
 

   
 

MŰHELYTANULMÁNYOK                           DISCUSSION PAPERS  

 

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES,  

HUNGARIAN ACADEMY OF SCIENCES - BUDAPEST, 2017 

 

MT-DP – 2017/30 
 
 
 

 

Creation and persistence of ties  

in cluster knowledge networks

 
 

SÁNDOR JUHÁSZ – BALÁZS LENGYEL

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/132277021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

2 
 
 

Discussion papers 

MT-DP – 2017/30 

 

Institute of Economics, Centre for Economic and Regional Studies,  

Hungarian Academy of Sciences 

 

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments.  

Any references to discussion papers should clearly state that the paper is preliminary. 

Materials published in this series may subject to further publication. 

Creation and persistence of ties in cluster knowledge networks 

Authors: 

Sándor Juhász 

junior research fellow 

Institute of Economics – Centre for Economic and Regional Studies 

Hungarian Academy of Sciences 

e-mail: juhasz.sandor@krtk.mta.hu 
 
 

Balázs Lengyel  
research fellow 

Institute of Economics 
Centre for Economic and Regional Studies,  

Hungarian Academy of Sciences 
Email: lengyel.balazs@krtk.mta.hu 

 
 
 

 
 

October 2017 
 
 
 

 

ISBN 978-615-5754-20-3 

ISSN 1785 377X 



1 
 

Creation and persistence of ties 

in cluster knowledge networks 

Sándor Juhász – Balázs Lengyel 

Abstract  

 

Knowledge networks are important to understand learning in industry clusters but 

surprisingly little is known about what drives the formation, persistence and dissolution of 

ties. Applying stochastic actor-oriented models on longitudinal relational data from a mature 

cluster in a medium-tech industry, we show that triadic closure and geographical proximity 

increase the probability of tie creation but does not influence tie persistence. Cognitive 

proximity is positively correlated to tie persistence but firms create ties to cognitively 

proximate firms only if they are loosely connected through common third partners. We 

propose a micro perspective to understand how endogenous network effects, cognitive 

proximity of actors and their interplay influence the evolutionary process of network 

formation in clusters. 

 

JEL: D85, L14, R11, O31 

 

Keywords: knowledge networks, cluster evolution, network dynamics, stochastic actor-

oriented models 

 

Acknowledgement 

 

The authors are grateful to Pierre-Alexandre Balland and Andrea Morrison for their 

methodological workshop at the International PhD Course on Economic Geography in 

Utrecht, 2014. The comments of Imre Lengyel, Mario-Davide Parrilli, Tom Broekel and 

Pierre-Alexandre Balland on previous versions of the manuscript are acknowledged.  

 



2 
 

Kapcsolatok kialakulása és fennmaradása  

klaszterek tudáshálózatában 

Juhász Sándor – Lengyel Balázs 

Összefoglaló 

 

Az iparági klaszterek mögötti kooperatív tanulás megértéséhez fontos a tudáshálózatok 

vizsgálata, azonban meglepően keveset tudunk arról, hogy ezen hálózatokban hogyan jönnek 

létre, maradnak fenn vagy szűnnek meg kapcsolatok. Egy érett feldolgozóipari klaszter 

idősoros kapcsolati adatai és sztochasztikus aktororientált modellek segítségével bemutatjuk, 

hogy a triadikus bezáródás és a földrajzi közelség növelik a kapcsolatok létrejöttének esélyeit, 

de nem befolyásolják azok fennmaradását. A kognitív közelség pozitívan hat a kapcsolatok 

fennmaradására, de a cégek csak akkor alakítanak ki kapcsolatot technológiai profil 

tekintetében hasonló vállalkozásokkal, ha nincsenek közös partnereik. Tanulmányunkban a 

klaszter tudáshálózatok evolúciójának megértéséhez egy olyan micro perspektívát javaslunk, 

amelyben a kapcsolatok szelekciójának alapját a felmerülő költségek és bizonytalanságok, 

valamint a nem redundáns vagy az új tudás keresése adják. Az endogén hálózati hatások, a 

kognitív közelség és ezek interakciójának befolyását vizsgálva jobban megérthetjük a 

klaszterek mögötti tudáshálózatok formálódásának evolúciós mechanizmusait. 

 

JEL: D85, L14, R11, O31 

 

Tárgyszavak: tudáshálózat, klaszterevolúció, hálózati dinamika, sztochasztikus 

aktororientált modell 
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INTRODUCTION 

The idea that knowledge is not in the air available for everyone in industry specializations as 

opposed to what Marshall (1920) suggested has brought social networks into the forefront of 

cluster research (Breschi and Lissoni, 2009, Cantner and Graf, 2006, Cooke, 2002, Dahl and 

Pedersen, 2003, Fornahl and Brenner, 2003, Giuliani and Bell, 2005, Gordon and McCann, 

2000, Ethridge et al., 2016, Sorensen, 2003). Despite distant ties might provide the region 

with new knowledge, most of the learning processes occur within certain spatial proximity 

(Bathelt et al., 2004, Glückler, 2007). Social ties are important for local knowledge flows 

because personal acquaintance reduces transaction costs between co-located actors and 

enhances the efficiency of mutual learning (Borgatti et al., 2009, Maskell and Malmberg, 

1999). Knowledge networks that link “[…] firms through the transfer of innovation-related 

knowledge, aimed at the solution of complex technical problems.” (Giuliani, 2010, p. 265) 

have been found very useful empirical tools in providing novel understanding of learning in 

clusters (Boschma and Ter Wal, 2007, Giuliani, 2007, 2010, Giuliani and Bell, 2005, 

Morrison and Rabellotti, 2009).  

Scholars argue that the evolution of knowledge networks is closely related to the 

evolution of the cluster itself and therefore we can get new insights into cluster development 

by analyzing the dynamics of the underlying knowledge networks (Boschma and Fornahl, 

2011, Glückler, 2007, Iammarino and McCann, 2006, Menzel and Fornahl, 2010, Martin and 

Sunley, 2011, Staber, 2011, Li et al., 2012, Ter Wal and Boschma, 2011). Path-dependent 

trajectories are claimed to characterize knowledge network change in clusters because tie 

selection, being an evolutionary process, is strongly influenced by the previous structure of 

the network, which is termed network retention (Glückler, 2007). Technological or cognitive 

proximity in clusters is thought to further contribute to the establishment of ties and drive 

the network towards lock-in (Boschma and Frenken, 2010, Ter Wal and Boschma, 2011). 

Empirical evidence supports these theories by illustrating that endogenous network effects – 

such as triadic closure, reciprocity and status – influence tie selection and drives cohesive 

formulation of cluster knowledge networks (Giuliani, 2013) and that technological proximity 

further increases the probability of ties (Balland et al., 2016).  

Notwithstanding the tendency towards cohesive formulation of social and collaboration 

networks (Powell et al., 2005), Glückler (2007) also emphasizes that variation of local 

networks is another major evolutionary process that characterizes path destructive 

development of regions. He claims that novelty not only arrives from extra-regional ties but 

can be generated by bridging and brokering loosely connected parts of the local network 

(Burt, 2004, Granovetter, 1973, Rosenkopf and Padula, 2008). However, it is still not clear 
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how forces of retention and variation jointly drive the dynamics of cluster knowledge 

networks.  

In this paper, we aim to enter the above discussion by making two points. First, we claim 

that tie creation and tie persistence in cluster knowledge networks have to be analyzed 

separately in order to get a better understanding of the evolutionary process of network 

change. The distinction is important because the micro-motivations of creating and 

maintaining ties might involve different costs and constraints (Jackson, 2008), different level 

of variety and in-depth learning (Rivera et al., 2010), as well as uncertainty (Dahlander and 

McFarland, 2013). In the next chapter, we argue that the firm commits itself easier to an 

existing tie with high opportunity costs if the knowledge of the source firm is highly 

applicable (Cohen and Levinthal, 1990). On the contrary, the firm is more likely to establish a 

new tie when the search costs and additional uncertainties of the new contact are relatively 

low (Dahlander and McFarland, 2013). In our second contribution, we posit that the 

interplay of endogenous network formation and cognitive proximity is necessary to 

investigate because similar alters usually form cohesive groups in networks (McPherson et 

al., 2001) and in turn, endogenous network effects can further increase the role of similarity 

in new tie creation (Kossinets and Watts, 2009, Wimmer and Lewis, 2010). Therefore, the 

joint effect of proximity and endogenous network effects are important to disentangle their 

separate role in knowledge network dynamics (Balland et al., 2015, Broekel, 2015). 

To certify our arguments, we decompose the hypotheses taken from the previous 

literature (Balland et al., 2016, Giuliani, 2013) into propositions; and analyze the effect of 

triadic closure, geographical and cognitive proximities, and also the joint effect of triadic 

closure and cognitive proximity on tie creation and tie persistence, respectively. Our 

empirical network data was collected by face-to-face interviews in the printing and paper 

product cluster in a Hungarian town in years 2012 and 2015. This network fits well to our 

aims because the cluster is in the mature phase and has a long history in the region; there is a 

variety of cognitive proximity across firms; and the majority of the local companies apply 

some kind of specialized technology to create unique paper products.  

Applying stochastic actor-oriented models, we find that triadic closure and geographical 

proximity increase the probability of tie creation but does not influence tie persistence. These 

findings suggest that proximity in the network and in space lower the costs and uncertainties 

of the firm when it searches for new connections. Further, cognitive proximity is positively 

correlated to the probability of tie persistence but firms create ties to cognitively proximate 

firms only if they do not share partners. This result implies that firms repeat contact and 

strengthen ties to those partners that have similar technological profile and thus can offer 

highly applicable knowledge. Further, the last finding also anticipates that variation might 

counter-act cohesion in cluster knowledge networks. 
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LITERATURE AND FRAMEWORK 

KNOWLEDGE NETWORKS AND CLUSTER EVOLUTION 

Social networks that span across company borders facilitate knowledge flows between firms 

and therefore have become a cornerstone for understanding why firms in clusters outperform 

firms outside clusters (Giuliani and Bell, 2005, Gordon and McCann, 2000, Sorensen, 2003). 

Geographical proximity is crucial for such binds between firms because it creates 

opportunities for face-to-face and frequent interactions, and by increasing the socializing 

potential facilitates trust-based social relationships (Storper and Venables, 2004). Such 

processes lead to the emergence of coherent local collectives, shared rules and norms, and 

consequently, to more effective local learning, while new impulses can be primarily accessed 

through extra-regional links (Amin, 2000, Asheim, 1996, Bathelt et al., 2004, Malmberg, 

1997). Empirical findings support this view by showing that central firms in the knowledge 

network are more innovative than firms in the periphery (Boschma and Ter Wal, 2007), by 

illustrating that the extent of extra-regional links are associated with better performance 

(Fitjar and Rodriguez-Pose, 2011, Morrison and Rabellotti, 2009), and by showing that the 

density of individual ties between co-located firms fosters productivity growth in the region 

(Lengyel and Eriksson, 2016). 

However, scholars also warn us that too coherent ecosystems and social environments 

makes renewal difficult (Uzzi, 1997) and can govern regions into locked-in development 

paths (Grabher, 1993). This is at least partly because social tie formation in clusters itself is 

path-dependent and depends on the structure of the network itself (Glückler, 2007). Two of 

the well-documented phenomena of network evolution apply to cluster networks as well: 

central firms are likely to become more central (Barabasi and Albert, 1999) and alters tend to 

requite ties or close triangles in the network (Granovetter 1985, Watts and Strogatz, 1998). 

Another source of path-dependency is driven by similarity-effect between co-located agents. 

Because similarity increases the likelihood of tie formation, which is often referred to as 

homophily in social sciences (McPherson et al., 2001), the high level of cognitive and 

technological proximity between cluster firms breed cohesive tie formation and lock-in 

(Boschma and Frenken, 2010, Cantner and Graf, 2006).  

To explain the changes in the knowledge network over time, Ter Wal and Boschma (2011) 

propose a macro perspective. They argue that a stable centre-periphery structure emerges 

over the growth stage of the cluster life cycle and the network becomes dense and cohesive 

only in the mature phase. An alternative micro perspective was suggested by Glückler (2007) 

who claimed that partner selection prevail at the firm level and therefore the micro-

foundations of tie creation are fundamental for understanding the evolutionary mechanisms 

of network change. He further argues that besides the retention mechanisms that cause path-
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dependence in local networks, network variation can destruct these paths by either accessing 

extra-regional knowledge (Bathelt et al., 2004) or by linking previously unconnected parts of 

the local network (Glückler, 2007, McDermott et al., 2009).  

Due to recent methodological developments, ideas connected to the micro-perspective of 

social network evolution in clusters became empirically testable (Snijders et al. 2010); 

however, only very few papers do such analyses. Giuliani (2013) pioneers this field and 

establishes a framework in which the macro outcomes of social network change are explained 

by its’ micro-foundations. She points out that retention-driven endogenous network effects, 

such as cohesion and status, together with exogenous effects, such as firm level capability, 

establish a stable hierarchy in the cluster knowledge network in a way that firms with low 

absorptive capabilities hold back endogenous network effects from driving the network into 

absolute cohesion. Balland et al. (2016) contributes by comparing the endogenous network 

effects and exogenous proximity effects across business networks and technological advice 

networks and find that proximity effects only prevail in technological networks but network 

effects drive the dynamics of both technological and business networks. 

In the next two sub-sections, we provide a new micro approach for cluster knowledge 

network evolution. Like previous studies, our framework contains selection and retention; 

however, we stretch the argument further by including variation as well (Glückler, 2007). In 

doing this, we separate tie persistence and tie creation and expose that endogenous network 

effects and proximity effects are not independent from each other. We posit propositions 

instead of hypotheses, which is a way to stress that the framework remains empirical and the 

generality of the results requires further investigations (Uzzi, 1997). 

TIE CREATION AND TIE PERSISTENCE 

To find solution for a technical problem, the firm can either maintain ties by asking advice 

from existing contacts or can search for and create new ties. Both maintaining ties and 

searching for new partners demands direct costs – these might include time demand, need 

for financial resources, cognitive effort, or social constraint –, and the opportunity costs of 

allocating resources to the specific tie instead of other ties (Glückler, 2007, Hansen, 1999). 

Asking advice from existing contacts needs shared time and commitment and strengthening 

the connection thus is thought to involve large opportunity costs (Coleman, 1988, Uzzi, 

1997); while asking a new partner demands some but arguably less effort (Burt, 2004, 

Granovetter, 1973).  

There are further qualitative differences between creating a new tie or maintaining an 

existing one, for which one can apply the exploration versus exploitation dichotomy 

(Beckman et al. 2004, Levinthal and March, 1993, March 1991, Verspagen and Duysters 
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2004). On the one hand, exploring a new knowledge source offers opportunities for firms in 

clusters to find new variety of knowledge (Hansen, 1999, Reagans and McEvily, 2003) but 

involves uncertainties as well because no prior experience exists about the new partner 

(Dahlander and McFarland, 2013, Lavie and Rosenkopf, 2006). On the other hand, 

maintaining and thus strengthening the connection can ease the transfer of complex or tacit 

knowledge (Aral, 2016, Reagans and McEvily, 2003) and uncertainties are less profound 

when exploiting the link to an existing partner (Greve et al., 2010, Hanaki et al., 2007). Inter-

organizational ties dissolve if the firm finds alternative ties that offer better and still 

affordable solutions and persist only if the tie represents a valuable connection (Seabright et 

al., 1992).  

It follows from this literature that the firm will select to maintain those existing ties with 

higher probability that provide access to relatively high value-cost ratio, perhaps because 

these ties provide more relevant and more applicable knowledge than other existing ties. On 

the contrary, the firm is more likely to establish a tie when the search costs and additional 

uncertainties of the new contact are low compared to other possible new contacts. The 

framework of recent paper is in line with this logic. We argue in the following that 

endogenous network effects, geographical and cognitive proximities drive network dynamics 

by influencing the relative costs and uncertainties of creating or maintaining ties and the 

relative value of knowledge access. 

Endogenous network effects – such as cohesion – decrease costs of new tie creation 

because a shared contact might help to establish the new connection and can also diminish 

uncertainties by providing information about potential partners (Granovetter, 1986). 

However, cohesion also increases the likelihood that new connections will give access to 

redundant knowledge (Hansen, 1999) and therefore too much cohesion harms variation in 

the network and, after a certain threshold, the performance of firms and the network itself 

(Aral and van Alstyne, 2011, Uzzi, 1997, Uzzi and Spiro, 2005). On the contrary, it is not clear 

how cohesion influences the costs of tie persistence. Strong and cohesive ties increase the 

willingness of the knowledge source to share complex knowledge and therefore decrease the 

relative costs of repeated communication (Reagans and McEvily, 2003) but cohesive ties also 

demand more time and commitment (Granovetter, 1973) and thus their maintenance can 

also extensively increase the opportunity costs of the tie (Glückler, 2007).  

We opt for triadic closure as a measure of network cohesion and test how it influences tie 

creation and tie persistence. Previous results are mixed; Giuliani (2013) found that triadic 

closure had a positive effect on the probability of tie presence in cluster knowledge networks; 

while Shipilov et al. (2006) found that triadic closure only influences tie creation positively 

and has no significant effect on tie persistence. Staber (2011) also finds those ties are less 

durable that are brokered through a third party. We therefore, propose positive correlation 
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for both mechanisms and test these effects empirically before we further discuss the role of 

cohesion in cluster knowledge networks.  

 

Proposition 1A: Triadic closure is positively correlated to the probability of tie creation. 

Proposition 1B: Triadic closure is positively correlated to the probability of tie persistence. 

 

If Proposition 1A is supported, we can argue that cohesion reduces costs and uncertainties of 

searching for new partners; whereas support for Proposition 1B would mean that network 

cohesion facilitates complex knowledge sharing.  

Geographical proximity is thought to increase the opportunity to meet and formulate new 

relationships (Borgatti et al., 2009, Marmaros and Sacerdote, 2006, Rivera et al., 2010, 

Storper and Venables, 2004) and also to maintain contacts (Lambiotte et al., 2008, Lengyel 

et al., 2015) primarily through decreasing travel and transportation costs. However, 

geographical proximity also offers potentials to form weak ties (Wellman, 1996) and scholars 

argue that other types of proximities are more important to establish strong connections 

when geographical proximity is given (Boschma, 2005, McPherson et al., 2001). The physical 

closeness of actors decreases the costs of setting up a new relationship, but it also moderates 

the costs of repeating interactions. Therefore, we propose positive correlation for both tie 

creation and tie persistence before we discuss the role of geographical proximity in the 

evolution of cluster knowledge networks. 

 

Proposition 2A: Geographical proximity is positively correlated to the probability of tie 

creation. 

Proposition 2B: Geographical proximity is positively correlated to the probability of tie 

persistence. 

 

If Proposition 2A is supported, we can argue that geographical proximity facilitates tie 

formation by decreasing costs of face-to-face interaction; whereas evidence for Proposition 

2B would support the idea that geographical proximity facilitates repetition and therefore 

eases the persistence of ties. 

Cognitive proximity influences the dynamics of cluster knowledge networks (Balland et 

al., 2016, Boschma and Frenken, 2010) and evidence shows that similarity in knowledge 

increases the probability of interaction in groups (Carley, 1991, Galaskiewicz and Shatin, 

1981). However, it is still not entirely clear how cognitive proximity influences tie creation 

and tie persistence separately. One might expect that cognitive proximity facilitates tie 

creation because it decreases the level of uncertainty related to new partners and thus the 

firm can expect accurate and useful advice from those partners that can understand the 

technical problem the firm faces (Cohen and Levinthal, 1990, Lane and Lubatkin, 1998, 

Nelson and Winter, 1982). However, the probability of finding redundant knowledge rises 
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with cognitive proximity because there is an overlap in the knowledge bases of firms 

(Boschma, 2005). Furthermore, similarity of knowledge bases can lower the rising costs of 

repeated knowledge transfer and thus it is easier to maintain a tie (Reagans and McEvily, 

2003). Nevertheless, the role of cognitive proximity in tie creation and tie persistence needs 

further understanding and we propose a positive relation for both dynamics and will discuss 

the influence of cognitive proximity on knowledge network dynamics with the empirical 

results at hand. 

 

Proposition 3A: Cognitive proximity is positively correlated to the probability of tie 

creation. 

Proposition 3B: Cognitive proximity is positively correlated to the probability of tie 

persistence. 

 

In case Proposition 3A gets empirical support, we can argue that new ties involve less 

uncertainty between cognitively proximate partners therefore cognitive proximity is 

important to establish relationships in clusters. Evidence for Proposition 3B would underlie 

that strong ties are more likely between firms with similar technological profiles because the 

ease of knowledge transfer and the high value of knowledge compensate for high opportunity 

costs. 

INTERPLAY BETWEEN NETWORK EFFECTS AND COGNITIVE PROXIMITY 

Endogenous network effects and proximity effects are not independent from each other in 

network evolution because link formation induced by similarity usually establishes cohesive 

groups of similar individuals, which is commonly referred to as homophily in the sociology 

literature (McPherson et al., 2001). In turn, studies that focus on the origins of homophily 

claim that the high levels of homophily observed in social networks are to a large extent due 

to structural properties of the network, such as triadic closure and reciprocity, which further 

induce connections between similar individuals (Kossinets and Watts, 2009, Wimmer and 

Lewis, 2010). This issue tells us that it is difficult to disentangle cohesion effects and effects 

of technological or cognitive proximities in knowledge network evolution. Admitting that 

recent paper cannot solve the problem, we aim to make a step towards understanding 

whether endogenous network effects and cognitive proximity strengthen or weaken each 

other in driving the dynamics of cluster knowledge networks.  

It is difficult to overstate the importance of this effort for economic geography. Because 

proximity in too many dimensions of knowledge relations harm renewal capacities of regions 

(Grabher, 1993), “[…] solution to such regional lock-in phenomena clearly lies in trying to re-

organize the network relations such that interactions can take place between actors that are 

less proximate […]” (Boschma and Frenken, 2010, p. 130-131). However, it is still unclear 
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how network variation happens while network retention is clearly in action (Glückler, 2007). 

We argue that the joint effect of endogenous network effects and cognitive proximity on 

network dynamics can provide us novel insights into this question. This problem has not 

been studied in economic geography before and there are hardly any empirical papers to base 

our expectations upon. An exception is Rosenkopf and Padula (2008) who find that similarity 

– in their case structural homophily that captures similarity in status instead of knowledge 

base – predicts tie formation between loosely connected parts of networks, but does not 

predict tie formation in cohesive sub-networks. Their results imply that network variation is 

only possible if network endogeneity and homophily weaken each others’ effect. 

One can look at the joint effect of dyadic network variables by using their interaction 

(Powell et al. 2005); in this paper, we opt for the interaction between triadic closure and 

cognitive proximity. We borrow the argument of Rosenkopf and Padula (2008) to formulate 

our expectation and posit that ties are less likely to form and persist between cognitively 

proximate potential partners in the cluster if they also share contacts. However, Huber 

(2012) does not find such clear negative relation between social proximity and cognitive 

proximity when looking at the importance of knowledge ties in the Cambridge IT cluster; 

whereas cognitive proximity and social proximity have not been found to co-evolve in the 

German R&D collaboration network either (Broekel, 2015).  Therefore, we choose to keep the 

empirical nature of our expectation and discuss potential implications for cluster evolution 

with the research results at hand. 

 

Proposition 4A: The interaction of triadic closure and cognitive proximity is negatively 

correlated to the probability of tie creation. 

Proposition 4B: The interaction of triadic closure and cognitive proximity is negatively 

correlated to the probability of tie persistence. 

 

In case Propositions 4A and 4B are verified, we could argue that sharing partners simplifies 

the creation and maintenance of connections to cognitively distant peers by reducing the 

uncertainty whether it is worth to establish the new knowledge access or not and by reducing 

the costs of repeated knowledge transfer. Alternatively, such findings could also suggest that 

the firm is more likely to reach out and keep relation to those partners with similar and easy 

to apply knowledge if they do not share partners because the likelihood of finding novelty is 

higher (Boschma, 2005, Granovetter, 1973, Hansen, 1999). In sum, verification of these 

propositions would provide new evidence that network endogeneity and network variation 

are simultaneously present in cluster evolution and are driven by the interplay between 

cohesion and cognitive proximity. 
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THE STUDY SETTING 

PRINTING AND PAPER PRODUCT INDUSTRY IN KECSKEMÉT 

Printing and paper product industry has a long tradition in the region of Kecskemét1. The 

town is about 80 km south from Budapest, the capital of Hungary, and accounts for around 

115.000 inhabitants with an economy rooted in agriculture as well as processing and 

manufacturing industries (heavy machinery and car manufacturing). The first printing-house 

called Petőfi Press was established in the 1840s and it still works under this name. Since the 

1990s, after the planned economy collapsed in Hungary, numerous small and medium 

enterprises (SMEs) were born and created a strong local base for the industry. International 

companies have also located their facilities in the town (e.g. Axel-Springer). By now, the 

location quotient calculated from the number of employees shows significant relative 

concentration of both the manufacture of articles of paper and paperboard (LQ=4.602) and 

the printing and service activities related to printing (LQ=1.059).  

The relatively high concentration and simultaneous presence of small and big firms 

resulted in intensive local competition, which requires flexible specialization of SMEs and the 

local industry as such. Almost all of the present companies apply some kind of specialized 

technology to create unique paper products (e.g. specifically printed, folded, unique paper 

products, packaging materials, stickers and labels). Firms typically deal with customized 

traditional goods or services, do not carry out R&D activities, the cluster is built around 

mature technological knowledge and smaller, customer-driven process oriented innovations 

are typical in order to satisfy the customers’ unique needs. In sum, the local industry can be 

characterized as an old social network based cluster (Iammarino and McCann, 2006) and it 

provides appropriate conditions for analyzing the dynamics of the knowledge network. 

Firstly, as we discovered along the first round of interviews in 2012, there is a strong local 

network behind the clusters which is characterized by informal networking processes and 

based on the interactions of technicians to search for advice on technical problems that 

cannot be solved in house. For example, they may want advice on how to set a new type of 

printing machine or ask for experience with a special type of packaging carton. Secondly, the 

cluster is in a mature life-cycle stage as the number of firms are relatively stable and there are 

no external effects that might influence networking processes and we should control for. 

DATA COLLECTION AND MANAGEMENT 

For the selection of the particular firms we used The Company Code Register (2011) by the 

Hungarian Central Statistical Office, which is a nation wide firm level dataset with seat 

                                                        
1 For a visual presentation of the location of Kecskemét in Hungary and the location of firms around the town 

see Section I in the Online Supplementary Information file. 
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addresses, classification of economic activities and basic firm statistics. We chose all firms 

that had at least 2 employees, had the company seat in the urban agglomeration of 

Kecskemét and were classified under the industry code 17 (Manufacture of paper and paper 

products) or 18 (Printing and reproduction of printed media) in the Statistical Classification 

of Economic Activities of Eurostat (2008). Based on 2012 data, 38 firms suited the above 

conditions and we merged those firms that had identical addresses and similar names, which 

resulted in a final number of 35 firms.  

We collected data by face-to-face structured interviews with skilled workers (mostly with 

co-founders, operational managers or foremen). The relational data was collected through 

the so called “roster recall” method (Wasserman and Faust, 1994); each firm was asked to 

report relations to any other cluster firms presented to them in a complete list (roster). The 

question formulated to collect knowledge network data was exactly the same as used in 

several studies before (Giuliani and Bell, 2005, Morrison and Rabellotti, 2009). This 

question is related to the transfer of innovation-related knowledge and only reveals the inter-

firm linkages that are internal to the cluster and specifically address problem solving and 

technical assistance (Giuliani and Bell, 2005). This is meant to capture not only the bare 

transfer of information, but the transfer of contextualized complex knowledge instead. In our 

setting, revealed relationships are trust-based, informal connections that are vulnerable to 

the loss of confidence. We collected additional year-specific firm-level information about 

main activities, number of employees, type of ownership and external knowledge linkages of 

firms. We also used an open question to explore other important actors for knowledge 

sharing not mentioned in the roster. 

We managed to get answers from 26 different companies in year 2012 and repeated the 

interviews in 2015 with the same firms. Compared to previous studies on cluster knowledge 

network evolution (Giuliani, 2013, Balland et al., 2016) we take a mid-time interval of three 

years to indicate significant changes in network relations. Burt (2000) suggests that non-

repeated contacts vanish after three years. Although two companies were closed down during 

the years, other two were mentioned by the respondents in the open questions at the end of 

the roster. Thus, we collected 26 responses in year 2015 too and reached more than 70% of 

the local firms in the industry at both time points. The data gathering could be judged as a 

success as only one firm refused to answer our questions in 2012. Most of the non-

responding actors were shut down or temporarily stopped their business activities and all of 

them were domestic small and medium-sized enterprises (SMEs). 

The questions related to firms’ knowledge transfers have been used to construct two 

directed adjacency matrices with n x n cells (where n stands for the number of respondents) 

for the two time points, in which each cell reports on the existence of knowledge being 

transferred from firm i in the row to firm j in the column. The cell (i, j) contains the value of 1 
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if firm i has transferred knowledge to firm j and contains the value of 0 when no transfer of 

knowledge has been reported between firm i and j.  

DESCRIPTIVE ANALYSIS 

The main characteristics of the examined firms did not change from 2012 to 20152. Most of 

them are SMEs, there is only one firm with more than 100 employees and only a minority of 

them is foreign-owned (less than 20%). Two companies were closed down along the studied 

period, but two other companies joined to the sample by 2015. As we can clearly see in Table 

1, the knowledge network became sparser over time. From the 223 knowledge ties apparent 

in 2012 only 110 linkages persisted. Interestingly, no firms became isolated by 2015. On 

average, actors asked for technical advice from 8 firms in 2012 and only from 6 firms in 2015. 

We used the Jaccard index to measure the stability of the network, which is higher than 0,3 

and within appropriate limits for the analysis of network evolution (Ripley et al., 2015). The 

visual representation of the knowledge networks (Figure 1) suggests that the degree 

distribution is not proportional. In both cases the network is hierarchical and some actors 

have remarkably more connections than others. This is in line with previous studies that have 

shown the uneven and hierarchical nature of knowledge exchange in clusters (Giuliani, 

2007). 

Table 1 

Descriptive statistics of the knowledge network in 2012 and 2015 

 

                                                        
2 Detailed descriptive statistics of the sample firms are provided in Section II of the Online Supplementary 

Information file. 
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Figure 1 

The local knowledge network of the printing and paper product industry 
in Kecskemét in 2012 and 2015 

 
The high number of tie dissolution and the unstable nature of the core-periphery 

structure suggest that neither the network nor the cluster is in a growing stage (Ter Wal and 

Boschma, 2011)3. In line with that, the personal interviews in 2015 confirmed that the local 

competition had intensified. Some of the central firms in the 2012 knowledge network 

revealed that they do not share or dare to contact other firms for technical advice because 

they fear their market share, reputation, and know-how. These descriptive findings imply 

that the cluster under study is in the phase of its’ life-cycle when increasing competition 

could cause secrecy in clusters as firms keep their technical solutions for themselves and tend 

to share less knowledge (Menzel and Fornhal, 2010) and not in the phase when competition 

stimulates firms to innovate as idealized by Porter (1990).  

METHODOLOGY AND VARIABLES 

Similarly to previous papers on knowledge network evolution (Balland, 2012, Giuliani, 2013, 

Balland et al., 2013, Ter Wal, 2014, Balland et al., 2016), we apply stochastic actor-oriented 

models (SAOMs). These models can take account of three classes of effects that influence the 

evolution of networks (Ripley et al., 2015, Snijders et al., 2010). Firstly, endogenous or 

structural effects that come from the network structure itself (e.g. degree-related effects, 

triadic closure, reciprocity). Secondly, dyadic covariate effects e.g. similarity or proximity 

(commonly referred to as homophily or assortativity) between pair of actors. Thirdly, 

individual characteristics of actors are also taken into account because the ego-effect 

expresses the tendency of a given characteristic to influence the network position of the node. 

                                                        
3 As shown in detail in Section III of the Online Supplementary Information file, we find that both the 

composition and the density of linkages changed in the core of the cluster knowledge network. 
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Further, SAOM estimations rely on three basic principles (Snijders et al., 2010). First, the 

evolution of the network structure is modeled as the realization of a Markov process, where 

the current state of the network determines its further change probabilistically. Second, the 

underlying time parameter t is continuous, which means that the observed change is the 

result of an unobserved series of micro steps and actors can only change one tie variable at 

each step. Third, the model is ‘actor-oriented’ as actors control and change their outgoing ties 

on the basis of their positions and their preferences. 

In SAOMs, actors drive the change of the network because at stochastically determined 

moments they change their linkages with other actors by deciding to create, maintain or 

dissolve ties. Formally, a rate function is used to determine the opportunities of relational 

change, which is based on a Poisson process with rate λi for each actor i. As actor i has the 

opportunity to change a linkage, its choice is to change one of the tie variables xij, which will 

lead to a new state as x,x  C(x0). Choice probabilities (direction of changes) are modeled by 

a multinomial logistic regression, specified by an objective function fi (Snijders et al., 2010): 
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When actors have the opportunity to change their relations, they choose their partners by 

maximizing their objective function fi (Broekel et al., 2014, Balland et al., 2013). This 

objective function describes preferences and constraints of actors. Choices of collaboration 

are determined by a linear combination of effects, depending on the current state (x0), the 

potential new state (x), individual characteristics (v), and attributes at a dyadic level (w) such 

as proximities. Therefore, changes in network linkages are modeled by a utility function at 

node level, which is the driving force of network dynamics. 
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The estimation of the different parameters k of the objective function is achieved by the 

mean of an iterative Markov chain Monte Carlo algorithm based on the method of moments, 

as proposed by Snijders (2001). This stochastic approximation algorithm estimates the k 

parameters that minimize the difference between observed and simulated networks. Along 

the iteration process, the provisional parameters of the probability model are progressively 

adjusted in a way that the simulated networks fit the observed networks. The parameter is 

then held constant to its final value, in order to evaluate the goodness of fit of the model and 
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the standard errors. For a deeper understanding of SAOMs see Snijders et al. (2010) and for 

an economic geography review see Broekel et al. (2014).  

Table 2 demonstrates three different specifications of SAOMs (Ripley et al., 2015). 

Evaluation models compare the probability of presence to the absence of the tie at time t+1 

regardless of tie status at t. Creation models compare the probability of creating a previously 

not existing tie to not creating a tie; while the endowment model compares the probability of 

tie persistence to tie termination. These three specifications represent three different 

dependent variables of network evolution. Previous studies only looked at the evaluation 

models (Balland et al., 2016, Giuliani, 2013) and had to assume that the odds ratios in the 

creation and endowment models are identical (Ripley et al., 2015). However, these 

probability ratios typically differ, which is the case in our empirical sample as well. The 

differentiation between dependent variables in SAOMs is rarely applied (Cheadle et al., 2013) 

and empirical studies based on this distinction are completely missing from the economic 

geography literature. 

Table 2 

Tie changes considered by the evaluation, creation and endowment functions 

 
 

The effects of structural, dyadic, and individual variables are estimated in order to test the 

propositions; these variables are described in Table 3. To investigate how structural effects or 

network cohesion shape the evolution of the knowledge network behind the examined cluster 

we investigate the role of triadic closure that is often used in SAOM papers and captures the 

notion when partner of partners become partners so that a triad is created (Giuliani, 2013, 

Balland et al., 2016). In order to control for other endogenous network effects, like other 

papers do, we include density (out-degree of actors), reciprocity and directed cycles (3-

cycles). 
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Table 3 

Operationalization of structural, dyadic and firm level variables 

 

 

To capture the importance of dyadic effects on knowledge network tie formation, we focus 

on geographical proximity, cognitive proximity and the interaction of possible triads and 

cognitive proximity. Proximities are frequently used as dyadic effects in SAOM based 

knowledge network studies (Balland, 2012, Balland et al., 2013, Balland et al., 2016, Ter Wal, 

2014). Geographical proximity is operationalized as the distance of the selected pair of firms 

subtracted from the maximum of the physical distance of firms. The variable takes higher 

value as the distance between firms diminishes. We applied a valued measure for cognitive 

proximity corresponding to the number of digits the two firms have in common in their 

NACE 4 codes (Balland et al., 2016)4. This measure assumes that two firms have similar 

technological profiles and therefore are in cognitive proximity if they operate at the same 

sector category (Frenken et al., 2007). To control for the independence of network structural 

                                                        
4 More details and descriptive statistics of our cognitive proximity measure can be seen in Section IV of the 

Online Supplementary Information file. 
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effects and actor similarity on tie creation and persistence, we also investigate the interaction 

variable of the number of common third partners and cognitive proximity on dyadic level.  

The importance of external relationships has been highlighted in the cluster literature 

(Bathelt et al., 2004, Glückler, 2007, Morrison, 2008). To measure the effect of extra-

regional connections as an individual characteristic, we used the number of external 

knowledge ties (mean it links to other regions in Hungary or abroad). Additionally, we used 

actor related control variables as type of ownership, age, and the number of employees.  

Since our networks are directed, we can control for the effect of individual characteristics 

on incoming and outgoing ties (Ripley et al., 2015). Alter variables represent the effect of 

individual characteristics on the actor’s popularity to other actors. A positive parameter will 

imply the tendency that the in-degrees of actors with higher values on this variable increase 

more rapidly. Ego variables represent the effect of individual characteristics on the actor’s 

activity. A positive parameter will imply the tendency that actors with higher values on this 

variable increase their out-degree more rapidly. The differentiation is important in case of 

cluster knowledge networks as the motives behind knowledge sharing and knowledge 

exploration could be highly influenced by the characteristics and capabilities of firms.  

RESULTS 

Table 4 presents the results of two SAOM specifications. Model (1) represents the general 

model while Model (2) contains the interaction of triadic closure and cognitive proximity as 

well. In each model, we first run evaluation models, then we also estimate network change in 

different versions of creation and endowment models. All parameter estimations in all 

models are based on 2000 simulation runs in 4 sub-phases. Parameter estimates can be 

interpreted as log-odds ratios, appropriate to how the log-odds of tie formation change with 

one unit change in the corresponding independent variable (Balland et al., 2016) because 

they are non-standardized coefficients from a logistic regression analysis (Steglich et al., 

2010, Snijders et al., 2010). Since the null hypothesis is that the parameter is 0, statistical 

significance can be tested by t-statistics assuming normal distribution of the variable. The 

convergence of the approximation algorithms is sufficient for each model because all t-ratios 

are smaller than 0.1.  
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Table 4 

Dynamics of the knowledge network 

 

The coefficients of triadic closure are positive and significant in the evaluation models, 

which is in line with previous findings (Balland et al., 2016, Giuliani, 2013) and has a positive 

and significant effect in the creation models, but has no significant effect in the endowment 

models. These findings confirm Proposition 1A, but does not support 1B as triadic closure 

positively influences the probability of new tie creation, but do not influence the probability 

of tie persistence in the cluster knowledge network. These results suggest that the structure of 

the network promotes opportunities to establish connections and shared contacts reduce the 

costs and uncertainties of the search for new partners. However, our findings do not support 

the idea that the maintenance of cohesive relationships is a general source of network 

retention in clusters.  

Our second proposition concerns the role of geographical proximity as an influential 

factor of network dynamics. Unlike in a previous result (Balland et al., 2016), we find that the 

coefficient of geographical proximity is only significant and positive in creation models but 

does not influence the dependent variable in the evaluation and endowment models. 

Therefore, we confirm Proposition 2A and dismiss 2B. This finding underlines the 

importance of micro-level geography and means that physical proximity provides 

opportunities for establishing knowledge ties, lowers costs and uncertainties of tie creation, 

but does not affect the assessment and maintenance of relationships. The results are in line 

with the literature that questions the sufficiency of geographic proximity for knowledge 
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transfer, learning and innovation and highlights the importance of other proximity 

dimensions (Boschma, 2005, Boschma and Frenken, 2010).  

The third proposition addresses the role of cognitive proximity on tie creation and tie 

persistence in cluster knowledge networks. Unlike the previous two propositions, results in 

Model (1) and Model (2) are different. While the coefficients of cognitive proximity are 

positive and significant in both models for evaluation and endowment, the effect of cognitive 

proximity on tie creation turns positive and significant only in Model (2). Therefore, we can 

not accept Proposition 3A but can confirm 3B. These results suggest that firms are more 

likely to maintain strong ties to partners with similar technological profiles. One can think of 

various possible implication of this result. Cognitive proximity might help the persistence of 

ties by reducing the costs of knowledge transfer and therefore enabling the partners to repeat 

the interaction. In turn, the strong relations that emerge by persisting cognitively proximate 

ties might be foster the transfer of complex knowledge between firms in the cluster. 

Finally, our fourth proposition posit that endogenous network effects and cognitive 

proximity are not independent and therefore we use a dyadic level variable to see how the 

interaction of the number of common partners and the extent of cognitive proximity affects 

tie creation and tie persistence. As we proposed, the interaction variable has a negative effect 

on both creation and persistence of ties, but the coefficients are only significant in case of the 

evaluation and creation models. This result only confirms Proposition 4A but do not support 

4B. . Results in Model (2) suggest that the creation of a tie between two firms is less likely if 

they share many common partners and are cognitively proximate at the same time. In this 

case cognitive proximity in itself supports tie creation, as firms might expect valuable 

knowledge from firms with similar technological profile, but they can not get any information 

about the partner via indirect relations. Second, cognitive proximity and therefore the value 

of expected advice seems to be a major force behind tie persistence, as firms maintain costly 

strong ties with actors even though they might get the knowledge indirectly. These results 

lead to the conclusion that cohesive network effects and the effect of cognitive proximity are 

not independent and by the analysis of their interplay we can get a much better picture about 

the evolutionary process of knowledge network formation in clusters.  

Additionally, we included structural and firm level control variables in both models. The 

rate parameter indicates the estimated number of opportunities for change per actor, which 

refers to the stability of the network over time. The positive and relatively high value suggests 

that there were significant changes in the formation of new ties. Meanwhile, the negative and 

highly significant coefficients of density indicate that firms tend not to form and maintain 

knowledge linkages with just any other firm in the cluster (Snijders et al., 2010, Ripley et al., 

2015). Similar coefficients were found for density previously (Balland et al., 2016, Giuliani, 

2013). The negative and significant effect of cyclicity in the evaluation and creation models 
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indicate that actors create their relationships with their partner’s partner in a certain 

hierarchy, but knowledge does not circulate among them. Instead, a dominant actor is more 

likely to provide it to the other two partners in the triad. However, cyclicity does not affect the 

persistence of knowledge ties. 

Further, the number of external ties as a control variable suggest that firms that build and 

maintain linkages with actors outside the region establish and maintain their local ties more 

likely. These firms only seek for advice and absorb knowledge from cluster firms and do not 

share their own experiences with others. Findings suggest that the evolution of the 

knowledge network is influenced more by external stars, those firms that have strong extra-

cluster knowledge linkages, but weak local integration (Giuliani and Bell, 2005, Morrison et 

al., 2013). Age has a barely significant and negative coefficient for tie creation in Model (1) 

but shows no significant influence on tie formation in any other model versions. Therefore, 

we can not say that older and more experienced firms create significantly fewer ties than 

relatively younger ones. The size of firms does not influence their knowledge tie formation, 

however, the similarity of firms’ ownership has a significant effect on tie creation in both 

Model (1) and Model (2). This indicates that new ties are more easily established within the 

group of domestic or foreign firms than across these groups. The reason behind this notion 

could be the barriers of language, the difference in routines and skills or the technological gap 

between foreign and domestic companies. This finding underlines previous results related to 

the importance of ownership structure in knowledge spillovers effects (Elekes and Lengyel, 

2016).  

A variety of robustness checks were carried out in order to confirm the stability of the 

results5. First, we have run both Model (1) and Model (2) stepwise with different 

combinations of variables. We have also tried to include in-degree or network status as a 

control variable but it had no significant effect on tie formation and led to large t values of 

convergence. Every model has been run with only ego and only alter variables of individual 

characteristics as well. Along the large variety of different simulation runs, the size, sign and 

significance of the estimates of the main explanatory variables were stable. The incorporation 

of both ego and alter versions of firm level characteristics further improved both our model 

convergences and interpretation. Second, in order to ensure our results on the different 

effects of proximities, we also applied Mann-Whitney tests for the distribution of proximity 

values in case of tie creation and tie persistence. 

                                                        
5 The correlation tables of all presented SAOMs can be seen in Section V of the Online Supplementary 

Information file. 
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Table 5 

Distribution of proximity values in case of tie creation and tie persistence 

 

In Table 5, we compare the distribution of geographical proximity and cognitive 

proximity between created ties versus lacking ties (as in the creation model), and between 

persisted ties versus terminated ties (as in the endowment model). The p-values suggest that 

in case of tie creation the value of geographic proximity is significantly higher for created ties 

than for lacking ties, while the value of cognitive proximity is higher for persisted ties than for 

dissolved ties. The distribution tests further strengthen the robustness of our SAOM based 

results. 

CONCLUSIONS AND DISCUSSION 

According to the first results of this paper, triadic closure and geographical proximity 

increase the probability of tie creation, but do not influence tie persistence. These findings 

mean that firms select those new partners with higher likelihood that they share third 

partners with or that are in physical proximity. This suggest that being close in the network 

and in space creates opportunities for face-to-face meetings and speeds up information flow, 

and thus lower costs and uncertainties of searching new knowledge ties. However, our results 

do not support the idea that these ties also persist on the long run. Cohesive and 

geographically proximate ties are equally likely to be terminated than non-cohesive and 

physically distant relations. A straightforward interpretation of the latter finding is that firms 

choose to maintain knowledge ties driven by the content of accessible knowledge and once 

the tie has been established, network structure and spatial location does not play a primer 

role. 

Indeed, we find that cognitive proximity favours the persistence of ties but a positive and 

significant effect for tie creation has been found only when we introduced the interaction 

between triadic closure and cognitive proximities to the model. The first result suggest that a 
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firm is more likely to repeat communication and maintain a knowledge tie with cognitively 

proximate partners than with cognitively distant peers. Our interpretation is that the 

applicability of knowledge increases with cognitive proximity and therefore these ties are 

more valuable for firms. An alternative explanation is that cognitive proximity decreases the 

costs of knowledge transfer and therefore, firms can repeat interaction to have access to 

complex knowledge even if the opportunity costs of strong relations are increasing. 

The negative and significant co-efficient of the interaction between triadic closure and 

cognitive proximity has far-reaching implications for the evolution of cluster knowledge 

networks. This finding suggests that the two sources of path-dependency, namely network 

retention and lock-in driven by cognitive and technological proximities, do not strengthen 

each other. On the contrary, these forces seem to counter-act each other. A straightforward 

explanation of why firms ignore those ties that are cohesive in terms of network structure and 

also in terms of technological profile is that they are looking for new varieties of knowledge in 

the cluster. Consequently, network retention and network variation are simultaneously 

present in local knowledge networks.  

Notwithstanding the new insights we provide, further research is needed to focus on the 

interference between retention and variation forces in knowledge networks. Based on our 

results, we propose that the creation and persistence of ties have to be analysed separately, 

because the micro level motivations of creating and maintaining ties are different. Further, 

we posit that the joint effect of endogenous network formation and proximities have to be 

investigated to get a clearer picture on how ties form in clusters. Such research shall aim not 

only to understand the patterns of relational change, the selection and retention mechanisms 

of network evolution, but also to take steps towards the recognition of forces that vary 

relational structures in clusters in a way that establishes new diversities in clusters. These 

together will allow us to fine-tune our understanding on how social networks and industry 

clusters co-evolve. 

We have to emphasize the explanatory nature of our study and highlight some of the 

limitations and related future research opportunities. Based on the literature, other types of 

proximities, knowledge base or absorptive capacity of firms and the interplay of these with 

other structural variables are also need to be investigated (Giuliani, 2013, Balland et al., 

2016). It must be stressed that the complex mixture of the analyzed factors might lead to 

different dynamics across regions and industries because specializations differ in terms of 

thresholds of costs and benefits of cooperation (Gordon and McCann, 2000) and because the 

level of market uncertainties – e.g. strengthening competition or external shocks – might 

strongly influence network dynamics (Beckman et al., 2004). Further, our exercise is based 

on a mature cluster of printing and paper product creation with increasing level of 

competition. Therefore, the conclusions might be limited to traditional manufacturing 
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clusters, and network dynamics in other stages of cluster lifecycle could be different (Ter Wal 

and Boschma, 2011). Cohesive forces might have more influence on network change in an 

earlier life-cycle stage; competition or the fear from technological lock-in could change the 

willingness of cooperation in a later, mature or declining phase. According to the general 

thought, cognitive proximity has a dominant role in cluster lock-in (Boschma, 2005, Broekel 

and Boschma, 2012), which could intensify competition in clusters as well. This is an 

important point that future research shall address because repeated knowledge sharing 

increases the similarity of knowledge bases between co-located firms, which might lead 

competition and consequently thinning cooperation. Therefore, we shall also understand 

better the differences between tie creation and tie persistence in growing and in shrinking 

knowledge networks. The task is urgent because our models regarding tie persistence are not 

conclusive at all. A potential question can be, how does secrecy and free-riding influence 

knowledge network evolution? Further insights might be get from agent-based simulation 

models, in which agents punish those partners that are not sharing their knowledge by 

deleting the ties to them (Rand et al., 2011).  

Additional limitation is – similarly to many papers on this topic – that the implications 

are based on the inter-firm alliance literature; however, advice networks might change more 

rapidly and the decision behind tie creation and persistence might be less strategic or even 

less conscious. Moreover, we are unable to control for the pre-existing friendships or other 

social ties among entrepreneurs, which might result more robust estimates. Moreover, our 

cognitive proximity measure simplifies the differences in knowledge bases of firms and 

therefore comparison to Giuliani (2013) is difficult. Further, ties are assumed to be identical 

in terms of transmitted content. Thus, the volume, depth and diversity of information 

content of the communications should be looked at (Aral and van Alstyne, 2011). This would 

allow us to investigate how the value of advice influences the persistence of ties, which we 

could not do in this paper.  

Another key issue for future research is the availability of longitudinal knowledge 

network data. With longer and more detailed relational datasets on cluster knowledge 

networks we might get answers to several, still open questions. First, we might get a better 

picture about how network dynamics change along the cluster life-cycle as we can investigate 

how the importance of structural and proximity effects change over time. Second, 

longitudinal data with more than two time points is needed to investigate tie re-creation, 

which might be driven by different forces than tie creation. Third, by using relational data on 

individual level rather than firm level we might get much more accurate understanding on 

the motives of tie creation and persistence. 
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