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RATIONALITY OF HILBERT SERIES

IN NONCOMMUTATIVE INVARIANT THEORY

MÁTYÁS DOMOKOS AND VESSELIN DRENSKY

Abstract. It is a fundamental result in commutative algebra and invariant
theory that a finitely generated graded module over a commutative finitely
generated graded algebra has a rational Hilbert series, and consequently the
Hilbert series of the algebra of polynomial invariants of a group of linear trans-
formations is rational, whenever this algebra is finitely generated. This basic
principle is applied here to prove rationality of Hilbert series of algebras of in-
variants that are neither commutative nor finitely generated. Our main focus
is on linear groups acting on certain factor algebras of the tensor algebra that
arise naturally in the theory of polynomial identities.

1. Introduction

A natural possible framework to develop noncommutative invariant theory is to
investigate the action of a linear transformation group G ≤ GL(V ) on the factor
of the tensor algebra K〈V 〉 modulo a GL(V )-stable ideal I, where V is a finite
dimensional vector space over a base field K of characteristic 0. We shall assume
that dim(V ) ≥ 2. A special class of GL(V )-stable ideals in K〈V 〉 are the T-ideals.
Recall that an ideal in K〈V 〉 is a T-ideal if it is stable with respect to all K-algebra
endomorphisms of K〈V 〉. T-ideals are associated with varieties of associative K-
algebras. The variety R defined by a system of elements J = {fj} in the free
associative algebra K〈x1, x2, . . .〉 of countable rank consists of all associative K-
algebras A such that fj = 0 is a polynomial identity on A for all fj ∈ J . Identifying
the tensor algebra K〈V 〉 with the free associative algebra K〈x1, . . . , xn〉 of rank
n = dim(V ), the T-ideal I = In(R) is recovered as the set of n-variable identities
satisfied by all algebras in a suitable variety R. Therefore in this case we shall
write K〈V 〉/I = Fn(R), and call it a relatively free algebra, since it is a free object
generated by n elements in the variety R. For a background on T-ideals and
polynomial identities of associative algebras see [13].

We shall assume that In(R) is non-zero, so Fn(R) is not the free algebra. In
the special case when R is the variety of commutative algebras, we recover S(V ) =
K[x1, . . . , xn], the symmetric tensor algebra of V , which can be thought of as the
algebra of polynomial functions on the dual space V ∗ of V . For surveys on the
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2 MÁTYÁS DOMOKOS AND VESSELIN DRENSKY

study of Fn(R)G see [17] and [12]. Loosely speaking, the moral of these works is
that one can expect results analogous to the commutative case only when Fn(R) is
not very far from the commutative polynomial algebra K[x1, . . . , xn]. For example,
benchmark results of commutative invariant theory are the statements that the
algebras of (commutative) polynomial invariants of finite groups or more generally,
reductive groups are finitely generated. Kharchenko [22] characterized the class of
varieties R such that Fn(R)G is finitely generated for all finite groups G, and this
class turned out to be rather narrow. The present authors in [11] characterized
the even narrower class of varieties such that Fn(R)G is finitely generated for all
reductive G. Furthermore, we mention that the first named author in [9] extended
the Sheppard-Todd-Chevalley Theorem by showing that Fn(R)G ∼= Fn(R) holds
for some finite group G if and only if G is a pseudoreflection group and the T-ideal
I(R) contains [[x1, x2], x2], where we write [a, b] = ab− ba.

In contrast with that, in the present paper we deal with a general fact from com-
mutative invariant theory that remains valid for all noncommutative relatively free
algebras. Namely, by the so-called Hilbert-Serre Theorem, wheneverK[x1, . . . , xn]

G

is finitely generated, its Hilbert series is rational. Notably this holds when G is re-
ductive or G is a maximal unipotent subgroup of a reductive subgroup of GL(V ).
Our main result Theorem 5.1 is that the Hilbert series of the graded algebra Fn(R)G

is rational, provided thatG ≤ GL(V ) is a group for which the finite generation prop-
erty holds for subalgebras of G-invariants in finitely generated commutative graded
algebras R on which GL(V ) acts rationally (in particular, for a closed reductive
subgroup G of GL(V ) or for a maximal unipotent subgroup G of a closed reductive
subgroup of GL(V )). Consequently, although Fn(R)G is rarely finitely generated
even for reductive groups, it always has rational Hilbert series for G reductive or a
maximal unipotent subgroup of a reductive subgroup of GLn.

A key ingredient of our proof is that extending a result of Belov [4], Berele [5]
proved that the multivariate Hilbert series of a relatively free algebra is of special
form (called nice by him). In Section 2 (working in a more general setup than [5]),
we give in Proposition 2.2 a characterization of nice rational symmetric functions
in terms of formal characters of the general linear group GLn and finitely generated
modules over commutative polynomial algebras, endowed with a compatible ratio-
nal GLn-action. This characterization allows us to deduce in Section 3 the general
Theorem 3.4 about rationality of the Hilbert series of the subspace of G-invariants
in a graded vector space on which GLn acts rationally such that the formal char-
acter is a nice rational function, provided that the subgroup G ≤ GLn satisfies
a condition formulated in terms of commutative invariant theory. In Section 4 we
discuss the problem for the rationality of the Hilbert series of non-finitely generated
algebras of commutative polynomial invariants. We compute the Hilbert series of a
textbook variant of the famous example of Nagata of an algebra of commutative in-
variants which is not finitely generated. It turns out that this algebra still has a nice
rational Hilbert series. We also give an example of a normal graded subalgebra of
K[x1, x2] with transcendental Hilbert series, and formulate Problem 4.3 concerning
rationality of Hilbert series in commutative invariant theory. In Section 5 we apply
Theorem 3.4 for relatively free algebras, and deduce by the above mentioned result
of Belov and Berele our main result Theorem 5.1 on rationality of the Hilbert series
of the subalgebra of invariants Fn(R)G for a notable class of groups G ≤ GLn. In
Section 6 we give examples which show that the condition that the multivariate
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Hilbert series of the relatively free algebra is a nice rational function cannot be
relaxed to the weaker condition that it is a rational function. We also compute the
Hilbert series of the algebra of invariants of the multiplicative group of the base
field acting on the 2-generated relatively free algebra in the variety generated by
the 2× 2 matrix algebra.

Finally, we change our topic in Section 7, and consider group actions on PI-
algebras (algebras satisfying a polynomial identity), that are not necessarily rela-
tively free algebras. In fact a finitely generated associativeK-algebra is a PI-algebra
if and only if it is a homomorphic image of some Fn(R) for some n and a proper
subvariety R of the variety of associative algebras. Vonessen [31] proved that if
G is a linearly reductive group acting rationally on a finitely generated noetherian
PI-algebra R, then the subalgebra RG is finitely generated and noetherian. We
note here that the transfer principle (a well-known tool in commutative invariant
theory, see [19]) can be applied in this noncommutative setting as well, and assert
in Theorem 7.2 that under the conditions in the theorem of Vonessen, RH is finitely
generated and noetherian for any subgroup H of G for which K[G]H is finitely gen-
erated, where the action of H on the coordinate ring K[G] of G is induced by the
right translation action of H on G.

We close the introduction by mentioning that a more general setup for developing
noncommutative invariant theory that also received attention is provided by Hopf
algebra actions on noncommutative rings, see for example the survey [3], the papers
[20], [15], and the references therein. A typical problem considered in these works is
whether the existence of a polynomial identity for the algebra of invariants implies
the existence of an identity for the whole algebra.

2. A characterization of nice rational symmetric functions

Write GLn for the general linear group GLn(K) overK, viewed as an affine alge-
braic group. In this paper by a representation of GLn we shall always mean a ratio-
nal representation, i.e., aK-vector space Z together with a group homomorphism ρ :
GLn → GL(Z) giving an action of GLn on Z via linear transformations such that Z
is spanned by finite dimensional GLn-invariant subspaces and for any finite dimen-
sional GLn-invariant subspace W of Z, the map GLn → GL(W ), g 7→ ρ(g)|W is a
morphism of affine algebraic varieties. When Z is finite dimensional, define the for-
mal character of Z as the element chZ in the Laurent polynomial ring Z[t±1

1 , . . . , t±1
n ]

satisfying that for any diagonal matrix diag(z1, . . . , zn) ∈ GLn with diagonal entries
z1, . . . , zn ∈ K \{0} we have the equality Tr(ρ(diag(z1, . . . , zn))) = chV (z1, . . . , zn).
In fact chV ∈ N0[t

±1
1 , . . . , t±1

n ] has non-negative coefficients and is symmetric in
the variables t1, . . . , tn. Hence it belongs to the subring Z[t±1

1 , . . . , t±1
n ]Sn of Sn-

invariants in Z[t±1
1 , . . . , t±1

n ], where the symmetric group Sn acts by permuting the
indeterminates. It is well known that for any sequence λ ∈ Zn with λ1 ≥ · · · ≥ λn

there is a finite dimensional representation Lλ of GLn whose formal character is
given by the equality

chLλ
·
∏

1≤i<j≤n

(ti − tj) =
∑

σ∈Sn

sign(σ)

n
∏

i=1

tλi+n−i
σ(i) .

The set of all chLλ
forms a basis of the free Z-module Z[t±1

1 , . . . , t±1
n ]Sn . Note that

when λn ≥ 0, the formal character chLλ
is the Schur function associated to the

partition λ. Moreover, all representations of GLn are completely reducible, and
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{Lλ | λ ∈ Zn, λ1 ≥ · · · ≥ λn} is a complete irredundant list of representatives
of the isomorphism classes of irreducible representations of GLn (see for example

Section 9.8.1 in [29]). We shall deal with the situation when Z =

∞
⊕

d=0

Zd is graded,

each homogeneous component Zd is finite dimensional and GLn-invariant. In this
case we say that Z is a graded representation of GLn and call the formal character
of the graded representation Z the formal power series

chZ(q) =
∞
∑

d=0

chZd
· qd ∈ Z[t±1

1 , . . . , t±1
n ]Sn [[q]].

Definition 2.1. Denote by C the class of graded representations Z of GLn that
have also the structure of a finitely generated graded module over the symmet-
ric tensor algebra (polynomial algebra) S(W ) for some finite dimensional graded
representation W of GLn (the grading on W induces a grading on S(W ) in the
standard way), such that the action of GLn on Z and S(W ) is compatible with the
S(W )-module structure of V (i.e., for g ∈ GLn, f ∈ S(W ), and m ∈ Z, we have
g · (fm) = (g · f)(g ·m)).

Proposition 2.2. An element f ∈ Z[t±1
1 , . . . , t±1

n ]Sn [[q]] belongs to the Z-submodule
of Z[t±1

1 , . . . , t±1
n ]Sn [[q]] generated by {chV (q) | V ∈ C} if and only if f is of the form

(1) f =
P (t1, . . . , tn, q)

∏

(α,k)

(1− tα1
1 · · · tαn

n qk)

where P ∈ Z[t±1
1 , . . . , t±1

n ][q] is a polynomial in q and the product in the denominator
ranges over a finite multiset of pairs (α, k) where α ∈ Zn, k ∈ N0.

Proof. For λ ∈ Zn with λ1 ≥ · · · ≥ λn and k ∈ N0 write

eλk =
∏

(1− tα1
1 · · · tαn

n qk)

where a factor (1 − tα1
1 · · · tαn

n qk) in the above product occurs exactly with multi-
plicity the coefficient of tα1

1 · · · tαn
n in chLλ

∈ N0[t
±1
1 , . . . , t±1

n ].
Suppose that f is of the form (1). For any α ∈ Zn and k ∈ N0, (1− tα1

1 · · · tαn
n qk)

is a factor of eλk , where λ is obtained by rearranging the elements in the sequence
(α1, . . . , αn) in the decreasing order. Therefore we may assume that the denomi-

nator of f in (1) is
∏

(λ,k)∈A

eλk for a finite multiset A of pairs (λ, k) where k ∈ N0,

λ ∈ Zn with λ1 ≥ · · · ≥ λn. Then the denominator of f is symmetric, hence the
numerator P of f belongs to Z[t±1

1 , . . . , t±1
n ]Sn [q] and can be written as an integral

linear combination

P =
∑

(µ,r)∈B

mµ,rchLµ
(t1, . . . , tn)q

r

where B is a finite multiset of pairs (µ, r), r ∈ N0, µ ∈ Zn, µ1 ≥ · · · ≥ µn. Take
the finite dimensional graded GLn-representation

W =
⊕

Wk, Wk =
⊕

{λ|(λ,k)∈A}

Lλ.
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By construction of W the graded GLn-representation S(W ) has formal character

chS(W )(t) =
1

∏

(λ,k)∈A

eλk
.

For (µ, r) ∈ B denote by L
[r]
µ the finite dimensional graded GLn-representation

whose degree r component is Lµ and all other homogeneous components are zero;
the formal character of this graded representation is qrchLµ

(t1, . . . , tn). Consider

now the graded GLn-representation S(W ) ⊗ L
[r]
µ . It is naturally a graded S(W )-

module, it is free and is generated by the finite dimensional subspace 1 ⊗ L
[r]
µ .

Moreover, the GLn-action on S(W ) is compatible with the action on S(W )⊗L
[r]
µ .

Thus S(W )⊗ L
[r]
µ belongs to C, and

ch
S(W )⊗L

[r]
µ
(q) = chS(W )(q) · chL[r]

µ
(q) =

chLµ
(t1, . . . , tn)q

r

∏

(λ,k)∈A

eλk
.

Summarizing, we obtained

f =

∑

(µ,r)∈B mµ,rchLµ
(t1, . . . , tn)q

r

∏

(λ,k)∈A

eλk
=

∑

(µ,r)∈B

mµ,rchS(W )⊗L
[r]
µ

showing that f belongs to
∑

Z∈C

ZchZ .

To see the converse, take Z ∈ C. Then Z is a finitely generated graded module

over the commutative polynomial algebra S(W ), where W =

∞
⊕

k=0

Wk is a finite

dimensional graded representation of GLn. By the Hilbert Syzygy Theorem, there
exists a d ≤ dim(W ) and an exact sequence

(2) 0 → Fd → Fd−1 → · · · → F1 → F0 → Z → 0

of graded S(W )-module homomorphisms, where the Fi are of the form S(W )⊗Ui for
some finite dimensional graded representations Ui of GLn (so they are free S(W )-
modules belonging to C), and the maps are GLn-equivariant. Indeed, take for U0

a GLn-stable direct complement of S(W )+Z, where S(W )+ stands for the sum of
the positive degree homogeneous components of S(W ). Since S(W )+Z is a graded
subspace of Z, we may also assume that U0 is spanned by homogeneous elements.
Then U0 minimally generates Z as an S(W )-module and is finite dimensional by
the graded Nakayama Lemma (see for example Lemma 3.5.1 in [7]). So we get an
S(W )-module surjection ϕ0 : S(W ) ⊗ U0 ։ Z, which is GLn-equivariant by con-
struction. Moreover, identifying the subspace 1⊗U0 of S(W )⊗U0 with U0 ⊂ Z, the
free module S(W )⊗U0 becomes graded, and the surjection ϕ0 is a homomorphism
of graded modules. Next repeat the same construction for the kernel of the homo-
morphism ϕ0 instead of Z, to come up with U1 and ϕ1 : S(W ) ⊗ U1 ։ ker(ϕ0).
Continue in the same way. This process stops in at most dim(W ) steps by the
Hilbert Syzygy Theorem (see for example Section 1.3.2 in [7]), and we obtain the

desired exact sequence (2). It follows that chM (q) =

d
∑

j=0

(−1)jchFi
(q). Note that
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chFi
= chS(W )(q) ·chUi

(q). Here chUi
(q) ∈ Z[t±1

1 , . . . , t±1
n ]Sn [q] is a polynomial in q,

whereas chS(W )(q) =
∏

(λ,k)

(eλk)
−mλ,k , where mλ,k stands for the multiplicity of Lλ

as a summand in Wk. It follows that

chZ(q) =

∑d
i=0(−1)ichUi

(q)
∏

(λ,k)

(eλk)
mλ,k

is indeed of the form (1). �

Definition 2.3. Following Berele [5] (but changing a bit the setup considered by
him) we call an element of Z[t±1

1 , . . . , t±1
n ][[q]] a nice rational function if it is of the

form (1).

Remark 2.4. (i) With this terminology Proposition 2.2 asserts that the abelian
group of symmetric nice rational functions is generated by {chV (q) | V ∈ C}.

(ii) Nice rational functions not depending on the indeterminates t1, . . . , tn are
rational functions in Z[[q]] with denominators which are products of binomials 1−qk.
Recall that the Hilbert-Serre Theorem asserts that the Hilbert series of a finitely
generated graded module over a finitely generated commutative graded K-algebra
R with R0 = K is a nice rational function in Z[[q]].

(iii) If f(t1, . . . , tn) is a nice rational function in the sense of [5], then making
the substitution ti 7→ tiq we get that f(t1q, . . . , tnq) is a nice rational function in
the sense of our Defininition 2.3.

3. Hilbert series of fixed point subspaces

Fix now a subgroup G of GLn. We write ZG for the subspace of G-fixed points
in a representation Z of GLn. Define

D : Z[t±1
1 , . . . , t±1

n ]Sn → Z

as the abelian group homomorphism with D(chLλ
) = dim(LG

λ ). This definition

makes sense, since the chLλ
constitute a free Z-module basis in Z[t±1

1 , . . . , t±1
n ]Sn .

Furthermore, we keep the notation D for the abelian group homomorphism

D : Z[t±1
1 , . . . , t±1

n ]Sn [[q]] → Z[[q]] with D

(

∞
∑

d=0

cdq
d

)

=
∞
∑

d=0

D(cd)q
d.

Since every representation of GLn is completely reducible, for any finite dimensional
GLn-representation W we have D(chW ) = dimWG, and consequently for a graded

representation Z =
∞
⊕

d=0

Zd of GLn we have that

(3) D(chZ(q)) =

∞
∑

d=0

dim(ZG
d )qd = H(ZG, q)

is the Hilbert series of the graded vector space ZG.
We need the following technical lemma (we provide a proof, since though the

arguments are well known, we did not find a reference where this is stated exactly
in the form as below):

Lemma 3.1. The following conditions are equivalent for a subgroup G of GLn:
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(i) For any Z ∈ C, the subspace ZG is finitely generated as an S(W )G-module
(where W is as in Definition 2.1 of the class C).

(ii) For any finitely generated graded commutative K-algebra R on which GLn

acts rationally via graded K-algebra automorphisms, the subalgebra RG of
G-invariants is a finitely generated K-algebra.

Proof. Suppose (i) holds, and take a K-algebra R as in (ii). Denote by R+ the
sum of the positive degree homogeneous components in R. Then R+ contains
a finite dimensional GLn-submodule W such that W is spanned by homogeneous
elements, andW generates R as aK-algebra. The identity map W → W extends to
a surjection S(W ) → R of graded K-algebras, and this surjection is G-equivariant.
So in this way R+ becomes a graded S(W )-module in the class C. Take a finite
S(W )G-module generating system of RG

+ (it exists by assumption). This is easily

seen to be a finite K-algebra generating system of RG by the graded Nakayama
Lemma (see for example Lemma 3.5.1 in [7]).

Assume next that (ii) holds, and let Z ∈ C. We repeat the proof of Theorem
16.9 in [19]: make the direct sum R = S(W )⊕ Z a graded K-algebra by imposing
the multiplication (r, v) · (s, w) = (rs, rw + sv) for r, s ∈ S(W ) and v, w ∈ Z. By
assumption the algebra RG = S(W )G ⊕ ZG is finitely generated, implying in turn
that the S(W )G-module ZG is finitely generated. �

Remark 3.2. The equivalent conditions (i) and (ii) of Lemma 3.1 hold for a sub-
group G of GLn if and only if they hold for its Zariski closure Ḡ in GLn. Indeed,
for a given element f of an algebra R as in (ii), the stabilizer of f in GLn is Zariski

closed, since GLn acts rationally on R. Therefore we have RG = RḠ.

We mention two important and well-known sufficient conditions that imply con-
dition (ii) (and hence condition (i)) of Lemma 3.1:

Proposition 3.3. The conditions (i) and (ii) of Lemma 3.1 hold for G in each of
the following two cases:

(1) G is a Zariski closed reductive subgroup of GLn.
(2) G is the unipotent radical of a Borel subgroup of a Zariski closed reductive

subgroup of GLn.

Proof. (1) is classical, see for example Theorem A (a) on page 3 of [19] and the ref-
erence therein. (2) is due to Hadžiev [21] and Grosshans (in arbitrary characteristic,
see Theorem 9.4 in [19]). �

Theorem 3.4. Suppose that the subgroup G of GLn satisfies condition (i) (and
hence (ii)) of Lemma 3.1, and let Z be a graded representation of GLn for which
chZ(q) is a nice rational function in the sense of Definition 2.3. Then the Hilbert
series H(ZG, q) ∈ Z[[q]] of the subspace of G-invariants in Z is a rational function
of the form

H(ZG, q) =
P (q)

m
∏

j=1

(1− qdj )

for some positive integers m, d1, . . . , dm and a polynomial P ∈ Z[q].

Proof. Since chZ(q) is a nice rational function and it is also symmetric in t1, . . . , tn,
by Proposition 2.2 there exists a positive integer r, Z1, . . . , Zr ∈ C and integers
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a1, . . . , ar such that chZ(q) =

r
∑

i=1

aichZi
. By (3) we have

(4) H(ZG, q) = D(chZ(q)) =
r
∑

i=1

aiD(chZi
) =

r
∑

i=1

aiH(ZG
i , q).

Here Zi is a finitely generated graded S(Wi)-module (with compatible GLn-action)
for some finite dimensional graded representation Wi of GLn, i = 1, . . . , r. Since
conditions (i) and (ii) of Lemma 3.1 hold for G, we have that the algebra S(Wi)

G

is finitely generated, and ZG
i is a finitely generated graded S(Wi)

G-module for
i = 1, . . . , r. By the Hilbert-Serre Theorem (see for example Theorem 11.1 in [2])
the finitely generated S(Wi)

G-module ZG
i has a rational Hilbert series H(ZG

i , q) of
the stated form, implying in turn by (4) that H(ZG, q) is a rational function of the
stated form (i.e. a nice rational function in Z[[q]]). �

4. Examples in commutative algebra

We do not know any example of an algebra of commutative polynomial invariants
with Hilbert series which is not a rational function. In this section we compute
the Hilbert series of a famous algebra of invariants which is not finitely generated
but as it turns out, still has a nice rational Hilbert series. The first example of
a finite dimensional G-module V such that the corresponding algebra K[V ]G =
K[x1, . . . , xn]

G of invariants is not finitely generated was found by Nagata (see
[27]). A simplification of Nagata’s argument (resulting in an example with a group
of smaller dimension) was given by Steinberg [30]. Here we shall compute the
Hilbert series of this latter algebra of invariants. We refer to the books [8], [26] for
facts about this algebra of invariants.

Let C be an irreducible cubic algebraic curve in the complex projective plane
P2. The set of non-singular points in C has a well-known abelian group structure.
Choose 9 distinct points (ai1 : ai2 : ai3) in this abelian group such that their sum

is not a torsion element and the matrix (aij)
j=1,2,3
i=1,...,9 has full rank 3. Let G1 be the

subgroup of C9 (the direct sum of 9 copies of the additive group of C) given by

G1 = {s = (s1, . . . , s9) |

9
∑

i=1

siaij = 0, j = 1, 2, 3} ⊂ C9

so G ∼= C6. Consider also the torus

T = {t = (t1, . . . , t9) |

9
∏

i=1

ti = 1} ⊂ (C×)9

so T ∼= (C×)8. The group G = G1 × T ⊂ C9 × (C×)9 acts on the 18-variable
polynomial algebra S = C[x1, . . . , x9, y1, . . . , y9] via

(s, t) · xi = tixi, (s, t) · yi = ti(sixi + yi), i = 1, . . . , 9.

Set

Aj =

9
∑

i=1

aij
yi
xi

, j = 1, 2, 3, D = x1 · · ·x9.

Then A1, A2, A3, D generate the subfield of G-invariants in the field of fractions of
S, and in fact

R = SG = S ∩ C[A1, A2, A3, D,D−1].
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Thus R has a bigrading R =
⊕

d∈N0,m∈Z

R(d,m), where

R(d,m) = S ∩ {Dd−mf(A1, A2, A3) | f ∈ C[x, y, z] is homogeneous of degree d}.

Theorem 4.1. (i) (Proposition 2.49 in [26] or page 60 in [8]) The C-algebra R = SG

is not finitely generated.
(ii) (Lemma 2.50 in [26] and Lemma 4.5 in [8]) For d ∈ N0 and m ∈ Z we have

dimR(d,m) =























(

d+ 2

2

)

, if m ≤ 0;
(

d+ 2

2

)

− 9

(

m+ 1

2

)

, if d ≥ 3m > 0;

0, if 3m > d.

Observe that R(d,m) is contained in the homogeneous component of degree 9(d−
m) of the polynomial algebra of S, hence we have

H(S, q) =

∞
∑

n=0

cnq
9n where cn =

∑

m≥−n

dimR(m+n,m).

We infer from Theorem 4.1 (ii) that

cn =

⌊n
2 ⌋
∑

m=1

((

n+m+ 2

2

)

− 9

(

m+ 1

2

))

+

0
∑

m=−n

(

n+m+ 2

2

)

where ⌊n
2 ⌋ stands for the lower integer part of n

2 . Now we have

0
∑

m=−n

(

n+m+ 2

2

)

=

(

n+ 3

3

)

,

for n = 2s > 0 even we have
s
∑

m=1

dimR(2s+m,m) =
1

6
(10s3 + 3s2 − 7s) = 10

(

s

3

)

+ 11

(

s

2

)

+ s,

and for n = 2s+ 1 odd we have
s
∑

m=1

dimR(2s+1+m,m) =
1

6
(10s3 + 18s2 + 8s) = 10

(

s

3

)

+ 16

(

s

2

)

+ 6s.

We obtain
∞
∑

n=0

cnq
n =

∞
∑

n=0

(

n+ 3

3

)

qn

+

∞
∑

s=1

(10

(

s

3

)

+ 11

(

s

2

)

+ s)q2s

+

∞
∑

s=0

(10

(

s

3

)

+ 16

(

s

2

)

+ 6s)q2s+1

=
1

(1 − q)4
+

10q6 + 10q7

(1− q2)4
+

11q4 + 16q5

(1− q2)3
+

q2 + 6q3

(1− q2)2

=
1 + 4q + 7q2 + 10q3 + 10q4 + 4q5

(1− q2)4
.
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Summarizing, we found the following:

Proposition 4.2. We have the equality

H(SG, q) =
1 + 4q9 + 7q18 + 10q27 + 10q36 + 4q45

(1− q18)4
.

In particular, H(SG, q) is a nice rational function.

Problem 4.3. Does there exist a G-module V such that K[V ]G = K[x1, . . . , xn]
G

has a non-rational Hilbert series?

There are many examples of subalgebras of the polynomial algebra in several
variables which are not finitely generated. See e.g., [28] for a family of subalgebras
between K[x1] and K[x1, x2] which are not finitely generated as K[x1]-algebras.
It is also easy to construct a graded subalgebra of K[x1, x2] with transcendental
Hilbert series. One of the few general abstract properties that all subalgebras of
invariants in the polynomial algebra do have is that they are normal (integrally
closed in their field of fractions). Below we give an example showing that normality
does not imply rationality of the Hilbert series.

Example 4.4. Fix a positive irrational real number α and consider the subalgebra
A = SpanK{xi

1x
j
2 | j < αi} of K[x1, x2]. The algebra A is not finitely generated

(see for example [28]). The number of degree d ≥ 1 monomials in A is |{i | i ≤

d, d − i < αi}|, which is the number of integers in the interval (
d

1 + α
, d]. Set

β = 1−
1

1 + α
=

α

α+ 1
. The Hilbert series of A is

H(A, q) = 1 +
∞
∑

d=1

(1 + ⌊dβ⌋)qd =
1

1− q
+

∞
∑

d=1

⌊dβ⌋qd,

where ⌊dβ⌋ stands for the lower integer part of dβ. Suppose that this power series

is algebraic over Z(q). Then H1(q) =

∞
∑

d=1

⌊dβ⌋qd is algebraic as well, implying in

turn that H2(q) = (1 − q)H1(q) =

∞
∑

d=1

(⌊dβ⌋ − ⌊(d − 1)β⌋)qd is algebraic. Since

0 < β < 1, we have cd = ⌊dβ⌋ − ⌊(d − 1)β⌋ ∈ {0, 1}, so the coefficients of H2(q)
take only two integer values. By the classical theorem of Fatou [16], see Borwein
and Coons [6] for an easy proof, H2(q) must be a rational function. As in the proof
of Theorem 2 in [6], this implies that the sequence (cd | d = 1, 2, . . .) is eventually
periodic. This contradicts the assumption that β is irrational. Indeed, suppose
that there exist positive integers N, p such that cd+p = cd for all d ≥ N . Set
s = |{1 ≤ i ≤ p | cN+i = 1}|. Then for any positive integer k we have

⌊(N + kp)β⌋ − ⌊Nβ⌋ =

N+kp
∑

i=N+1

ci = ks.

We conclude that |kpβ − ks| ≤ 1, and hence |β −
s

p
| ≤

1

kp
holds for all k. This

leads to the contradiction β =
s

p
.
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We claim that A is normal. Indeed, note that A is the semigroup algebra of the
subsemigroup S = {(i, j) | j ≤ αi} of the additive semigroup N2

0. The semigroup
S is saturated in N2

0, i.e., if ms ∈ S for some s ∈ N2
0 and m ∈ N then s ∈ S.

Suppose that some element f from the field of fractions of A is integral over A.
Then there exists a finitely generated subsemigroup S′ ⊂ S such that f is integral
over the subalgebra K[S′] = SpanK{xi

1x
j
2 | (i, j) ∈ S′} of A (take all monomials

that occur in the coefficients of the monic polynomial in A[x] satisfied by f). So f
belongs to the normalization of K[S′], which is K[S′

sat], where S′
sat = Q≥0S

′ ∩ N2
0

is the saturation of S′ (see for example Proposition 7.25 in [25]). Now since S is
saturated, we have S′

sat ⊂ S, so f ∈ K[S] = A, showing that A is integrally closed
in its field of fractions.

5. Applications in noncommutative invariant theory

Let R be a proper subvariety of the variety of all associative K-algebras. Denote
by Fn(R) the relatively free algebra of rank n in the variety R. Then Fn(R) =
K〈V 〉/I is the factor algebra of the tensor algebra K〈V 〉 of an n-dimensional vector
space V modulo a non-zero T-ideal I. Choosing a basis {x1, . . . , xn} in V we
identify GLn with GL(V ) and the tensor algebra K〈V 〉 with the free associative
algebra K〈x1, . . . , xn〉. This is graded as usual, so the generators xi have degree
1. Since I is necessarily homogeneous, there is an induced grading on Fn(R), and

Fn(R) =

∞
⊕

d=0

Fn(R)d is a graded representation of GLn in the sense of Section 2.

For any subgroup G ≤ GLn, the subalgebra Fn(R)G =

∞
⊕

d=0

Fn(R)Gd is spanned by

homogeneous elements, so it is also graded. Its Hilbert series is defined as

H(Fn(R)G, q) =

∞
∑

d=0

dim(Fn(R)Gd )q
d ∈ Z[[q]].

Theorem 5.1. Suppose that condition (i) (and hence (ii)) of Lemma 3.1 holds for
the subgroup G of GLn. Then the Hilbert series H(Fn(R)G, q) of the subalgebra of
G-invariants in Fn(R) is rational of the form

H(Fn(R)G, q) =
P (q)

m
∏

j=1

(1− qdj )

for some positive integers m, d1, . . . , dm and a polynomial P ∈ Z[q].

Proof. To simplify notation set R = Fn(R). An Nn
0 -grading on the free associative

algebra K〈x1, . . . , xn〉 is defined by setting the multidegree of xi the ith standard

basis vector (0, . . . , 0, 1, 0, . . . , 0) in Zn. This induces a multigrading R =
⊕

α∈Nn
0

Rα,

and the multivariate Hilbert series of R is

H(R, t1, . . . , tn) =
∑

α∈Nn
0

dim(Rα)t
α1
1 · · · tαn

n .

Keep the notation xi for the image of xi under the natural surjectionK〈x1, . . . , xn〉 →
R. Then there is a subset S ⊂ {1, . . . , n}d such that the monomials {xi1 · · ·xid |
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(i1, . . . , id) ∈ S} constitute a basis of Rα. Note that this basis of Rα consists of
joint eigenvectors of the subgroup of diagonal matrices in GLn, since we have

diag(z1, . . . , zn) · xi = zixi,

and consequently

diag(z1, . . . , zn) · xi1 · · ·xid = zα1
1 · · · zαn

n xi1 · · ·xid .

For a fixed d ∈ N0 the degree d homogeneous component Rd of R is GLn-stable,
and by the above considerations the sum of the terms of H(R, t1, . . . , tn) of total
degree d is the formal character chRd

of Rd. It follows that substituting ti 7→ tiq in
the multivariate Hilbert series of R we obtain

H(R, qt1, . . . , qtn) = chR(q),

the formal character of the graded GLn-representation R. Belov [4] proved that
the univariate Hilbert series H(R, t) of the graded algebra R is rational. Berele
strengthened this statement in Theorem 1 of [5] by showing that the multigraded
Hilbert series H(R, t1, . . . , tn) of R is nice (in the sense of [5]), which implies that
H(R, qt1, . . . , qtn) is a nice rational function in the sense of Definition 2.3. Summa-
rizing, the formal character chR(q) is a nice rational function in the sense of Defi-
nition 2.3, thus the statement of our theorem now follows from Theorem 3.4. �

Remark 5.2. In contrast with commutative invariant theory, the algebra Fn(R)G

is typically not finitely generated, even if condition (i) and (ii) of Lemma 3.1 hold
for G. For example, by the proof of Theorem 3.1 in [11], if R is not a subvariety
of a variety of Lie nilpotent algebras with a given index of Lie nilpotency, then
for any n ≥ 2 there is a Zariski closed subgroup G of GLn isomorphic to the
multiplicative group of K such that Fn(R)G is not finitely generated. Therefore
Theorem 5.1 yields interesting examples of naturally occurring graded algebras, that
are not finitely generated, but have rational Hilbert series like finitely generated
commutative graded algebras.

6. Examples

Example 6.1. We provide two examples showing that in Theorem 3.4 the condition
that chZ(q) is a nice rational function can not be relaxed to the weaker condition
that chZ(q) is a rational function.

(i) Let V be 2-dimensional and G = SL(V ), the special linear subgroup of
GL(V ). In this case G is a Zariski closed reductive subgroup of GL(V ). The tensor
algebra K〈V 〉 has rational Hilbert series

H(K〈V 〉, t1, t2) =
1

1− t1 − t2
,

whereas by Example 5.10 in [1] we have that the subalgebra of SL(V )-invariants
has non-rational Hilbert series

H(K〈V 〉SL(V ), q) =
1

2q2
(1−

√

1− 4q2) =

∞
∑

n=0

1

n+ 1

(

2n

n

)

qn.

Further examples of subalgebras of SL2-invariants in free algebras K〈x1, . . . , xn〉
having non-rational Hilbert series can be found in [1].

(ii) Again let V = SpanK{x, y} be 2-dimensional, and take

G = {x 7→ x, y 7→ cx+ y | c ∈ K} ⊂ GL(V ).
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In this case G is the unipotent radical of a Borel subgroup of GL(V ), and in fact G
is isomorphic to the additive group of K. By Proposition 5.3 in [14] we have that

H((K〈V 〉)G, q) =
∞
∑

p=0

((

2p

p

)

q2p +

(

2p+ 1

p

)

q2p+1

)

=
1−

√

1− 4q2

2q2
·

1

1−
1−

√

1− 4q2

2q

.

In particular, H(K〈V 〉G, q) is not rational.

Example 6.2. Here we compute the Hilbert series of a particular algebra of in-
variants in a relatively free algebra along the lines of the proof of Theorem 5.1.
Let V = SpanK{x, y} be 2-dimensional, let I be the T-ideal in K〈V 〉 of 2-variable
identities of the algebra K2×2 of 2 × 2 matrices over K, and G = K×, the multi-
plicative group of the base field acting on V via z ·(ax+by) = zax+z−1by (z ∈ K×,
a, b ∈ K). The Hilbert series of R = K〈V 〉/I was computed in [18]:

(5) H(R, t1, t2) =
1

(1 − t1)(1− t2)
+

t1t2
(1 − t1)2(1 − t2)2(1 − t1t2)

.

Taking into account that chR(q) = H(R, t1q, t2q) we deduce from (5) the equality

(6) chR(q) = chZ(q)

where Z is the polynomial GL(V )-module

Z = S(V )⊕ (

2
∧

(V )⊗ S(V ⊕ V )⊗ S(

2
∧

(V ))).

Here
2
∧

(V ) is the exterior tensor square of V , whereas S(V ) and S(V ⊕ V ) are

the symmetric tensor algebras of V and V ⊕ V . The grading is given by the
decomposition into isotypic components with respect to the action of the subgroup

of scalar transformations in GL(V ). Note that G acts trivially on

2
∧

(V ), hence

ZG = S(V )G ⊕ (

2
∧

(V )⊗ S(V ⊕ V )G ⊗ S(

2
∧

(V ))).

Clearly, S(V )G = K[xy] is a polynomial algebra generated by a degree 2 element,
and S(V ⊕ V )G = K[x1, y1, x2, y2]

G = K[x1y1, x1y2, x2y1, x2y2]. It is well known
that the ideal of relations between the generators xiyj , 1 ≤ i, j ≤ 2, of S(V ⊕V )G is
a principal ideal generated by the relation (x1y1)(x2y2) = (x1y2)(x2y1). It follows

that H(S(V ⊕ V )G, q) =
1− q4

(1− q2)4
. By (3) and (6) we obtain

H(RG, q) = D(chR(q)) = D(chZ(q)) = H(ZG, q) =
1

1− q2
+

q2(1 + q2)

(1− q2)4
.

Note that RG is not a finitely generated K-algebra. Indeed, I is contained in C2,
the square of the commutator ideal of K〈V 〉, since C2 is known to be the T-ideal
of 2-variable identities of the subalgebra of upper triangular matrices in K2×2 (see
[23]). Thus K〈V 〉/C2 is a homomorphic image of R, and hence (K〈V 〉/C2)G is a
homomorphic image of RG (recall that G is linearly reductive). Moreover, using
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an example from [22] it was pointed out in the proof of Theorem 3.1 in [11] that
(K〈V 〉/C2)G is not finitely generated, implying in turn that RG is not finitely
generated.

Example 6.3. In some cases by a non-commutative variant of the Molien-Weyl
theorem the operator D from Section 3 can be evaluated using the Weyl integration
formula and residue calculus. An instance where the Hilbert series of the subalgebra
of invariants in a relatively free algebra was computed that way occurs in [10].
Namely, take for V the space of 2 × 2 matrices over K, on which G = GL2 acts
by conjugation, and let I be the T-ideal in K〈V 〉 = K〈x1, x2, x3, x4〉 generated by
[[x1, x2], x2]. It was shown in Lemma 2.1 of [10] that

H((K〈V 〉/I)GL2 , t) =
1 + 2t3 + t4

(1− t)(1− t2)
.

In that case the algebra K〈V 〉/I is Noetherian and hence (K〈V 〉/I)GL2 is finitely
generated (see [11]). Explicit generators are also found in [10].

7. Transfer principle

In this section the characteristic of the base field K can be positive, but we
assume that K is algebraically closed. Let G be a linear algebraic group with
coordinate ring K[G], and let H be a subgroup of G. Let R be an associative
K-algebra on which G acts rationally via K-algebra automorphisms. Then G×H
acts on K[G]⊗R via K-algebra automorphisms as follows:

(g, h) ·
∑

i

fi ⊗ ri =
∑

i

fi(g
−1xh)⊗ gri for g ∈ G, h ∈ H, fi ∈ K[G], ri ∈ R,

where we write fi(g
−1xh) ∈ K[G] for the function G → K, x 7→ fi(g

−1xh). Using
the embeddings G → G×H , g 7→ (g, 1) and H → G×H , h 7→ (1, h), the G×H-
action on K[G]⊗R restricts to commuting actions of G and H on K[G]⊗R. Recall
that the subalgebra (K[G]⊗R)G of G-invariants is stable under the H-action, and
similarly, the subalgebra (K[G] ⊗ R)H = K[G]H ⊗ R of H-invariants is G-stable.
Clearly we have

(K[G]H ⊗R)G = ((K[G]⊗R)H)G = (K[G]⊗R)G×H = ((K[G]⊗R)G)H .

Lemma 7.1. Denote by Φ : (K[G] ⊗ R)G → R the restriction to (K[G] ⊗ R)G

of the linear map K[G] ⊗ R → R given by f ⊗ r 7→ f(1G)r. Then we have the
following:

(i) Φ is an H-equivariant K-algebra isomorphism.
(ii) Φ restricts to a K-algebra isomorphism (K[G]H ⊗R)G → RH .

Proof. This is Theorem 9.1 in [19] (in [19] R is assumed to be a commutative K-
algebra, but commutativity is nowhere used in the proof, which works verbatim in
the present generality). �

Theorem 7.2. Let R be a left noetherian finitely generated K-algebra satisfying a
polynomial identity, and G a linearly reductive linear algebraic group acting ratio-
nally on R via K-algebra automorphisms. Suppose that H is a subgroup of G such
that K[G]H is a finitely generated K-algebra (for example, H can be a maximal
unipotent subgroup of G). Then the subalgebra RH of H-invariants in R is finitely
generated and is left noetherian.
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Proof. Recall that the polynomial algebra S[x] over a left noetherian ring S is left
noetherian (see for example [24]). An iterated use of this yields that since K[G]H

is a finitely generated commutative K-algebra and R is left noetherian, the algebra
K[G]H ⊗ R is left noetherian. As both K[G]H and R are finitely generated K-
algebras, the same holds for K[G]H ⊗ R. Moreover, K[G]H ⊗ R is a PI-algebra,
since it satisfies the same multilinear polynomial identities as R, and every PI-
algebra over any field K necessarily satisfies a multilinear polynomial identity. A
theorem of Vonessen [31] asserts that the subalgebra of invariants of the linearly
reductive group G acting rationally on an affine left noetherian PI-algebra is finitely
generated and left noetherian. By this theorem we conclude that (K[G]H ⊗R)G is
finitely generated and is left noetherian. The statement of the theorem now follows
from the isomorphism RH ∼= (K[G]H ⊗R)G in Lemma 7.1. �
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[21] Dž. Hadžiev, Some questions in the theory of vector invariants (Russian), Mat. Sb. (NS)
72(114) (1967) 420-435. Translation: Math. USSR, Sb. 1 (1967) 383-396.

[22] V. K. Kharchenko, Noncommutative invariants of finite groups and Noetherian varieties, J.
Pure Appl. Alg. 31 (1984) 83-90.

[23] Yu. N. Maltsev, A basis for the identities of the algebra of upper triangular matrices (Russian),
Algebra i Logika 10 (1971) 393-400. Translation: Algebra Logic 10 (1971) 242-247.

[24] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings (Wiley-Interscience,
Chichester-New York, 1987).

[25] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics
227, (Springer, New York, 2005).

[26] S. Mukai, An Introduction to Invariants and Moduli, Cambridge Studies in Advanced Math-
ematics 81, (Cambridge University Press, 2003).

[27] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959) 766-772.
[28] M. B. Nathanson, Finitely generated and not finitely generated rings, arXiv:1606.00828v1

[math.AC].
[29] C. Procesi, Lie Groups (An Approach through Invariants and Representations) (Springer,

New York, 2007).
[30] R. Steinberg, Nagata’s example, in Algebraic groups and Lie groups, Austral. Math. Soc.

Lect. Ser., 9, (Cambridge University Press, 1997), pp. 375-384.

[31] N. Vonessen, Actions of Linearly Reductive Groups on Affine PI-Algebras, Mem. Amer. Math.
Soc. 81(414) (1989).
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