degree profiles by a 0-entry for the new vertex.

Lemma 2 Let B be an introduce bag such that B′ is the only child of B and
B \B′ = {v′}. Let α ∈ XB. Then

M∗B(α) =

{
M∗B′(α|B′) if α(v′) = 0,

∅ otherwise.

Proof Note that Γ (v′)∩VB ⊆ B by Properties 2 and 3 of a tree decomposition.
This implies δ(v′) ∩ EB = ∅ and hence the lemma follows. ut

For a forget bag, every partial assignment corresponds to the union of
a partial assignment for its child bag and a subset of edges incident to the
removed vertex (connecting it to the vertices in forget bag).

Lemma 3 Let B be a forget bag such that B′ is the unique child of B and
B = B′\{v′} for some v′ ∈ B′. Let α ∈ XB. Let (S∗, i∗) be an optimal solution
to

[forget] max w(S) +WB′([α− αS,B , i− |S|]v′)
s.t. |S| ≤ i,

αS,B(v) ≤ α(v) ∀ v ∈ B,
S ⊆ δ(v′) ∩ δ(B),

i ∈ {0, `(v′), . . . , u(v′)}.

Then M ∪ S∗ ∈ M∗B(α) for all M ∈ M∗B′([α − αS∗,B , i
∗ − |S∗|]v′). If the

optimal solution to [forget] has value −∞, then M∗B(α) = ∅.
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Proof AssumeMB(α) 6= ∅ and let M ′ ∈M∗B(α). Let S′ := M ′ ∩ δ(v′) ∩ δ(B)
and let i′ := degM ′(v

′). Observe that (S′, i′) is a feasible solution to [forget]
and that M ′ \ S′ ∈MB′([α− αS′,B , i′ − |S′|]v′). We conclude that

w(M ′) ≤ w(S′) +WB′([α− αS′,B , i′ − |S′|]v′)
≤ w(S∗) +WB′([α− αS∗,B , i∗ − |S∗|]v′).

In particular, this implies that the optimal solution value of [forget] is finite
and thus there is some M ∈M∗B′([α− αS∗,B , i∗ − |S∗|]v′).

Thus let M∗ := M ∪ S∗. Observe that indeed degM∗(v) = degM (v) +
degS∗(v) = α(v) − αS∗,B(v) + αS∗,B(v) = α(v) for all v ∈ B. Furthermore
degM∗(v) = degM (v) ∈ {0, `(v), . . . , u(v)} for all v ∈ VB \ B′ by feasibility
of M . Finally, degM∗(v

′) = i∗ ∈ {0, `(v′), . . . , u(v′)}, implying M∗ ∈ MB(α).
As w(M∗) = w(S∗) +WB′([α− αS∗ , i∗ − |S∗|]v′) ≥ w(M ′), we conclude that
indeed M∗ ∈M∗B(α). ut

For join bags, every partial assignment is a union of partial assignments
for the two child bags.

Lemma 4 Let B be a join bag such that B = B1 = B2 for the two children
B1, B2 of B. Let α ∈ XB. Let (α∗1, α

∗
2) be an optimal solution to

[join] max WB1(α1) +WB2(α2)

s.t. α1(v) + α2(v) = α(v) ∀ v ∈ B,
α1 ∈ XB1 , α2 ∈ XB2 .

Then M1 ∪ M2 ∈ M∗B(α) for all M1 ∈ M∗B1
(α∗1), M2 ∈ M∗B2

(α∗2). If the
optimal solution to [join] has value −∞, then M∗B(α) = ∅.

Proof Let M∗ := M1∪M2 for some M1 ∈M∗B1
(α∗1), M2 ∈M∗B2

(α∗2). We first
observe that VB1 ∩ VB2 = B by Properties 2 and 3 of the tree decomposition
and hence M1 ∩M2 = ∅. This implies that

degM∗(v) =


degM1

(v) ∈ {0, `(v), . . . , u(v)} if v ∈ VB1
\B,

degM2
(v) ∈ {0, `(v), . . . , u(v)} if v ∈ VB2

\B,
degM1

(v) + degM2
(v) = α(v) if v ∈ B.

Hence M∗ ∈MB(α).

Now let M ′ ∈ MB(α). Let M ′1 := M ′ ∩ EB1
and M ′2 := M ′ ∩ EB2

. We
observe that (αM1,B1

, αM2,B2
) is a feasible solution to [join] and hence w(M ′) =

w(M ′1) + w(M ′2) ≤ w(M1) + w(M2) = w(M∗). ut

Finally, we observe that after computing WR(α) and the corresponding
elements of M∗R(α) for each α for the root bag R, an optimal assignment for
G can be easily obtained.
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Lemma 5 Let (S∗, α∗) be an optimal solution to

[root] max WR(α) + w(S)

s.t. α(v) + degS(v) ∈ {0, `(v), . . . , u(v)} ∀ v ∈ R,
α ∈ XR, S ⊆ E[R].

Then S∗ ∪M is an optimal solution to wmlq for any M ∈M∗R(α∗).

Proof Let M∗ := S∗ ∪M for some M ∈ M∗R(α∗). Note that for v ∈ V \ R,
we have S∗ ∩ δ(v) = ∅ and hence degM∗(v) = degM (v) ∈ {0, `(v), . . . , u(v)}
by the feasibility of M . Furthermore, for v ∈ R, we have degM∗(v) = α∗(v) +
degS∗(v) ∈ {0, `(v), . . . , u(v)} by the feasibility of S∗ for [root]. We conclude
that M∗ is indeed a feasible solution to wmlq.

Now let M ′ ⊆ E be any solution to wmlq. Define S′ := M ′ ∩ E[R] and
α′ := αM ′,R − αS′,R. Observe that (S′, α′) is a feasible solution to [root] and
that further M ′ \ S′ ∈MR(α′). We conclude that

w(M ′) ≤WR(α′) + w(S′) ≤WR(α∗) + w(S∗) = w(M∗),

and thus M∗ is indeed an optimal solution to wmlq. ut

Theorem 4 wmlq can be solved in time O(T + (umax)3 tw(G)+3|E|), where T
is the time needed for computing a tree decomposition of G of width tw(G). In
particular, wmlq can be solved in polynomial time when restricted to instances
of bounded treewidth, and wmlq parameterized by max{tw(G), umax} is fixed-
parameter tractable.

Proof In order to solve a given wmlq instance, the algorithm starts by com-
puting a nice tree decomposition of G of width tw(G). Note that T is of the
same order for tree decompositions and nice tree decompositions. Using Lem-
mas 1 to 5, we can inductively compute a representative M ∈ M∗B(α) for
every bag B and every α ∈ Xb, or deduce that M∗B(α) = ∅. We first observe
that |XB | = (umax +1)|B|, thus only (umax +1)tw(G)+1 representatives have to
be computed per bag. Furthermore, for each of the above lemmas, the neces-
sary computations to derive an M ∈M∗B(α) from representatives ofM∗B′(α′)
of children B′ of B can be done in time O((umax)2 tw(G)+2). This is obvious
for Lemmas 1 and 2. For Lemmas 3 to 5 we observe that the sets of feasi-
ble solutions for the corresponding optimization problems [forget], [join], and

[root] have size at most 2|B| · (umax + 1), (umax + 1)2|B|, and 2|R|
2 · (umax)|R|,

respectively (note that without loss of generality we can assume |R| to be of
constant size by introducing at most tw(G) additional forget bags). The the-
orem then follows from the fact that the number of bags is linear. ut
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4.2 W[1]-hardness for parameterizing by treewidth only

While our algorithm runs in polynomial time for bounded treewidth, the degree
of the polynomial depends on the treewidth and the algorithm only becomes
a fixed-parameter algorithm when parameterizing by treewidth and umax si-
multaneously. We will now show by a reduction from Minimum Maximum
Outdegree that this dependence is necessary under the assumption that
FPT 6= W[1].

Problem 2 Minimum Maximum Outdegree
Input: A graph G = (V,E), edge weights w : E → Z+ encoded in unary and a
degree-bound r ∈ Z+.
Task: Find an orientation D of G such that

∑
e∈δ+D(v) w(e) ≤ r for all v ∈ V ,

where δ+D(v) stands for the set of edges oriented so that their tail is v.

Theorem 5 (Theorem 5 from [34]) Minimum Maximum Outdegree is
W [1]-hard when parameterized by treewidth.

Theorem 6 mlq is W[1]-hard when parameterized by treewidth, even when
restricted to instances where `(p) ∈ {0, u(p)} for every p ∈ P .

Proof Given an instance (G = (V,E), w, r) of Minimum Maximum Outde-
gree, we construct an instance (G′ = (A ∪̇P,E′), `, u) of mlq as follows:

– For every vertex v ∈ V we introduce a post pv ∈ P with lower quota
`(pv) = 0 and upper quota u(pv) = r.

– For every edge e = {v, v′} ∈ E, we introduce two posts pe,v and pe,v′ with
identical lower and upper quotas of w(e) + 1, i. e. ,

`(pe,v) = `(pe,v′) = u(pe,v) = u(pe,v′) = w(e) + 1.

We also add 2w(e) + 1 applicants a1e,v, . . . , a
w(e)
e,v , a1e,v′ , . . . , a

w(e)
e,v′ , ze, which

are connected to the posts by the edges

{pv, aie,v}, {aie,v, pe,v}, {pv′ , aie,v′}, {aie,v′ , pe,v′} for i ∈ {1, . . . , w(e)}

as well as {pe,v, ze} and {ze, pe,v′}. This construction is shown in Fig. 2.

We show that the constructed instance has a solution serving all appli-
cants if and only if the Minimum Maximum Outdegree instance has an
orientation respecting the bound on the weighted outdegree.

First assume there is an orientation D of G with maximum weighted out-
degree at most r. Then consider the assignment that assigns for every oriented
edge (v, v′) ∈ D the w(e) applicants aie,v to pv and the w(e) + 1 applicants

aie,v′ and ze to pe,v′ . As the weighted outdegree of vertex v is at most r, every
post pv gets assigned at most r = u(pv) applicants.

Now assume M is a feasible assignment of applicants to posts serving every
applicant. In particular, for every edge e = {v, v′} ∈ E, applicant ze is assigned
to either pe,v or pe,v′ and exactly one of these two posts is open because the
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Fig. 2 The transformation of the Minimum Maximum Outdegree instance in the upper
right corner to a mlq instance. The numbers on the edges of the Minimum Maximum Out-
degree instance are the edge weights.

lower bound of w(e) + 1 can only be met if ze is assigned to the respective
post. If pe,v is open then all w(e) applicants aie,v′ are assigned to pv′ and none

of the applicants aie,v is assigned to pv, and vice versa if pe,v′ is open. Consider
the orientation obtained by orienting every edge e from v to v′ if and only
if pe,v is open. By the above observations, the weighted outdegree of vertex
v corresponds to the number of applicants assigned to post pv, which is at
most r.

Finally, note thatG′ can be constructed in time polynomial in the input size
of the Minimum Maximum Outdegree instance as the weights are encoded
in unary there. Furthermore, the treewidth of G′ is at most max{tw(G), 3}. To
see this, start with a tree decomposition of G and identify each vertex v ∈ V
with the corresponding post pv. For every edge e = {v, v′} ∈ E, there is a bag
B with pv, p

′
v ∈ B. We add the new bag Be = {pv, p′v, pe,v, pe,v′} as a child

to B. We further add the bags Bze = {pe,v, pe,v′ , ze}, Baie,v = {pv, pe,v, aie,v}
and Bai

e,v′
= {pv′ , pe,v′ , aie,v′} for i ∈ {1, . . . , w(e)} as children to Be. Observe

that the tree of bags generated by this construction is a tree decomposition.
Furthermore, since we did not increase the size of any of the existing bags and
added only bags of size at most 4, the treewidth ofG′ is at most max{tw(G), 3}.

ut

5 Approximation

Having established the hardness of wmlq even for very restricted instances in
Theorem 1, we turn our attention towards approximability. In this section, we
give an approximation algorithm and corresponding inapproximability bounds
expressed in terms of |A|, |P | and upper quotas in the graph.
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The method, which is described formally in Algorithm 1, is a simple greedy
algorithm. We say a post p is admissible if it is not yet open and |Γ (p)| ≥ `(p).
The algorithm iteratively opens an admissible post maximizing the assignable
weight, i.e., it finds a post p′ ∈ P and a set A′ of applicants in its neighbor-
hood Γ (p′) with `(p′) ≤ |A′| ≤ u(p′) such that

∑
a∈A′ w(a, p′) is maximized

among all such (p′, A′) pairs. It then removes the assigned applicants from the
graph (potentially rendering some posts inadmissible) and re-iterates until no
admissible post is left.

Algorithm 1 Greedy algorithm for wmlq
Initialize P0 = {p ∈ P : |Γ (p)| ≥ `(p)}.
Initialize A0 = A.
while P0 6= ∅ do

Find a pair p′ ∈ P0 and A′ ⊆ Γ (p′) ∩ A0 with |A′| ≤ u(p′) such that
∑

a∈A′ w(a, p′)
is maximized among all such pairs.

Open p′ and assign all applicants in A′ to it.
Remove p′ from P0 and remove the elements of A′ from A0.
for p ∈ P0 with `(p) > |Γ (p) ∩A0| do

Remove p from P0.
end for

end while

Remark 2 As an alternative to Algorithm 1, one could use a reduction from
wmlq to the set packing problem. The elements in the universe of the set
packing problem would be A∪P . For each post p and for each subset S ⊂ Γ (p),
such that l(p) ≤ |S| ≤ u(p), we create a set S∪{p} for the set packing instance.
A feasible set packing then corresponds to a feasible assignment of the same
weight. However, if the difference between p’s upper and lower quota is not
bounded by a constant, this would create an exponential-sized input for the set
packing problem and we could only employ an oracle-based algorithm known
for the set packing problem to solve wmlq. The greedy algorithm known for
the set packing problem [7] can be made to work in a fashion similar to the
algorithm presented above.

In the following we give a tight analysis of the algorithm, establishing
approximation guarantees in terms of the number of posts |P |, the number of
applicants |A|, and the maximum upper quota umax := maxp∈P u(p) over all
posts. We also provide two examples that show that our analysis of the greedy
algorithm is tight for each of the described approximation factors. We further
show that the approximation ratios given above for wmlq are almost tight
from the point of view of complexity theory.

Theorem 7 Algorithm 1 is an α-approximation algorithm for wmlq with
α = min{|P |, |A|, umax + 1}. Furthermore, for mlq, Algorithm 1 is a

√
|A|+

1-approximation algorithm. It can be implemented to run in time O(|E| log |E|).

Proof Let p′i be the post chosen by the algorithm in iteration i and let A′i
be the corresponding set of applicants for every i ∈ {1, . . . , n}. Furthermore,
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consider an optimal solution of weight OPT, consisting of open posts p1, . . . , pk
and the corresponding sets of applicants A1, . . . , Ak assigned to those posts.

We first observe that the first two approximation ratios of |P | and |A| are
already achieved by the initial selection of p′1 and A′1 chosen in the first round
of the algorithm. For every i ∈ {1, . . . , k}, post pi is an admissible post in the
first iteration of the algorithm. The first iteration’s choice of the pair (p′1, A

′
1)

implies
∑
a∈A′1

w(a, p′1) ≥
∑
a∈Ai w(a, pi) ≥ w(a′, pi) for every a′ ∈ Ai. As the

optimal solution opens at most |P | posts and serves at most |A| applicants,
we deduce that min{|P |, |A|} ·

∑
a∈A′1

w(a, p′1) ≥ OPT.

We now turn our attention to the remaining approximation guarantees,
which are umax + 1 for wmlq and

√
|A|+ 1 for mlq. For every i ∈ {1, . . . , k},

let π(i) denote the first iteration of the algorithm such that A′π(i) ∩Ai 6= ∅ or

p′π(i) = pi. This is the first iteration in which post pi is opened or an applicant
assigned to it in the optimal solution becomes assigned. Note that such an iter-
ation exists, because pi is not admissible after the termination of the algorithm.
Furthermore, observe that

∑
a∈A′

π(i)
w(a, p′π(i)) ≥

∑
a∈Ai w(a, pi), because the

pair (pi, Ai) was a valid choice for the algorithm in iteration π(i). Now for it-
eration j define Pj := {i : π(i) = j} and observe that |Pj | ≤ |A′j |+ 1, because
Pj can only contain one index i′ with pi′ = p′j , and all other i ∈ Pj \ {i′} must
have Ai ∩A′j 6= ∅ (where the sets Ai are disjoint). We conclude that

OPT =

k∑
i=1

∑
a∈Ai

w(a, pi) ≤
k∑
i=1

∑
a∈A′

π(i)

w(a, p′π(i))

≤
n∑
j=1

|Pj |
∑
a∈A′j

w(a, p′j) ≤
n∑
j=1

(|A′j |+ 1)
∑
a∈A′j

w(a, p′j).

Note that |A′j | ≤ umax and therefore

OPT ≤ (umax + 1)

n∑
j=1

∑
a∈A′j

w(a, p′j),

proving the third approximation guarantee. Now consider the unit-weight mlq
case and define A′ =

⋃n
j=1A

′
j . If |A′| ≥

√
|A|, then

√
|A||A′| ≥ |A| ≥ OPT.

Therefore assume |A′| <
√
|A|. Note that in this case, the above inequalities

imply OPT ≤ (|A′|+ 1)|A′| ≤ (
√
|A|+ 1)|A′|, proving the improved approxi-

mation guarantee for mlq.
We now turn to proving the bound on the running time. We will describe

how to implement the search for the greedy choice of the pair (p′, A′) in each
iteration efficiently using a heap data structure. Initially, for every post p,
we sort the applicants in its neighborhood by non-increasing order of w(a, p).
This takes time at most O(|E| log |E|) as the total number of entries to sort
is
∑
p∈P |Γ (p)| = |E|. We then introduce a heap containing all admissible

posts, and associate with each post p the total weight of the first u(p) edges
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in its neighborhood list. Note that these entries can be easily kept up to date
whenever the algorithm opens a post and assigns applicants to it: In the list
of every other post p we simply replace the assigned applicants with the first
not-yet-assigned entry in the list (or we remove the post if less than `(p)
applicants are available). As every edge in the graph can only trigger one
such replacement, only O(|E|) updates can occur and each of these requires
O(log |P |) time for reinserting the post at the proper place in the heap. Now,
in each iteration of the algorithm, the optimal pair (p′, A′) can be found by
retrieving the maximum element from the heap. This happens at most |P |
times and requires O(log |P |) time in each step. ut

Example 8 The following two examples show that our analysis of the greedy
algorithm is (asymptotically) tight for each of the described approximation fac-
tors.

(a) The bounds |P | and umax + 1 are tight, and
√
|A| + 1 is asymptotically

tight:
Consider an instance of mlq with k+1 posts p0, . . . , pk and k(k+1) appli-
cants a0,1, . . . , a0,k, a1,1, . . . , ak,k. Let `(pi) = u(pi) = k for i ∈ {0, . . . , k}.
Each applicant ai,j applies to post i, and if i > 0, additionally to post 0. For
the greedy algorithm, opening post p0 and assigning applicants a1,1, . . . , ak,k
to it is a valid choice in its first iteration, after which no further posts are
admissible. Thus, it only assigns k applicants in total. The optimal so-
lution, however, can assign all k(k + 1) applicants by assigning applicants
ai,1, . . . , ai,k to pi for each i. Therefore, the greedy algorithm cannot achieve
an approximation factor better than k + 1 on this family of instances, for
which |P | = k + 1,

√
|A| < k + 1, and umax = k.

(b) The bound |A| is tight:
To see that the approximation ratio of |A| is tight for wmlq consider the
following instance with k posts p1, . . . , pk and k applicants a1, . . . , ak. Let
`(pi) = 0 and u(pi) = k for every i. Every applicant applies for every
post, and w(ai, pi) = 1 for every i but w(ai, pj) = ε for every j 6= i for
some arbitrarily small ε > 0. In its first iteration, the greedy algorithm
might choose to open post p1 and assign all applicants to it. This solution
accumulates a weight of 1+(k−1)ε, while the weight of the optimal solution
is k = |A|.

Theorem 9 mlq is not approximable within a factor of |P |1−ε or
√
|A|

1−ε

or u1−εmax for any ε > 0, unless P = NP, even when restricting to instances
where `(p) = u(p) for every p ∈ P and |Γ (a)| ≤ 2 for every a ∈ A.

Proof Once again we use the maximum independent vertex set problem. Given
an instance of mis on a graph G = (V,E) with |V | = n and |E| = m, we create
an mlq instance with n posts p1, . . . , pn, post pi corresponding to vertex vi. We
also introduce n2−m applicants as follows. Initially, we introduce n applicants
ai,1, ai,2, ..., ai,n applying for each post pi. Then, for every edge {vi, vj} ∈ E,
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we merge the applicants ai,j and aj,i, obtaining a single applicant applying for
both pi and pj . Furthermore, we set `(pj) = u(pj) = n for every post. This
construction is shown in Fig. 3.

v1

v2

v3

v4

v5

post vertex pi with lower quota
and upper quota n

applicant vertex

p1 a1,1 a1,2 a1,3 a1,4 a1,5

p2 a2,2 a2,3 a2,4 a2,5

p3 a3,1 a3,3 a3,4 a3,5

p4 a4,1 a4,2 a4,4 a4,5

p5 a5,2 a5,3 a5,5

Fig. 3 The transformation of the mis instance in the upper left corner to a mlq instance.

Note that due to the choice of upper and lower bounds, any open post
must be assigned to all the applicants in its neighborhood. Thus, a solution to
the mlq instance is feasible if and only if Γ (pi)∩ Γ (pj) = ∅ for all open posts
pi and pj with i 6= j, which is equivalent to vi and vj not being adjacent in
G by construction of the instance. Therefore, the mlq instance has a feasible
solution opening k posts (and thus serving kn applicants) if and only if there
is an independent set of size k in G. We conclude that OPTmlq = n ·OPTmis

for the two instances under consideration.
Note that in the constructed mlq instance, n = |P | = umax ≥

√
|A|.

Therefore any approximation algorithm with a factor better than |P |1−ε or√
|A|

1−ε
or u1−εmax for ε > 0 yields a solution of the instance that serves at
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least (1/n1−ε)OPTmlq applicants and therefore opens at least (1/n2−ε)OPTmlq =
(1/n1−ε)OPTmis posts, corresponding to an independent set of the same size.
By [35], this implies P = NP. ut

6 Matchings with lower quotas in general graphs

Throughout this paper, we focused on many-to-one matchings in bipartite
graphs because these fit most applications in the centralized formation of
groups that motivated our investigation. A straightforward generalization of
wmlq to matchings in an arbitrary (not necessarily bipartite) graph G allows
all vertices of the graph to have lower and upper quotas.

Problem 3 gwmlq
Input: I = (G,w, `, u); a not necessarily bipartite graph G = (V,E) with edge
weights w, lower quotas ` and upper quotas u.
Task: Find an assignment of maximum weight.
If w(e) = 1 for all e ∈ E, we refer to the problem as gmlq.

One can see this generalization as a variant of the D-matching problem (see
Section 1.1), where each vertex has a domain consisting of 0 and an interval.
Clearly, the hardness results derived in the previous sections are valid for
gwmlq as well. We now briefly argue that the positive results from Sections 3
and 4 carry over to this generalized setting. However, our approximation results
do not hold even if G is bipartite and only a single applicant is equipped with
lower and upper quotas. In fact, gwmlq does not allow for any approximation
even in this very restricted case unless P = NP.

The two positive results in Section 3, namely Theorems 2 and 3, are ap-
plicable to gwmlq. Note that Theorem 2 (bounded degree for all posts) is a
special case of Theorem 3 (bounded upper quota for all posts).

Theorem 10 gwmlq can be solved in polynomial time when restricted to
instances with u(v) ≤ 2 for all v ∈ V .

Proof We will work with the proof of Theorem 3, which requires some simple
modifications to fit the case of arbitrary graphs. All we need to do is to add
a dummy vertex vd to G – this resembles dummy post pd in the proof of
Theorem 3. The steps corresponding to a post vertex should now be executed
for all vertices of the graph. We can assume there are no vertices with lower
quota 0 and upper quota 2 by a similar reasoning given in Theorem 2. For
every vertex vi with `(vi) = 2, we add two dummy vertices q1i and q2i and
connect them to each other and vi. For all of these vertices, we set `(q1i ) =
u(q1i ) = `(q2i ) = u(q2i ) = 1. Then, the dummy vertex vd is connected to vertices
with upper quota 1. We finish the construction by adding triangles to vd to
ensure that only two f -factors need to be computed. The arguments in the
proof of Theorem 3 can now be applied to this f -factor instance. ut
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As for Theorem 4, the algorithm for bounded treewidth and upper quota
carries over to gwmlq without any modification. Note that in the proof we
never used the bipartiteness of G or that u(a) = 1 for the applicants.

Theorem 11 gwmlq can be solved in time O(T +(umax)3 tw(G)+3|E|), where
T is the time needed for computing a tree decomposition of G of width tw(G).
In particular, gwmlq can be solved in polynomial time when restricted to
instances of bounded treewidth, and wmlq parameterized by max{tw(G), umax}
is fixed-parameter tractable.

Finally, we prove that Algorithm 1 cannot be generalized even for bipartite
mlq with lower and upper quotas on both sides.

Theorem 12 It is NP-hard to decide whether OPT > 0 for an instance of
gmlq, even if the graph is bipartite and on one side of the bipartition all
vertices except for one have unitary upper and lower quota.

Proof To every instance of mis we construct an instance of gmlq so that the
mis instance admits an independent set of size K if and only if OPT > 0 for
the gmlq instance. We start with the same mlq instance that was constructed
from an mis instance in the proof of Theorem 9. The changes are depicted in
Fig. 4. A dummy applicant ad is added to the graph and connected to all
posts. We set `(ad) = u(ad) = K and change `(p) = u(p) to n + 1 for every
post p ∈ P .

Since every post is adjacent to exactly n + 1 applicants, opening a post
requires allocating all its applicants to it, including ad as well. Thus, opening
any post implies allocating ad to exactly K posts. These K open posts do
not share applicants other than ad, which is equivalent to the K vertices
corresponding to them in the mis instance forming an independent set. ut

7 Conclusion

We discussed the complexity, approximability and fixed-parameter tractabil-
ity of wmlq from various viewpoints such as bounded degree, quota and
treewidth.

Further work on the topic might include imposing common quotas on
some groups of posts. That is, we may have subsets P1, . . . , Pk, where for
each i (1 ≤ i ≤ k), Pi ⊆ P , Pi has a common quota u(Pi) ≥ 1, where
u(Pi) ≤

∑
p∈Pi u(p), and any assignment M must now satisfy the additional

property that
∑
p∈Pi |δ(p) ∩M | ≤ u(Pi). Common quotas are similar to re-

gional caps studied in Economics [17] and they can model constraints such as
the limited availability of resources required for certain projects – for example
P1 might correspond to those projects that require access to high-performance
computing facilities.

We have seen that wmlq as defined in Problem 1 has a natural applica-
tion in the context of student-project allocation, where the weight on a given



Matchings with lower quotas 23

v1

v2

v3

v4

v5

post vertex pi with lower quota
and upper quota n+ 1

applicant vertex

dummy applicant vertex with
lower quota and upper quota K

p1 a1,1 a1,2 a1,3 a1,4 a1,5

p2 a2,2 a2,3 a2,4 a2,5

p3 a3,1 a3,3 a3,4 a3,5

p4 a4,1 a4,2 a4,4 a4,5

p5 a5,2 a5,3 a5,5

ad

Fig. 4 The transformation of the mis instance in the upper left corner to a generalized mlq
instance.

edge (s, p) corresponds to the utility of student s being assigned to project p.
However in many applications students have ordinal preferences over projects.
Cardinal utilities can of course follow from these via the use of Borda scores,
so we can obtain wmlq as before. But ordinal preferences themselves allow
alternative optimality criteria to be formulated. For example we may optimize
on the profile of a matching M , which is a vector whose ith position indi-
cates the number of students who obtain their ith-choice project in M [24].
A greedy maximum matching is a matching whose profile is lexicographically
maximum, taken over all maximum cardinality matchings, whilst a generous
maximum matching is a matching whose reverse profile is lexicographically
minimum, taken over all maximum cardinality matchings. There are efficient
algorithms to find greedy and generous maximum matchings in the absence
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of lower quotas [21], but it remains open to extend the positive results in this
paper to the setting involving both lower quotas and preferences.
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