# ELEMENT GEOCHEMISTRY OF CHEROKEE GROUP COALS (MIDDLE PENNSYLVANIAN) FROM SOUTH-CENTRAL AND SOUTHEASTERN IOWA

# **Technical Paper No.5**

Joseph R. Hatch U.S. Geological Survey

Matthew J. Avcin and Paul E. Van Dorpe lowa Geological Survey

Donald L. Koch State Geologist and Director

IOWA GEOLOGICAL SURVEY 123 North Capitol Street Iowa City, Iowa 52242 319-338-1173

1984

# ELEMENT GEUCHEM1STRY OF CHEROKEE GROUP COALS (MIDDLE PENNSYLVANIAN) FROM SOUTH-CENTRAL AND SOUTHEASTERN IOWA

by

Joseph R. Hatch

U.S. Geological Survey

and

Matthew J. Avcin and Paul E. Van Dorpe Iowa Geological Survey

1984

## TABLE OF CONTENTS

|                                           | Page |
|-------------------------------------------|------|
| Abstract                                  | vii  |
| Introduction                              | 1    |
| Analytical Methods and Results            | 1    |
| Summary Tables                            | 13   |
| Statistical Methods                       | 14   |
| Discussion of Results                     | 15   |
| Apparent Rank                             | 15   |
| Proximate, Ultimate, and Related Analyses | 15   |
| Element Analyses                          | 20   |
| Correlation Analyses                      | 26   |
| Summary                                   | 29   |
| Acknowledgments                           | 30   |
| References                                | 31   |

•

## LIST OF FIGURES

•

|          |                                                                                                                                                                                                                                      | Page |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 1 | Index map of south-central and southeastern lowa showing coal sample collection sites                                                                                                                                                | 2    |
| Figure 2 | Stratigraphic nomenclature                                                                                                                                                                                                           | 3    |
| Figure 3 | Flow chart showing sequence of sample preparation and chemical analysis                                                                                                                                                              | 12   |
| Figure 4 | Distribution of moist, mineral-matter-free Btu/lb in coal samples from south-central and southeastern Iowa                                                                                                                           | 16   |
| Figure 5 | Arithmetic means and ranges of proximate and ultimate<br>analyses and forms of sulfur (as-received basis)<br>for Iowa coal samples from coal-zones 2, 3, 4, 5, and 6-9                                                               | 17   |
| Figure 6 | Arithmetic means and ranges of ash-fusion temperatures and heats of combustion (as-received basis) for Iowa coal samples from coal-zones 2, 3, 4, 5, and 6-9                                                                         | 18   |
| Figure 7 | Arithmetic means and ranges of proximate and ultimate<br>analyses and forms of sulfur (as-received basis) for 65 Iowa<br>Cherokee Group coal samples, 114 Illinois Basin coal samples,<br>and 44 Yampa field, Colorado, coal samples | 19   |
| Figure 8 | 3 Arithmetic mean and range of heat of combustion (as received basis) for 65 Iowa Cherokee Group coal samples, 114 Illinois Basin coal samples, and 44 Yampa field, Colorado coal samples                                            | 20   |
| Figure S | 9 Geometric means and ranges for contents of 40 elements (air-<br>dried, whole-coal basis) in Iowa Cherokee Group coal samples<br>from coal-zones 2, 3, 4, 5, and 6-9                                                                | 21   |
| Figure 1 | 10 Geometric means and ranges for contents of 38 elements<br>(whole-coal basis) in 105 Iowa Cherokee Group coal samples,<br>114 Illinois Basin coal samples, and 63 Yampa field, Colo-<br>rado, coal samples                         | 24   |
| Figure 3 | ll Relationship of zinc/cadmium mole ratio in coal to depth in five core holes from Wapello and Appanoose Counties, Iowa                                                                                                             | 28   |

## LIST OF TABLES

Page

| Table 1  | Identification numbers, locations and brief descriptions of 106<br>Middle Pennsylvanian coal samples from south-central and south-<br>eastern Iowa                                                                                                                                                            | 4              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Table 2  | Analyses and physical tests performed by various laboratories .                                                                                                                                                                                                                                               | 11             |
| Table 3  | Proximate and ultimate analyses, heat-of-combustion, forms-of-<br>sulfur, free-swelling-index, and ash-fusion-temperature deter-<br>minations for 90 Iowa coal samples                                                                                                                                        | 34             |
| Table 4  | Major- and minor-oxide and trace-element composition of the laboratory ash of 106 Iowa coal samples                                                                                                                                                                                                           | 58             |
| Table 5  | Element composition of 106 Iowa coal samples                                                                                                                                                                                                                                                                  | 74             |
| Table 6  | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of 11 Middle<br>Pennsylvanian-age coal samples from coal-zone 2, Cherokee Group,<br>south-central and southeastern Iowa | 90             |
| Table 7  | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of 37 elements in 15 Middle Pennsylvanian-age coal<br>samples from coal-zone 2, Cherokee Group, south-central and<br>southeastern Iowa                                                                                            | 91             |
| Table 8  | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of nine<br>Cherokee Group coal samples from coal-zone 3                                                                 | 92             |
| Table 9  | Arithmetic mean, observed range, geometric mean, and geometric deviation of 36 elements in 15 Cherokee Group coal samples from coal-zone 3                                                                                                                                                                    | 93             |
| Table 10 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of 32 Chero-<br>kee Group coal samples from coal-zone 4                                                                 | 94             |
| Table 11 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of 35 elements in 49 Cherokee Group coal samples from<br>coal-zone 4                                                                                                                                                              | <del>9</del> 5 |
| Table 12 | Arithmetic mean, observed range, geometric mean and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of four<br>Cherokee Group coal samples from coal-zone 5                                                                  | 96             |

| Table 13 | Arithmetic mean, observed range, geometric mean and geometric deviation of 35 elements in five Cherokee Group coal samples from coal-zone 5                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 14 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temparatures for nine<br>Cherokee coal samples from coal-zones 6, 7, 8, and 9 98     |
| Table 15 | Arithmetic mean, observed range, geometric mean, and geometric deviation of 38 elements in 16 Cherokee Group coal samples from coal-zones 6, 7, 8, and 9                                                                                                      |
| Table 16 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of 65 Iowa<br>coal samples from south-central and southeastern Iowa 100 |
| Table 17 | Arithmetic mean, observed range, geometric mean, and geometric deviation of 38 elements in 105 Iowa coal samples from south-central and southeastern Iowa                                                                                                     |
| Table 18 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, and forms of sulfur of 114 coal samples from the Illinois<br>Basin                                                   |
| Table 19 | Arithmetic mean, observed range, and geometric mean of 35 ele-<br>ments in 114 coal samples from the Illinois Basin coal field 103                                                                                                                            |
| Table 20 | Arithmetic mean, observed range, geometric mean, and geometric<br>deviation of proximate and ultimate analyses, heat of combus-<br>tion, forms of sulfur, and ash-fusion temperatures of 44 coal<br>samples from the Williams Fork Formation                  |
| Table 21 | Arithmetic mean, observed range, geometric mean, and geometric deviation of 37 elements in 63 coal samples from the Williams Fork Formation                                                                                                                   |
| Table 22 | Classification of coals by rank                                                                                                                                                                                                                               |
| Table 23 | Calculated Btu/lb, hydrogen/carbon, and oxygen/carbon molecular<br>ratios for Iowa Cherokee Group coal-zones 2, 3, 4, 5, and 6-9,<br>Iowa Cherokee Group coals, Illinois Basin coals, and Yampa<br>field, Colorado coals                                      |
| Table 24 | Depths from the surface (in meters) and the zinc/cadmium mole<br>ratios for 40 Cherokee Group coal samples from five core holes<br>in Wapello and Appanoose Counties, Iowa                                                                                    |

#### ELEMENT GEOCHEMISTRY OF CHEROKEE GROUP COALS

#### (MIDDLE PENNSYLVANIAN)

#### FROM SOUTH-CENTRAL AND SOUTHEASTERN IOWA

by

Joseph R. Hatch

Matthew J. Avcin

and Paul E. Van Dorpe

#### ABSTRACT

Middle Pennsylvanian Cherokee Group coals from southcentral and southeastern Iowa are typical highsulfur, high-ash coals. These coals have an arithmetic mean sulfur content of 5.8 percent and a mean ash content of 15.9 percent. Apparent rank for most samples is high-volatile C bituminous coal. The relatively high contents of sulfur and 23 other elements in Iowa Cherokee Group coals are related to near neutral pH conditions (6-8) in the depositional and early diagenetic environments, and to postdepositional epigenetic sphalerite/calcite/pyrite/ kaolinite/barite mineralization. Changes from an aluminosilicate- to a sulfide-element association for U, Mo, Cr, and V, and an increase in element content for U, Mo, Cr, V, Na, Mg, and K in stratigraphically higher coals are thought to be related to differences in depositional environments of the coal-associated rocks, which change from predominantly terrestrial in the Lower Cherokee Group, to predominantly marine in the upper part of the Upper Cherokee Group. Coals overlain by marine, phosphatic, black shale lithologies have the highest content of U. Mo. Aq. Sb. Se, and V.

#### INTRODUCTION

Pennsylvanian coal-bearing rocks underlie all or parts of 44 counties in southern and western Iowa, an area of 20,000 approximately square miles (Landis and Van Eck, 1965). Identified coal resources, in beds at least 14 inches thick, total about 6.5 billion tons (Landis and Van Eck, 1965). Estimated hypothetical coal resources are an additional 14 billion tons for a total of 20.5 billion tons of identified and hypothetical coal resources (Averitt, 1975).

An essential part of any complete coalresource evaluation is a chemical characterization of the coal by proximate. ultimate, and minor and trace element analyses. In order to chemically characterize Iowa's coal resources, a cooperative program was initiated in 1973 between the Iowa Geological Survey and the U.S. Geological Survey. From 1973 to 1978, 106 coal samples were collected by the Iowa Geological Survey surface from drill cores and and underground coal mines in 11 southcentral and southeastern Iowa counties (figure 1), which incorporates the area of present-day mining. One hundred and five of the 106 coal samples represent beds from the Cherokee Group, (Landis and Van Eck, 1965), (figure 2). One sample (D192373) is from the Marmaton Group. Sample numbers, locations, and descriptive information for the 106 coal samples are listed in table 1. This report lists, statistically summarizes, and briefly discusses the proximate and ultimate analyses, heatof-combustion. forms-of-sulfur. and ash-fusion-temperature determinations. and minor- and trace-element composition of these 106 Iowa coal samples.

Analyses of samples D176169-D176200 have been published in Swanson and others (1976, tables 19A-19E). Ash percent and zinc and cadmium contents in both ash and whole coal for 68 samples (D166027-D166043, D176169-D176200, and D179838-D179856) from this report are also listed and discussed in Hatch, Avcin, and others (1976). Other reports listing elemental analyses of Iowa coals include Zubovic and others (1967, 23 bench samples, 2 locations) and Abernethy and others (1969a and 1969b, 3 samples, 3 locations).

#### ANALYTICAL METHODS AND RESULTS

Proximate and ultimate analyses, heatof-combustion, air-dried-loss, formsfree-swelling-index, of-sulfur, and determinations ash-fusion-temperature for 90 coal samples were provided by the U.S. Bureau of Mines (now a part of the U.S. Department of Energy), Pittsburgh. Pennsylvania. Analytical procedures for these analyses are described in U.S. Office of Coal Research Analyses of 106 Iowa coal (1967). samples for ash content, 34 to 36 major and minor oxides and trace elements in the laboratory ash (ashed at 525°C). and 7 trace elements in whole coal were provided by the U.S. Geological Survey, Denver, Colorado. Analytical procedures used by the U.S. Geological Survey are described in Swanson and Huffman (1976). Chemical analyses and physical tests performed by the two laboratories are listed in table 2. The sequence of sample preparation and chemical analyses is shown in figure 3. Table 3 lists the results of the U.S. Bureau of Mines analyses; table 4 the results of the U.S. Geological Survey analyses of coal ash; and table 5 the results of the U.S. Geological Survey analyses of 42 elements in whole coal. Whole-coal data in table 5 for all elements except As, F, Hg, Sb, Se, Th, and U were calculated from analyses of coal ash.

Analytical results from the six-step emission spectrographic technique are identified with geometric brackets whose boundaries are (in ppm) 12, 8.3,



Figure 1. Index map of south-central and southeastern Iowa showing coal sample collection sites.



Figure 2. Stratigraphic nomenclature, after Landis and Van Eck (1965).

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa

[Sample D192373 is from the Marmaton Group; all other samples are from the Cherokee Group. Coal-zone designations are from unpublished Iowa Geological Survey data. -- = not applicable. One foot = 0.305 meters]

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                       | Index<br>map<br>key | Sample<br>type  | lowa<br>Geological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coa 1<br>zone | Notes |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------|---------------------|-----------------|-----------------------------------------------------|------------------------------------------------------------|---------------|-------|
| D166027                                              | 1-A-73                                           | **                                                 | T.74N., R.16W., Mahaska County | A                   | channe]         |                                                     | 4                                                          | 4             |       |
| D166028                                              | [-8-73                                           |                                                    | do                             | A                   | do              |                                                     | 4                                                          | 4             |       |
| D166029                                              | 1-D-73                                           | K34084                                             | dodo                           | Δ                   | run-of-<br>mine |                                                     | 4                                                          | 4             |       |
| D166030                                              | 2-A-73                                           |                                                    | T.74N., R.17W., Mahaska County | B                   | channel         |                                                     | 5                                                          | 4             |       |
| D166031                                              | 2-B-73                                           | K34085                                             | do                             | B                   | do              |                                                     | 5                                                          | 4             |       |
| D166032                                              | 3-A-73                                           |                                                    | do                             | С                   | do              |                                                     | 4                                                          | 4             |       |
| D166033                                              | 3-B-73                                           |                                                    | dodo                           | C                   | do              |                                                     | 4                                                          | 4             |       |
| D166034                                              | 3-D-73                                           | K34086                                             | dodo                           | C                   | run-of-<br>mine |                                                     | 4                                                          | 4             |       |
| D166035                                              | 4-1-73                                           |                                                    | T.73N., R.18W., Monroe County  | D                   | channe1         |                                                     | 4                                                          | 4             |       |
| D166036                                              | 4-B-73                                           | K34087                                             | do                             | D                   | do              |                                                     | 4                                                          | 4             |       |
| D166037                                              | 5-A-73                                           | K34088                                             | T.72N., R.19W., Monroe County  | ε                   | run-of-<br>mine | <b></b>                                             | 4.5                                                        | 4             |       |
| D166038                                              | 5-B-73                                           |                                                    | d0d0                           | E                   | do              |                                                     | 4.5                                                        | 4             |       |
| D166039                                              | 6-A-73                                           | K34089                                             | T.73N., R.20W., Lucas County   | F                   | do              |                                                     | 4                                                          | 4             |       |
| D166040                                              | 6-B-73                                           |                                                    | do                             | F                   | do              |                                                     | 4                                                          | 4             |       |
| D166041                                              | 7-A-73                                           |                                                    | T.73N., R.15W., Wapello County | G                   | channel         |                                                     | 3                                                          | 3             |       |

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | lowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                                 | Index<br>map<br>key | Sample<br>type  | Iowa<br>Reological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coal<br>zone | Notes                                        |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|---------------------|-----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|----------------------------------------------|
| D166042                                              | 7-8-73                                           |                                                    | do                                                       | • G                 | do              | ••                                                  | 3                                                          | 3            |                                              |
| D166043                                              | 7-D-73                                           | K34090                                             | dodo                                                     | G                   | run-of-<br>mine |                                                     | 3                                                          | 3            |                                              |
| D176169                                              | CP7-5                                            | K57858                                             | SE,SE,SE, sec. 36, T.71N.,<br>R.14W., Wapello County     | 7                   | core            | CP-7                                                | 109.1-110.2                                                | 7            |                                              |
| D176170                                              | CP7-15                                           | K57859                                             | do                                                       | . 7                 | -do-            | -do-                                                | 149.4-150.1                                                | 5            |                                              |
| D176171                                              | CP7-22                                           | K57860                                             | do                                                       | . 7                 | -do-            | -do-                                                | 165.3-165.9                                                | 4            |                                              |
| D176172                                              | CP7-26                                           | K57861                                             | dodo                                                     | . 7                 | -do-            | -do-                                                | 193.2-194.5                                                | 4            |                                              |
| D176173                                              | CP7-30                                           | K57862                                             | do                                                       | - 7                 | -do-            | -do-                                                | 206.2-207.7                                                | 4            |                                              |
| D176174                                              | CP7-35                                           | K57863                                             | dodo                                                     | - 7                 | -do-            | -do-                                                | 229.1-234.2                                                | 4            |                                              |
| D176175                                              | CP7-37                                           | K57864                                             | dodo                                                     | . 7                 | -do-            | -do-                                                | 252.2-253.8                                                | 3            |                                              |
| D176176                                              | CP7-46                                           | K57865                                             | do                                                       | - 7                 | -do-            | -do-                                                | 288.1-289.5                                                | 2            |                                              |
| D176177                                              | CP7-50                                           | K57866                                             | dodo                                                     | . 7                 | -do-            | -do-                                                | 323.8-324.7                                                | 1            |                                              |
| D176178                                              | CP10-26                                          | K61200                                             | SE,SW,SW,SW, sec. 6, T.68N.,<br>R.17W., Appanoose County | , 10                | -do-            | CP-10                                               | 240.1-241.0                                                | 9            | 0.25-foot-thick parting<br>0.5 foot from top |
| D176179                                              | CP10-28                                          | K61201                                             | do                                                       | - 10                | -do-            | do-                                                 | 253.1-254.3                                                | 8            |                                              |
| D176180                                              | CP10-31                                          | K61202                                             | do                                                       | - 10                | -do-            | do-                                                 | 279.0-280.2                                                | 7            |                                              |
| D176181                                              | CP10-34                                          | K61203                                             | dodo                                                     | - 10                | -do-            | do-                                                 | 306.9-308.7                                                | 6            |                                              |
| D176182                                              | CP10-40                                          | K61204                                             | do                                                       | - 10                | -do-            | do-                                                 | 361.5-362.3                                                | 4            |                                              |
| D176183                                              | CP-10-46                                         | K61205                                             | do                                                       | - 10                | -do-            | do-                                                 | 387.7-389.1                                                | 4            |                                              |

.

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa--continued

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                              | Index<br>map<br>key | Sample<br>type | Iowa<br>Geological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coal<br>zone | Notes                                                                          |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|---------------------|----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|
| D176184                                              | CP10-50                                          | K61206                                             | do                                                    | 10                  | -do-           | do-                                                 | 406.7-407.4                                                | 4            |                                                                                |
| D176185                                              | CP10-58                                          | K61207                                             | dodo                                                  | 10                  | -do-           | do-                                                 | 425.2-426.0                                                | 3            |                                                                                |
| 0176186                                              | CP-10-67                                         | K61208                                             | do                                                    | 10                  | -do-           | do-                                                 | 465.9-466.8                                                | 1            |                                                                                |
| 0176187                                              | CP17-9                                           | K61209                                             | NE,NE,NW,NW, sec. 34, T.74N.<br>R.25W. Mahaska County | 17                  | -do-           | CP-17                                               | 138.1-142.8                                                | 2            |                                                                                |
| D176188                                              | CP20-13                                          | K57867                                             | SE,SE,NW, sec. 18, T.72N.,<br>R.14W., Wapello County  | 20                  | -do-           | CP-20                                               | 128.6-133.6                                                | 2            |                                                                                |
| D176189                                              | CP21-2                                           | K58854                                             | NW,NW,NW, sec. 18, T.71N.,<br>R.14W., Wapello County  | 21                  | -do-           | CP-21                                               | 76.7-79.6                                                  | 8            | 0.5-foot-thick parting, 0.3 foot<br>from base; clay dike in upper por-<br>tion |
| D176190                                              | CP21-8                                           | K58855                                             | dodo                                                  | 21                  | -do-           | do-                                                 | 131.9-133.3                                                | 7            | 0.5-foot-thick parting<br>0.25 foot from base                                  |
| D176191                                              | CP21-14                                          | K58856                                             | dodo                                                  | 21                  | -do-           | do-                                                 | 167.1-167.9                                                | 6            |                                                                                |
| D176192                                              | CP21-18                                          | K58857                                             | do                                                    | 21                  | -do-           | do-                                                 | 183.8-186.4                                                | 5            |                                                                                |
| D176193                                              | CP21-20                                          | K58858                                             | dodo                                                  | 21                  | -do-           | do-                                                 | 191.7-195.3                                                | 5            | 0.5-foot-thick parting, 0.9 foot<br>from top; boney below parting              |
| D176194                                              | CP21-22                                          | K58859                                             | dodo                                                  | 21                  | -do-           | do-                                                 | 197.9-199.0                                                | 5            | 0.2-foot-thick parting<br>0.3 foot from base                                   |
| D176195                                              | CP21-26                                          | K58860                                             | do                                                    | 21                  | -do-           | do-                                                 | 215.7-217.1                                                | 4            |                                                                                |
| D176196                                              | CP21-29                                          | K58861                                             | d0                                                    | 21                  | -do-           | do-                                                 | 243.8-246.2                                                | 4            |                                                                                |
| D176197                                              | CP21-31                                          | K58862                                             | dodo                                                  | 21                  | -do-           | do-                                                 | 263.0-264.2                                                | 4            |                                                                                |
| D176198                                              | CP21-34 `                                        | K58863                                             | d0                                                    | 21                  | -do-           | do-                                                 | 316.0-319.5                                                | 3            | boney in lower two-thirds                                                      |
|                                                      |                                                  |                                                    |                                                       |                     |                |                                                     |                                                            |              |                                                                                |

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa-continued

δ

| U.S.<br>Geological<br>Survey<br>laboratory<br>`number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                             | Index<br>map<br>key | Sample<br>type | Iowa<br>Geological<br>Survey<br>çore-hole<br>number | Nepth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coal<br>zone | Notes                                     |
|-------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------------|---------------------|----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|-------------------------------------------|
| D176199                                               | CP21-36                                          | K58864                                             | do                                                   | 21                  | -do-           | do-                                                 | 322.0-326.1                                                | 2            |                                           |
| 0176200                                               | CP21-40                                          |                                                    | do                                                   | 21                  | -do-           | do-                                                 | 357.9-358.4                                                | 1            |                                           |
| D179838                                               | CP24-3                                           | Z-598                                              | NW,NE,SE, sec. 1, T.67N.,<br>R.14W., Davis County    | 24                  | -do-           | CP-24                                               | 174.1-176.2                                                | 8            |                                           |
| D179839                                               | CP24-5U                                          |                                                    | do                                                   | 24                  | -do-           | do-                                                 | 179.2-179.6                                                | 8            |                                           |
| D179840                                               | CP24-5L                                          | Z-599                                              | do                                                   | 24                  | -do-           | do-                                                 | 179.9-181.0                                                | 8            |                                           |
| D179841                                               | CP24-17                                          | Z-600                                              |                                                      | 24                  | -do-           | do-                                                 | 238.6-241.3                                                | 6            |                                           |
| D179842                                               | CP24-9                                           |                                                    | dodo                                                 | 24                  | -do-           | do-                                                 | 210.4-211.0                                                | 7            | severely disturbed by clay dike           |
| D179843                                               | CP30-7                                           | Z-601                                              | NE,NE,NW, sec. 17, T.72N.,<br>R.15W., Wapello County | 30                  | -do-           | CP-30                                               | 65.7-66.6                                                  | 4            |                                           |
| D179844                                               | CP30-9                                           | Z-602                                              | do                                                   | 30                  | -do-           | do-                                                 | 78.7-79.5                                                  | 4            |                                           |
| D179845                                               | CP30-17                                          |                                                    | do                                                   | 30                  | -do-           | do-                                                 | 111.9-112.5                                                | 3            |                                           |
| D179846                                               | CP30-20                                          | Z-603                                              | do                                                   | 30                  | -do-           | do-                                                 | 123.7-124.9                                                | 2            |                                           |
| D179847                                               | CP32-2                                           | Z-604                                              | SW,SW,SW, sec. 18, T.72N.,<br>R.15W., Wapello County | 32                  | -do-           | CP-32                                               | 24.6-25.7                                                  | 7            | core loss at base, bed may be<br>thicker. |
| D179848                                               | CP32-6                                           | Z-605                                              | dodo                                                 | 32                  | -do-           | do-                                                 | 59.2-60.2                                                  | 6            |                                           |
| D179849                                               | CP32-20                                          |                                                    | dodo                                                 | 32                  | -do-           | do-                                                 | 117.0-117.4                                                | 4            | boney                                     |
| D179850                                               | CP32-28                                          | Z-606                                              | do                                                   | 32                  | -do-           | do-                                                 | 177.5-180.7                                                | 2            |                                           |
| D179851                                               | CP28-4                                           | Z-607                                              | NW,SE,NE, sec. 36, T.72N.,<br>R.15W., Wapello County | 28                  | -do-           | CP-28                                               | 55.8-56.9                                                  | 7            |                                           |

Table 1. Identification numbers, locations, and brief descriptions of 106 Hiddle Pennsylvanian coal samples from south-central and southeastern lowa--continued

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                   | Index<br>map<br>key | Sample<br>type | Iowa<br>Geological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coa)<br>zone | Notes                                                       |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------|---------------------|----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|-------------------------------------------------------------|
| D179852                                              | CP28-11                                          |                                                    | do                                         | 29                  | -do-           | do-                                                 | 96.7-97.5                                                  | 6            |                                                             |
| D179853                                              | CP28-24                                          | Z-608                                              | do                                         | 28                  | -do-           | do-                                                 | 153.7-154.7                                                | 4            |                                                             |
| D179854                                              | CP28-31                                          | Z-609                                              | do                                         | 28                  | -do-           | do-                                                 | 181.2-184.4                                                | 4            | two partings 0.1 and 0.3 feet thick<br>in lower half of bed |
| D179855                                              | CP28-35                                          | Z-610                                              | do                                         | 29                  | -do-           | do-                                                 | 211.4-217.7                                                | 3            |                                                             |
| D179856                                              | CP28-38                                          | Z-611                                              | do                                         | 28                  | -do-           | do-                                                 | 229.4-231.2                                                | 2            | 0.4-foot-thick parting 0.4 foot from top                    |
| D185601                                              | C-AN                                             | K-69871                                            | sec. 24, T.74N., R.17W.,<br>Mahaska County | н                   | channel        |                                                     | 4.0                                                        | 4            |                                                             |
| D185602                                              | C-AA                                             | K-69872                                            | do                                         | н                   | do             |                                                     | 4.0                                                        | 4            |                                                             |
| D185603                                              | H-B1                                             | K-69873                                            | sec. 19, T.75N., R.16W.,<br>Mahaska County | t                   | do             |                                                     | 2.7                                                        | 4            |                                                             |
| D185604                                              | H-B2                                             | K-69874                                            | do                                         | I                   | do             |                                                     | 2.7                                                        | 4            |                                                             |
| D185605                                              | H-B3                                             | K-69875                                            | do                                         | I                   | do             |                                                     | 2.7                                                        | 4            |                                                             |
| D185606                                              | E-A                                              | K-69876                                            | sec. 21, T.77N., R.19W.,<br>Marion County  | J                   | do             |                                                     | 2.2                                                        | 4            |                                                             |
| D185609                                              | E1-A                                             | K-69877                                            | do                                         | J                   | do             |                                                     | 4.0                                                        | 4            |                                                             |
| D185610                                              | E1-8                                             | K-69878                                            | do                                         | J                   | do             |                                                     | 4.0                                                        | 4            |                                                             |
| D185611                                              | D-A                                              | K-69879                                            | sec. 7, T.77N., R.20W.,<br>Marion County   | К                   | do             |                                                     | 2.0                                                        | 4            |                                                             |
| D185612                                              | D-8                                              | K-69880                                            | do                                         | ĸ                   | do             |                                                     | 3.5                                                        | 4            |                                                             |

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa--continued

.

.

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                                | Index<br>map<br>key | Sample<br>type | lowa<br>Geological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coal<br>zone | Notes                                                        |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------|----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|--------------------------------------------------------------|
| D185613                                              | 0-8B                                             | K-69881                                            | dodo                                                    | ĸ                   | do             |                                                     | 3,5                                                        | 4            |                                                              |
| D186062                                              | I - B                                            | K-69959                                            | sec. 21, T.73N., R.20W.,<br>Lucas County                | F                   | do             |                                                     | 4.5                                                        | 4            |                                                              |
| D186063                                              | <b>1-</b> C                                      | K-69960                                            | do                                                      | F                   | do             |                                                     | 4.5                                                        | 4            |                                                              |
| D186064                                              | 1-D                                              | K-69961                                            | dodo                                                    | F                   | do             |                                                     | 4.5                                                        | 4            |                                                              |
| D186065                                              | ST-1                                             | K-69962                                            | sec. 10, T.74N., R.17W.,<br>Mahaska County              | 8                   | do             |                                                     | 3.7                                                        | 4            |                                                              |
| D186066                                              | EM-1                                             | K-69963                                            | sec. 11, T.74N., R.17W.,<br>Mahaska County              | L                   | do             |                                                     | 3.2                                                        | 3            |                                                              |
| D186067                                              | CP3-18                                           | K-69964                                            | SW,SW,SW, sec. 30, T.71N.,<br>R.11W., Jefferson County  | 3                   | core           | CP-3                                                | 145.5-147.5                                                | 3a           | rider coal associated with but not equivalent to coal zone 3 |
| D186068                                              | CP3-21                                           | K-69965                                            | do                                                      | 3                   | -do-           | -do-                                                | 162.0-165.0                                                | 2            |                                                              |
| D186069                                              | CP6-18                                           | K-69966                                            | NW,SW,NW, sec. 8, T.7ON.,<br>R.12W., Davis County       | 6                   | -do-           | CP-6                                                | 97.5-101.0                                                 | 4            | lower 0.3 foot boney                                         |
| D186070                                              | CP11-7                                           | K-69967                                            | NW,NW,NE,NE sec. 1, T.68N.,<br>R.16W., Appanoose County | 11                  | -do-           | CP-11                                               | 347.2-351.7                                                | 2            | 1.5-foot-thick coal ball 1.3 feet<br>from top                |
| 0186071                                              | CP13-5                                           | K-69968                                            | SE,NE,SE, sec. 1, T.7ON.,<br>R.16W., Appanoose County   | 13                  | -do-           | CP-13                                               | 264.0-266.7                                                | 3            |                                                              |
| D186072                                              | CP15-7                                           | K-69969                                            | NE,SE,SE, sec. 30, T.72N.,<br>R.15W., Wapello County    | 15                  | -do-           | CP-15                                               | 142.8-146.3                                                | 2            | upper 0.7 foot boney                                         |
| D186073                                              | CP20-11                                          | K-69970                                            | SW,SE,NW, sec. 18, T.72N.,<br>R.14W., Wapello County    | 20                  | -do-           | CP-20                                               | 115.1-117.3                                                | 3            |                                                              |
| D186074                                              | CP38-2                                           | K-69971                                            | SW,NW,NE, sec. 5, T.74N.,<br>R.15W., Mahaska County     | 38                  | -do-           | CP-38                                               | 82.6-85.0                                                  | 3            | minor sphalerite in cleats                                   |

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa--continued

.

| U.S.<br>Geological<br>Survey<br>laboratory<br>number | Iowa<br>Geological<br>Survey<br>sample<br>number | U.S.<br>Bureau<br>of Mines<br>laboratory<br>number | Location                                               | Index<br>map<br>key | Sample<br>type | lowa<br>Geological<br>Survey<br>core-hole<br>number | Depth interval<br>or<br>bed thickness<br>sampled<br>(feet) | Coal<br>zone | Notes                                                |
|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------|----------------|-----------------------------------------------------|------------------------------------------------------------|--------------|------------------------------------------------------|
| D186075                                              | L2-1                                             | K-69972                                            | sec. 8, T.72N., R.19W.,<br>Monroe County               | E                   | channel        |                                                     | 6.2                                                        | - 4          |                                                      |
| D186076                                              | L2-3                                             | K-69973                                            | dodo                                                   | Ε                   | do             |                                                     | 5.8                                                        | 4            |                                                      |
| D192368                                              | CP23-8                                           | K-81517                                            | SE,NE,SE, sec. 36, T.68N.,<br>R.15W., Davis County     | 23                  | core           | CP-23                                               | 252.3-254.6                                                | 5            | contains 0.2 foot thick calcareous pyrite concretion |
| D192369                                              | CP41-48                                          | K-81518                                            | NE,NE,SE,SW, sec. 36, T.75N.<br>R.20W., Marion County  | 41                  | -do-           | CP-41                                               | 277.5-281.7                                                | 3            |                                                      |
| 0192370                                              | CP41-51                                          | K-81519                                            |                                                        | 41                  | -do-           | do-                                                 | 297.0-299.2                                                | 3            |                                                      |
| 0192371                                              | CP42-19                                          | K-81520                                            | SE,SE,SE, sec. 1, T.75N.,<br>R.21W., Marion County     | 42                  | -do-           | CP-42                                               | 105.1-107.2                                                | 4            | minor sphalerite in cleats                           |
| D192372                                              | CP43-18                                          | K-81521                                            | NE,SW,NE, sec. 6, T.76N.,<br>R.21W., Marion County     | 43                  | -do-           | CP-43                                               | 203.8-206.8                                                | 2            |                                                      |
| D192373                                              | CP22-7                                           | K-81522                                            | SE,S¥,SE, sec. 36, T.70N.,<br>R.19W., Appanoose County | <b>2</b> 2          | -do-           | CP-22                                               | 138.6-141.0                                                | -            | no zone assigned; Mystic Coal,<br>Marmaton Group     |
| D192374                                              | CP22-48                                          | K-81523                                            | do                                                     | 22                  | -do-           | do-                                                 | 419.8-422.3                                                | 2            | large pyrite blebs                                   |
| D192375                                              | CP37-57                                          | K-81524                                            | NE,SE,NE, sec. 2, T.72N.,<br>R.26W., Clarke County     | 37                  | -do-           | CP-37                                               | 436.8-439.8                                                | 4            | 0.3-foot-thick clay parting 1.5 feet<br>below top    |
| D192376                                              | CP37-66                                          | K-81525                                            | do                                                     | 37                  | -do-           | do-                                                 | 483.4-486.1                                                | 2            | minor sphalerite in cleats                           |
| D192377                                              | CP45-2                                           | K-81526                                            | NE,NE,NW, sec. 32, T.78N.,<br>R.23W., Polk County      | 45                  | -do-           | CP-45                                               | 57.4-59.8                                                  | 3            | 0.8-foot-thick boney zone near middle                |
| D192378                                              | CP47-38                                          | K-81527                                            | SE,NE,NE, sec. 4, T.79N.,<br>R.25W., Polk County       | 47                  | -do-           | CP-47                                               | 265.5-269.3                                                | 2            | sphalerite in cleats near bottom                     |
| D192379                                              | CP40-8                                           | K-81528                                            | SW,NW,NE, sec. 6, T.74N.,<br>R.17W., Mahaska County    | 40                  | -do-           | CP-40                                               | 78.3-81.6                                                  | 2            | lower 0.4 foot boney                                 |

Table 1. Identification numbers, locations, and brief descriptions of 106 Middle Pennsylvanian coal samples from south-central and southeastern Iowa--continued

| Major and minor elements (percent)1Proximate analysis (percent)Major and minor elements (percent)1Proximate analysis (percent)Silicon (Si)MoistureAluminum (AI)Volatile matterCalcium (Ca)Fixed carbonMagnesium (Mg)AshSodium (Na)Ultimate analysis (percent)Prostassium (X)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Titanium (Ti)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Oxygen (0)-by differenceSulfur (S)Antimony (Sb)AshArsenic (As)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCobalt (Co)OrganicCobalt (Co)GorteningCadmium (Cd)Initial deformationGermanium (Ge)Initial deformationLanthanum (La)FluidLathanum (La)Free-swelling indexMaganese (Mn)Mercury (Hg)Molybdenum (Md)Scandium (Sc)Scandium (Sc)Selenium (Sc)Silver (Ag)Strontium (Sr)Thorium (Th)Thorium (Th)Vanadum (V)Ytterbium (Yb)Ytterium (Y)Zinc (Zn)Zirconium (Zr)Yinc (Zn)                                                                                                                                                  | U.S. Geological Survey                          | U.S. Bureau of Mines and<br>U.S. Department of Energy |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Silicon (Si)MoistureAluminum (A1)Volatile matterCalcium (Ca)Fixed carbonMagnesium (Mg)AshSodium (Na)Ultimate analysis (percent)Potassium (X)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Oxygen (0)-by differenceSulfur (S)Antimony (Sb)AshArsenic (As)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)SulfateBoron (B)Carbon (C)Cadmium (Cd)SulfateCadmium (Ca)OrganicCobalt (Co)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationSofteningLanthanum (La)Lead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nicoburum (Sc)Selenium (Sc)Selenium (Sc)Selenium (Sc)Selenium (Sc)Selenium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Zinconium (Zr)                                                                                                                                                                                                                                                                                | Major and minor elements (percent) <sup>1</sup> | Proximate analysis (percent)                          |
| Aluminum (Ai)Volatile matter<br>Fixed carbonMagnesium (Mg)AshSodium (Na)Ultimate analysis (percent)Potassium (K)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Trace elements (ppm) <sup>2</sup> Sulfur (S)Antimony (Sb)AshArsenic (As)Heat of combusion (Btu/lb;cal/kg)Beryllium (Be)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCopper (Cu)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexMagnesse (Mn)Mercury (Hg)Mercury (Hg)Molydenum (Mo)Mitckel (N1)Nickel (N1)Nickel (N1)Yiterbium (Sc)Selenium (Sc)Silver (Ag)Strontium (Y)Yiterbium (Yb)Yiterbium (Yb)Yiterbium (Yb)Yiterbium (Yb)Yiterbium (Yc)Yiterbium (Yc) | Silicon (Si)                                    | Moisture                                              |
| Calcium (Ca)'Fixed carbon<br>AshNodium (Na)AshPotassium (Na)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Titanium (Ti)Hydrogen (N)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Trace elements (ppm) <sup>2</sup> AshAntimony (Sb)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluide (Pb)Initial deformationLanthanum (La)FluidLathanum (Mo)Nickel (N1)Mitogen (Mo)Nickel (N1)Nickel (N1)Nickel (N1)Nickel (N1)Nickel (N1)Nickel (N1)Nickel (N1)Nickel (N1)Yiterbium (N2)Scandium (V)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Y)Yiterbium (Zr)                                                                                                                                                                                                                                                                                                                                                | Aluminum (Al)                                   | Volatile matter                                       |
| Magnesium (Mg)AshSodium (Na)Ultimate analysis (percent)Potassium (K)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Witrogen (N)Trace elements (ppm) <sup>2</sup> Sulfur (S)Antimony (Sb)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)PyriticChoronium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Mercury (Hg)Molydenum (Mo)Mitckel (N1)Noblum (No)Mitckel (N1)Nitolum (Sc)Selenium (Sc)Silver (Ag)Strontium (Tr)Yiterbium (Yb)Yiterbium (Yb)Yiterbium (Yb)Yiterbium (Yc)Yiterbium (Zr)                                                                                                                                                                                                                                                                                                               | Calcium (Ca)                                    | Fixed carbon                                          |
| Sodium (Na)Ultimate analysis (percent)Potassium (K)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Trace elements (ppm) 2Sulfur (S)Antimony (Sb)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCardmium (Cd)SulfateCromum (Ce)PyrtitcChromium (Cr)OrganicCobalt (Co)SolfatingCopper (Cu)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)FluidLanthanum (La)FluidLathanum (Mo)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nitcket (Ni)Nitcket (Ni)Nitobium (Nb)Neodynium (Nd)Scandium (Sc)Selenium (Sc)Selenium (Sc)Selenium (Th)Ytterbium (Yb)Ytterium (Y)Ytterium (Yb)Ytterium (Y)Yitrium (Yb)Ytterium (Yb)Yitrium (Yb)Ytterium (Zr)Yitroinm (Zr)                                                                                                                                                                                                                                                                                                      | Magnesium (Mg)                                  | Ash                                                   |
| Potassium (K)Ultimate analysis (percent)Iron (Fe)Hydrogen (H)Titanium (Ti)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Trace elements (ppm) 2Sulfur (S)Antimony (Sb)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)PyriticChronium (Cr)OrganicCoopper (Cu)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationSofteningFluidLanthanum (La)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Md)Scandium (Sc)Scandium (Sc)Selenium (Sc)Storutium (Sr)Thorium (Th)Varanium (U)Varadium (V)Ytterbium (Y)Yttrium (Y)Zinc (Zn)Zinconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                              | Sodium (Na)                                     |                                                       |
| Iron (Fe)<br>Titanium (Ti)<br>Phosphorous (P)<br>Sulfur (S)<br>Trace elements (ppm) <sup>2</sup><br>Antimony (Sb)<br>Arsenic (As)<br>Barium (Ba)<br>Beryllium (Be)<br>Boron (B)<br>Carbon (C)<br>Nitrogen (N)<br>Oxygen (O)-by difference<br>Sulfur (S)<br>Ash<br>Heat of combusion (Btu/lb;cal/kg)<br>Barium (Cd)<br>Cambun (Cd)<br>Cabalt (Co)<br>Copper (Cu)<br>Fluorine (F)<br>Gallium (Ga)<br>Gallium (Ga)<br>Lathanum (La)<br>Lithium (Li)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodynium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Vb)<br>Ytterium (Zr)                                                                                                | Potassium (K)                                   | Ultimate analysis (percent)                           |
| Titanium (Ti)Hydrogen (H)Phosphorous (P)Carbon (C)Sulfur (S)Nitrogen (N)Trace elements (ppm)2AshAntimony (Sb)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCarbinum (Cc)OrganicCobalt (Co)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ba)Free-swelling indexMangaese (Mn)Mercury (Hg)Molybdenum (No)Nickel (Ni)Nicolum (No)Scandium (Sc)Selenium (Se)Silver (Ag)Stortium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Y)Ytterbium (Zr)Ytterbium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iron (Fe)                                       | •                                                     |
| Phosphorous (P)<br>Sulfur (S)Carbon (C)<br>Nitrogen (N)<br>Oxygen (O)-by difference<br>Sulfur (S)<br>AshTrace elements (ppm) 2Sulfur (S)<br>AshAntimony (Sb)<br>Arsenic (As)<br>Barium (Ba)<br>Beryllium (Be)<br>Boron (B)<br>Cadmium (Cd)Heat of combusion (Btu/lb;cal/kg)<br>Barium (Ba)<br>Boron (B)<br>Cadmium (Cd)Beryllium (Be)<br>Boron (B)<br>Cadmium (Cd)Forms of sulfur (percent)<br>Organic<br>Cobalt (Co)<br>Copper (Cu)Cobalt (Co)<br>Copper (Cu)Fusibility of ash (temperature °C)<br>Fluorine (F)<br>Gallium (Ga)Initial deformation<br>Germanium (Ce)<br>Lithium (Li)Free-swelling indexManganese (Mn)<br>Mercury (Hg)<br>Molydenum (No)<br>Nickel (Ni)<br>Nickel (Ni)<br>Niobium (Nb)<br>Needymium (Nd)<br>Scandium (Sc)<br>Selenium (Sc)<br>Selenium (Sc)<br>Silver (Ag)<br>Strontium (Y)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yc)<br>Zinc (Zn)<br>Zinconium (Zr)                                                                                                                                                      | Titanium (Ti)                                   | Hydrogen (H)                                          |
| Sulfur (S)Nitrogen (N)<br>Oxygen (O)-by difference<br>Sulfur (S)<br>AshTrace elements (ppm) 2Sulfur (S)<br>AshAntimony (Sb)Heat of combusion (Btu/lb;cal/kg)<br>Barium (Ba)<br>Beryllium (Be)<br>Boron (B)<br>Cadmium (Cd)Boron (B)<br>Cadmium (Cd)Forms of sulfur (percent)<br>Boron (B)<br>Cadmium (Cc)Cobalt (Co)<br>Copper (Cu)Sulfate<br>Pyritic<br>Organic<br>Cobalt (Co)Gallium (Ga)<br>Lanthanum (La)<br>Lithium (Li)Initial deformation<br>Softening<br>FluidLanthanum (La)<br>Lead (Pb)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Sc)<br>Selenium (Sc)<br>Stontium (Y)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yc)                                                                                                                                                                                                                                                                                                                                                                           | Phosphorous (P)                                 | Carbon (C)                                            |
| Oxygen(0)-by differenceTrace elements (ppm)2AsiAntimony (Sb)<br>Arsenic (As)<br>Barium (Ba)<br>Beryllium (Be)<br>Cadmium (Cd)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)<br>Boron (B)<br>Cadmium (Cd)Forms of sulfur (percent)Boron (B)<br>Cadmium (Cd)Sulfate<br>Pyritic<br>OrganicCobalt (Co)<br>Copper (Cu)Fusibility of ash (temperature °C)Fluorine (F)<br>Gallium (Ga)<br>Lanthanum (La)<br>Lithium (L1)Initial deformation<br>Softening<br>Fluid<br>Lead (Pb)<br>Lithium (L1)Manganese (Mn)<br>Mecdymium (Nd)<br>Scandium (Sc)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbum (YD)<br>Ytterbum (YD)<br>Ytterbum (YD)<br>Ytrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                    | Sulfur (S)                                      | Nitrogen (N)                                          |
| Trace elements (ppm) 2Sulfur (S)<br>AshAntimony (Sb)<br>Arsenic (As)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)<br>Beryllium (Be)Forms of sulfur (percent)Boron (B)<br>Cadmium (Cd)Sulfate<br>PyriticCartium (Ce)Pyritic<br>OrganicCobalt (Co)<br>Copper (Cu)Fusibility of ash (temperature °C)Fluorine (F)<br>Gallium (Ga)Initial deformation<br>Softening<br>Fluorine (Fb)Lanthanum (La)<br>Lead (Pb)Free-swelling indexLithium (L1)Free-swelling indexManganese (Mn)<br>Mecoury (Hg)<br>Molybdenum (Mo)<br>Nickel (N1)Free-stalling indexNickel (N1)<br>Vanadium (V)<br>Vtterbium (Yb)<br>Vtterbium (Yb)<br>Vtterbium (Yb)Trace (Zn)<br>Zinc (Zn)<br>Zinc (Zn)                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | Oxygen (0)-by difference                              |
| AshAntimony (Sb)Arsenic (As)Barium (Ba)Beryllium (Be)Boron (B)Cadmium (Cd)Cadmium (Cd)Cobalt (Co)Cobalt (Co)Cobalt (Co)Copper (Cu)Fluorine (F)Gallium (Ga)Initial deformationGermanium (Ca)Lanthanum (La)Lanthanum (La)Lithium (Li)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Nickel (Ni)Uranium (Sc)Silver (Ag)Strontium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Ytterbium (Yb)Ytterbium (Yb)Zinc (Zn)Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trace elements (ppm) <sup>2</sup>               | Sulfur (S)                                            |
| Antimony (Sb)Arsenic (As)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Softenium (Se)Silver (Ag)Strontium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Ytterbium (Yb)Ytterbium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | Ash                                                   |
| Arsenic (As)Heat of combusion (Btu/lb;cal/kg)Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Scandium (Sc)Selenium (Se)Silver (Ag)Silver (Ag)Strontium (Sr)Thorium (V)Ytterbium (Vb)Ytterbium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Sandium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antimony (Sb)                                   |                                                       |
| Barium (Ba)Forms of sulfur (percent)Boron (B)SulfateCerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Niobium (Nb)Neodymium (Sc)Selenium (Sc)Selenium (Sc)Silver (Ag)Strontium (Th)Uranium (U)Vanadium (V)Ytterbium (Y)Zinc (Zn)Zirconium (Zr)Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic (As)                                    | Heat of combusion (Btu/lb;cal/kg)                     |
| Beryllium (Be)Forms of sulfur (percent)Boron (B)SulfateCadmium (Cd)SulfateCerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Scandium (Sc)Selenium (Sc)Selenium (Sr)Strontium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Zinc (Zn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barium (Ba)                                     |                                                       |
| Boron (B)<br>Cadmium (Cd)<br>Cadmium (Cd)<br>Corium (Cr)<br>Cobalt (Co)<br>Copper (Cu)<br>Fluorine (F)<br>Gallium (Ga)<br>Germanium (Ge)<br>Lanthanum (La)<br>Lead (Pb)<br>Lithium (Li)<br>Maganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Nickel (Ni)<br>Nickel (Ni)<br>Nickel (Sc)<br>Selenium (Sc)<br>Selenium (Sc)<br>Silver (Ag)<br>Strontium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Ytterbium (Yb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beryllium (Be)                                  | Forms of sulfur (percent)                             |
| Cadmium (Cd)SulfateCerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickei (Ni)Niobium (Nb)Neodymium (Nd)Scandium (Sc)Selenium (Sc)Selenium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Boron (B)                                       |                                                       |
| Cerium (Ce)PyriticChromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Free-swelling indexMercury (Hg)Molybdenum (Mo)Nickel (Ni)Niobium (Nb)Neodymium (Nd)Scandium (Sc)Selenium (Sc)Selenium (Sr)Thorium (Th)Urandium (V)Ytterbium (V)Ytterbium (V)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Zinc (Zn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cadmium (Cd)                                    | Sulfate                                               |
| Chromium (Cr)OrganicCobalt (Co)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGermanium (Ga)Initial deformationGermanium (La)FluidLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Nickel (Ni)Nickel (Ni)Scandium (Sc)Selenium (Sc)Selenium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cerium (Ce)                                     | Pyritic                                               |
| Cobalt (Co)Fusibility of ash (temperature °C)Copper (Cu)Fusibility of ash (temperature °C)Gallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Niobium (Nb)Neodymium (Nd)Scandium (Sc)Selenium (Sc)Silver (Ag)Strontium (Sr)Thorium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zinconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chromium (Cr)                                   | Organic                                               |
| Copper (Cu)Fusibility of ash (temperature °C)Fluorine (F)Initial deformationGallium (Ga)Initial deformationGermanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Nickel (Ni)Nickel (Ni)Niobium (Xb)Scandium (Sc)Selenium (Se)Silver (Ag)Silver (Ag)Strontium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Standard (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cobalt (Co)                                     |                                                       |
| Fluorine (F)<br>Gallium (Ga)<br>Germanium (Ge)<br>Lanthanum (La)<br>Lanthanum (La)<br>Lithium (Li)<br>Manganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper (Cu)                                     | Fusibility of ash (temperature °C)                    |
| Gallium (Ga)Initial deformation<br>Softening<br>Lanthanum (La)Lanthanum (La)Softening<br>FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Niobium (Nb)Neodynium (Nd)Scandium (Sc)Selenium (Sc)Silver (Ag)Strontium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Strontium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluorine (F)                                    |                                                       |
| Germanium (Ge)SofteningLanthanum (La)FluidLead (Pb)Free-swelling indexManganese (Mn)Mercury (Hg)Molybdenum (Mo)Nickel (Ni)Niobium (Nb)Neodymium (Nd)Scandium (Sc)Selenium (Se)Silver (Ag)Strontium (Sr)Thorium (Th)Uranium (U)Vanadium (V)Ytterbium (Yb)Yttrium (Y)Zinc (Zn)Zirconium (Zr)Softenium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gallium (Ga)                                    | Initial deformation                                   |
| Lanthanum (La) Fluid<br>Lead (Pb)<br>Lithium (Li) Free-swelling index<br>Manganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Germanium (Ge)                                  | Softening                                             |
| Lead (Pb)<br>Lithium (Li) Free-swelling index<br>Manganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Sc)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lanthanum (La)                                  | Fluid                                                 |
| Lithium (Li) Free-swelling index<br>Manganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lead (Pb)                                       |                                                       |
| Manganese (Mn)<br>Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Sc)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lithium (Li)                                    | Free-swelling index                                   |
| Mercury (Hg)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Manganese (Mn)                                  |                                                       |
| Molybdenum (Mo)<br>Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mercury (Hg)                                    |                                                       |
| Nickel (Ni)<br>Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Ytterbium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molybdenum (Mo)                                 |                                                       |
| Niobium (Nb)<br>Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Ytterbium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickei (Ni)                                     |                                                       |
| Neodymium (Nd)<br>Scandium (Sc)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Ytterbium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Niobium (Nb)                                    |                                                       |
| Scandium (SC)<br>Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (V)<br>Ytterbium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Neodym1um (Nd)                                  |                                                       |
| Selenium (Se)<br>Silver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Ytterbium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scandium (SC)                                   |                                                       |
| Stiver (Ag)<br>Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selenium (Se)                                   |                                                       |
| Strontium (Sr)<br>Thorium (Th)<br>Uranium (U)<br>Vanadium (V)<br>Ytterbium (Y)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sliver (Ag)                                     |                                                       |
| Uranium (U)<br>Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strontium (Sr)<br>Thenium (Th)                  |                                                       |
| Vanadium (V)<br>Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | licanium (II)                                   |                                                       |
| Ytterbium (Yb)<br>Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vanadium (V)                                    |                                                       |
| Yttrium (Y)<br>Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vttorhium (V)                                   |                                                       |
| Zinc (Zn)<br>Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yttrium (Y)                                     |                                                       |
| Zirconium (Zr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7inc (7n)                                       |                                                       |
| L'I CONTAIN (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zinc (Zn)<br>Zircopium (Zr)                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                       |

Table 2. Analyses and physical tests performed by various laboratories

Reported as oxides in 525°C laboratory ash as well as on a whole-coal basis. Reported as parts per million in 525°C laboratory ash and (or) on a whole-coal basis.



Figure 3. Flow chart showing sequence of sample preparation and chemical analysis. Modified from Swanson and Huttman (1976, figure 1).

12

5.6, 3.8, 2.6, 1.8, 1.2, etc., but are reported arbitrarily as midpoints of these brackets, i.e. 10, 7, 5, 3, 2, 1.5, 1, etc. The precision of a reported value is approximately plus or minus one bracket at 68 percent confidence, or two brackets at 95 percent confidence.

additional elements not Twenty-two listed in tables 4 and 5 were not found during emission spectrographic analysis. These elements and their lower limits of determination in ppm are: palladium (5); bismuth, indium, and tin (20); gold, holmium, and thulium (50); (70); dysprosium, erbium, lutetium gadolinium, platinum, rhenium, and (100); europium, hafnium, thallium praseodymium, samarium, and tungsten (200); terbium (700); tantalum (1,000); and tellurium (5,000).

Changes in the analytical procedures outlined in figure 3 for phosphorus content in ash, and thorium and arsenic contents in whole coal, result in variable lower-detection limits. Modifications in the analytical technique for determining phosphorus content in ash, as determined by X-ray fluorescence spectroscopy, resulted in a lowerdetection limit of 0.04 percent phosphorus  $(0.1 \text{ percent } P_2 O_5)$  for samples D166027-D166043 and  $0.4^{\circ}$  percent phosphorus (1.0 percent P<sub>2</sub>0<sub>5</sub>) for all other Thorium contents of samples samples. D176169-D176200, D166027-D166043. D179838-D179841, D179844-D179847 D179849, D179850, and D179852-D179856 determined by were delayed-neutron activation analysis with a lower-detection limit of 3.0 ppm; the remaining 42 samples were analyzed by instrumental neutron-activation analysis with a lower-detection limit 0.1 ppm. of Arsenic contents of samples listed in this report were determined by three different analytical methods: samples D166027-D166043 and D176169-D176200 were analyzed spectro-photometrically (lower-detection limit of 1.0 ppm); samples D179838-D179856 were analyzed by the graphite-furnace atomic absorption method (lower-detection limit of 0.5 ppm); and the other 38 samples were analyzed by instrumental neutron activation analysis (lower-detection limit of 0.1 ppm).

## Summary Tables

To aid in the statistical comparison of the data, the coal samples were divided into five groups based upon nine palynologically-determined stratigraphically-positioned coal zones (Ravn, 1980, personal communication: Ravn. in press). The first group of samples (15 samples) is from coal-zone 2; the second group (15 samples) is from coalzone 3; the third group (49 samples) is from coal-zone 4; the fourth group (5 samples) is from coal-zone 5; and the fifth group (16 samples) is from coalzones 6, 7, 8, and 9. Only five coal zones are equivalent with currently recognized named memebers. Coal-zones 1, 2, and 3 occur stratigraphically below the Laddsdale coal. Coal-zone 4 is equivalent to most historical references to Laddsdale Coal the (Howes, 1981, personal communication). Coal-zone 5 occurs above the Laddsdale Coal and below the Wiley Coal. Coalzones 6, 7, 8, and 9 are equivalent, respectively, to the currently named coal beds: the Wiley Coal, the Whitebreast Coal, the Wheeler Coal, and the Bevier Coal (Ravn, 1980, personal communication). Statistical summaries were not made for the Mystic Coal, in the Marmaton Group, the coal associated with coal-zone 3, sample D186067, and coal-zone 1 because of the limited number of samples (one, one, and three respectively) available. Sample D179842 (zone 7) was not included in the summaries because it contained 68.8 percent ash and is a coaly shale.

Unweighted statistical summaries for coal-zone-2 samples are listed in tables 6 and 7; coal-zone-3 samples, tables 8 and 9; coal-zone-4 samples, tables 10 and 11; coal-zone-5 samples, tables 12 and 13; coal-zones 6, 7, 8, and 9, tables 14 and 15; and for 105 Cherokee Group coal samples from Iowa, tables 16 and 17. The number of U.S. Bureau of Mines analyses summarized for each coal zone is less than the number of U.S. Geological Survey analyses, because not every sample was sent to the U.S Bureau of Mines and because of sampling problems discussed later in the section on Apparent Rank.

For comparison with the Iowa Cherokee Group coals, statistical summaries of analyses for 114 Pennsylvanian coal samples from the Eastern Interior coal region (Illinois Basin) from Gluskoter and others (1977), and summaries of analyses of 63 Upper Cretaceous Williams Fork Formation coal samples from the Yampa field, Routt and Moffat Counties, Colorado from Hildebrand and others (1981) are listed in tables 18and 20-21 respectively. 19 These analyses are from coals of about the same rank as the Iowa coals. Similar rank coals were selected for comparison because element composition of coal. particularly for lower rank coals. varies with rank (Hildebrand and Hatch. 1977). Illinois Basin coal data summarized in tables 18 and 19 primarily represent samples of the Harrisburg (No. 5) coal (32 samples) and Herrin (No. 6) coal (49 samples) that were collected almost exclusively from operating coal mines (105 of 114 samples). Consequently, the statistics for the Illinois Basin samples are the biased toward thicker. better quality (lower ash and lower sulfur contents) coals of the Illinois Basin and are not strictly comparable to the statistics for the Cherokee Group sample set. A more serious source of disparity between the Iowa Cherokee Group and Illinois Basin sample sets results from the exclusion of all mineral bands, partings, and nodules more than one centimeter (3/8 inch) thick during collection of the Illinois Basin samples. This sampling procedure results in an underestimation of ash and sulfur contents and an overestimation of the heat of combustion (Btu/lb) of the samples relative to the in-place coal.

#### Statistical Methods

In tables 6-21, the geometric mean (GM) is used as the estimate of the most probable element content (mode); the geometric mean is calculated by taking the logarithm of each analytical value, summing the logarithms, dividing the sum by the total number of values, and obtaining the antilogarithm of the result. The measure of scatter about the mode used in this report is the geometric deviation (GD), which is the antilog of the standard deviation of the logarithms of the analytical values. These statistics are used because the quantities of trace elements in natural materials commonly exhibit positively skewed frequency distributions; such distributions are normalized by analyzing and summarizing trace-element data on a logarithmic basis.

If the frequency distributions are lognormal, the geometric mean is the best estimate of the mode, and the estimated range of the central two-thirds of the observed distribution has a lower limit equal to GM/GD and an upper limit equal to GMxGD. The estimated range of the central 95 percent of the observed distribution has a lower limit equal to  $GM/(GD)^2$  and an upper limit equal to  $GMx(GD)^2$  (Connor and others, 1976).

Although the geometric mean is, in general, an adequate estimate of the most common analytical value, it is, nevertheless, a biased estimate of the arithmetic mean. The estimates of the arithmetic means as listed in the summary tables are Sichel's  $\underline{t}$  statistic (Miesch, 1967).

A common problem in statistical summaries of trace-element data arises when the element content of one or more of the samples is below the limit of analytical determination. This circumstance, which occurs for 14 elements listed in the summary tables, is called a "censored" distribution. Procedures developed by Cohen (1959) were used to compute unbiased estimates of the geometric mean, geometric deviation, and arithmetic mean when the data are "censored."

To be consistent with the precision of the semiquantitative emission spectrographic technique, arithmetic and geometric means of elements determined by this method were reported as the midpoint of the enclosing six-step brackets.

Data summaries for phosphorus and cerium contents were not included in any of the summary tables because these elements were detected in too few samples to calculate meaningful statistics. For the same reason, summaries of silver and niobium contents in tables 7, 9, 11, and 13, neodymium content in tables 9, 11, 13, 15, and 17, lanthanum content in tables 11, 13, and 15, and ytterbium content in tables 7, 9, 11, 13, and 17 were also omitted.

#### DISCUSSION OF RESULTS

#### Apparent Rank

The apparent rank of each of the 90 coal samples from south-central and southeastern Iowa was calculated using the data in table 3, and the approximation to the Parr formula and classifications in ASTM designation D-388-77 (American Society for Testing and Materials, 1978). The ASTM classification scheme is reproduced in table 22. The apparent ranks range from subbituminous B coal (1 sample) through subbituminous A coal (5 samples), highvolatile C bituminous coal (68 samples), high-volatile B bituminous coal (15 samples), to high-volatile Α bituminous coal (1 sample).

The single sample of subbituminous B rank (D185606) was from a shallow surface mine; the coal at that location has probably been slightly weathered. At the other end of the distribution. high-volatile-A-bituminous-coal the sample (D186069), 12 of 14 highvolatile-B-bituminous-coal samples, and 11 samples from the higher end of highvolatile-C-bituminous-coal range are from core holes CP3, CP6, CP7, CP10, CP11, CP13, and CP15. These 24 samples were collected early in the project and were apparently allowed to dry out before bagging, resulting in low moiserroneously high ture contents and apparent ranks. This conclusion is based on data from Neelv H. Bostick (written communication, 1982) who found no significant difference in average vitrinite reflectance  $(R_0)$ , a second measure of coal rank, in samples from these seven core holes when compared to samples collected later in the study. relationship moist. The between mineral-matter-free (mmmf) Btu/lb and apparent rank for the remaining 65 Iowa coal samples is shown in figure 4.

Average Btu/lb (mmmf) for coal-zones 2, 3, 4, 5, and 6-9 are very similar (table 23), ranging from 11,820 Btu/lb for coal zone 5 to 12,110 Btu/lb for coal-zone 4. Average heat of combustion for 65 Iowa Cherokee Group coal samples is 12.040 Btu/lb (mmmf), and is similar to the heat of combustion of samples from the Yampa Field (11,910 Btu/lb, mmmf). Both sets have an average apparent rank of high-volatile C bituminous coal. Average heat of combustion for Illinois Basin the samples is higher (12,990 Btu/1b) reflecting a slightly higher average apparent rank (high-volatile C to highvolatile B bituminous coal).

### Proximate, Ultimate, and Related Analyses

Arithmetic means and ranges (asreceived basis) of the proximate and ultimate analyses, heat-of-combustion.



Moist, mineral-matter-free





Figure 5. Arithmetic means (\*) and ranges [---] of proximate and ultimate analyses and forms of sulfur (as-received basis) for Iowa Cherokee Group coal samples from coal-zones 2, 3, 4, 5, and 6-9.



kcal/kg



Figure 6. Arithmetic means (\*) and ranges [---] of ash-fusion temperature and heats of combustion (as-received basis) for Iowa Cherokee Group coal samples from coal-zones 2, 3, 4, 5, and 6-9.

forms-of-sulfur, and ash-fusion-temperature data for samples from coal-zones 2, 3, 4, 5, and 6-9 are shown in figures 5 and 6. Statistical comparisons (Student's t test, 95 percent confidence level) of the means from the different Cherokee Group coal zones show two significant differences: a) zone 5 coals have the highest ash and organic-sulfur contents and the lowest heats of combustion, and b) ash-fusion significantly temperatures decrease from zone 2 through zones 6-9. For the other analyses, average composition of coals from one zone may be significantly higher or lower than those from a second zone, but may be similar to the analyses of a third zone. For example, mean sulfur content of zones 6-9 is significantly lower than mean sulfur contents of zones 2 and 5, but is statistically similar to the mean sulfur contents of zones 3 and 4.

Arithmetic means and ranges of the proximate and ultimate analyses, heatof-combustion, and forms-of-sulfur data for the Iowa Cherokee Group, Illinois Basin, and Yampa field sample sets are shown in figures 7 and 8. A strict statistical comparison of these three data sets is not possible because of a lack of standard deviations for the Iowa Cherokee Group and Yampa field



Figure 7. Arithmetic means (\*) and ranges [---] of proximate and ultimate analyses and forms of sulfur (as-received basis) for 65 Iowa Cherokee Group coal samples, 114 Illinois Basin coal samples, and 44 Yampa field, Colorado coal samples. [Illinois Basin data are from Gluskoter and others (1977, table 8). Yampa Field data are from Hildebrand and others (1981, table 7a).]



------ lowa somples ----- Illinois Basin samples ------ Yampa field, Colorado, samples

Figure 8. Arithmetic means (\*) and ranges [---] of heats of combustion (asreceived basis) for 65 Iowa Cherokee Group coal samples, 114 Illinois Basin coal samples, and 44 Yampa field, Colorado, coal samples. [Illinois Basin data are from Gluskoter and others (1977, table 8); Yampa field data are from Hildebrand and others (1981, table 7a).]

sampling biases previously sets and discussed. However, the information listed in tables 16, 18, and 20 and illustrated in figures 7 and 8 shows that Iowa Cherokee Group coals probably have lower nitrogen, fixed-carbon, carbon, and hydrogen contents; higher ash, and total-, sulfate-, and pyriticsulfur contents, and a lower heat of combustion. Illinois Basin coals have lower moisture contents, higher volatile matter and carbon contents, and a higher heat of combustion. The Yampa field samples have higher oxygen and oxygen/carbon mole ratios (moisturefree basis, table 23) and much lower sulfate-, total-. pyritic-, and organic-sulfur contents. Hydrogen/carbon mole ratios (moisture-free basis, table 23) for the Iowa Cherokee Group, Illinois Basin, and Yampa field sample sets are similar.

The lower oxygen/carbon mole ratios for the high-sulfur coals probably resulted from greater bacterial activity in the peat swamps that produced the high-sul-Because bacteria utilize fur coals. oxygen-rich organic components (for example, cellulose or lignin) more easily than more hydrogen-rich components (for example, cuticles, spore and resins) pollen exines, waxes and (Waksman and Stevens, 1928), increased bacterial activity would result in a depletion of oxygen-rich organic matter and decreased oxygen/carbon mole ratios.

Differences in ash and total-. sulfate. and pyritic-sulfur contents between Iowa Cherokee Group and Illinois Basin coals result in part from the sampling hiases discussed earlier (core and mine samples of Iowa coal versus mine samples for Illinois coal). between Differences Iowa Cherokee Group, Illinois, and Yampa field coals in moisture and carbon contents and heat of combustion are probably due to differences the minor in thermal maturity.

#### Element Analyses

Geometric means and ranges for the contents of 35 elements in coal samples from coal-zones 2, 3, 4, 5, and 6-9 are shown in figure 9. Statistical comparisons (Student's t test, 95 percent confidence) of the summary data from the different coal zones show few significant differences. One significant difference, however, is that the contents of nine elements (Na, Mg, K, As, Mn, Mo, Sb, U, and V) increase from coal-zone 2 through coal-zones 6-9.

Geometric means and ranges for the contents of 34 elements in the Iowa, Cherokee Group, Illinois Basin, and Yampa field sample sets are shown in



Figure 9. Geometric means (\*) and ranges [---] for contents of 40 elements (air-dried, whole-coal basis) in Iowa Cherokee Group coal samples from coal-zones 2, 3, 4, 5, and 6-9. Wavy lines to the left of the range brackets for Cd, F, La, Mo, Nd, Sb, Se, Th, and U indicate data that are less than the lower-detection limit.



Figure 9. Geometric means (\*) and ranges [---] for contents of 40 elements (air-dried, whole-coal basis) in Iowa Cherokee Group coal samples from coal-zones 2, 3, 4, 5, and 6-9--continued.



Figure 9. Geometric means (\*) and ranges [---] for contents of 40 elements (air-dried, whole-coal basis) in Iowa Cherokee Group coal samples from coal-zones 2, 3, 4, 5, and 6-9--continued.



Figure 10. Geometric means (\*) and ranges [---] for contents of 38 elements (whole-coal basis) in 105 Iowa Cherokee Group coal samples, 114 Illinois Basin coal samples, and 63 Yampa field coal samples. Iowa and Yampa field data are on an air-dried basis, Illinois Basin data are on a moisture-free basis. Illinois Basin data are from Gluskoter and others (1977, table 8); Yampa field data are from Hildebrand and others (1981, table 9a). Wavy lines to the left of the range brackets for K, Ag, Cd, Co, Cr, F, La, Mo, Nb, Pb, Sb, Sc, Se, Sr, Th, and U indicate data that are less than the lower-detection limit. Illinois Basin data summaries for La, Li, Nb, and Y are not available; Yampa field data summaries for Ag, Ge, and La are not available.

24



Figure 10. Geometric means (\*) and ranges [---] for contents of 38 elements (whole-coal basis) in 105 Iowa Cherokee Group coal samples, 114 Illinois Basin coal samples, and 63 Yampa field coal samples-- continued.

figure 10. The information listed in tables 17, 19, and 21 and illustrated in figure 10 shows that the contents of at least 16 elements are directly related to sulfur content of the coals. Of the three sample sets, Iowa Cherokee Group coals have the highest mean sulfur content (5.8 percent), Illinois Basin coals an intermediate content (3.1 percent), and Yampa field coals the lowest sulfur content (0.6 per-Iowa Cherokee Group coal has cent). the highest content of Ca, Fe, Ag, As, Be, Co, Cu, Ge, Mn, Ni, Pb, Sc, Se, U, Y, and Zn; Illinos coal has an intermediate content of these elements; and Yampa field coal has the lowest content of these elements. The low-sulfur Yampa field coal also has significantly lower mean contents of K, Cd, Cr, Hg, Mo, Sb, and V than the relatively highsulfur Iowa Cherokee Group and Illinois Basin coals.

Element distributions in coals are controlled by many factors, including provenance, geochemical conditions (pH, Eh. salinity) of the depositional and early diagenetic environments, thermal maturity (rank), groundwater composition, and nature and intensity of any epigenetic mineralization (Hatch, A, in press). According to Cecil and others (1982) the most important geochemical parameter during deposition and early diagenesis is the pH of waters in the peat swamp. Under low-pH conditions (3-4.5), solution of most metal ions is favored and the activity of sulfatereducing bacteria is minimal; the resulting peat has low sulfur and metal contents. The activity of sulfatereducing bacteria reaches a maximum when pH conditions are near neutral (6-8) (Baas Becking and others, 1960).

A strong relationship exists between sulfur content in coals and CaCO<sub>3</sub> content of associated rocks (Cecil and others, 1982). Lack of carbonate rocks would indicate minimal carbonate buffering of depositional and early diagenetic connate waters, resulting in relatively low-pH conditions (3-4.5); presence of carbonates and calcareous shales would indicate relatively highpH conditions (6-8). Iowa Cherokee Group and Illinois Basin coals are associated with carbonates and have high sulfur contents. In contrast, Yampa field coals have low sulfur contents and are associated with noncalcareous rocks.

Elements whose contents are significantly higher in the high-sulfur sample sets may be fixed by a variety of processes: (1) they form highly insoluble sulfides (Fe, Ag, As, Cd, Co, Cu, Hg, Ni, Sb, and Zn); (2) they are included in minerals that form at (or are less readily leached at) near-neutral pH's (Ca and Mn carbonates, Sc and Th phosphates, and K and Ca in illite or smectite clays); or (3) they have multiple valence states (Fe, S, U, Se, Mo, Ge, Cr, V, and Be), and may be fixed in the coal during the peat stage or subsequent stages of coalification through reduction of the element by reaction with H<sub>2</sub>S or other reactive sulfur species, and may subsequently be incorporated into stable organic or mineral phases. Except for chromium, the elements listed in (3) are also the same elements enriched in roll-type uranium deposits (Harshman, 1974), suggesting that similar geochemical processes are operating in both environments (Hatch, B, in press).

### Correlation Analyses

Correlation coefficients relating the variability of each parameter with the variability of every other parameter were calculated from the element data for coal-zones 2, 3, 4, 5, and 6-9. Geochemical associations of some elements are apparent from these correlation coefficients.

(1) In all five coal groups there are strong positive correlation coefficients ( $\geq$ 0.89) between zinc and

cadmium. In Iowa coals, zinc occurs as sphalerite (ZnS) that is found along cleats and fractures in the coal, and is associated with pyrite, calcite, kaolinite, and barite (Hatch, Avcin, and others, 1976). In similar occurrences in Illinois Basin coals, cadmium is found in solid solution with zinc in the sphalerite (Gluskoter and Lindahl, 1973, and Hatch, Gluskoter and Lindahl, 1976). The strong positive correlation coefficients for Iowa Cherokee Group coals suggest a similar relationship. Similar high zinc:cadmium correlation coefficients were found for Missouri coals by Wedge and Hatch (1980). These occurrences of sphalerite and associated minerals have been interpreted by Hatch, Gluskoter, and Lindahl (1976) to represent post-depositional, epigenetic mineralization of the coals.

The zinc and cadmium contents of Iowa Cherokee Group coal samples are as much as 18,000 and 100 ppm, respectively, and have arithmetic means of 1,100 and 18 ppm, respectively. Most zinc and cadmium could be removed and recovered from the coals by conventional washing techniques (Hatch, Gluskoter, and Lindahl, 1976).

An apparent zoning of zinc/cadmium molecular ratios was noted in five cores (CP-7, CP-10, CP-21, CP-28, and CP-32) from Wapello and Appanoose Counties by Hatch, Avcin, and others (1976). The data listed in table 24 and illustrated in figure 11 show that cadmium is enriched relative to zinc in the stratigraphically higher coals. indicating a chemical differentiation of the solutions from which the sphalerite and associated minerals were precipitated.

(2) In all five coal groups, calcium and manganese have high positive correlation coefficients (0.6 to 0.9); manganese does not correlate well with any other element. Because manganese commonly substitutes for calcium in calcite (CaCO<sub>3</sub>), it is presumed to occur in calcite in Iowa Cherokee Group coals. Similar associations were found in Illinois Basin coals by Gluskoter and others (1977) and in Missouri coals by Wedge and Hatch (1980). Abundant calcite occurs in cleats and fractures in Iowa Cherokee Group coals and is thought to have been deposited during the sphalerite mineralization process.

(3) In all five coal groups, elements that generally occur in sedimentary rocks as aluminosilicate minerals (Al, Si, Mg, K, Li, and Zr) or as resistant oxides or phosphates (Ti, Th, Sc, and La) have mutually positive correlation coefficients (0.6 to 0.9) suggesting a detrital origin (water or wind transported). In coal-zones 2, 3, and 4, Cr, Mo, U, and V are positively correlated (0.5 to 0.7) to this element assemblage as are Na and Y (correlation coefficients 0.7 to 0.9) in coal-zones 5 and 6-9.

(4) In all five coal groups, Fe, As, Hg, and Sb have mutually high positive correlation coefficients (0.6 to 0.9). Most of the iron is probably present in the coals as pyrite (FeS<sub>2</sub>). The other three elements are commonly found in nature as sulfides and are presumably associated with the pyrites. In coalzones 2, 3, and 4, Cu, Pb, Co, and Ni are positively correlated (0.5 to 0.9) with the Fe, As, Hg, and Sb assemblage of elements; in coal-zones 5 and 6-9, U, Se, Mo, Cr, and V are positively correlated (0.6 to 0.9) with this assemblage.

The changes in element association of U, Mo, Cr, and V from an aluminosilicate assemblage in the lower part of the section (coal-zones 2, 3, and 4) to a sulfide assemblage in the upper part of the section (coal-zones 5 and 6-9), are related to the increases in mean element content with higher stratigraphic position (illustrated in figure 9). With higher stratigraphic position Na, Mg, and K also have higher mean contents. Avcin and Koch (1979)



Figure 11. Relationship of the zinc/cadmium mole ratio in coal to depth in five core holes from Wapello and Appanoose Counties, Iowa.

indicated that depositional environments for the Cherokee and Marmaton Groups changed from predominantly terrestrial in the lower part of the Cherokee Group to predominantly marine higher in the stratigraphic section.

Presumably Na, Mg, K, Cr, V, U, Mo, Sb, Se, and Ag were more readily available in the more marine-influenced environments in which upper Cherokee and Marmaton rocks were deposited. Changes in contents of Na, Mg, and K apparently affect the ash-fusion temperatures which drop significantly from coal-zone 2 to coal-zones 6-9 (figure 6).

All six coal samples from coal-zone 7 and three samples from coal-zone 4 (D176171, D176183, and D179843) have much higher contents of U, Mo, Sb, Se, V, and Ag. The coals at these sample sites are overlain by black, sometimes phosphatic, shale; shales that were deposited under anoxic marine conditions (Heckel, 1977).

#### SUMMARY

- Middle Pennsylvanian Cherokee Group coals from south-central and southeastern Iowa are typical highsulfur, high-ash coals, with a mean total sulfur content of 5.8 percent; and a mean ash content of 15.9 percent. Mean, as-received heat of combustion is 9,640 Btu/lb. Mean, moist, mineral-matter-free heat of combustion is 12,040 Btu/ lb, which is equivalent to an apparent rank of high-volatile C bituminous coal.
- 2. In a comparison with equivalentrank Illinois Basin and Yampa field coals, Iowa coals have the highest mean contents of 16 elements (S, Ca, Fe, Ag, As, Be, Co, Cu, Ge, Mn, Ni, Pb, Sc, Se, U, and Zn).

- 3. Low sulfur Yampa field coals have significantly lower mean contents of K, Cd, Cr, Hg, Mo, Sb, and V than high-sulfur, Iowa Cherokee Group and Illinois Basin coals.
- 4. Iowa Cherokee Group coals have been subject to post-depositional, epigenetic sphalerite/calcite/pyrite/ kaolinite/barite mineralization. Zinc and cadmium contents of Iowa coal samples are as much as 18,000 ppm and 100 ppm respectively. Most zinc and cadmium can be removed and recovered from the coals by conventional washing techniques.
- 5. Iowa coal samples also have as much as 300 ppm Co, 150 ppm Cr, 70 ppm Ge, 150 ppm Mo, 700 ppm Ni, and 300 ppm V. As conventional world supplies of these metals and zinc and cadmium are depleted, Iowa Cherokee Group coal should be considered as a possible source.
- 6. Element associations of U, Mo, Cr, and V change from an aluminosilicate assemblage in the lower part of the section (coal-zones 2, 3, and 4) to a sulfide assemblage higher in the section (coal-zones 5 and 6-9). This change is related to increased element content with higher stratigraphic position. These increases are thought to be related to differences in depositional environments of the coalassociated rocks which change from predominantly terrestrial lower in the stratigraphic section to pre-dominantly marine higher in the section. The decrease in ashfusion temperatures with higher stratigraphic position is probably related to increased contents of Na, Mg, and K.
- Coals, in particular, samples from coal-zone 7, which are overlain by marine, phosphatic, black-shale
lithologies, have the highest contents of U, Mo, Ag, Sb, Se, and V.

#### ACKNOWLEDGMENTS

The authors are indebted to Vernon E. Swanson, Orville J Van Eck, and Samuel J. Tuthill for their initiation of this project and for their direction and encouragement. Of fundamental importance to this paper was the contribution of the team of chemical laboratory personnel in the U.S. Geological Survey under the direction of Claude Huffman, Jr. and Joseph H. Christie: James W. Ardith J. Bartel, Leon A. Baker, Bradley, Elaine L. Brandt, George T. Burrow, Nancy M. Conklin, James G. Crock, Celeste M. Ellis, Edward J. Fennelly, Johnnie M. Gardner, William D. Goss, Patricia G. Guest, John C. Hamilton, Raymond G. Havens, Adolph W. Haubert, Jay P. Hemming, Jessie O. Johnson, Roy J. Knight, Lorraine Lee, Robert E. McGregor, Violet M. Merritt, Harriet G. Huah T. Millard, Jr., Nieman, Ralph L. Nelms, Jeffry O'Kelly, Charles A. Ramsey, George O. Riddle, Caryl L. Shields, Gaylord D. Shipley, Vertie C. Smith, James A. Thomas, Michele L. Tuttle, Richard E. Van Loenen, Robin J. Vinnola, James S. Ralph J. Wahlberg, William J. Walz, White, Robert J. Young, and Robert A. Zielinski. In connection with the acknowledgment to the above staff of chemical analysts, the invaluable contribution of the chemists in the (Forrest E. Coal Analysis Section Walker, Chemist in Charge), U.S. Bureau of Mines, Pittsburgh, Pa., is also gratefully acknowledged. The assistance of James Dockal, Logan Kuiper, Mary Howes, and Edwin R. Landis in collecting mine samples; the contributions of the drillers and driller's assistants, Randy Bentzinger, Kevin Bentzinger, Whitey Woods, Ora Robinson, and Jan Watson; and the contributions of Robert Rayn, John Swade, and numerassistants ous other student are gratefully acknowledged.

We also appreciate the cooperation of the many mine owners and operators in allowing access to the mines for sample collection.

We would also like to acknowledge the efforts of Survey Staff member Laurie Comstock, who prepared this manuscript, and graphic artists Donna McGuire and Kay Irelan who prepared the illustrations.

#### REFERENCES

Abernethy, R. F., Peterson, M. J., and Gibson, F. H., 1969a, Major ash constituents in U.S. Coals: U.S. Bureau of Mines Report of Investigations 7240, 9 p.

\_\_\_\_1969b, Spectrochemical analysis of coal ash for trace elements: U.S. Bureau of Mines Report of Investigations 7281, 30 p.

- American Society for Testing and Materials, 1978, Standard specifications for classification of coals by rank (ASTM designation D-388-77): 1978 Annual book of ASTM standards, pt. 26, p. 200-224.
- Avcin, M. J., and Koch, D. L., 1979, The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States -Iowa: U.S. Geological Survey Professional Paper 1110-M, M1-M13.
- Averitt, Paul, 1975, Coal Resources of the United States, January 1, 1974; U.S. Geological Survey Bulletin 1412, 131 p.
- Baas Becking, L. G. M., Kaplan, I. R., and Moore, Derek, 1960, Limits of the natural environment in terms of pH and oxidation-reduction potentials: Journal of Geology, v. 68, p. 243-284.
- Cecil, C. B., Stanton, R. W., Dulong, F. T., and Renton, J. J., 1982, Geologic factors that control mineral matter in coal: Proceedings of ANS/ACS Symposium on Atomic and Nuclear Methods in Fossil Energy Research, p. 323-336, Plenum Press.
- Cohen, A. C., 1959, Simplified estimators for the normal distribution when samples are singly censored or truncated: Technometrics, v. 1, no. 3, p. 217-237.
- Connor, J. J., Keith, J. R., and Anderson, B. M., 1976, Trace-metal variations in soils and sagebrush in the Powder River basin, Wyoming and Montana: U.S. Geological Survey Journal of Research, v. 4, no. 1, p. 49-59.
- Given, P. H., and Yarzab, R. F., 1978, Analysis of the organic substances of coals: Problems posed by the presence of mineral matter: Analytical Methods for Coal and Coal Products, Volume II, Chapter 20, p. 3-41.
- Gluskoter, H. J., and Lindahl, P. C., 1973, Cadmium-mode of occurrence in Illinois coals: Science, v. 188, p. 264-266.
- Gluskoter, H. J., Ruch, R. R., Miller, W. G., Cahill, R. A., Dreher, G. B., and Kuhn, J. K., 1977, Trace elements in coal-occurrence and distribution: Illinois Geological Survey Circular 499, 154 p.
- Harshman, E. N., 1974, Distribution of elements in some roll-type uranium deposits, *in*: Formation of uranium ore deposits: International Atomic Energy Agency Proceedings, Series no. STI/pub/374, p. 169-183.

- Hatch, J. R., A in press, Geochemical processes that control minor and trace element composition of U.S. coals: Chapter 8 in Cameron Volume on Unconventional Mineral Resources, American Institute of Mining Engineers Special Publication No.
- Hatch, J. R., B in press, Element geochemistry, in Geological Investigations of the Vermillion Creek coal bed in the Eocene Niland Tongue of the Wasatch Formation, Sweetwater County, Wyoming: U.S. Geological Survey Professional Paper No.
- Hatch, J. R. Avcin, M. J., Wedge, W. K., and Brady, L. L., 1976, Sphalerite in coals from southeastern Iowa, Missouri, and southeastern Kansas: U.S. Geological Survey Open-File Report 76-796, 26 p.
- Hatch, J. R., Gluskoter, H. J., and Lindahl, P. C., 1976, Sphalerite in coals from the Illinois Basin: Economic Geology, v. 71, no. 3, p. 613-624.
- Heckel, P. H., 1977, Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America: American Association of Petroleum Geologists Bulletin, v. 61, no. 7, p. 1045-1068.
- Hildebrand, R. T., Garrigues, R. S., Meyers, R. F., and Reheis, M. C., 1981, Geology and chemical analyses of coal and coal-associated rock samples, Williams Fork Formation (Upper Cretaceous), northwestern Colorado: U.S. Geol. Survey Open-File Report 81-1348, 103 p.
- Hildebrand, R. T., and Hatch, J. R., 1977, The distribution of sodium and alkaline-earth elements in coal of the Rocky Mountain and northern Great Plains provinces: Geological Society of America Abstracts with Programs, v. 9, no. 7, p. 1015-1016.
- King, J. G., Maries, M. B., and Crossley, A. E. J., 1936, Formulas for the calculation of coal analyses to a basis of coal substance free of mineral matter: Journal of the Society of Chemical Industry v. 55, p. 277-281.
- Landis, E. R., and Van Eck, O. J, 1965, Coal Resources of Iowa: Iowa Geological Survey Technical Paper No. 4, 141 p.
- Leighton, L. H., and Tomlinson, R. C., 1960, Estimation of the volatile matter of pure coal substance: Fuel, v. 39, p. 133-140.
- Miesch, A. T., 1967, Methods of computation for estimating geochemical abundances: U.S. Geological Survey Professional Paper 574-B, 15 p.
- Ravn, R. L., in press, Palynostratigraphy of the Lower and Middle Pennsylvanian coals of Iowa: Iowa Geological Survey Technical Paper No. 7.
- Swade, J. W., Ravn, R. L., Howes, M. R., Fitzgerald, D. J., and Van Dorpe, P. E., 1981, Formational Subdivision of the Cherokee Group and proposed revisions in Pennsylvanian stratigraphic nomenclature in Iowa: Geol. Soc. Am. Abstracts with Programs, v. 13, no. 6, p. 318.

- Swanson, V. E., and Huffman, C., Jr., 1976, Guidelines for sample collecting and analytical methods used in the U.S. Geological Survey for determining chemical composition of coal: U.S. Geological Survey Circular 735, 11 p.
- Swanson, V. E., Medlin, J. H., Hatch, J. R., Coleman, S. L., Wood, G. H., Jr., Woodruff, S. D., and Hildebrand, R. T., 1976, Collection, chemical analysis, and evaluation of coal samples in 1975: U.S. Geological Survey Open-File Report 76-468, 503 p.
- U.S. Office of Coal Research, 1967, Methods of analyzing and testing coal and coke: U.S. Bureau of Mines Bulletin 638, 85 p.
- Waksman, S. A., and Stevens, K. R., 1928, Contribution to the chemical composition of peat II. Chemical composition of various peat profiles: Soil Science, v. 26, p. 239-251.
- Wedge, W. K., and Hatch, J. R., 1980, Chemical composition of Missouri coals: Missouri Department of Natural Resources, Geological Survey Report of Investigations 63, 102 p.
- Zubovic, P., Sheffey, N. B., and Stadnichenko, T., 1967, Distribution of minor elements in some coals in the western and southwestern regions of the Interior coal province: U.S. Geological Survey Bulletin 1117-D, 33 p.

(All analyses except heat of combustion, free-swelling index, and ash-fusion temperatures in percent. For each sample, the analyses are reported three ways: first, as received; second, moisture free; and third, moisture and ash free. Kcal/kg = 0.556 (Btu/lb); °F = (°C x 1.8) + 32; L, less than the value shown; B not determined }

|                  |          | Proximate an       | alysis          |        |          | Ulti   | mate analysis | ;      |        |                   |
|------------------|----------|--------------------|-----------------|--------|----------|--------|---------------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash    | Hydrogen | Carbon | Nitrogen      | Oxygen | Sulfur | Air-dried<br>loss |
| D166029          | 14.5     | 32.7               | 40.2            | 12.6   | 5.4      | 56.0   | 1.0           | 19.7   | 5.3    | B                 |
|                  |          | 38.2               | 47.0            | 14.7   | 4.4      | 65.5   | 1.2           | 8.0    | 6.2    |                   |
|                  |          | 44.9               | 55.1            |        | 5.2      | 76.8   | 1.4           | 9.3    | 7.3    |                   |
| D166031          | 11.9     | 33.9               | 37.5            | 16.7   | 5.1      | 54.3   | .9            | 15.4   | 7.6    | В                 |
| 0100001          |          | 38.5               | 42.6            | 19.0   | 4.3      | 61.6   | 1.0           | 5.5    | 8.6    |                   |
|                  |          | 47.5               | 52.5            |        | 5.3      | 76.1   | 1.3           | 6.8    | 10.6   |                   |
| D166034          | 11.5     | 35.1               | 34.7            | 18.7   | 4.8      | 52.1   | .8            | 11.9   | 11.7   | В                 |
| 010000.          |          | 39.7               | 39.2            | 21.1   | 4.0      | 58.9   | .9            | 1.9    | 13.2   |                   |
|                  |          | 50.3               | 49.7            |        | 5.0      | 74.6   | 1.1           | 2.4    | 16.8   |                   |
| D166035          | 13.1     | 37.6               | 35.8            | 13.5   | 5.4      | 56.4   | 1.1           | 19.8   | 3.8    | В                 |
|                  |          | 43.3               | 41.2            | 15.5   | 4.5      | 64.9   | 1.3           | 9.4    | 4.4    |                   |
|                  |          | 51.2               | 48.8            |        | 5.4      | 76.8   | 1.5           | 11.1   | 5.2    |                   |
| D166037          | 11.9     | 37.0               | 37.6            | . 13.5 | 5.5      | 57.5   | 1.2           | 18.7   | 3.6    | 8                 |
| 010000.          |          | 42.0               | 42.7            | 15.3   | 4.7      | 65.3   | 1.4           | 9.2    | 4.1    |                   |
|                  |          | 49.6               | 50.4            |        | 5.6      | 77.1   | 1.6           | 10.9   | 4.8    |                   |
| D166039          | 12.1     | 33.4               | 38.5            | 16.0   | 5.2      | 56.0   | 1.2           | 19.3   | 2.3    | В                 |
| 0100000          |          | 38.0               | 43.8            | 18.2   | 4.4      | 63.7   | 1.4           | 9.7    | 2.6    |                   |
|                  |          | 46.5               | 53.5            |        | 5.4      | 77.9   | 1.7           | 11.9   | 3.2    |                   |
| D166043          | 9.8      | 38.7               | 41.2            | 10.3   | 5.5      | 62.7   | 1.0           | 14.8   | 5.7    | B                 |
| 2200010          |          | 42.9               | 45.7            | 11.4   | 4.9      | 69.5   | 1.1           | 6.8    | 6.3    |                   |
|                  |          | 48.4               | 51.6            |        | 5.5      | 78.5   | 1.3           | 7.6    | 7.1    |                   |

|                  | Heat of co              | ombustion                  | F                     | Forms of sulfu         | ır                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|-----------------------|------------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/lb                     | Sulfate               | Pyritic                | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D166029          | 5,650<br>6,610<br>7,750 | 10,170<br>11,890<br>13,950 | 0.01L<br>.01L<br>.01L | 3.24<br>3.79<br>4.44   | 2.05<br>2.40<br>2.81 | В                | В                          | 8         | В     |  |
| D166031          | 5,560<br>6,310<br>7,780 | 10,000<br>11,350<br>14,010 | .06<br>.07<br>.08     | 5.25<br>5.96<br>7.35   | 2.29<br>2.60<br>3.21 | B                | В                          | В         | B     |  |
| D166034          | 5,320<br>6,010<br>7,620 | 9,570<br>10,810<br>13,710  | .14<br>.16<br>.20     | 9.35<br>10.56<br>13.40 | 2.16<br>2.44<br>3.09 | В                | 8                          | В         | B     |  |
| D166035          | 5,550<br>6,390<br>7,560 | 9,990<br>11,500<br>13,610  | .04<br>.05<br>.05     | 2.78<br>3.20<br>3.79   | 1.03<br>1.19<br>1.40 | В                | В                          | В         | В     |  |
| D166037          | 5,790<br>6,570<br>7,760 | 10,420<br>11,830<br>13,970 | .01L<br>.01L<br>.01L  | 2.82<br>3.20<br>3.78   | .77<br>.87<br>1.03   | B                | В                          | B         | В     |  |
| D166039          | 5,510<br>6,270<br>7,660 | 9,920<br>11,290<br>13,800  | .06<br>.07<br>.08     | 1.64<br>1.87<br>2.28   | .61<br>.69<br>.85    | В                | B                          | B         | В     |  |
| D166043          | 6,360<br>7,050<br>7,960 | 11,450<br>12,690<br>14,330 | .01<br>.01<br>.01     | 4.34<br>4.81<br>5.43   | 1.31<br>1.45<br>1.64 | B                | B                          | В         | В     |  |

|                  |          | Proximate an       | alysis          |       |            | Ulti         | mate analysis | <b>;</b>    |             |                   |
|------------------|----------|--------------------|-----------------|-------|------------|--------------|---------------|-------------|-------------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash   | Hydrogen   | Carbon       | Nitrogen      | Oxygen      | Sulfur      | Air-dried<br>loss |
| D176169          | 5.7      | 40.4               | 41.7            | 12.2  | 4.9        | 64.5         | 1.0           | 13.7        | 3.7         | 1.9               |
|                  |          | 42.8<br>49.2       | 44.2<br>50.8    | 12.9  | 4.5<br>5.2 | 68.4<br>78.6 | 1.1<br>1.2    | 9.2<br>10.5 | 3.9<br>4.5  |                   |
| D176170          | 6.3      | 36.4               | 40.1            | 17.2  | 4.4        | 56.1         | 1.0           | 13.4        | 7.9         | 1.8               |
|                  |          | 38.8<br>47.6       | 42.8<br>52.4    | 18.4  | 3.9<br>4.8 | 59.9<br>73.3 | 1.1<br>1.3    | 8.3<br>10.2 | 8.4<br>10.3 | ~<br>*            |
| D176171          |          | 20.2               | 40.0            | 07 A  | 2.7        | £1 7         | 1.0           | 11 2        |             | 0                 |
| 01/01/1          | 4.3      | 20.3               | 40.0            | 2/.4  | 3./<br>2.A | 51.7         | 1.0           | 11.3        | 4.9         | •0                |
|                  |          | 41.4               | 58.6            | 20.0  | 4.7        | 75.7         | 1.5           | 10.9        | 7.2         |                   |
| D176172          | 3.4      | 37.1               | 33.7            | 25.8  | 3.5        | 49.7         | .9            | 6.6         | 13.5        | .8                |
|                  |          | 38.4               | 34.9            | 26.7  | 3.2        | 51.4         | .9            | 3.7         | 14.0        |                   |
|                  |          | 52.4               | 47.6            |       | 4.4        | 70.2         | 1.3           | 5.1         | 19.1        | ~                 |
| D176173          | 4.7      | 38.8               | 34.2            | 22.3  | 4.3        | 55.1         | 1.0           | 12.2        | 5.1         | 2.0               |
|                  |          | 40.7               | 35.9            | 23.4  | 4.0        | 57.8         | 1.0           | 8.4         | 5.4         |                   |
|                  |          | 53.2               | 46.8            |       | 5.2        | 75.5         | 1.4           | 11.0        | 7.0         |                   |
| D176174          | 4.3      | 36.5               | 40.5            | 18.7  | 4.7        | 60.4         | 1.1           | 11.7        | 3.4         | 1.2               |
|                  |          | 38.1               | 42.3            | 19.5  | 4.4        | 63.1         | 1.1           | 8.2         | 3.6         |                   |
|                  |          | 47.4               | 52.6            | a = 4 | 5.5        | 78.4         | 1.4           | 10.2        | 4.4         |                   |
| D176175          | 5.1      | 40.7               | 38.8            | 15.4  | 5.0        | 62.0         | 1.1           | 12.9        | 3.6         | 1.7               |
|                  |          | 42.9               | 40.9            | 16.2  | 4.7        | 65.3         | 1.2           | 8.8         | 3.8         |                   |
|                  |          | 51.2               | 48.8            |       | 5.6        | 78.0         | 1.4           | 10.5        | 4.5         |                   |
| D176176          | 4.5      | 35.0               | 37.7            | 22.8  | 4.2        | 52.5         | .9            | 7.7         | 11.9        | .6                |
|                  |          | 36.6               | 39.5            | 23.9  | 3.9        | 55.0         | .9            | 3.9         | 12.5        |                   |
|                  |          | 48.1               | 51.9            |       | 5.1        | 72.2         | 1.2           | 5.1         | 16.4        |                   |

|                  | Heat of co              | ombustion                  | F                    | orms of sulfu           | ir .                 |                  | Ash fusion             | temperature, | , C°  |
|------------------|-------------------------|----------------------------|----------------------|-------------------------|----------------------|------------------|------------------------|--------------|-------|
| Sample<br>number | Kcal/kg                 | Btu/lb                     | Sulfate              | Pyritic                 | Organic              | Free<br>Swelling | Initial<br>deformation | Softening    | Fluid |
| D176169          | 6,230<br>6,610<br>7,590 | 11,220<br>11,900<br>13,670 | 0.25<br>.27<br>.30   | 2.00<br>2.12<br>2.44    | 1.46<br>1.55<br>1.78 | 1.0              | 1,140                  | 1,165        | 1,200 |
| D176170          | 5,640<br>6,020<br>7,380 | 10,160<br>10,840<br>13,280 | 1.20<br>1.28<br>1.57 | 4.51<br>4.81<br>5.90    | 2.17<br>2.32<br>2.84 | 1.0              | 1,110                  | 1,140        | 1,170 |
| 0176171          | 4,970<br>5,200<br>7,280 | 8,950<br>9,350<br>13,100   | .90<br>.94<br>1.32   | 1.86<br>1.94<br>2.72    | 2.14<br>2.24<br>3.13 | .5               | 1,110                  | 1,140        | 1,200 |
| 0176172          | 5,160<br>5,340<br>7,280 | 9,280<br>9,610<br>13,110   | .80<br>.83<br>1.13   | 11.85<br>12.27<br>16.74 | .80<br>.83<br>1.13   | 1.0              | 1,145                  | 1,170        | 1,200 |
| D176173          | 5,420<br>5,680<br>7,420 | 9,750<br>10,230<br>13,360  | .23<br>.24<br>.32    | 3.15<br>3.31<br>4.32    | 1.76<br>1.85<br>2.41 | 1.5              | 1,145                  | 1,170        | 1,200 |
| D176174          | 5,990<br>6,260<br>7,780 | 10,790<br>11,270<br>14,010 | .21<br>.22<br>.27    | 1.38<br>1.44<br>1.79    | 1.83<br>1.91<br>2.38 | 1.5              | 1,290                  | 1,315        | 1,345 |
| 0176175          | 6,150<br>6,480<br>7,740 | 11,070<br>11,660<br>13,920 | .15<br>.16<br>.19    | 1.43<br>1.51<br>1.80    | 2.00<br>2.11<br>2.52 | 3.5              | 1,080                  | 1,110        | 1,145 |
| 0176176          | 5,260<br>5,510<br>7,240 | 9,470<br>9,920<br>13,030   | 1.60<br>1.68<br>2.20 | 8.90<br>9.32<br>12.24   | 1.38<br>1.45<br>1.90 | .5               | 1,260                  | 1,290        | 1,320 |

•

|                  |          | Proximate an       | alysis          |      |          |        |          |        |        |                   |
|------------------|----------|--------------------|-----------------|------|----------|--------|----------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash  | Hydrogen | Carbon | Nitrogen | Oxygen | Sulfur | Air-dried<br>loss |
| D176177          | 4.0      | 41.5               | 38.3            | 16.2 | 4.7      | 57.9   | 1.0      | 10.3   | 9.9    | 0.8               |
|                  |          | 43.2               | 39.9            | 16.9 | 4.4      | 60.3   | 1.0      | 7.0    | 10.3   |                   |
|                  |          | 42.0               | 48.0            |      | 5.3      | 72.6   | 1.3      | 8.5    | 12.4   |                   |
| D176178          | 4.7      | 30.7               | 35.3            | 29.3 | 3.8      | 46.0   | .9       | 11.7   | 8.3    | .7                |
|                  |          | 32.2               | 37.0            | 30.7 | 3.4      | 48.3   | .9       | 7.9    | 8.7    |                   |
|                  |          | 46.5               | 53.5            |      | 5.0      | 69.7   | 1.4      | 11.4   | 12.6   |                   |
| D176179          | 4.1      | 36.6               | 41.4            | 17.9 | 4.2      | 57.5   | .6       | 12.4   | 7.4    | 1.0               |
|                  |          | 38.2               | 43.2            | 18.7 | 3.9      | 60.0   | .6       | 9.1    | 7.7    |                   |
|                  |          | 46.9               | 53.1            |      | 4.8      | 73.7   | .8       | 11.2   | 9.5    |                   |
| D176180          | 4.9      | 41.2               | 45.0            | 8.9  | 5.1      | 67.2   | 1.2      | 14.0   | 3.6    | 1.8               |
|                  |          | 43.3               | 47.3            | 9.4  | 4.8      | 70.7   | 1.3      | 10.1   | 3.8    |                   |
|                  |          | 47.8               | 52.2            |      | 5.3      | 78.0   | 1.4      | 11.2   | 4.2    |                   |
| D176181          | 5.4      | 35.5               | 44.3            | 14.8 | 4.6      | 59.1   | 1.1      | 15.6   | 4.8    | 1.4               |
|                  |          | 37.5               | 46.8            | 15.6 | 4.2      | 62.5   | 1.2      | 11.4   | 5.1    |                   |
|                  |          | 44.5               | 55.5            |      | 5.0      | 74.1   | 1.4      | 13.5   | 6.0    |                   |
| D176182          | 3.4      | 33.4               | 31.4            | 31.8 | 3.3      | 41.7   | -8       | 7.0    | 15.4   | 1.4               |
|                  |          | 34.6               | 32.5            | 32.9 | 3.0      | 43.2   | .8       | 4.1    | 15.9   |                   |
|                  |          | 51.5               | 48.5            |      | 4.5      | 64.4   | 1.2      | 6.1    | 23.8   |                   |
| D176183          | 4.4      | 34.5               | 35.9            | 25.2 | 4.0      | 49.5   | .9       | 9.9    | 10.5   | 1.2               |
|                  |          | 36.1               | 37.6            | 26.4 | 3.7      | 51.8   | .9       | 6.3    | 11.0   |                   |
|                  |          | 49.0               | 51.0            |      | 5.0      | 70.3   | 1.3      | 8.5    | 14.9   |                   |
| D176184          | 5.7      | 33.9               | 40.6            | 19.8 | 4.3      | 53.5   | 1.2      | 12.4   | 8.8    | 2.0               |
|                  |          | 35.9               | 43.1            | 21.0 | 3.9      | 56.7   | 1.3      | 7.8    | 9.3    | £ 8 17            |
|                  |          | 45.5               | 54.5            |      | 4.9      | 71.8   | 1.6      | 9.8    | 11.8   |                   |

|                  | Heat of combustion      |                            | F                    | Forms of sulfur         |                      |                  | Ash fusion             | temperature, | C°    |
|------------------|-------------------------|----------------------------|----------------------|-------------------------|----------------------|------------------|------------------------|--------------|-------|
| Sample<br>number | Kcal/kg                 | Btu/lb                     | Sulfate              | Pyritic                 | Organic              | Free<br>Swelling | Initial<br>deformation | Softening    | Fluid |
| 0176177          | 6,010<br>6,260<br>7,530 | 10,810<br>11,260<br>13,550 | 0.96<br>1.00<br>1.20 | 6.38<br>6.65<br>7.99    | 2.60<br>2.71<br>3.26 | 2.5              | 1,180                  | 1,210        | 1,240 |
| 0176178          | 4,710<br>4,940<br>7,130 | 8,470<br>8,890<br>12,830   | 1.05<br>1.10<br>1.59 | 5.94<br>6.23<br>9.00    | 1.31<br>1.37<br>1.98 | .5               | 1,110                  | 1,140        | 1,170 |
| )176179          | 5,730<br>5,970<br>7,340 | 10,310<br>10,750<br>13,220 | 1.09<br>1.14<br>1.40 | 4.33<br>4.52<br>5.55    | 1.95<br>2.03<br>2.50 | 1.5              | 1,040                  | 1,060        | 1,080 |
| 176180           | 6,680<br>7,030<br>7,750 | 12,030<br>12,650<br>13,960 | .21<br>.22<br>.24    | 1.18<br>1.24<br>1.37    | 2.27<br>2.39<br>2.63 | 3.0              | 1,040                  | 1,060        | 1,080 |
| 176181           | 5,910<br>6,240<br>7,400 | 10,630<br>11,240<br>13,320 | .78<br>.82<br>.98    | 1.83<br>1.93<br>2.29    | 2.18<br>2.30<br>2.73 | 1.5              | 1,040                  | 1,060        | 1,080 |
| 176182           | 4,430<br>4,580<br>6,830 | 7,970<br>8,250<br>12,300   | .70<br>.72<br>1.08   | 13.60<br>14.08<br>20.99 | 1.05<br>1.09<br>1.62 | 1.5              | 1,225                  | 1,260        | 1,290 |
| 176183           | 5,090<br>5,320<br>7,230 | 9,160<br>9,580<br>13,010   | .90<br>.94<br>1.28   | 9.08<br>9.50<br>12.90   | .48<br>.50<br>.68    | 1.0              | 1,170                  | 1,215        | 1,260 |
| 176184           | 5,320<br>5,640<br>7,140 | 9,570<br>10,150<br>12,850  | 1.54<br>1.63<br>2.07 | 5.85<br>6.20<br>7.85    | 1.45<br>1.54<br>1.85 | .5               | 1,050                  | 1,075        | 1,200 |

| Table 3. | Proximate and ultimate analyses, | heat-of-combustion, forms-of-sulfur, | free-swelling index, and ash-fusion-tempera- |
|----------|----------------------------------|--------------------------------------|----------------------------------------------|
|          | ture determinations for 90 Iowa  | coal samplescontinued                |                                              |

•

|                  |          | Proximate an         | alysis               |              |                   |                      |                   |                     |                      |                   |
|------------------|----------|----------------------|----------------------|--------------|-------------------|----------------------|-------------------|---------------------|----------------------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter   | Fixed<br>carbon      | Ash          | Hydrogen          | Carbon               | Nitrogen          | Oxygen              | Sulfur               | Air-dried<br>loss |
| D176185          | 2.7      | 31.5<br>32.4<br>47.2 | 35.2<br>36.2<br>52.8 | 30.6<br>31.4 | 3.3<br>3.1<br>4.5 | 45.3<br>46.6<br>67.9 | 0.8<br>.8<br>1.2  | 2.7<br>.3<br>.4     | 17.3<br>17.8<br>25.9 | 1.0               |
| D176186          | 2.3      | 30.4<br>31.1<br>49.0 | 31.7<br>32.4<br>51.0 | 35.6<br>36.4 | 2.9<br>2.7<br>4.3 | 37.4<br>38.3<br>60.2 | .7<br>.7<br>1.1   | 2.5<br>.5<br>.7     | 20.9<br>21.4<br>33.7 | .8<br>            |
| D176187          | 11.1     | 38.3<br>43.1<br>48.4 | 40.9<br>46.0<br>51.6 | 9.7<br>10.9  | 5.9<br>5.2<br>5.9 | 60.2<br>67.7<br>76.0 | 1.0<br>1.1<br>1.3 | 17.6<br>8.7<br>9.8  | 5.6<br>6.3<br>7.1    | 8.4               |
| D176188          | 9.9      | 32.4<br>36.0<br>47.7 | 35.5<br>39.4<br>52.3 | 22.2<br>24.6 | 4.7<br>4.0<br>5.3 | 50.4<br>55.9<br>74.2 | .8<br>.9<br>1.2   | 13.8<br>5.5<br>7.4  | 8.1<br>9.0<br>11.9   | 6.3               |
| D176189          | 14.0     | 27.3<br>31.7<br>42.9 | 36.3<br>42.2<br>57.1 | 22.4<br>26.0 | 4.7<br>3.7<br>4.9 | 45.7<br>53.1<br>71.9 | .9<br>1.0<br>1.4  | 17.4<br>5.8<br>7.8  | 8.9<br>10.3<br>14.0  | 10.2              |
| D176190          | 9.6<br>  | 28.2<br>31.2<br>52.5 | 25.5<br>28.2<br>47.5 | 36.7<br>40.6 | 3.9<br>3.1<br>5.3 | 38.4<br>42.5<br>71.5 | .6<br>.7<br>1.1   | 15.7<br>7.9<br>13.3 | 4.7<br>5.2<br>8.8    | 7.3               |
| D176191          | 15.8     | 35.0<br>41.6<br>47.0 | 39.5<br>46.9<br>53.0 | 9.7<br>11.5  | 5.7<br>4.7<br>5.3 | 57.9<br>68.8<br>77.7 | 1.0<br>1.2<br>1.3 | 22.0<br>9.4<br>10.7 | 3.7<br>4.4<br>5.0    | 13.8              |
| D176192          | 12.3     | 34.1<br>38.9<br>46.6 | 39.0<br>44.5<br>53.4 | 14.6         | 5.3<br>4.5<br>5.4 | 55.8<br>63.6<br>76.3 | 1.0<br>1.1<br>1.4 | 18.2<br>8.3<br>9.9  | 5.1<br>5.8<br>7.0    | 8.7               |

|                  | Heat of co              | ombustion                  | F                   | orms of sulfu           | ır                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|---------------------|-------------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/1b                     |                     | Pyritic                 | Organic              | Free<br>Swelling | Initial deformation        | Softening | Fluid |  |
| D176185          | 4,770<br>4,900<br>7,150 | 8,590<br>8,830<br>12,880   | 0.70<br>.72<br>1.05 | 16.16<br>16.61<br>24.23 | 0.42<br>.43<br>.63   | 1.5              | 1,155                      | 1,175     | 1,200 |  |
| D176186          | 4,330<br>4,430<br>6,970 | 7,790<br>7,970<br>12,540   | .79<br>.81<br>1.27  | 18.75<br>19.19<br>30.19 | 1.35<br>1.38<br>2.17 | 1.0              | 1,065                      | 1,095     | 1,120 |  |
| D176187          | 6,060<br>6,810<br>7,650 | 10,900<br>12,260<br>13,760 | .87<br>.98<br>1.10  | 2.52<br>2.82<br>3.18    | 2.24<br>2.52<br>2.83 | 1.5              | 1,110                      | 1,140     | 1,170 |  |
| D176188          | 5,130<br>5,700<br>7,560 | 9,240<br>10,260<br>13,610  | .49<br>.54<br>.72   | 5.37<br>5.96<br>7.91    | 2.24<br>2.49<br>3.30 | .5               | 1,145                      | 1,170     | 1,205 |  |
| D176189          | 4,540<br>5,280<br>7,140 | 8,170<br>9,500<br>12,850   | .99<br>1.15<br>1.56 | 6.40<br>7.44<br>10.06   | 1.52<br>1.77<br>2.39 | .0               | 1,080                      | 1,110     | 1,140 |  |
| D176190          | 3,710<br>4,100<br>6,900 | 6,670<br>7,380<br>12,420   | .72<br>.80<br>1.34  | 2.77<br>3.06<br>5.16    | 1.22<br>1.35<br>2.27 | .0               | 1,080                      | 1,110     | 1,140 |  |
| D176191          | 5,700<br>6,770<br>7,650 | 10,260<br>12,190<br>13,770 | .01<br>.01<br>.01   | 1.33<br>1.58<br>1.79    | 2.41<br>2.86<br>3.23 | 5.0              | 1,080                      | 1,110     | 1,140 |  |
| D176192          | 5,580<br>6,360<br>7,630 | 10,040<br>11,450<br>13,730 | .27<br>.31<br>.37   | 1.82<br>2.08<br>2.49    | 2.99<br>3.41<br>4.09 | .5               | 1,095                      | 1,120     | 1,150 |  |

|                  |          | Proximate and      | alysis          |      |          | Ulti   | mate analysis | ;      |        |                   |
|------------------|----------|--------------------|-----------------|------|----------|--------|---------------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash  | Hydrogen | Carbon | Nitrogen      | Oxygen | Sulfur | Air-dried<br>loss |
| <br>D176193      | 8.9      | 29.3               | 28.1            | 33.7 | 4.1      | 39.6   | 0.7           | 13.3   | 8.6    | 6.4               |
|                  |          | 32.2               | 30.8            | 37.0 | 3.4      | 43.5   | .8            | 5.9    | 9.4    |                   |
|                  |          | 51.0               | 49.0            |      | 5.4      | 69.0   | 1.2           | 9.4    | 15.0   |                   |
| D176194          | 7.7      | 31.1               | 31.2            | 30.0 | 4.0      | 41.0   | .7            | 13.5   | 10.8   | 2.7               |
|                  |          | 33.7               | 33.8            | 32.5 | 3.4      | 44.4   | .8            | 7.2    | 11.7   |                   |
|                  |          | 49.9               | 50.1            |      | 5.0      | 65.8   | 1.1           | 10.7   | 17.3   |                   |
| D176195          | 13.3     | 36.3               | 39.8            | 10.6 | 5.7      | 56.9   | 1.0           | 19.5   | 6.3    | 10.4              |
|                  |          | 41.9               | 45.9            | 12.2 | 4.9      | 65.6   | 1.2           | 8.9    | 7.3    |                   |
|                  |          | 47.7               | 52.3            |      | 5.5      | 74.8   | 1.3           | 10.1   | 8.3    |                   |
| D176196          | 13.2     | 37.1               | 31.8            | 17.9 | 5.2      | 52.3   | .9            | 20.0   | 3.7    | 10.8              |
|                  | ***      | 42.7               | 36.6            | 20.6 | 4.3      | 60.3   | 1.0           | 9.5    | 4.3    |                   |
|                  |          | 53.8               | 46.2            |      | 5.4      | 75.9   | 1.3           | 12.0   | 5.4    |                   |
| D176197          | 11.6     | 37.5               | 39.6            | 11.3 | 5.7      | 58.6   | 1.0           | 16.8   | 6.6    | 8.9               |
|                  |          | 42.4               | 44.8            | 12.8 | 5.0      | 66.3   | 1.1           | 7.3    | 7.5    |                   |
|                  |          | 48.6               | 51.4            |      | 5.7      | 76.0   | 1.3           | 8.4    | 8.6    |                   |
| D176198          | 12.7     | 30.4               | 33.0            | 23.9 | 4.9      | 46.2   | .8            | 18.5   | 5.7    | 9.3               |
|                  |          | 34.8               | 37.8            | 27.4 | 4.0      | 52.9   | .9            | 8.3    | 6.5    |                   |
|                  |          | 47.9               | 52.1            |      | 5.5      | 72.9   | 1.3           | 11.4   | 9.0    | <b>.</b>          |
| D176199          | 12.0     | 40.6               | 35.5            | 11.9 | 5.6      | 58.3   | .9            | 18.1   | 5.2    | 10.1              |
|                  |          | 46.1               | 40.3            | 13.5 | 4.8      | 66.2   | 1.0           | 8.4    | 5.9    |                   |
|                  |          | 53.4               | 46.6            |      | 5.6      | 76.6   | 1.2           | 9.8    | 6.8    |                   |
| D179838          | 12.2     | 34.0               | 43.2            | 10.6 | 5.4      | 58.8   | -7            | 20.0   | 4.5    | 2.3               |
|                  |          | 38,7               | 49.2            | 12.1 | 4.6      | 67.0   | .8            | 10.4   | 5.1    |                   |
|                  |          | 44.0               | 56.0            |      | 5.2      | 76.2   | .9            | 11.9   | 5.8    |                   |

|                  | Heat of co              | ombustion                  | F                    | forms of sulfu       | ır                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|----------------------|----------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/1b                     | Sulfate              | Pyritic              | Organic              | Free<br>Swelling | Initial deformation        | Softening | Fluid |  |
| D176193          | 3,900<br>4,280<br>6,790 | 7,020<br>7,710<br>12,230   | 1.15<br>1.26<br>2.00 | 5.16<br>5.66<br>8.00 | 2.27<br>2.49<br>3.95 | 0.5              | 1,130                      | 1,160     | 1,280 |  |
| D176194          | 4,210<br>4,560<br>6,760 | 7,580<br>8,210<br>12,170   | 1.89<br>2.05<br>3.03 | 6.03<br>6.53<br>9.68 | 2.84<br>3.08<br>4.56 | .5               | 1,080                      | 1,110     | 1,140 |  |
| D176195          | 5,800<br>6,690<br>7,620 | 10,440<br>12,040<br>13,720 | .65<br>.75<br>.85    | 3.49<br>4.03<br>4.59 | 2.11<br>2.43<br>2.77 | 1.0              | 1,105                      | 1,130     | 1,160 |  |
| D176196          | 5,070<br>5,840<br>7,360 | 9,130<br>10,520<br>13,250  | .37<br>.43<br>.54    | 1.66<br>1.91<br>2.41 | 1.68<br>1.94<br>2.44 | 1.0              | 1,140                      | 1,170     | 1,200 |  |
| D176197          | 5,930<br>6,710<br>7,690 | 10,670<br>12,070<br>13,840 | .71<br>.80<br>.92    | 3.97<br>4.49<br>5.15 | 1.93<br>2.18<br>2.50 | .5               | 1,275                      | 1,305     | 1,330 |  |
| D176198          | 4,690<br>5,380<br>7,400 | 8,450<br>9,680<br>13,330   | .62<br>.71<br>.98    | 3.12<br>3.57<br>4.92 | 1.94<br>2.22<br>3.06 | .5               | 1,175                      | 1,205     | 1,230 |  |
| D176199          | 5,910<br>6,710<br>7,760 | 10,630<br>12,080<br>13,970 | .31<br>.35<br>.41    | 2.27<br>2.58<br>2.98 | 2.61<br>2.97<br>3.43 | 4.0              | 1,230                      | 1,260     | 1,290 |  |
| D179838          | 5,910<br>6,730<br>7,650 | 10,630<br>12,110<br>13,770 | .82<br>.93<br>1.06   | 2.25<br>2.56<br>2.91 | 1.40<br>1.59<br>1.82 | 1.0              | 1,095                      | 1,155     | 1,180 |  |

|                  |          | Proximate an         | alysis               |              |                   |                      | ·                 |                      |                      |                   |
|------------------|----------|----------------------|----------------------|--------------|-------------------|----------------------|-------------------|----------------------|----------------------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter   | Fixed<br>carbon      | Ash          | Hydrogen          | Carbon               | Nitrogen          | Oxygen               | Sulfur               | Air-dried<br>loss |
| D179840          | 13.5     | 31.6<br>36.5         | 45.2<br>52.3         | 9.7<br>11.2  | 5.9<br>5.1        | 60.3<br>69.7         | 0.8               | 20.1<br>9.4          | 3.2<br>3.7           | 4.7               |
|                  |          | 41.1                 | 58.9                 |              | 5.7               | 78.5                 | 1.0               | 10.5                 | 4.2                  |                   |
| D179841          | 7.9      | 35.6<br>38.7<br>47.5 | 39.4<br>42.8<br>52.5 | 17.1<br>18.6 | 4.8<br>4.3<br>5.2 | 58.2<br>63.2<br>77.6 | 1.0<br>1.1<br>1.3 | 12.5<br>5.9<br>7.3   | 5.4<br>6.9<br>8.5    | 2.0               |
| D179843          | 9.1<br>  | 28.2<br>31.0<br>48.5 | 29.9<br>32.9<br>51.5 | 32.8<br>36.1 | 3.5<br>2.7<br>4.3 | 34.4<br>37.8<br>59.2 | •5<br>•6<br>•9    | 9.6<br>1.7<br>2.6    | 19.2<br>21.1<br>33.0 | 3.1               |
| D179844          | 13.1     | 29.5<br>33.9<br>49.4 | 30.2<br>34.8<br>50.6 | 27.2<br>31.3 | 4.6<br>3.6<br>5.3 | 42.3<br>48.7<br>70.9 | .8<br>.9<br>1.3   | 15.9<br>4.9<br>7.1   | 9.2<br>10.7<br>15.4  | 5.0               |
| D179846          | 9.4      | 27.9<br>30.8<br>46.9 | 31.6<br>34.9<br>53.1 | 31.1<br>34.3 | 3.6<br>2.8<br>4.3 | 36.6<br>40.4<br>61.5 | -4<br>-4<br>-7    | 10.0<br>1.8<br>2.8   | 18.3<br>20.2<br>30.8 | 3.7               |
| D179847          | 13.6     | 37.9<br>43.9<br>49.2 | 39.2<br>45.4<br>50.8 | 9.3<br>10.8  | 5.8<br>5.0<br>5.6 | 61.0<br>70.6<br>79.1 | .9<br>1.0<br>1.2  | 19.4<br>8.5<br>9.5   | 3.6<br>4.2<br>4.7    | 7.0               |
| D179848          | 18.7     | 32.1<br>39.5<br>44.5 | 40.0<br>49.2<br>55.5 | 9.2<br>11.3  | 6.0<br>4.8<br>5.4 | 56.9<br>70.0<br>78.9 | .7<br>.9<br>1.0   | 24.8<br>10.1<br>11.3 | 2.4<br>3.0<br>3.3    | 12.1              |
| D179850          | 13.0     | 31.7<br>36.4<br>45.4 | 38.1<br>43.8<br>54.6 | 17.2<br>19.8 | 5.2<br>4.3<br>5.4 | 51.9<br>59.7<br>74.4 | .7<br>.8<br>1.0   | 19.5<br>9.1<br>11.4  | 5.5<br>6.3<br>7.9    | 3.4               |

|                  | Heat of co              | ombustion                  | F                    | Forms of sulfur         |                      |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|----------------------|-------------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kca]/kg                 | Btu/1b                     | Sulfate              | Pyritic                 | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D179840          | 6,010<br>6,940<br>7,820 | 10,810<br>12,500<br>14,080 | 0.34<br>.39<br>.44   | 1.92<br>2.22<br>2.50    | 0.97<br>1.12<br>1.26 | 1.0              | 1,100                      | 1,140     | 1,160 |  |
| D179841          | 5,910<br>6,420<br>7,880 | 10,640<br>11,550<br>14,190 | .36<br>.39<br>.48    | 3.42<br>3.71<br>4.57    | 2.45<br>2.66<br>3.27 | 3.5              | 1,105                      | 1,140     | 1,165 |  |
| D179843          | 3,840<br>4,220<br>6,610 | 6,910<br>7,600<br>11,890   | 1.34<br>1.47<br>2.31 | 16.56<br>18.22<br>28.50 | 1.30<br>1.43<br>2.24 | .0               | 1,180                      | 1,225     | 1,235 |  |
| D179844          | 4,410<br>5,080<br>7,390 | 7,940<br>9,410<br>13,300   | .84<br>.97<br>1.41   | 6.78<br>7.80<br>11.36   | .64<br>.74<br>1.07   | .0               | 1,050                      | 1,105     | 1,125 |  |
| D179846          | 4,040<br>4,460<br>6,800 | 7,280<br>8,040<br>12,240   | .72<br>.79<br>1.21   | 15.47<br>17.08<br>26.00 | 2.09<br>2.31<br>3.51 | .0               | 1,195                      | 1,240     | 1,260 |  |
| 0179847          | 6,090<br>7,050<br>7,900 | 10,970<br>12,700<br>14,230 | .22<br>.25<br>.29    | 1.66<br>1.92<br>2.15    | 1.71<br>1.98<br>2.22 | 1.5              | 1,120                      | 1,155     | 1,175 |  |
| D179848          | 5,600<br>6,890<br>7,770 | 10,080<br>12,400<br>13,980 | .04<br>.05<br>.06    | .33<br>.41<br>.46       | 2.05<br>2.52<br>2.84 | 2.0              | 1,125                      | 1,175     | 1,195 |  |
| D179850          | 5,280<br>6,070<br>7,560 | 9,500<br>10,920<br>13,610  | .62<br>.71<br>.89    | 3.21<br>3.69<br>4.60    | 1.71<br>1.97<br>2.45 | •0               | 1,100                      | 1,155     | 1,185 |  |

| Table 3. | Proximate and ultim | ate analy | rses, hea | t-of-combustion, | forms-of-sulfur, | free-swelling index | , and ash-fusion-tempera- |
|----------|---------------------|-----------|-----------|------------------|------------------|---------------------|---------------------------|
|          | ture determinations | for 90 I  | lowa coal | samplescontin    | ued              |                     |                           |

|                  |          | Proximate and        | alysis               |              |                   |                      | _                 |                     |                      |                   |
|------------------|----------|----------------------|----------------------|--------------|-------------------|----------------------|-------------------|---------------------|----------------------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter   | Fixed<br>carbon      | Ash          | Hydrogen          | Carbon               | Nitrogen          | Oxygen              | Sulfur               | Air-dried<br>loss |
| D179851          | 12.5     | 39.0                 | 40.1                 | 8.4          | 6.0               | 62.5                 | 0.8               | 18.8                | 3.5                  | 4.9               |
|                  |          | 44.6<br>49.3         | 45.8<br>50.7         | 9.6          | 5.3<br>5.8        | /1.4<br>79.0         | .9<br>1.0         | 8.8<br>9.7          | 4.0                  |                   |
| D179853          | 12.0     | 34.5                 | 22.8                 | 30.7         | 4.5               | 44.7                 | .8                | 11.9                | 7.4                  | 4.6               |
|                  |          | 39.2<br>60.2         | 25.9<br>39.8         | 34.9         | 3.6<br>5.5        | 50.8<br>78.0         | .9<br>1.4         | 1.4<br>2.2          | 8.4<br>12.9          |                   |
| D179854          | 9.5      | 33.4                 | 35.0                 | 22.1         | 4.8               | 49.7                 | .7                | 16.0                | 6.7                  | 2.2               |
|                  |          | 36.9<br>48.8         | 38.7<br>51.2         | 24.4         | 4.1<br>5.5        | 54.9<br>72.7         | .8<br>1.0         | 8.3<br>11.0         | 7.4<br>9.8           |                   |
| D179855          | 12.2     | 34.4<br>39.2<br>44.6 | 42.8<br>48.7<br>55.4 | 10.6<br>12.1 | 5.5<br>4.7<br>5.4 | 59.6<br>67.9<br>77.2 | .7<br>.8<br>.9    | 18.6<br>8.8<br>10.0 | 5.0<br>5.7<br>6.5    | 2.7               |
| D179856          | 8.8      | 28.4<br>31.1<br>45.4 | 34.1<br>37.4<br>54.6 | 28.7<br>31.5 | 4.0<br>3.3<br>4.8 | 40.1<br>44.0<br>64.2 | .7<br>.8<br>1.1   | 13.4<br>6.1<br>8.9  | 13.1<br>14.4<br>21.0 | 2.4<br><br>       |
| D185601          | 13.9     | 33.4<br>38.8         | 39.3<br>45.6         | 13.4<br>15.6 | 5.3               | 53.4<br>62.0         | •8<br>•9          | 18.3<br>6.9         | 8.9<br>10.3          | 10.1              |
|                  |          | 45.9                 | 54.1                 |              | 5.2               | 73.5                 | 1.1               | 8.2                 | 12.2                 |                   |
| D185602          | 15.4     | 33.5<br>39.6<br>46.9 | 38.0<br>44.9<br>53.1 | 13.1<br>15.5 | 5.5<br>4.5<br>5.3 | 54.2<br>64.1<br>75.8 | .8<br>.9<br>1.1   | 19.3<br>6.6<br>7.8  | 7.1<br>8.4<br>9.9    | 12.4<br>          |
| D185603          | 15.6     | 35.6<br>42.2<br>48.2 | 38.3<br>45.4<br>51.8 | 10.5         | 5.7<br>4.7<br>5.4 | 57.7<br>68.4<br>78.1 | 1.0<br>1.2<br>1.4 | 21.3<br>8.8<br>10.1 | 3.8<br>4.5<br>5.1    | 12.8              |

|                  | Heat of co              | ombustion                  | F                    | forms of sulfu          | Ir                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|----------------------|-------------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/1b                     | Sulfate              | Pyritic                 | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D179851          | 6,270<br>7,160<br>7,920 | 11,280<br>12,890<br>14,260 | 0.20<br>.23<br>.25   | 1.73<br>1.98<br>2.19    | 1.60<br>1.83<br>2.02 | 1.5              | 1,045                      | 1,070     | 1,095 |  |
| D179853          | 4,420<br>5,020<br>7,710 | 7,950<br>9,030<br>13,870   | .44<br>.50<br>.77    | 5.85<br>6.65<br>10.21   | 1.07<br>1.22<br>1.87 | 1.0              | 1,235                      | 1,270     | 1,285 |  |
| D179854          | 5,050<br>5,580<br>7,380 | 9,090<br>10,040<br>13,290  | .66<br>.73<br>.96    | 3.69<br>4.08<br>5.39    | 2.28<br>2.52<br>3.33 | 1.0              | 1,100                      | 1,150     | 1,175 |  |
| D179855          | 5,960<br>6,780<br>7,710 | 10,720<br>12,210<br>13,890 | 1.37<br>1.56<br>1.77 | 3.13<br>3.56<br>4.05    | .51<br>.58<br>.66    | 1.0              | 1,240                      | 1,290     | 1,320 |  |
| D179856          | 4,340<br>4,760<br>6,940 | 7,810<br>8,560<br>12,500   | 2.98<br>3.27<br>4.77 | 11.70<br>12.83<br>18.72 | .69<br>.76<br>1.10   | .0               | 1,245                      | 1,290     | 1,325 |  |
| D185601          | 5,500<br>6,390<br>7,560 | 9,900<br>11,490<br>13,610  | 1.21<br>1.41<br>1.66 | 4.77<br>5.54<br>6.56    | 2.92<br>3.39<br>4.02 | 1.0              | 1,180                      | 1,235     | 1,295 |  |
| D185602          | 5,530<br>6,530<br>7,730 | 9,950<br>11,760<br>13,910  | .96<br>1.13<br>1.34  | 3.37<br>3.98<br>4.71    | 2.76<br>3.26<br>3.86 | 1.0              | 1,095                      | 1,155     | 1,220 |  |
| D185603          | 5,780<br>6,850<br>7,830 | 10,410<br>12,340<br>14,090 | •52<br>•62<br>•70    | 2.30<br>2.73<br>3.11    | .97<br>1.15<br>1.31  | 1.0              | 1,165                      | 1,205     | 1,255 |  |

|                  |          | Proximate an       | alysis          |      |          |        | _        |        |        |                   |
|------------------|----------|--------------------|-----------------|------|----------|--------|----------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash  | Hydrogen | Carbon | Nitrogen | Oxygen | Sulfur | Air-dried<br>loss |
| D185604          | 14.8     | 35.6               | 39.0            | 10.6 | 5.6      | 58.8   | 1.2      | 20.9   | 2.9    | 11.9              |
|                  |          | 41.8               | 45.8            | 12.6 | 4.6      | 69.0   | 1.4      | 9.1    | 3.4    |                   |
|                  |          | 47.7               | 52.3            |      | 5.3      | 78.8   | 1.6      | 10.4   | 3.9    |                   |
| D185605          | 13.3     | 34.2               | 43.5            | 9.0  | 5.6      | 61.0   | 1.3      | 20.3   | 2.8    | 10.0              |
|                  |          | 39.4               | 50.2            | 10.4 | 4.8      | 70.4   | 1.5      | 9.8    | 3.2    |                   |
|                  |          | 44.0               | 56.0            |      | 5.3      | 78.5   | 1.7      | 10.9   | 3.6    |                   |
| D185606          | 21.1     | 31.6               | 36.1            | 11.2 | 5.7      | 51.1   | .9       | 27.9   | 3.2    | 16.5              |
|                  |          | 40.1               | 45.8            | 14.2 | 4.3      | 64.8   | 1.1      | 11.6   | 4.1    |                   |
|                  |          | 46.7               | 53.3            |      | 5.0      | 75.5   | 1.3      | 13.5   | 4.7    |                   |
| D185609          | 16.5     | 34.8               | 30.3            | 18.4 | 5.4      | 50,7   | 1.0      | 19.7   | 4.8    | 13.4              |
|                  |          | 41.7               | 36.3            | 22.0 | 4.3      | 60.7   | 1.2      | 6.0    | 5.7    |                   |
|                  |          | 53.5               | 46.5            |      | 5.5      | 77.9   | 1.5      | 7.7    | 7.4    |                   |
| D185610          | 11.9     | 34.9               | 38.6            | 14.6 | 5.1      | 54.2   | 1.1      | 17.9   | 7.1    | 4.5               |
|                  |          | 39.6               | 43.8            | 16.6 | 4.3      | 61.5   | 1.2      | 8.3    | 8.1    |                   |
|                  |          | 47.5               | 52.5            |      | 5.1      | 73.7   | 1.5      | 10.0   | 9.7    |                   |
| D185611          | 14.5     | 35.8               | 34.5            | 15.2 | 5.3      | 54.1   | .9       | 22.0   | 2.5    | 11.9              |
|                  |          | 41.9               | 40.4            | 17.8 | 4.3      | 63.3   | 1.1      | 10.7   | 2.9    |                   |
|                  |          | 50.9               | 49.1            |      | 5.2      | 77.0   | 1.3      | 13.0   | 3.6    |                   |
| D185612          | 14.9     | 33.2               | 41.2            | 10.7 | 5.4      | 55.8   | 1.0      | 21.2   | 5.8    | 9.8               |
|                  | ***      | 39.0               | 48.4            | 12.6 | 4.4      | 65.6   | 1.2      | 9.3    | 6.8    |                   |
|                  |          | 44.6               | 55.4            |      | 5.0      | 75.0   | 1.3      | 10.7   | 7.8    |                   |
| D185613          | 16.6     | 34.3               | 42.1            | 7.0  | 5.9      | 59.9   | 1.1      | 23.0   | 3.1    | 12.6              |
| ÷                | -        | 41.1               | 50.5            | 8.4  | 4.9      | 71.8   | 1.3      | 9.9    | 3.7    |                   |
|                  |          | 44.9               | 55.1            |      | 5.3      | 78.4   | 1.4      | 10.8   | 4.1    |                   |

|                  | Heat of co              | ombustion                  | F                  | Forms of sulfu       | ır                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|--------------------|----------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/1b                     | Sulfate            | Pyritic              | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D185604          | 5,850<br>6,860<br>7,840 | 10,530<br>12,350<br>14,110 | 0.19<br>.22<br>.25 | 1.66<br>1.95<br>2.23 | 1.05<br>1.23<br>1.41 | 1.5              | 1,040                      | 1,090     | 1,140 |  |
| D185605          | 6,100<br>7,030<br>7,850 | 10,980<br>12,660<br>14,130 | .37<br>.43<br>.48  | 1.68<br>1.94<br>2.16 | .73<br>.84<br>.94    | 1.0              | 1,055                      | 1,115     | 1,155 |  |
| D185606          | 5,030<br>6,370<br>7,430 | 9,050<br>11,470<br>13,370  | .47<br>.60<br>.69  | .99<br>1.25<br>1.46  | 1.70<br>2.15<br>2.51 | .0               | 1,100                      | 1,150     | 1,215 |  |
| D185609          | 5,090<br>6,100<br>7,820 | 9,160<br>10,980<br>14,080  | .54<br>.65<br>.83  | 3.43<br>4.11<br>5.27 | .85<br>1.02<br>1.31  | 1.0              | 1,215                      | 1,265     | 1,325 |  |
| D185610          | 5,490<br>6,230<br>7,470 | 9,880<br>11,220<br>13,440  | .08<br>.09<br>.11  | 4.18<br>4.74<br>5.69 | 2.83<br>3.21<br>3.85 | .0               | 1,150                      | 1,205     | 1,255 |  |
| D185611          | 5,220<br>6,100<br>7,420 | 9,390<br>10,980<br>13,360  | .76<br>.89<br>1.08 | .45<br>.53<br>.64    | 1.27<br>1.49<br>1.81 | 1.5              | 1,485                      | 1,530     | 1,540 |  |
| D185612          | 5,670<br>6,670<br>7,630 | 10,210<br>12,000<br>13,730 | .51<br>.60<br>.69  | 3.36<br>3.95<br>4.52 | 1.94<br>2.28<br>2.61 | 1.0              | 1,050                      | 1,115     | 1,165 |  |
| D185613          | 5,990<br>7,180<br>7,840 | 10,780<br>12,920<br>14,110 | •20<br>•24<br>•26  | 1.01<br>1.21<br>1.32 | 1.87<br>2.24<br>2.45 | 1.5              | 1,120                      | 1,170     | 1,230 |  |

\_\_\_\_

\_

-----

|                  |          | Proximate an         | alysis               |                  |                   |                      |                   |                     |                    |                   |
|------------------|----------|----------------------|----------------------|------------------|-------------------|----------------------|-------------------|---------------------|--------------------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter   | Fixed<br>carbon      | Ash              | Hydrogen          | Carbon               | Nitrogen          | Oxygen              | Sulfur             | Air-dried<br>loss |
| D186062          | 17.0     | 32.1<br>38.7<br>44.5 | 40.0<br>48.2<br>55.5 | 10.9<br>13.1     | 5.5<br>4.4<br>5.0 | 56.7<br>68.3<br>78.6 | 1.2<br>1.4<br>1.7 | 20.6<br>6.6<br>7.6  | 5.1<br>6.1<br>7.1  | 10.3              |
| D186063          | 16.8<br> | 33.7<br>40.5<br>48.0 | 36.5<br>43.9<br>52.0 | 13.0<br>15.6     | 5.5<br>4.4<br>5.2 | 55.0<br>66.1<br>78.3 | 1.2<br>1.4<br>1.7 | 20.3<br>6.5<br>7.6  | 4.9<br>5.9<br>7.0  | 11.8              |
| D186064          | 17.7     | 33.2<br>40.3<br>45.2 | 40.3<br>49.0<br>54.8 | 8.8<br>10.7      | 5.8<br>4.7<br>5.2 | 57.9<br>70.4<br>78.8 | 1.3<br>1.6<br>1.8 | 22.4<br>8.1<br>9.1  | 3.8<br>4.6<br>5.2  | 13.2              |
| D186065          | 13.1     | 34.6<br>39.8<br>48.3 | 37.1<br>42.7<br>51.7 | 15.2<br>17.5     | 5.3<br>4.4<br>5.4 | 53.7<br>61.8<br>74.9 | .9<br>1.0<br>1.3  | 18.0<br>7.3<br>8.9  | 6.9<br>7.9<br>9.6  | 7.2               |
| D186066          | 13.0     | 37.8<br>43.4<br>49.6 | 38.4<br>44.1<br>50.4 | 10.8<br>12.4     | 5.7<br>4.9<br>5.6 | 59.8<br>68.7<br>78.5 | .8<br>.9<br>1.0   | 18.2<br>7.6<br>8.7  | 4.7<br>5.4<br>6.2  | 9.1               |
| D186067          | 4.3      | 35.2<br>36.8<br>49.0 | 36.7<br>38.3<br>51.0 | 23.8<br>24.9<br> | 4.3<br>4.0<br>5.3 | 49.5<br>51.7<br>68.8 | 1.1<br>1.1<br>1.5 | 11.8<br>8.3<br>11.1 | 9.5<br>9.9<br>13.2 | .7<br>            |
| D186068          | 3.1      | 38.5<br>39.7<br>46.2 | 44.9<br>46.3<br>53.8 | 13.5<br>13.9     | 4.6<br>4.4<br>5.1 | 65.5<br>67.6<br>78.5 | 1.1<br>1.1<br>1.3 | 11.5<br>9.0<br>10.5 | 3.8<br>3.9<br>4.6  | .7<br>            |
| D186069          | 2.7      | 23.3<br>23.9<br>32.6 | 48.1<br>49.4<br>67.4 | 25.9<br>26.6     | 4.5<br>4.3<br>5.9 | 53.6<br>55.1<br>75.1 | .9<br>.9<br>1.3   | 10.4<br>8.2<br>11.2 | 4.7<br>4.8<br>6.6  | .3<br>            |

|                  | Heat of co              | mbustion                   | F                    | orms of sulfu         | ır                   |                  | Ash fuston temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|----------------------|-----------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/lb                     | Sulfate              | Pyritic               | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D186062          | 5,690<br>6,850<br>7,890 | 10,240<br>12,330<br>14,200 | 0.26<br>.31<br>.36   | 3.52<br>4.24<br>4.88  | 1.30<br>1.57<br>1.80 | 1.0              | 1,145                      | 1,205     | 1,260 |  |
| D186063 ·        | 5,530<br>6,650<br>7,880 | 9,960<br>11,970<br>14,190  | .51<br>.61<br>.73    | 2.85<br>3.43<br>4.06  | 1.57<br>1.89<br>2.24 | 1.0              | 1,125                      | 1,180     | 1,245 |  |
| D186064          | 5,820<br>7,080<br>7,920 | 10,480<br>12,740<br>14,260 | .36<br>.44<br>.49    | 2.39<br>2.90<br>3.25  | 1.02<br>1.24<br>1.39 | 1.0              | 1,085                      | 1,135     | 1,185 |  |
| D186065          | 5,460<br>6,290<br>7,620 | 9,830<br>11,310<br>13,710  | 1.38<br>1.59<br>1.92 | 3.34<br>3.84<br>4.66  | 2.14<br>2.46<br>2.98 | 1.0              | 1,095                      | 1,155     | 1,215 |  |
| D186066          | 6,080<br>6,990<br>7,980 | 10,940<br>12,570<br>14,360 | .45<br>.52<br>.59    | 1.81<br>2.08<br>2.38  | 2.44<br>2.80<br>3.20 | 1.0              | 1,175                      | 1,235     | 1,290 |  |
| D186067          | 5,150<br>5,380<br>7,160 | 9,260<br>9,680<br>12,880   | 1.85<br>1.93<br>2.57 | 7.21<br>7.53<br>10.03 | .45<br>.47<br>.63    | .0               | 1,050                      | 1,100     | 1,150 |  |
| D186068          | 6,440<br>6,650<br>7,720 | 11,590<br>11,960<br>13,900 | .60<br>.62<br>.72    | 2.35<br>2.43<br>2.82  | .85<br>.88<br>1.02   | 1.0              | 1,180                      | 1,235     | 1,290 |  |
| D186069          | 5,570<br>5,720<br>7,790 | 10,020<br>10,300<br>14,030 | .72<br>.74<br>1.01   | 2.28<br>2.34<br>3.19  | 1.74<br>1.79<br>2.44 | 1.0              | 1,240                      | 1,300     | 1,365 |  |

|                  |          | Proximate and      | alysis          |      |          | Ulti   | mate analysis | ;      |        | _                 |
|------------------|----------|--------------------|-----------------|------|----------|--------|---------------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash  | Hydrogen | Carbon | Nitrogen      | Oxygen | Sulfur | Air-dried<br>loss |
| D186070          | 3.3      | 38.2               | 45.5            | 13.0 | 4.8      | 64.4   | 1.2           | 11.1   | 5.4    | 0.5               |
|                  |          | 39.5               | 47.1            | 13.4 | 4.6      | 66.6   | 1.2           | 8.4    | 5.6    |                   |
|                  |          | 45.6               | 54.4            |      | 5.3      | 76.9   | 1.4           | 9.8    | 6.5    |                   |
| D186071          | 2.8      | 38.5               | 43.2            | 15.5 | 4.6      | 62.0   | 1.1           | 8.9    | 7.9    | .4                |
| - · ·            |          | 39.6               | 44.4            | 15.9 | 4.4      | 63.8   | 1.1           | 6.6    | 8.1    |                   |
|                  |          | 47.1               | 52.9            |      | 5.2      | 75.9   | 1.3           | 7.8    | 9.7    | ••••              |
| D186072          | 7.0      | 39.7               | 30.6            | 22.7 | 4.6      | 53.7   | .9            | 12.8   | 5.3    | 2.1               |
|                  |          | 42.7               | 32.9            | 24.4 | 4.1      | 57.7   | 1.0           | 7.1    | 5.7    |                   |
|                  |          | 56.5               | 43.5            |      | 5.4      | 76.4   | 1.3           | 9.4    | 7.5    | <b>6</b> 10 4     |
| D186073          | 9.4      | 35.1               | 38.2            | 17.3 | 4.7      | 57.4   | .9            | 14.5   | 5.3    | 3.1               |
|                  |          | 38.7               | 42.2            | 19.1 | 4.0      | 63.4   | 1.0           | 6.8    | 5.8    |                   |
|                  |          | 47.9               | 52.1            |      | 5.0      | 78.3   | 1.2           | 8.4    | 7.2    |                   |
| D186074          | 12.2     | 35.1               | 35.4            | 17.3 | 5.0      | 53.5   | .9            | 17.2   | 6.0    | 7.0               |
|                  |          | 40.0               | 40.3            | 19.7 | 4.2      | 60.9   | 1.0           | 7.2    | 6.8    |                   |
|                  |          | 49.8               | 50.2            |      | 5.2      | 75.9   | 1.3           | 9.0    | 8.5    |                   |
| D186075          | 16.2     | 33.8               | 37.1            | 12.9 | 5.4      | 56.4   | 1.2           | 20.8   | 3.2    | 11.3              |
|                  |          | 40.3               | 44.3            | 15.4 | 4.3      | 67.3   | 1.4           | 7.6    | 3.8    |                   |
|                  |          | 47.7               | 52.3            |      | 5.1      | 79.5   | 1.7           | 9.0    | 4.5    |                   |
| D186076          | 15.1     | 34.1               | 35.6            | 15.2 | 5.5      | 55.4   | 1.1           | 19-6   | 3.1    | 9.3               |
|                  |          | 40.2               | 41.9            | 17.9 | 4.5      | 65.3   | 1.3           | 7.3    | 3.7    |                   |
|                  |          | 48.9               | 51.1            |      | 5.5      | 79.5   | 1.6           | 8.9    | 4.4    |                   |
| D192368          | 5.0      | 39.0               | 36.3            | 19.7 | 4.3      | 58.4   | 1.0           | 10.9   | 5.7    | 2.5               |
|                  |          | 41.1               | 38.2            | 20.7 | 3.9      | 61.5   | 1.1           | 6.8    | 6.0    |                   |
|                  |          | 51.8               | 48.2            |      | 5.0      | 77.6   | 1.3           | 8.6    | 7.6    |                   |

|                  | Heat of co              | ombustion                  | F                   | orms of sulfu        | ır                   |                  | Ash fusion          | temperature, | , C°  |
|------------------|-------------------------|----------------------------|---------------------|----------------------|----------------------|------------------|---------------------|--------------|-------|
| Sample<br>number | Kcal/kg                 | Btu/lb                     | Sulfate             | Pyritic              | Organic              | Free<br>Swelling | Initial deformation | Softening    | Fluid |
| D186070          | 6,390<br>6,610<br>7,640 | 11,510<br>11,900<br>13,750 | 0.73<br>.75<br>.87  | 2.88<br>2.98<br>3.44 | 1.81<br>1.87<br>2.16 | 1.0              | 1,100               | 1,155        | 1,205 |
| D186071          | 6,350<br>6,530<br>7,770 | 11,430<br>11,760<br>13,990 | .51<br>.52<br>.62   | 6.02<br>6.19<br>7.37 | 1.36<br>1.40<br>1.66 | 1.0              | 1,125               | 1,175        | 1,240 |
| D186072          | 5,290<br>5,680<br>7,520 | 9,520<br>10,230<br>13,540  | .83<br>.89<br>1.18  | 1.97<br>2.12<br>2.80 | 2.51<br>2.70<br>3.57 | 1.0              | 1,335               | 1,380        | 1,430 |
| D176073          | 5,680<br>6,270<br>7,750 | 10,230<br>11,290<br>13,950 | .98<br>1.08<br>1.34 | 2.58<br>2.85<br>3.52 | 1.78<br>1.96<br>2.43 | 1.0              | 1,105               | 1,175        | 1,230 |
| D186074          | 5,410<br>6,160<br>7,680 | 9,740<br>11,090<br>13,820  | .97<br>1.10<br>1.38 | 3.64<br>4.15<br>5.16 | 1.44<br>1.54<br>2.04 | 1.0              | 1,095               | 1,155        | 1,225 |
| D186075          | 5,640<br>6,730<br>7,950 | 10,150<br>12,110<br>14,310 | .24<br>.29<br>.34   | 2.37<br>2.83<br>3.34 | .63<br>.75<br>.89    | 1.0              | 1,105               | 1,155        | 1,220 |
| D186076          | 5,480<br>6,460<br>7,870 | 9,870<br>11,630<br>14,160  | .21<br>.25<br>.30   | 2.05<br>2.41<br>2.94 | .82<br>.97<br>1.18   | 1.0              | 1,125               | 1,180        | 1,235 |
| D192368          | 5,790<br>6,090<br>7,680 | 10,410<br>10,960<br>13,830 | .18<br>.19<br>.24   | 2.49<br>2.62<br>3.31 | 3.01<br>3.17<br>4.00 | 1.5              | 1,150               | 1,205        | 1,265 |

. .

|                  |          | Proximate an       | alysis          |                 |          | Ulti   | mate analysis | 6      |        | _                 |
|------------------|----------|--------------------|-----------------|-----------------|----------|--------|---------------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash             | Hydrogen | Carbon | Nitrogen      | Oxygen | Sulfur | Air-dried<br>loss |
| D192369          | 13.8     | 32.2               | 43.1            | 10.9            | 5.4      | 58.5   | 1.3           | 21.1   | 2.8    | 10.5              |
|                  |          | 37.4               | 50.0            | 12.6            | 4.5      | 67.9   | 1.5           | 10.2   | 3.2    |                   |
|                  |          | 42.8               | 57.2            |                 | 5.1      | 77.7   | 1.7           | 11.7   | 3.7    |                   |
| D192370          | 8.1      | 33.5               | 36.6            | 21.8            | 4.2      | 44.1   | .8            | 16.4   | 12.8   | 3.2               |
|                  |          | 36.5               | 39.8            | 23.7            | 3.6      | 48.0   | .9            | 10.0   | 13.9   |                   |
|                  |          | 47.8               | 52.2            |                 | 4.7      | 62.9   | 1.1           | 13.1   | 18.3   |                   |
| D192371          | 11.1     | 29.8               | 39.2            | 19.9            | 4.5      | 46.7   | .8            | 17.6   | 10.6   | 6.7               |
|                  |          | 33.5               | 44.1            | 22.4            | 3.7      | 52.5   | .9            | 8.7    | 11.9   |                   |
|                  |          | 44.5               | 56.8            |                 | 4.7      | 67.7   | 1.2           | 11.2   | 15.4   |                   |
| D192372          | 10.0     | 35.0               | 43.7            | 11.3            | 5.3      | 59.0   | 1.0           | 17.9   | 5.5    | 6.4               |
|                  |          | 38.9               | 48.6            | 12.6            | 4.7      | 65.6   | 1.1           | 10.0   | 6.1    |                   |
|                  |          | 44.5               | 55.5            | <b>40</b> 40 40 | 5.3      | 75.0   | 1.3           | 11.4   | 7.0    |                   |
| D192373          | 8.6      | 33.1               | 47.3            | 11.0            | 5.0      | 59.3   | 1.0           | 18.9   | 4.8    | 4.8               |
|                  |          | 36.2               | 51.8            | 12.0            | 4.4      | 64.9   | 1.1           | 12.3   | 5.3    |                   |
|                  |          | 41.2               | 58.8            |                 | 5.0      | 73.8   | 1.2           | 14.0   | 6.0    |                   |
| D192374          | 5.3      | 32.7               | 48.5            | 13.5            | 4.7      | 60.1   | 1.2           | 13.6   | 6.9    | 2.3               |
|                  |          | 34.5               | 51.2            | 14.3            | 4.3      | 63.5   | 1.3           | 9.4    | 7.3    |                   |
|                  |          | 40.3               | 59.7            |                 | 5.1      | 74.0   | 1.5           | 10.9   | 8.5    |                   |
| D192375          | 7.9      | 31.7               | 39.6            | 20.8            | 4.4      | 48.6   | •8            | 14.9   | 10.5   | 3.7               |
|                  |          | 34.4               | 43.0            | 22.6            | 3.8      | 52.8   | .9            | 8.6    | 11.4   |                   |
|                  |          | 44.5               | 55.5            | **              | 4.9      | 68.2   | 1.1           | 11.0   | 14.7   |                   |
| D192376          | 9.0      | 33.6               | 39.7            | 17.7            | 4,9      | 55.3   | 1.0           | 15.4   | 5.7    | 5.3               |
|                  |          | 36.9               | 43.6            | 19.5            | 4.3      | 60.8   | <b>i.</b> ĭ   | 8.1    | 6.3    |                   |
|                  |          | 45.8               | 54.2            |                 | 5.3      | 75.4   | 1.4           | 10.1   | 7.8    |                   |

|                  | Heat of co              | mbustion                   | F                    | orms of sulfu        | ır                   |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|----------------------------|----------------------|----------------------|----------------------|------------------|----------------------------|-----------|-------|--|
| Sample<br>number | Kcal/kg                 | Btu/1b                     | Sulfate              | Pyritic              | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D192369          | 5,760<br>6,690<br>7,660 | 10,380<br>12,040<br>13,780 | 0.45<br>.52<br>.60   | 1.41<br>1.64<br>1.87 | 0.90<br>1.04<br>1.20 | 1.0              | 1,040                      | 1,095     | 1,150 |  |
| D192370          | 4,540<br>4,940<br>6,480 | 8,170<br>8,890<br>11,660   | 3.57<br>3.88<br>5.09 | 6.30<br>6.86<br>8.99 | 2.89<br>3.14<br>4.12 | .5               | 1,180                      | 1,235     | 1,290 |  |
| D192371          | 4,790<br>5,380<br>6,940 | 8,620<br>9,690<br>12,490   | 1.87<br>2.10<br>2.71 | 5.57<br>6.27<br>8.07 | 3.13<br>3.52<br>4.54 | .5               | 1,180                      | 1,230     | 1,295 |  |
| D192372          | 5,900<br>6,560<br>7,500 | 10,630<br>11,810<br>13,500 | 1.04<br>1.16<br>1.32 | 2.11<br>2.34<br>2.68 | 2.39<br>2.66<br>3.04 | 1.0              | 1,040                      | 1,100     | 1,150 |  |
| D192373          | 5,840<br>6,390<br>7,270 | 10,510<br>11,500<br>13,080 | 1.04<br>1.14<br>1.29 | 1.59<br>1.74<br>1.98 | 2.15<br>2.35<br>2.67 | 1.0              | 985                        | 1,040     | 1,095 |  |
| D192374          | 6,040<br>6,380<br>7,440 | 10,870<br>11,480<br>13,390 | 1.12<br>1.18<br>1.38 | 3.89<br>4.11<br>4.79 | 1.85<br>1.95<br>2.28 | 1.0              | 1,040                      | 1,095     | 1,155 |  |
| D192375          | 4,990<br>5,420<br>7,000 | 8,990<br>9,760<br>12,610   | 1.88<br>2.04<br>2.64 | 5.84<br>6.34<br>8.19 | 2.73<br>2.96<br>3.83 | 1.0              | 1,015                      | 1,070     | 1,125 |  |
| 0192376          | 5,460<br>6,000<br>7,450 | 9,820<br>10,800<br>13,400  | 1.29<br>1.42<br>1.76 | 2.47<br>2.71<br>3.37 | 1.99<br>2.19<br>2.71 | 1.0              | 1,235                      | 1,290     | 1,345 |  |

Table 3. Proximate and ultimate analyses, heat-of-combustion, forms-of-sulfur, free-swelling index, and ash-fusion-temperature determinations for 90 Iowa coal samples--continued

|                  |          | Proximate and      | alysis          |      |          |        |          |        |        |                   |
|------------------|----------|--------------------|-----------------|------|----------|--------|----------|--------|--------|-------------------|
| Sample<br>number | Moisture | Volatile<br>matter | Fixed<br>carbon | Ash  | Hydrogen | Carbon | Nitrogen | Oxygen | Sulfur | Air-dried<br>loss |
| D192377          | 7.7      | 32.2               | 41.6            | 18.4 | 4.4      | 49.6   | 1.0      | 18.1   | 8.6    | 3.4               |
|                  |          | 34.9               | 45.1            | 19.9 | 3.8      | 53.7   | 1.1      | 12.2   | 9.3    |                   |
|                  |          | 43.6               | 56.3            |      | 4.8      | 67.1   | 1.4      | 15.2   | 11.6   |                   |
| D192378          | 10.6     | 34.5               | 39.2            | 15.7 | 4.8      | 53.2   | .9       | 18.4   | 7.0    | 6.4               |
|                  | *        | 38.6               | 43.8            | 17.6 | 4.1      | 59.5   | 1.0      | 10.0   | 7.8    |                   |
|                  |          | 46.8               | 53.2            |      | 4.9      | 72.2   | 1.2      | 12.2   | 9.5    |                   |
| D192379          | 6.5      | 34.2               | 38.5            | 20.8 | 4.6      | 55.7   | 1.2      | 14.4   | 3.2    | 3.5               |
|                  |          | 36.6               | 41.2            | 22.2 | 4.1      | 59.6   | 1.3      | 9.2    | 3.4    |                   |
|                  |          | 47.0               | 53.0            |      | 5.3      | 76.6   | 1.7      | 11.9   | 4.4    |                   |

.

| Sample<br>number | Heat of combustion      |                           | F                    | Forms of sulfur      |                      |                  | Ash fusion temperature, C° |           |       |  |
|------------------|-------------------------|---------------------------|----------------------|----------------------|----------------------|------------------|----------------------------|-----------|-------|--|
|                  | Kcal/kg                 | Btu/1b                    | Sulfate              | Pyritic              | Organic              | Free<br>Swelling | Initial<br>deformation     | Softening | Fluid |  |
| D192377          | 5,110<br>5,540<br>6,920 | 9,210<br>9,970<br>12,460  | 2.74<br>2.97<br>3.71 | 3.41<br>3.69<br>4.61 | 2.42<br>2.62<br>3.27 | 0.5              | 1,070                      | 1,125     | 1,180 |  |
| D192378          | 5,280<br>5,900<br>7,160 | 9,500<br>10,620<br>12,890 | 2.07<br>2.32<br>2.81 | 3.03<br>3.39<br>4.11 | 1.87<br>2.09<br>2.54 | .5               | 1,180                      | 1,235     | 1,290 |  |
| D192379          | 5,450<br>5,830<br>7,500 | 9,810<br>10,490<br>13,500 | .52<br>.56<br>.72    | 2.25<br>2.41<br>3.09 | .42<br>.45<br>.58    | 1.0              | 1,095                      | 1,150     | 1,200 |  |

.

.

| Sample<br>number | Ash<br>(percent) | SiO <sub>2</sub><br>(percent) | Al <sub>2</sub> 0 <sub>3</sub><br>(percent) | Can<br>(percent) | MgO<br>(percent) | Na <sub>2</sub> 0<br>(percent) | K <sub>2</sub> 0<br>(percent) | Fe <sub>2</sub> 03<br>(percent) | TiO <sub>2</sub><br>(percent) |
|------------------|------------------|-------------------------------|---------------------------------------------|------------------|------------------|--------------------------------|-------------------------------|---------------------------------|-------------------------------|
| D166027          | 23.7             | 16                            | 8.0                                         | 16               | 0.38             | 0.07                           | 0.61                          | 35                              | 0.20                          |
| D166028          | 25.5             | 27                            | 14                                          | 15               | .70              | .12                            | 1.4                           | 22                              | .50                           |
| D166029          | 15.5             | 21                            | 11                                          | 17               | .51              | .08                            | .78                           | 28                              | .50                           |
| D166030          | 15.1             | 28                            | 13                                          | 4.5              | .46              | .15                            | .95                           | 37                              | .50                           |
| D166031          | 20.0             | 22                            | 12                                          | .84              | •56              | .12                            | .85                           | 42                              | .30                           |
| 0166032          | 20.9             | 21                            | 7.2                                         | 19               | .46              | .11                            | .56                           | 31                              | - 20                          |
| D166033          | 17.9             | 24                            | 9.3                                         | 13               | .45              | .15                            | .87                           | 32                              | .50                           |
| D166034          | 21.9             | 15                            | 5.5                                         | 8.1              | .27              | .09                            | .35                           | 46                              | .15                           |
| D166035          | 21.0             | 14                            | 5.8                                         | 28               | .38              | .09                            | .36                           | 22                              | .20                           |
| D166036          | 12.8             | 16                            | 7.3                                         | 19               | .40              | .11                            | .43                           | 30                              | .30                           |
| D166037          | 14.2             | 28                            | 9.6                                         | 18               | .46              | .30                            | .69                           | 22                              | .20                           |
| D166038          | 15.3             | 29                            | 9.7                                         | 15               | .46              | .30                            | .73                           | 25                              | .30                           |
| D166039          | 18.3             | 44                            | 18                                          | 9.3              | .88              | .26                            | 1.7                           | 15                              | .50                           |
| D166040          | 29.3             | 49                            | 21                                          | 5.2              | 2.21             | .30                            | 2.5                           | 13                              | 1.0                           |
| D166041          | 17.2             | 18                            | 10                                          | .71              | .22              | .11                            | .34                           | 46                              | .30                           |
| D166042          | 16.2             | 31                            | 11                                          | 9.3              | .33              | .11                            | .72                           | 30                              | .50                           |
| D166043          | 11.2             | 23                            | 11                                          | 2.4              | .25              | .12                            | .40                           | 44                              | .50                           |
| D176169          | 16.2             | 12                            | 4.1                                         | 30               | .51              | .14                            | .57                           | 18                              | .25                           |
| D176170          | 18.5             | 28                            | 9.6                                         | 4.5              | .50              | .30                            | 1.0                           | 42                              | .64                           |
| D176171          | 29.5             | 48                            | 16                                          | 6.2              | .38              | .24                            | 1.2                           | 15                              | .90                           |
| D176172          | 25.6             | 12                            | 9.4                                         | 7.1              | .17              | .15                            | .21                           | 53                              | .19                           |
| D176173          | 27.9             | 24                            | 8.5                                         | 19               | 1.36             | .20                            | .71                           | 22                              | .44                           |
| D176174          | 20.1             | 46                            | 23                                          | 4.6              | .51              | .32                            | 1.2                           | 14                              | 1.2                           |
| D176175          | 16.6             | 31                            | 17                                          | 15               | .61              | .31                            | 1.2                           | 16                              | .52                           |
| D176176          | 22.2             | 11                            | 6.5                                         | 7.0              | .22              | .14                            | .34                           | 56                              | .30                           |

.

{Coal ashed at 525°C. L, less than the values shown; N, not detected; B, not determined. S after element title indicates determinations by semiquantitative emission spectrography }

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples

| Sample<br>number | P <sub>2</sub> 05<br>(percent) | SO3<br>(percent) | Ag-S<br>(ppm) | B-S<br>(ppm) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) |
|------------------|--------------------------------|------------------|---------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|
| D166027          | 0.13                           | 8.7              | N             | 300          | 3,000         | 7             | 2.0         |               | 30            |               |
| D166028          | .42                            | 6.7              | Ň             | 300          | 2,000         | 7             | 6.0         | N             | 30            | 70            |
| D166029          | .18                            | 8.6              | N             | 700          | 3,000         | 15            | 13.0        | N             | 30            | 70            |
| D166030          | .13                            | 3.2              | Ň             | 1.000        | 150           | 15            | 4.0         | N             | 30            | 70            |
| D166031          | .16                            | 2.6              | N             | 700          | 100           | 7             | 1.0L        | N             | 70            | 70            |
| D166032          | .17                            | 12               | N             | 700          | 100           | 7             | 1.0L        | N             | 15            | 100           |
| D166033          | .070                           | 6.1              | N             | 700          | 150           | 7             | 8.0         | N             | 20            | 70            |
| D166034          | .060                           | 6.0              | N             | 500          | 70            | 7             | 1.0L        | N             | 15            | 30            |
| D166035          | .51                            | 14               | N             | 700          | 70            | 7             | 1.0L        | N             | 15            | 50            |
| D166036          | .72                            | 6.5              | N             | 1,500        | 100           | 15            | 1.0L        | N             | 15            | 50            |
| D166037          | .98                            | 8.4              | N             | 1,500        | 500           | 7             | 2.0         | N             | 30            | 50            |
| D166038          | .87                            | 11               | N             | 1,500        | 300           | 10            | 2.0         | N             | 30            | 50            |
| D166039          | .56                            | 6.0              | N             | 1,000        | 200           | 15            | 1.0L        | 500L          | 30            | 70            |
| D166040          | .30                            | 3.4              | N             | 700          | 300           | 7             | 1.0L        | 500L          | 30            | 100           |
| D166041          | .060                           | 3.4              | N             | 700          | 150           | 15            | 85.0        | N             | 70            | 50            |
| D166042          | .11                            | 6.1              | N             | 700          | 150           | 15            | 33.0        | N             | 30            | 70            |
| D166043          | .10                            | 2.7              | 1.5           | 1,000        | 50            | 20            | 28.0        | N             | 70            | 70            |
| D176169          | 1.0L                           | 15               | 5             | 700          | 100           | 10            | 1.0L        | N             | 20            | 100           |
| D176170          | 1.0L                           | 4.8              | N             | 500          | 150           | 15            | 1.0L        | N             | 30            | 70            |
| D176171          | 1.0L                           | 5.7              | 3             | 200          | 200           | 15            | 165         | N             | 150           | 150           |
| D176172          | 1.0L                           | 6.1              | 3             | 300          | 150           | 7             | 58.0        | 500L          | 200           | 30            |
| D176173          | 1.0L                           | 10               | N             | 300          | 150           | 10            | 1.0         | N             | 30            | 70            |
| D176174          | 1.0L                           | 2.7              | N             | 500          | 500           | 15            | 64.0        | 500L          | 30            | 150           |
| D176175          | 1.0L                           | 5.1              | N             | 1,000        | 1,000         | 15            | 18.0        | N             | 30            | 100           |
| D176176          | 1.0L                           | 6.3              | N             | 300          | 300           | 10            | 1.0L        | 500L          | 70            | 50            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Cu<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) |
|------------------|-------------|---------------|---------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|
|                  | 62          | B             | 150           | N             | 40          | 700         | 15            | 201           |               | 150           |
| D166028          | 58          | B             | 100           | 100L          | 91          | 1,000       | 15            | 201           | Ň             | 150           |
| D166029          | 84          | B             | 200           | -~<br>N       | 43          | 1,000       | 30            | 201           | B             | 150           |
| D166030          | 160         | B             | 100           | 100           | 76          | 700         | 15            | 201           | Ň             | 150           |
| D166031          | 204         | B             | 50            | 100L          | 76          | 3,000       | 15            | 20L           | 150           | 200           |
| D166032          | 98          | B             | 70            | N             | 22          | 1,000       | 15            | 20L           | В             | 70            |
| D166033          | 98          | В             | 100           | N             | 46          | 700         | 15            | 20L           | 8             | 70            |
| D166034          | 100         | В             | 30            | N             | 17          | 500         | 15            | 20L           | В             | 50            |
| D166035          | 56          | 8             | 100           | N             | 26          | 2,000       | 7             | 20L           | В             | 100           |
| D166036          | 86          | В             | 150           | N             | 32          | 1,500       | 7             | 20L           | В             | 150           |
| D166037          | 60          | 8             | 70            | N             | 48          | 1,000       | 7             | 20L           | B             | 150           |
| D166038          | 60          | В             | 70            | N             | 57          | 700         | 7             | 20L           | В             | 150           |
| D166039          | 94          | 20            | 70            | 100L          | 91          | 700         | 7             | 20L           | 150L          | 150           |
| D166040          | 80          | 8             | 70            | 100L          | 114         | 700         | 10            | 20L           | 150L          | 200           |
| D166041          | 148         | 8             | 100           | N             | 93          | 300         | 30            | 20L           | 8             | 150           |
| D166042          | 104         | В             | 150           | N             | 138         | 700         | 70            | 20L           | B             | 200           |
| D166043          | 142         | В             | 150           | 100L          | 75          | 300         | 30            | 20L           | 150L          | 70            |
| D176169          | 82          | 15            | 150           | N             | 10          | 2,340       | 100           | 20L           | В             | 100           |
| D176170          | 116         | 8             | 200           | N             | 35          | 585         | 7             | 20L           | В             | 150           |
| D176171          | 162         | 15            | 30            | N             | 143         | 485         | 150           | 20L           | B             | 300           |
| D176172          | 180         | В             | 150           | 100           | 53          | 440         | 30            | 20L           | 150           | 700           |
| D176173          | 70          | B             | 70            | 100L          | 38          | 1,530       | 50            | 20L           | N             | 150           |
| D176174          | 120         | 50            | 30            | 100           | 179         | 255         | 15            | 30            | 150           | 100           |
| D176175          | 120         | 30            | 100           | 100           | 99          | 705         | 20            | 20L           | 150           | 150           |
| D176176          | 70          | 8             | 70            | 100L          | 40          | 350         | N             | 20L           | 150L          | 200           |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Pb<br>(ppm) | Sc-S<br>(ppm) | Sr-S<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|---------------|--------------|--------------|---------------|-------------|---------------|
| D166027          | 400         | 15            | 150           | 70           | 30           | В             | 1,480       | 70            |
| D166028          | 110         | 30            | 100           | 150          | 50           | В             | 3,000       | 70            |
| D166029          | 250         | 30            | 100           | 150          | 30           | В             | 7,800       | 70            |
| D166030          | 70          | 30            | 150           | 150          | 30           | В             | 1,500       | 70            |
| D166031          | 75          | 20            | 150           | 150          | 70           | В             | 1,080       | 70            |
| D166032          | 70          | 15            | 70            | 100          | 30           | B             | 292         | 70            |
| D166033          | 45          | 20            | 70            | 100          | 30           | B             | 2,400       | 70            |
| D166034          | 90          | 10            | 50            | 70           | 30           | B             | 52          | 50            |
| D166035          | 360         | 15            | 150           | 70           | 30           | В             | 188         | 70            |
| D166036          | 450         | 15            | 150           | 70           | 30           | B             | 364         | 70            |
| D166037          | 305         | 15            | 200           | 70           | 30           | В             | 2,240       | 50            |
| D166038          | 345         | 15            | 200           | 70           | 30           | 3             | 1,740       | 70            |
| D166039          | 150         | 20            | 150           | 150          | 30           | 3             | 740         | 100           |
| D166040          | 120         | 20            | 150           | 150          | 30           | В             | 260         | 150           |
| D166041          | 500         | 20            | 30            | 100          | 70           | B             | 32,000      | 70            |
| D166042          | 270         | 30            | 70            | 150          | 50           | В             | 11,000      | 150           |
| D166043          | 630         | 15            | 150           | 150          | 70           | В             | 7,800       | 70            |
| D176169          | 110         | 15            | 100           | 300          | 50           | 5             | 64          | 50            |
| D176170          | 560         | 30            | 150           | 70           | 50           | 8             | 64          | 100           |
| D176171          | 200         | 30            | 300           | 300          | 30           | 7             | 14,200      | 200           |
| D176172          | 220         | 30            | 2.000         | 150          | 30           | ß             | 8,840       | 50            |
| D176173          | 90          | 30            | 100           | 100          | 70           | 8             | 200         | 100           |
| D176174          | 75          | 50            | 150           | 150          | 70           | 5             | 17,500      | 200           |
| D176175          | 120         | 30            | 300           | 150          | 100          | 7             | 6,000       | 70            |
| D176176          | 300         | 20            | 300           | 70           | 30           | В             | 60          | 70            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Ash<br>(percent) | SiO <sub>2</sub><br>(percent) | A1 <sub>2</sub> 03<br>(percent) | CaO<br>(percent) | MgO<br>(percent) | Na <sub>2</sub> 0<br>(percent) | K <sub>2</sub> 0<br>(percent) | Fe <sub>2</sub> 03<br>(percent) | TiO <sub>2</sub><br>(percent) |
|------------------|------------------|-------------------------------|---------------------------------|------------------|------------------|--------------------------------|-------------------------------|---------------------------------|-------------------------------|
| D176177          | 16.6             | 15                            | 9.6                             | 5.7              | .30              | 0.16                           | .62                           | 52                              | 48                            |
| D176178          | 30.4             | 31                            | 17                              | 1.3              | .76              | .40                            | 1.6                           | 35                              | .73                           |
| D176179          | 18.4             | 24                            | 8.4                             | 8.0              | .58              | .45                            | 1.0                           | 39                              | •58                           |
| D176180          | 10.3             | 23                            | 7.5                             | 20               | .76              | .50                            | 1.1                           | 20                              | .42                           |
| D176181          | 18.1             | 29                            | 9.2                             | 15               | .70              | -40                            | 1.1                           | 22                              | .48                           |
| D176182          | 41.6             | 5.6                           | 1.9                             | 13               | .23              | .09                            | .14                           | 51                              | .17                           |
| D176183          | 29.4             | 12                            | 5.7                             | 11               | .27              | .19                            | .43                           | 46                              | .23                           |
| D176184          | 22.5             | 18                            | 10                              | 3.9              | .32              | .26                            | .62                           | 50                              | .45                           |
| D176185          | 32.0             | 3.5                           | 1.4                             | 8.1              | .13              | .11                            | .070                          | 64                              | .14                           |
| D176186          | 34.2             | 8.0                           | 4.3                             | 3.8              | .10L             | .09L                           | .11                           | 66                              | .15                           |
| D176187          | 12.6             | 13                            | 7.3                             | 12               | .32              | .18                            | .51                           | 42                              | .37                           |
| D176188          | 25.3             | 24                            | 16                              | 7.2              | .55              | .18                            | 1.1                           | 32                              | .63                           |
| D176189          | 24.9             | 26                            | 10                              | 3.0              | .76              | .35                            | 1.1                           | 45                              | .57                           |
| D176190          | 45.9             | 42                            | 6.6                             | 14               | .88              | .61                            | 1.2                           | 14                              | .64                           |
| D176191          | 12.8             | 25                            | 7.1                             | 19               | .42              | .36                            | .60                           | 21                              | .33                           |
| D176192          | 17.0             | 35                            | 12                              | 7.5              | .53              | .32                            | 1.2                           | 23                              | .52                           |
| D176193          | 37.8             | 43                            | 18                              | 1.2              | .37              | .28                            | .87                           | 28                              | .91                           |
| D176194          | 31.5             | 28                            | 12                              | 4.5              | .37              | .26                            | .72                           | 36                              | .50                           |
| D176195          | 10.7             | 13                            | 5.1                             | 6.9              | .25              | .40                            | .36                           | 52                              | .36                           |
| D176196          | 23.7             | 20                            | 7.4                             | 24               | .56              | .26                            | •57                           | 16                              | .36                           |
| D176197          | 16.4             | 6.4                           | 4.8                             | 6.4              | .17              | .19                            | .17                           | 60                              | .16                           |
| D176198          | 29.2             | 42                            | 21                              | 1.7              | .73              | .20                            | 2.1                           | 21                              | .74                           |
| D176199          | 16.2             | 12                            | 6.1                             | 25               | .32              | .22                            | .34                           | 25                              | .29                           |
| D176200          | 30.1             | 13                            | 6.0                             | 5.0              | .27              | .14                            | .48                           | 50                              | .73                           |
| D179838          | 11.6             | 17                            | 8.6                             | 9.2              | .43              | .18                            | .67                           | 36                              | .37                           |
| D179389          | 49.8             | 52                            | 23                              | .84              | 1.29             | .39                            | 2.4                           | 8.0                             | 1.0                           |
| D379840          | 11.8             | 32                            | 15                              | 5.9              | .51              | .27                            | 1.1                           | 23                              | .63                           |
| D179841          | 20.6             | 18                            | 4.9                             | 17               | .45              | .18                            | .39                           | 26                              | .23                           |
| D179842          | 68.8             | 39                            | 9.4                             | 2.5              | 1.08             | .53                            | 1.9                           | 26                              | .43                           |
| D179843          | 38.6             | 11                            | 3.7                             | 8.7              | .13              | .05                            | .25                           | 58                              | .28                           |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | P205<br>(percent) | SO <sub>3</sub><br>(percent) | Ag-S<br>(ppm) | B-S<br>(ppm) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm |
|------------------|-------------------|------------------------------|---------------|--------------|---------------|---------------|-------------|---------------|---------------|--------------|
| D176177          | 1.0L              | 2.8                          | N             | 700          |               |               | 1.0L        | <br>N         | 100           | 70           |
| D176178          | 1.0L              | 5.0                          | 2             | 500          | 200           | 15            | 328         | 500L          | 70            | 100          |
| D176179          | 1.0L              | 4.4                          | N             | 700          | 150           | 15            | 1.0L        | N             | 30            | 70           |
| D176180          | 1.0L              | 6.9                          | 5             | 1,500        | 150           | 30            | 22.0        | N             | 30            | 150          |
| D176181          | 1.0L              | 4.6                          | 1             | 700          | 150           | 15            | 4.0         | N             | 50            | 70           |
| D176182          | 1.0L              | 16                           | 1             | 150          | 70            | 3L            | 1.0         | · N           | 30            | 20           |
| D176183          | 1.OL              | 11                           | 5             | 300          | 100           | 7             | 68.0        | 500L          | 100           | 50           |
| D176184          | 1.OL              | 3.3                          | 1             | 500          | 150           | 10            | 1.0L        | N             | 300           | 70           |
| D176185          | 1.0L              | 7.6                          | N             | 200          | 20            | 7             | 1.0L        | N             | 50            | 30           |
| D176186          | 1.0L              | 2.8                          | N             | 150          | 50            | 7             | 5.0         | 500L          | 50            | 30           |
| D176187          | 1.0L              | 8.0                          | N             | 500          | 150           | 15            | 6.0         | N             | 50            | 70           |
| D176188          | 1.0L              | 4.9                          | N             | 500          | 300           | 7             | 1.0         | 500L          | 30            | 150          |
| D176189          | 1.0L              | 3.4                          | N             | 500          | 200           | 10            | 1.0L        | N             | 30            | 70           |
| D176190          | 1.0L              | 9.9                          | 3             | 200          | 5,000         | N             | 1.0L        | N             | 30            | 70           |
| 0176191          | 1.OL              | 7.8                          | N             | 100          | 300           | 20            | 73.0        | N             | 15            | 50           |
| D176192          | 1.0L              | 6.3                          | 2             | 700          | 200           | 15            | 437         | N             | 50            | 150          |
| D176193          | 1.0L              | 2.0                          | N             | 200          | 150           | 7             | 35.0        | 500L          | 100           | 150          |
| D176194          | 1.0L              | 6.0                          | N             | 200          | 200           | 7             | 1.0         | 500L          | 300           | 100          |
| D176195          | 1.0L              | 4.1                          | N             | 1,500        | 100           | 30            | 1.0L        | N             | 100           | 70           |
| D176196          | 1.0L              | 11                           | N             | 500          | 100           | 10            | 1.0L        | N             | 20            | 70           |
| D176197          | 1.0L              | 4.8                          | 3             | 1.000        | 50            | 15            | 9,0         | N             | 30            | 70           |
| D176198          | 1.0L              | 1.5                          | N             | 500          | 700           | 7             | 1.0L        | 500L          | 30            | 150          |
| D176199          | 1.0L              | 8.3                          | Ň             | 700          | 700           | 15            | 1.0L        | 500L          | 30            | 50           |
| 0176200          | 1.0L              | 10                           | N             | 300          | 10.000        | 7             | 188         | N             | 70            | 70           |
| 0179838          | 1.0L              | 6.2                          | 1             | 700          | 150           | 30            | 1.0L        | N             | 70            | 150          |
| 0179389          | 1.0L              | .74                          | N             | 300          | 700           | 10            | 1.01        | 200           | 50            | 300          |
| 0379840          | 1.0L              | 3.1                          | 2             | 700          | 300           | 30            | 9.0         | 200           | 150           | 300          |
| 0179841          | 1.0L              | 14                           | N             | 300          | 100           | 15            | 26.0        | Ň             | 15            | 30           |
| 0179842          | 1.0L              | 4.5                          | 7             | 70           | 500           | Ň             | 1.0         | N             | 30            | 150          |
| 179843           | 1.0L              | 9.9                          | 7             | 150          | 3,000         | 15            | 1.01        | N             | 700           | 30           |

| Sample<br>number | Cu<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) |
|------------------|-------------|---------------|---------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|
| D176177          |             | B             | 300           | 100L          | 70          | 335         | 7             | 20L           | 150L          | 200           |
| D176178          | 520         | 8             | 100           | 100           | 242         | 220         | 20            | 20L           | 150L          | 200           |
| D176179          | 172         | B             | 100           | N             | 92          | 1,250       | 20            | 20L           | 8             | 150           |
| D176180          | 142         | В             | 300           | N             | 20          | 2,270       | 150           | 20L           | 8             | 150           |
| 01/0101          | 150         | В             | 200           | N             | 50          | 2,040       | 30            | 20            | В             | 200           |
| D176182          | 220         | В             | 100           | N             | 10          | 1,130       | 30            | 20L           | В             | 100           |
| D176183          | 240         | В             | 150           | 150           | 30          | 785         | 70            | 20L           | 150           | 700           |
| D176184          | 170         | B             | 70            | N             | 65          | 375         | 30            | 20L           | В             | 300           |
| D176185          | 118         | B             | 70            | N             | 11          | 635         | N             | 20L           | В             | 150           |
| D176186          | 84          | В             | 70            | 100           | 30          | 240         | N             | 20L           | 200           | 150           |
| D176187          | 72          | В             | 150           | 150           | 54          | 925         | 15            | 20L           | 150           | 70            |
| D176188          | 70          | 30            | 70            | 150           | 192         | 390         | Ň             | 20L           | 150           | 70            |
| D176189          | 170         | 8             | 100           | 100L          | 88          | 590         | 15            | 20L           | N             | 150           |
| D176190          | 62          | 10            | 20            | N             | 22          | 1,710       | 30            | 20L           | B             | 70            |
| D176191          | 120         | 30            | 300           | N             | 22          | 2,580       | 20            | 20L           | B             | 150           |
| D176192          | 128         | 20            | 70            | N             | 78          | 960         | 100           | 201           | В             | 300           |
| D176193          | 120         | 20            | N             | 150           | 212         | 280         | 20            | 20L           | 150           | 300           |
| D176194          | 112         | 30            | 30            | 150           | 78          | 2,340       | 15            | 20L           | 150           | 700           |
| D176195          | 100         | · B           | 300           | N             | 28          | 1,180       | 30            | 20L           | В             | 200           |
| D176196          | 64          | 30            | 70            | N             | 46          | 2,310       | 10            | 20L           | 8             | 100           |
| D176197          | 264         | В             | 300           | N             | 71          | 670         | 30            | 201           | B             | 200           |
| D176198          | 156         | 30            | 30            | 150           | 110         | 275         | 15            | 20            | 150           | 150           |
| D176199          | 44          | 20            | 100           | 150           | 35          | 1,760       | N             | 20L           | 150           | 70            |
| D176200          | 82          | В             | 200           | N             | 55          | 395         | 15            | 20L           | B             | 150           |
| D179838          | 228         | 70            | 200           | N             | 25          | 1,130       | 70            | 20            | В             | 150           |
| D179389          | 147         | 70            | 20            | 100           | 177         | 270         | N             | 30            | 200           | 150           |
| D379840          | 197         | 70            | 200           | 150           | 100         | 895         | 70            | 30            | 200           | 300           |
| D179841          | 36          | 30            | 100           | N             | 17          | 1,470       | 30            | N             | B             | 70            |
| D179842          | 157         | 50            | N             | N             | 26          | 460         | 70            | 20            | B             | 150           |
| D179843          | 440         | 20            | 150           | N             | 11          | 790         | 300           | 20            | B             | 1,500         |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Pb<br>(ppm) | Sc-S<br>(ppm) | Sr-S<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|---------------|--------------|--------------|---------------|-------------|---------------|
|                  | 390         |               | 150           | 150          | 100          | B             | 60          | 70            |
| D176178          | 350         | 50            | 150           | 500          | 70           | B             | 17,600      | 150           |
| D176179          | 630         | 15            | 150           | 100          | 70           | В             | 97          | 100           |
| D176180          | 130         | 15            | 150           | 700          | 70           | 7             | 960         | 70            |
| D176181          | 485         | 30            | 200           | 150          | 70           | В             | 210         | 150           |
| D176182          | 530         | 20            | 150           | 50           | 50           | В             | 476         | 30            |
| D176183          | 520         | 15            | 700           | 150          | 200          | В             | 11,000      | 70            |
| D176184          | 320         | 30            | 150           | 200          | 50           | В             | 182         | 100           |
| D176185          | 155         | 30            | 30            | 70           | 30           | В             | 42          | 30            |
| D176186          | 190         | 15            | 50            | 50           | 150          | B             | 1,360       | 30            |
| D176187          | 160         | 20            | 300           | 150          | 100          | В             | 2,800       | 70            |
| D176188          | 130         | 30            | 1,000         | 150          | 70           | В             | 176         | 100           |
| D176189          | 1,020       | 20            | 150           | 100          | 70           | B             | 58          | 150           |
| D176190          | 130         | 15            | 150           | 200          | 20           | 3             | 46          | 150           |
| D176191          | 190         | 30            | 150           | 70           | 70           | 7             | 6,120       | 70            |
| D176192          | 130         | 15            | 3,000         | 1,000        | 70           | 7             | 30,000      | 150           |
| D176193          | 75          | 30            | 1,500         | 150          | 70           | B             | 3,480       | 200           |
| D176194          | 100         | 30            | 300           | 200          | 100          | В             | 130         | 150           |
| D176195          | 335         | 50            | 300           | 150          | 100          | 8             | 95          | 150           |
| D176196          | 155         | 20            | 150           | 100          | 70           | 3             | 66          | 70            |
| D176197          | 535         | 30            | 100           | 150          | 50           | В             | 2,720       | 70            |
| D176198          | 110         | 50            | 200           | 200          | 70           | 7             | 54          | 150           |
| D176199          | 85          | 15            | 700           | 100          | 100          | B             | 44          | 50            |
| D176200          | 285         | 30            | 700           | 150          | 30           | B             | 60,000      | 100           |
| D179838          | 850         | 30            | 300           | 300          | 100          | 7             | 76          | 70            |
| D179389          | 60          | 30            | 300           | 700          | 70           | 7             | 11          | 200           |
| D379840          | 100         | 50            | 300           | 700          | 100          | 15            | 1,450       | 150           |
| D179841          | 300         | 7             | 500           | 70           | 70           | 7             | 4,540       | 50            |
| D179842          | 300         | 15            | 150           | 300          | 30           | 7             | 40          | 70            |
| D179843          | 1,100       | 10            | 150           | 70           | 70           | 7             | 120         | 70            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued
| Sample<br>number | Ash<br>(percent) | SiO <sub>2</sub><br>(percent) | Al <sub>2</sub> 03<br>(percent) | Ca()<br>(percent) | MgO<br>(percent) | Na <sub>2</sub> ()<br>(percent) | K <sub>2</sub> 0<br>(percent) | Fe <sub>2</sub> 03<br>(percent) | TiO <sub>2</sub><br>(percent) |
|------------------|------------------|-------------------------------|---------------------------------|-------------------|------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|
| D179844          | 32.9             | 21                            | 8.7                             | 7.9               | 0,46             | 0,11                            | 0,68                          | 33                              | 0,38                          |
| D179845          | 38.7             | 2.1                           | 2.2                             | 3.6               | .03              | .03                             | .030L                         | 79                              | .10                           |
| D179846          | 35.6             | 13                            | 8.9                             | 6.4               | .18              | .11                             | .35                           | 58                              | .30                           |
| D179847          | 12.7             | 15                            | 5.9                             | 19                | .60              | .11                             | .77                           | 22                              | .27                           |
| D179848          | 7.9              | 39                            | 10                              | 17                | .55              | .31                             | .87                           | 4.9                             | .48                           |
| D179849          | 21.8             | 11                            | 4.8                             | 17                | 1.48             | .14                             | .32                           | 30                              | .23                           |
| D179850          | 13.0             | 40                            | 21                              | 1.1               | .65              | .42                             | 1.3                           | 21                              | .81                           |
| D179851          | 5.7              | 22                            | 9.0                             | 16                | .83              | .32                             | 1.2                           | 17                              | .36                           |
| D179852          | 10.6             | 27                            | 7.6                             | 18                | .51              | .32                             | .76                           | 14                              | •36                           |
| D179853          | 32.8             | 9.3                           | 4.3                             | 22                | 1.58             | .12                             | .27                           | 23                              | .18                           |
| D179854          | 24.6             | 32                            | 18                              | 4.8               | .53              | .32                             | 1.3                           | 23                              | .63                           |
| D179855          | 13.4             | 14                            | 13                              | 11                | .22              | .26                             | .48                           | 46                              | .37                           |
| D179856          | 32.0             | 14                            | 9.8                             | 2.6               | .17              | .12                             | .28                           | 49                              | .48                           |
| D185601          | 13.9             | 7.7                           | 3.7                             | 13                | .31              | .10                             | 1.1                           | 60                              | .15                           |
| D185602          | 14.3             | 13                            | 5.3                             | 17                | .45              | .11                             | 1.1                           | 48                              | .31                           |
| D185603          | 12.3             | 15                            | 1.6                             | 17                | .45              | .18                             | .84                           | 47                              | .12                           |
| D185604          | 11.8             | 20                            | 5.0                             | 23                | .52              | .20                             | 1.0                           | 32                              | .36                           |
| D185605          | 10.6             | 18                            | 4.7                             | 18                | .55              | .22                             | 1.1                           | 42                              | .29                           |
| D185606          | 13.1             | 34                            | 11                              | 11                | 1.37             | .16                             | 1.3                           | 24                              | 1.0                           |
| D185609          | 21.8             | 12                            | 3.0                             | 25                | .39              | .10                             | .93                           | 35                              | .24                           |
| D185610          | 17.0             | 9.4                           | 2.7                             | 16                | .24              | .11                             | 1.0                           | 54                              | <b>.</b> 18 ·                 |
| D185611          | 23.0             | 15                            | 2.8                             | 43                | .41              | .10                             | .49                           | 5.8                             | .27                           |
| D185612          | 12.1             | 28                            | 12                              | 2.2               | .57              | .13                             | 1.6                           | 42                              | .54                           |
| D185613          | 8.4              | 32                            | 12                              | 12                | .73              | .19                             | 1.6                           | 25                              | .70                           |
| D186062          | 11.6             | 15                            | 5.0                             | 19                | .38              | .35                             | .81                           | 44                              | .16                           |
| D186063          | 14.9             | 10                            | 4.1                             | 24                | .31              | .26                             | .67                           | 41                              | .12                           |
| D186064          | 8.9              | 21                            | 8.1                             | 13                | .46              | .44                             | .98                           | 42                              | .26                           |
| D186065          | 16.6             | 17                            | 8.1                             | 14                | .40              | .14                             | 1.1                           | 46                              | .32                           |
| D186066          | 12.1             | 31                            | 17                              | 14                | .35              | .16                             | 1.1                           | 28                              | .63                           |
| D186067          | 24.7             | 25                            | 12                              | 6.4               | .47              | .20                             | 1.6                           | 47                              | .27                           |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

|         | D_0_      |           |               |              |       |       |       | <u> </u> | <u> </u> |       |
|---------|-----------|-----------|---------------|--------------|-------|-------|-------|----------|----------|-------|
| number  | (percent) | (percent) | Ag-S<br>(ppm) | (bbw)<br>R-2 | (ppm) | (ppm) | (ppm) | (ppm)    | (ppm)    | (ppm) |
| D179844 | 1.0L      | 8.8       | 1.5           | 200          | 500   | 10    | 22.0  | N        | 70       | 150   |
| D179845 | 1.OL      | 5.3       | 1.5           | 100          | 70    | 7     | 23.0  | N        | 70       | 30    |
| D179846 | 1.0L      | 5.6       | 1.5           | 150          | 70    | 10    | 3.0   | N        | 30       | 70    |
| D179847 | 1.OL      | 13        | 15            | 700          | 150   | 30 1  | 20    | N        | 70       | 150   |
| D179848 | 1.0L      | 5.3       | N             | 700          | 700   | 30    | 14.0  | N        | 15       | 100   |
| D179849 | 1.0L      | 10        | 1.5           | 200          | 150   | 15    | 1.0L  | 200      | 150      | 150   |
| D179850 | 1.OL      | 1.2       | N             | 500          | 300   | 30    | 4.0   | N        | 70       | 300   |
| D179851 | 1.4       | 11        | 10            | 1,000        | 200   | 30    | 35.0  | N        | 20       | 500   |
| D179852 | 1.0L      | 8.2       | 1.5           | 300          | 2,000 | 20    | 93.0  | . N      | 30       | 150   |
| D179853 | 1.OL      | 17        | 1.5           | 150          | 70    | 7     | 5.0   | N        | 20       | 50    |
| D179854 | 1.0L      | 2.9       | 2             | 300          | 300   | 20    | 1.0L  | 300      | 50       | 200   |
| D179855 | 1.0L      | 8.5       | N             | 700          | 150   | 30    | 1.0L  | N        | 30       | 150   |
| D179856 | 1.0L      | 3.4       | 3             | 150          | 3,000 | 15    | 4.0   | N        | 150      | 300   |
| D185601 | 1.0L      | 11        | N             | 300          | 70    | 15    | 1.0L  | N        | 50       | 20    |
| D185602 | 1.0L      | 14        | N             | 300          | 70    | 15    | 1.0L  | N        | 50       | 30    |
| D185603 | 1.0L      | 9.2       | N             | 1,000        | 50    | 15    | 1.0   | N        | 50       | 15    |
| D185604 | 1.0L      | 8.3       | N             | 1,500        | 100   | 15    | 1.0   | 500L     | 50       | 30    |
| D185605 | 1.0L      | 10        | N             | 1,500        | 100   | 15    | 1.0L  | 500L     | 50       | 30    |
| D185606 | 1.0L      | 15        | N             | 700          | 2,000 | 15    | 4.0   | 700      | 50       | 100   |
| D185609 | 1.0L      | 11        | N             | 300          | 70    | 5     | 2.0   | N        | 30       | 20    |
| D185610 | 1.0L      | 8.9       | N             | 500          | 70    | 7     | 1.0L  | N        | 70       | 20    |
| D185611 | 1.0L      | 11        | N             | 300          | 50    | 5     | 1.0L  | N        | 10       | 20    |
| D185612 | 1.0L      | 5.4       | 10            | 1.000        | 150   | 15 5  | 10    | Ň        | 50       | 50    |
| D185613 | 1.0L      | 7.1       | 5             | 500          | 300   | 20 3  | 70    | N        | 30       | 70    |
| D186062 | 1.0L      | 10        | 1.5           | 700          | 70    | 15    | 1.0L  | N        | 30       | 30    |
| D186063 | 1.0L      | 12        | 1.5           | 700          | 100   | 10    | 1.0   | N        | 30       | 30    |
| D186064 | 1.0L      | 7.7       | 1.5           | 1,500        | 100   | 20    | 12.0  | N        | 50       | 70    |
| D186065 | 1.0L      | 12        | Ň             | 500          | 700   | - 7   | 1.0L  | N        | 15       | 70    |
| D186066 | 1.0L      | 6.4       | Ň             | 700          | 150   | 15    | 1.5   | 500L     | 30       | 100   |
| D186067 | 1.0L      | 5.3       | 1.5           | 300          | 150   | 7     | 1.0L  | N        | 100      | 70    |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Cu<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) |
|------------------|-------------|---------------|---------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|
| D179844          | 145         | 70            | 100           | N             | 44          | 780         | 70            | 20            | 8             | 200           |
| D179845          | 179         | 30            | 100           | N             | 10L         | 230         | 30            | N             | В             | 300           |
| D179846          | 157         | 70            | 100           | N             | 44          | 380         | 100           | 20            | B             | 200           |
| D17984/          | 146         | 70            | 300           | N             | 12          | 2,780       | 1,000         | 20            | B             | 300           |
| D179848          | 100         | <b>/</b> 0    | 500           | N             | 63          | 2,060       | 50            | 20            | В             | /0            |
| D179849          | 192         | 30            | 150           | 150           | 33          | 2,780       | 30            | 20            | N             | 300           |
| D179850          | 112         | 70            | 100           | N             | 250         | 160         | 30            | 20            | B             | 200           |
| D179851          | 149         | 50            | 300           | N             | 17          | 1,710       | 300           | 20            | В             | 200           |
| D179852          | 149         | 50            | 300           | N             | 25          | 2,060       | 30            | 20            | B             | 150           |
| D179853          | 109         | 50            | 100           | N             | 17          | 2,060       | 50            | N             | В             | 150           |
| D179854          | 137         | 100           | 70            | 200           | 222         | 530         | 50            | 20            | 300           | 300           |
| D179855          | 69          | 70            | 100           | 150           | 45          | 820         | 15            | 20            | N             | 200           |
| D179856          | 171         | 50            | 70            | N             | 72          | 560         | 15            | 20            | В             | 500           |
| D185601          | 29          | B             | 70            | N             | 10          | 1,160       | 7             | 20L           | В             | 50            |
| D185602          | 34          | 30            | 100           | N             | 16          | 1,240       | 7             | 20L           | В             | 50            |
| D185603          | 99          | В             | 150           | N             | 10          | 1.840       | 7             | 20L           | B             | 200           |
| D185604          | 77          | 30            | 150           | 100           | 16          | 1,660       | 10            | 20L           | 150           | 150           |
| D185605          | 96          | 30            | 150           | 100           | 18          | 1,880       | 7             | 20L           | 150           | 150           |
| D185606          | 125         | 30            | 150           | 200           | 109         | 1,600       | 10            | 20            | 300           | 100           |
| D185609          | 67          | 15            | 30            | N             | 14          | 1,920       | N             | 20L           | B             | 100           |
| D185610          | 109         | В             | 50            | N             | 11          | 1.330       | N             | 201           | В             | 200           |
| D185611          | 22          | 15            | 70            | Ň             | 13          | 4,260       | 15            | N             | B             | 30            |
| D185612          | 157         | В             | 150           | Ň             | 97          | 365         | 70            | 20            | B             | 500           |
| D185613          | 98          | 20            | 150           | N             | 68          | 1,260       | 70            | 20            | B             | 300           |
| D186062          | 157         | В             | 70            | N             | 13          | 1,490       | 15            | 20L           | В             | 300           |
| D186063          | 150         | В             | 70            | N             | 101         | 1.800       | 15            | N             | B             | 300           |
| D186064          | 175         | B             | 150           | N             | 25          | 970         | 15            | 20            | B             | 300           |
| D186065          | 153         | B             | 70            | 100           | 29          | 915         | 15            | 201           | 300           | 100           |
| D186066          | 88          | 30            | 150           | 150           | 94          | 610         | 15            | 20            | 150           | 70            |
| 0186067          | 153         | R             | 70            | 1001          | 27          | 270         |               | 201           | 200           | 200           |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Pb<br>(ppm) | Sc-S<br>(ppm) | Sr-S<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|---------------|--------------|--------------|---------------|-------------|---------------|
| D179844          | 400         | 30            | 150           | 300          | 70           | 7             | 7,400       | 150           |
| D179845          | 800         | 15            | 150           | 150          | 30           | 10            | 7,350       | N             |
| D179846          | 700         | 15            | 150           | 70           | 50           | 7             | 1,370       | 70            |
| D179847          | 500         | 20            | 500           | 1,500        | 70           | 10            | 9,300       | 70            |
| D179848          | 75          | 30            | 300           | 150          | 150          | 15            | 1,000       | 70            |
| D179849          | 500         | 30            | 300           | 200          | 100          | 7             | 320         | 70            |
| D179850          | 170         | 30            | 300           | 300          | 100          | 10            | 1,030       | 150           |
| D179851          | 190         | 15            | 500           | 3,000        | 100          | 15            | 2,200       | 70            |
| D179852          | 525         | 30            | 300           | 200          | 100          | 15            | 6,250       | 70            |
| D179853          | 260         | 30            | 300           | 100          | 70           | 7             | 1,000       | 50            |
| D179854          | 190         | 50            | 1,500         | 300          | 70           | 10            | 370         | 100           |
| D179855          | 150         | 30            | 2,000         | 200          | 70           | 7             | 970         | 70            |
| D179856          | 225         | 30            | 150           | 300          | 70           | 10            | 2,560       | 150           |
| D185601          | 360         | 10L           | 70            | 30           | 50           | B             | 76          | 30            |
| D185602          | 400         | 10L           | 70            | 50           | 50           | В             | 82          | 50            |
| D185603          | 200         | 15            | 300           | 30           | 50           | В             | 83          | 30            |
| D185604          | 105         | 15            | 700           | 70           | 70           | В             | 80          | 70            |
| D185605          | 160         | 15            | 700           | 50           | 70           | В             | 87          | 70            |
| D185606          | 230         | 30            | 1,000         | 200          | 150          | B             | 1,050       | 150           |
| D185609          | 170         | 10L           | 150           | 15           | 50           | В             | 847         | 30            |
| D185610          | 245         | 10L           | 150           | 20           | 50           | ß             | 54          | 30            |
| D185611          | 45          | 10L           | 200           | 30           | 70           | 7             | 76          | 30            |
| D185612          | 515         | 15            | 150           | 70           | 70           | B             | 31,600      | 100           |
| D185613          | 130         | 20            | 150           | 150          | 70           | В             | 13,000      | 100           |
| D186062          | 650         | 15            | 150           | 70           | 70           | В             | 501         | 50            |
| D186063          | 795         | 15            | 150           | 70           | 70           | 8             | 402         | 30            |
| D186064          | 665         | 20            | 150           | 150          | 70           | 8             | 3,120       | 70            |
| D186065          | 80          | 30            | 150           | 100          | 70           | В             | · 77        | 70            |
| D186066          | 75          | 30            | 150           | 150          | 150          | В             | 1,010       | 70            |
| D186067          | 595         | 15            | 100           | 150          | 70           | В             | 60          | 70            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Ash<br>(percent) | SiO <sub>2</sub><br>(percent) | Al <sub>2</sub> 0 <sub>3</sub><br>(percent) | CaO<br>(percent) | MgO<br>(percent) | Na <sub>2</sub> 0<br>(percent) | K <sub>2</sub> 0<br>(percent) | Fe <sub>2</sub> 03<br>(percent) | TiO2<br>(percent) |
|------------------|------------------|-------------------------------|---------------------------------------------|------------------|------------------|--------------------------------|-------------------------------|---------------------------------|-------------------|
| D186068          | 13.8             | 14                            | 7.3                                         | 27               | 0,24             | 0,20                           | 0.62                          | 31                              | 0.22              |
| D186069          | 26.0             | 46                            | 23                                          | 3.1              | .85              | .19                            | 2.1                           | 16                              | .88               |
| D186070          | 11.1             | 29                            | 18                                          | 10               | .47              | .23                            | 1.4                           | 28                              | .63               |
| D186071          | 14.5             | 11                            | 7.5                                         | 14               | .25              | .17                            |                               | 51                              | 28                |
| D186072          | 22.2             | 15                            | 8.1                                         | 32               | .44              | .19                            | .82                           | 20                              | .45               |
| D186073          | 15.2             | 22                            | 9.4                                         | 18               | .44              | .18                            | 1.2                           | 32                              | .54               |
| D186074          | 19.9             | 18                            | 6.4                                         | 18               | .50              | .13                            | 1.0                           | 37                              | .40               |
| D186075          | 13.2             | 23                            | 7.5                                         | 25               | .58              | .40                            | .90                           | 22                              | .43               |
| D186076          | 15.1             | 18                            | 4.7                                         | 21               | _60              | .31                            | .86                           | 33                              | .29               |
| D192368          | 24.2             | 19                            | 4.5                                         | 21               | .30              | .13                            | .21                           | 22                              | .26               |
| D192369          | 11.4             | 31                            | 9.6                                         | 12               | .55              | .38                            | .71                           | 22                              | .49               |
| D192370          | 25.9             | 5.1                           | 1.8                                         | 5.9              | .09              | .13                            | .030L                         | 59                              | .080              |
| D192371          | 20.6             | 14                            | 5.6                                         | 8.6              | .31              | .26                            | .29                           | 46                              | .24               |
| D192372          | 13.5             | 24                            | 12                                          | 9.5              | .36              | .31                            | .47                           | 31                              | .46               |
| D192373          | 14.1             | 29                            | 9.4                                         | 11               | .51              | .35                            | .77                           | 27                              | .40               |
| D192374          | 13.4             | 15                            | 5.8                                         | 8.4              | -25              | .26                            | .24                           | 46                              | .30               |
| D192375          | 22.9             | 28                            | 12                                          | 3.4              | .32              | .21                            | .76                           | 40                              | .55               |
| D192376          | 16.4             | 15                            | 4.9                                         | 13               | .22              | .22                            | .23                           | 35                              | .50               |
| D192377          | 19.9             | 26                            | 10                                          | 3.2              | .35              | .16                            | .51                           | 41                              | 44                |
| D192378          | 18.0             | 13                            | 8.0                                         | 13               | .24              | .21                            | .27                           | 38                              | .27               |
| D192379          | 20.9             | 31                            | 12                                          | 15               | .57              | .15                            | 1.1                           | 16                              | .55               |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | P <sub>2</sub> 05<br>(percent) | SO3<br>(percent) | Ag-S<br>(ppm) | B-S<br>(ppm) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) |
|------------------|--------------------------------|------------------|---------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|
| D186068          | 1.0L                           | 14               | <br>N         | 700          | 200           |               | 1.0L        | 500           |               | 70            |
| D186069          | 1.0L                           | 2.3              | Ň             | 300          | 150           | 15            | 5.0         | 500L          | 50            | 150           |
| D186070          | 1.3                            | 5.7              | N             | 1.000        | 500           | 20            | 1.0L        | 500           | 50            | 150           |
| D186071          | 1.0L                           | 9.1              | 1.5           | 700          | 150           | 15            | 74.0        | 500L          | 70            | 70            |
| D186072          | 1.0L                           | 16               | N             | 500          | 150           | 10            | 2.0         | N             | 15            | 70            |
| D186073          | 1.0L                           | 12               | N             | 500          | 100           | 15            | 23.0        | N             | 70            | 150           |
| D186074          | 1.0L                           | 13               | N             | 500          | 100           | 10            | 62.0        | N             | 70            | 70            |
| D186075          | 1.0L                           | 9.9              | N             | 1,000        | 150           | 15            | 1.5         | N             | 50            | 70            |
| D186076          | 1.0L                           | 10               | N             | 1,000        | 150           | 15            | 24.0        | N             | 30            | 50            |
| D192368          | 1.0L                           | 19               | N             | 300          | 1,000         | 7             | 9.0         | N             | 15            | 30            |
| D192369          | 1.0L                           | 9.7              | N             | 1,500        | 200           | 15            | 2.5         | N             | 100           | 70            |
| D192370          | 1.0L                           | 13               | Ň             | 300          | 20            | 10            | 1.0L        | N             | 15            | 30            |
| D192371          | 1.0L                           | 13               | Ň             | 700          | 70            | 15            | 82.0        | N             | 200           | 70            |
| D192372          | 1.0L                           | 7.7              | N             | 700          | 300           | 15            | 5.0         | N             | 50            | 100           |
| D192373          | 1.0L                           | 5.1              | N             | 1,500        | 100           | 15            | 1.0L        | N             | 30            | 70            |
| D192374          | 1.0L                           | 6.1              | N             | 1,000        | 70            | 15            | 3.0         | N             | 100           | 70            |
| D192375          | 1.0L                           | 7.6              | Ň             | 300          | 150           | 15            | 31.0        | N             | 50            | 50            |
| D192376          | 1.0L                           | 16               | Ň             | 500          | 5,000         | 20            | 115         | N             | 30            | 50            |
| D192377          | 1.0L                           | 6.5              | Ň             | 500          | 150           | 15            | 2.0         | Ň             | 70            | 70            |
| D192378          | 1.0L                           | 12               | N             | 700          | 150           | 15            | 17.0        | N             | 20            | 50            |
| 0192379          | 1.0L                           | 8.3              | N             | 700          | 200           | 15            | 3.0         | N             | 30            | 70            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Cu<br>(ppm) | Ga-S<br>(ppm) | Ge~S<br>(ppm) | La-S<br>(ppm)  | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) |
|------------------|-------------|---------------|---------------|----------------|-------------|-------------|---------------|---------------|---------------|---------------|
| D186068          | 55          | 8             | 100           | 150            | 40          | 1.570       | N             | 201           | 150           | 150           |
| D186069          | 112         | 30            | 70            | 150            | 225         | 240         | 15            | 20            | N             | 150           |
| D186070          | 75          | 50            | 150           | 150            | 162         | 430         | 15            | 20            | 300           | 100           |
| D186071          | 131         | 30            | 150           | 150            | 31          | 575         | 15            | 20            | 150           | 300           |
| D186072          | 77          | 20            | 100           | 100L           | 79          | 2,740       | 15            | 20L           | N             | 50            |
| D186073          | 77          | 50            | 100           | N              | 85          | 785         | 50            | 201           | B             | 150           |
| D186074          | 112         | 30            | 100           | 100L           | 35          | 1.070       | 15            | 20            | 1501          | 300           |
| D186075          | 47          | 30            | 150           | 100L           | 31          | 1.890       | 7             | 20            | 150           | 300           |
| D186076          | 59          | 30            | 150           | 100L           | 20          | 3,520       | 7             | 201           | 150           | 300           |
| D192368          | 37          | 20            | 100           | N              | 17          | 1,550       | 7             | N             | B             | 150           |
| D192369          | 103         | 50            | 70            | N              | 43          | 1.180       | N             | N             | В             | 300           |
| D192370          | 60          | 30            | 50            | N              | 20          | 600         | N             | Ň             | B             | 100           |
| D192371          | 125         | 70            | 150           | 100L           | 35          | 1.370       | 7             | Ň             | Ň             | 500           |
| D192372          | 112         | 70            | 100           | N              | 134         | 1.010       | 15            | Ň             | B             | 150           |
| D192373          | 89          | 30            | 300           | N <sup>-</sup> | 21          | 1,240       | 30            | N             | B             | 100           |
| D192374          | 129         | 70            | 150           | 100            | 33          | 670         | N             | N             | N             | 300           |
| D192375          | 57          | 30            | 100           | N              | 88          | 400         | Ň             | 201           | B             | 200           |
| D192376          | 82          | 50            | 150           | 100            | 45          | 750         | N             | 201           | 150           | 200           |
| D192377          | 232         | 50            | 150           | N              | 99          | 800         | 30            | 20L           | B             | 300           |
| D192378          | 73          | 30            | 100           | 100L           | 69          | 1,370       | 15            | N             | Ň             | 100           |
| D192379          | 66          | 30            | 70            | N              | 69          | 1,950       | N             | N             | В             | 150           |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Sample<br>number | Pb<br>(ppm) | Sc-S<br>(ppm) | Sr-S<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|---------------|--------------|--------------|---------------|-------------|---------------|
| D186068          | 220         | 30            | 1.500         | 150          | 150          | ß             | 196         | 70            |
| 0186069          | 300         | 30            | 150           | 200          | 70           | Ř             | 1.880       | 150           |
| D186070          | 110         | 30            | 2,000         | 300          | 150          | B             | 488         | 150           |
| D186071          | 260         | 30            | 1 000         | 100          | 70           | B             | 14,000      | 70            |
| D186072          | 155         | 20            | 700           | 150          | 70           | B             | 462         | 70            |
| D186073          | 150         | 30            | 150           | 200          | 70           | В             | 4,820       | 100           |
| D186074          | 405         | 30            | 150           | 150          | 70           | В             | 18,700      | 70            |
| D186075          | 170         | 20            | 700           | 100          | 70           | В             | 1,240       | 70            |
| D186076          | 230         | 15            | 700           | 70           | 70           | В             | 6,790       | 70            |
| D192368          | 150         | 10            | 150           | 50           | 30           | В             | 700         | 30            |
| D192369          | 270         | 30            | 500           | 150          | 70           | 8             | 1,500       | 70            |
| D192370          | 1,800       | 20            | 70            | 70           | 30           | B             | 37          | 30            |
| D192371          | 440         | 30            | 150           | 150          | 100          | 15            | 12,400      | 70            |
| D192372          | 95          | 30            | 150           | 150          | 70           | 8             | 2,250       | 150           |
| D192373          | 365         | 15            | 150           | 100          | 30           | 8             | 68          | 70            |
| D192374          | 615         | 15            | 300           | 100          | 30           | 8             | 517         | 50            |
| D192375          | 750         | 15            | 300           | 70           | 30           | В             | 3,000       | 70            |
| D192376          | 490         | 20            | 1.000         | 70           | 50           | B             | 25,700      | 70            |
| D192377          | 1.000       | 20            | 200           | 150          | 50           | В             | 58          | 70            |
| D192378          | 620         | 15            | 1,000         | 100          | 30           | B             | 3,000       | 50            |
| D192379          | 135         | 20            | 300           | 100          | 70           | В             | 200         | 70            |

Table 4. Major- and minor-oxide and trace element composition of the laboratory ash of 106 Iowa coal samples--continued

| Tabi | le | 5. | E | lement | COM | oosi | tion | of | 106 | Iowa | coal | sampl | es |
|------|----|----|---|--------|-----|------|------|----|-----|------|------|-------|----|
|      |    |    |   |        |     |      |      |    |     |      |      |       |    |

{As, F, Hg, Sb, Se, Th, and U values are from direct determinations on air-dried (32°C) coal; all other values calculated from analyses of coal ash. S means analysis by emission spectrography; L, less than the value shown; N, not detected; B, not determined}

| Sample<br>number | Si<br>(percent) | Al<br>(percent) | Ca<br>(percent) | Mg<br>(percent) | Na<br>(percent) | K<br>(percent) | Fe<br>(percent) | Ti<br>(percent) | Ag-S<br>(ppm) | As<br>(ppm) |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|---------------|-------------|
| D166027          | 1.8             | 1.0             | 2.6             | 0.054           | 0.012           | 0.12           | 5.7             | 0.028           | <br>N         | 15          |
| 0166028          | 3.3             | 1.9             | 2.7             | .11             | .023            | .29            | 3.9             | .076            | N             | 10          |
| D166029          | 1.5             | .91             | 1.9             | .048            | .009            | .10            | 3.0             | .046            | N             | 5.0         |
| D166030          | 2.0             | 1.0             | .49             | .042            | .017            | .12            | 3.9             | .045            | N             | 12          |
| D166031          | 2.0             | 1.2             | .12             | .067            | .018            | .14            | 5.9             | .036            | N             | 20          |
| D166032          | 2.0             | .80             | 2.8             | .058            | .017            | .097           | 4.5             | .025            | N             | 5.0         |
| D166033          | 2.0             | .88             | 1.7             | .048            | .020            | .13            | 4.0             | .054            | Ň             | 8.0         |
| D166034          | 1.5             | .63             | 1.3             | .036            | .015            | .064           | 7.0             | .020            | Ň             | 10          |
| D166035          | 1.3             | .64             | 4.2             | .048            | .014            | .063           | 3.2             | .025            | N             | 30          |
| D166036          | .98             | .50             | 1.7             | .031            | .010            | .046           | 2.7             | .023            | N             | 30          |
| 0166037          | 1.9             | .72             | 1.9             | .039            | .032            | .082           | 2.2             | .017            | N             | 20          |
| D166038          | 2.1             | .79             | 1.7             | .042            | .034            | .093           | 2.6             | .027            | N             | 30          |
| D166039          | 3.8             | 1.7             | 1.2             | .097            | .035            | .27            | 1.9             | .055            | N             | 20          |
| D166040          | 6.6             | 3.2             | 1.1             | .39             | .065            | .61            | 2.7             | .18             | N             | 25          |
| D166041          | 1.5             | .95             | .087            | .023            | .014            | .049           | 5.6             | .031            | N             | 20          |
| D166042          | 2.3             | .98             | 1.1             | .032            | .013            | .097           | 3.4             | .049            | N             | 20          |
| D166043          | 1.2             | .64             | .19             | .017            | .010            | .037           | 3.4             | .034            | .15           | 15          |
| D176169          | .94             | .35             | 3.5             | .050            | .017            | .077           | 2.1             | .024            | .7            | 5.0         |
| D176170          | 2.4             | .94             | .59             | .056            | .041            | .16            | 5.4             | .071            | N             | 20          |
| D176171          | 6.7             | 2.5             | 1.3             | .067            | .052            | .29            | 3.1             | .16             | 1             | 30          |
| D176172          | 1.4             | 1.3             | 1.3             | .026            | .028            | .045           | 9.5             | .029            | .7            | 160         |
| D176173          | 3.1             | 1.2             | 3.8             | .23             | .041            | .17            | 4.3             | .074            | N             | 10          |
| D176174          | 4.3             | 2.5             | .66             | .062            | .048            | .20            | 2.0             | .15             | N             | 3.0         |
| D176175          | 2.4             | 1.5             | 1.8             | .061            | .038            | .16            | 1.9             | .052            | N             | 3.0         |
| -D176176         | 1.2             | .76             | 1.1             | .029            | .023            | .063           | 8.6             | .040            | N             | 25          |

| Sample<br>number | B-S<br>(ppm) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) | Cu<br>(ppm) | F<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) |
|------------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|-------------|------------|---------------|---------------|
| D166027          | 70           | 700           | 1.5           | 0.47        | N             | 7             | 15            | 15          |            | В             | 30            |
| D166028          | 70           | 500           | 2             | 1.5         | N             | 7             | 20            | 15          | 145        | • <b>B</b>    | 20            |
| D166029          | 100          | 500           | 2             | 2.0         | N             | 5             | 10            | 13          | 75         | B             | 30            |
| D166030          | 150          | 20            | 2             | .60         | N             | 5             | 10            | 24          | 85         | В             | 15            |
| D166031          | 150          | 20            | 1.5           | .20L        | N             | 15            | 15            | 41          | 150        | B             | 10            |
| D166032          | 150          | . 20          | 1.5           | .21L        | N             | 3             | 20            | 20          | 90         | В             | 15            |
| D166033          | 150          | 30            | 1.5           | 1.4         | Ň             | 3             | 15            | 18          | 115        | B             | 20            |
| D166034          | 100          | 15            | 1.5           | .22L        | N             | 3             | 7             | 22          | 60         | B             | 7             |
| D166035          | 150          | 15            | 1.5           | .21L        | N             | 3             | 10            | 12          | 80         | B             | 20            |
| D166036          | 200          | 15            | 2             | .13L        | N             | 2             | 7             | 11          | 60         | В             | 20            |
| D166037          | 200          | 70            | 1             | .28         | N             | 5             | 7             | 8.5         | 100        | В             | 10            |
| D166038          | 200          | 50            | 1.5           | .31         | N             | 5             | 7             | 9.2         | 80         | B             | 10            |
| D166039          | 200          | 30            | 3             | .18L        | 100L          | 5             | 15            | 17          | 115        | 3             | 15            |
| D166040          | 200          | 100           | 2             | .29L        | 150L          | 10            | 30            | 23          | 185        | В             | 20            |
| D166041          | 100          | 20            | 2             | 15          | Ň             | 10            | 10            | 25          | 40         | B             | 15            |
| D166042          | 100          | 20            | 2             | 5.3         | N             | 5             | 10            | 17          | 40         | В             | 20            |
| D166043          | 100          | 5             | 2             | 3.1         | N             | 7             | 7             | 16          | 30         | B             | 15            |
| D176169          | 100          | 15            | 1.5           | .16L        | N             | 3             | 15            | 13          | 40         | 2             | 20            |
| D176170          | 100          | 30            | 3             | .19L        | N             | 5             | 15            | 21          | 45         | B             | 30            |
| D176171          | 70           | 70            | 5             | 49          | N             | 50            | 50            | 48          | 85         | 5             | 10            |
| D176172          | 70           | 50            | 2             | 15          | 150L          | 50            | 7             | 46          | 40         | B             | 50            |
| D176173          | 100          | 50            | 3             | .28         | N             | 10            | 20            | 20          | 70         | В             | 20            |
| D176174          | 100          | 100           | 3             | 13          | 100L          | 7             | 30            | 24          | 65         | 10            | 7             |
| D176175          | 150          | 150           | 2             | 3.0         | N             | 5             | 15            | 20          | 80         | 5             | 15            |
| D176176          | 70           | 70            | 2             | .22L        | 100L          | 15            | 10            | 16          | 25         | 8             | 15            |

Table 5. <u>Element composition of 106 Iowa coal samples</u>--continued

| Sample<br>number | Hg<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) | P<br>(ppm) | РЬ<br>(ррт) |
|------------------|-------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|------------|-------------|
| D166027          | 0.12        | N             | 9.5         | 170         | 3             | <br>5L        | B             | 30            | 130        | 95          |
| D166028          | .09         | 20L           | 23          | 250         | 3             | 5L            | N             | 30            | 470        | 28          |
| D166029          | .09         | Ň             | 6.7         | 150         | 5             | 3L            | B             | 20            | 120        | 39          |
| D166030          | .07         | 15L           | 11          | 110         | 2             | 3L            | N             | 20            | 86         | 11          |
| D166031          | .07         | 20L           | 15          | 600         | 3             | 5L            | 30            | 50            | 140        | 15          |
| D166032          | .08         | N             | 4.6         | 210         | 3             | 5L            | В             | 15            | 160        | 15          |
| D166033          | .08         | N             | 8.2         | 130         | 3             | 3L            | B             | 15            | 55         | 8.1         |
| D166034          | .10         | N             | 3.7         | 110         | 3             | 5L            | В             | 10            | 57         | 20          |
| D166035          | .18         | N             | 5.5         | 420         | 1.5           | 5L            | 8             | 20            | 470        | 76          |
| D166036          | .12         | N             | 4.1         | 190         | 1             | 2L            | B             | 20            | 400        | 58          |
| D166037          | .11         | N             | 6.8         | 140         | 1             | 3L            | B             | 20            | 610        | 43          |
| D166038          | .16         | N             | 8.7         | 110         | 1             | 3L            | B             | 20            | 580        | 53          |
| D166039          | .08         | 20L           | 17          | 130         | 1.5           | 3L            | 30L           | 30            | 450        | 27          |
| D166040          | .09         | 30L           | 33          | 210         | 3             | 7L            | 50L           | 70            | 380        | 35          |
| D166041          | .22         | N             | 16          | 52          | 5             | 3L            | В             | 20            | 45         | 86          |
| D166042          | .14         | N             | 22          | 110         | 10            | 3L            | В             | 30            | 78         | 44          |
| D166043          | .19         | 10L           | 8.4         | 34          | 3             | 2L            | 15L           | 7             | 49         | 71          |
| D176169          | .14         | N             | 1.6         | 380         | 15            | 3L            | 8             | 15            | 710L       | 18          |
| D176170          | .14         | N             | 6.5         | 110         | 1.5           | 3L            | B             | 30            | 810L       | 100         |
| D176171          | .27         | N             | 42          | 140         | 50            | 7L            | В             | 100           | 1,300L     | 59          |
| D176172          | .17         | 20            | 14          | 110         | 7             | 5L            | 50            | 200           | 1.100L     | 56          |
| D176173          | .09         | 30L           | 11          | 430         | 15            | 5L            | N             | 50            | 1,200L     | 25          |
| D176174          | .17         | 20            | 36          | 51          | 3             | 7             | 30            | 20            | 880L       | 15          |
| D176175          | .11         | 15            | 16          | 120         | 3             | 3L            | 20            | 20            | 730L       | 20          |
| D176176          | .11         | 20L           | 8.9         | 78          | N             | 5L            | 30L           | 50            | 970L       | 67          |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Sb<br>(ppm) | Sc-S<br>(ppm) | Se<br>(ppm) | Sr-S<br>(ppm) | Th<br>(ppm) | U<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|-------------|---------------|-------------|------------|--------------|--------------|---------------|-------------|---------------|
| D166027          | 0.5         | 3             | 1.1         | 30            | 3.01        | 1.2        |              |              |               | 350         | 15            |
| D166028          | .6          | 7             | 1.3         | 20            | 6.2         | 1.2        | 30           | 15           | B             | 760         | 20            |
| D166029          | .4          | 5             | .9          | 15            | 3.01        | 2.1        | 20           | -5           | B             | 1,200       | 10            |
| D166030          | .4          | 5             | 1.7         | 20            | 3.01        | 2.8        | 20           | Š            | B             | 230         | 10            |
| D166031          | .8          | 5             | 2.0         | 30            | 3.0L        | 4.2        | 30           | 15           | B             | 220         | 15            |
| D166032          | .4          | 3             | 2.6         | 15            | 3.0L        | 2.7        | 20           | 7            | B             | 61          | 15            |
| D166033          | .4          | 3             | 1.3         | 15            | 3.9         | 1.4        | 20           | 5            | B             | 430         | 15            |
| D166034          | .6          | 2             | 1.7         | 10            | 3.01        | 1.4        | 15           | 7            | B             | 11          | 10            |
| D166035          | .5          | 3             | 1.4         | 30            | 3.0L        | .5         | 15           | 7            | B             | 39          | 15            |
| D166036          | .4          | 2             | 1.0         | 20            | 3.0L        | .7         | 10           | 5            | B             | 47          | 10            |
| D166037          | .6          | 2             | .5          | 30            | 3.0L        | .6         | 10           | 5            | В             | 320         | 7             |
| D166038          | •2          | 2             | 1.2         | 30            | 3.0L        | .6         | 10           | 5            | .5            | 270         | 10            |
| D166039          | 1.8         | 3             | 1.0         | 30            | 3.0L        | 1.4        | 30           | 5            | .5            | 140         | 20            |
| D166040          | 2.2         | 7             | 1.3         | 50            | 4.2         | 1.7        | 50           | 10           | В             | 76          | 50            |
| D166041          | 1.0         | 3             | 3.0         | 5             | 3.0L        | 1.6        | 15           | 10           | B             | 5,500       | 10            |
| D166042          | .9          | 5             | 2.6         | 10            | 3.0L        | 1.8        | 20           | 7            | В             | 1.800       | 20            |
| D166043          | .8          | 1.5           | 3.1         | 15            | 3.8         | 1.6        | 15           | 7            | B             | 870         | 7             |
| D176169          | 15.7        | 2             | 11          | 15            | В           | 30         | 50           | 7            | .7            | 10          | . 7           |
| D176170          | 1.0         | 5             | 3.2         | 30            | 3.0L        | 2.2        | 15           | 10           | B             | 12          | 20            |
| D176171          | 7.6         | 10            | 29          | 100           | В           | 43         | 100          | 10           | 2             | 4,200       | 70            |
| D176172          | 1.9         | 7             | 3.3         | 500           | 9.7         | 4.9        | 50           | 7            | В             | 2.300       | 15            |
| D176173          | .7          | 10            | 3.4         | 30            | 18.0        | 9.3        | 30           | 20           | В             | 56          | 30            |
| D176174          | .2          | 10            | 6.5         | 30            | 11.0        | 2.4        | 30           | 15           | 1             | 3,500       | 50            |
| D176175          | .3          | 5             | 4.7         | 50            | 8.7         | 4.6        | 20           | 15           | 1             | 1,000       | 10            |
| D176176          | .5          | 5             | 3.7         | 70            | 3.0L        | 1.6        | 15 .         | 7            | B             | 13          | 15            |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Si<br>(percent) | Al<br>(percent) | Ca<br>(percent) | Mg<br>(percent) | Na<br>(percent) | K<br>(percent) | Fe<br>(percent) | Ti<br>(percent) | Ag-S<br>(ppm) | As<br>(ррт) |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|---------------|-------------|
|                  | 1.2             | 84              | 68              | 0,030           | 0,020           | 0,086          | 6.0             | 0.048           | N             | 12          |
| 0176178          | 4.4             | 2.7             | .28             | .14             | .090            | .41            | 7.4             | .13             | .7            | 50          |
| D176179          | 2.1             | .82             | 1.1             | .064            | .061            | .15            | 5.0             | .064            | N             | 30          |
| D176180          | 1.1             | .41             | 1.5             | .047            | .038            | .097           | 1.5             | .026            | .5            | 5.0         |
| D176181          | 2.4             | .88             | 1.9             | .076            | .054            | .16            | 2.8             | .052            | .2            | 20          |
| D176182          | 1.1             | .41             | 3.9             | .058            | .028            | .049           | 15              | .042            | .5            | 90          |
| D176183          | 1.6             | .89             | 2.3             | .048            | .041            | .11            | 9.4             | .041            | 1.5           | 60          |
| D176184          | 1.9             | 1.2             | •63             | .043            | .043            | .12            | 7.9             | .061            | .2            | 60          |
| D176185          | .52             | .24             | 1.9             | .025            | .026            | .019           | 14              | .027            | N             | 40          |
| D176186          | 1.3             | .77             | .93             | .021L           | .023L           | .031           | 16              | .031            | N             | 25          |
| D176187          | .76             | .49             | 1.1             | .024            | .017            | .054           | 3.7             | .028            | N             | 8.0         |
| D176188          | 2.9             | 2.2             | 1.3             | .084            | .034            | .23            | 5.7             | .095            | N             | 4.0         |
| D176189          | 3.1             | 1.4             | .53             | .11             | .065            | .24            | 7.8             | .085            | N             | 240         |
| D176190          | 9.0             | 1.6             | 4.6             | .24             | .21             | .47            | 4.6             | .18             | 1.5           | 40          |
| D176191          | 1.5             | .48             | 1.7             | .032            | .034            | <b>.</b> 064   | 1.9             | .025            | N             | 15          |
| D176192          | 2.8             | 1.0             | .91             | .054            | .040            | .16            | 2.7             | .053            | .3            | 8.0         |
| D176193          | 7.6             | 3.6             | .32             | .084            | .078            | .27            | 7.4             | .21             | N             | 30          |
| D176194          | 4.1             | 2.0             | 1.0             | .070            | .061            | .19            | 8.0             | .094            | N             | 12          |
| D176195          | .66             | .29             | .53             | .016            | .032            | .032           | 3.9             | .023            | N             | 20          |
| D176196          | 2.2             | .92             | 4.1             | .080.           | .046            | .11            | 2.6             | .051            | N             | 5.0         |
| D176197          | .49             | .42             | .75             | .017            | .023            | .023           | 6.8             | .016            | .5            | 30          |
| D176198          | 5.8             | 3.2             | .35             | .13             | .043            | .50            | 4.4             | .13             | Ň             | 12          |
| D176199          | .90             | .52             | 2.9             | .031            | .026            | .046           | 2.9             | .028            | N             | 5.0         |
| D176200          | 1.8             | .96             | 1.1             | .049            | .031            | .12            | 10              | .13             | N             | 50          |
| D179838          | .91             | .53             | .76             | .030            | .015            | .065           | 3.0             | .026            | .1            | 18          |
| D179839          | 12              | 5.9             | .30             | .39             | .14             | 1.0            | 2.8             | .31             | N             | 33          |
| D179840          | 1.8             | .97             | .50             | .036            | .024            | .11            | 1.9             | .045            | .2            | 22          |
| D179841          | 1.7             | .53             | 2.4             | .056            | .027            | .067           | 3.8             | .028            | Ň             | 5.5         |
| D179842          | 12              | 3.4             | 1.2             | .45             | .27             | 1.1            | 13              | .18             | 5             | 250         |
| D179843          | 2.0             | .76             | 2.4             | .030            | .014            | .080           | 16              | .065            | 3             | 230         |

Table 5. Element composition of 106 Iowa coal samples--continued

.

|                  |              |               |               |             |               |               |               |             |            | the second s |               |
|------------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|-------------|------------|----------------------------------------------------------------------------------------------------------------|---------------|
| Sample<br>number | B-S<br>(ppm) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) | Cu<br>(ppm) | F<br>(ppm) | Ga-S<br>(ppm)                                                                                                  | Ge-S<br>(ppm) |
| D176177          | 100          | 100           | 2             | 0.17L       | N             | 15            | 10            | 13          | 70         | B                                                                                                              | 50            |
| D176178          | 150          | 70            | 5             | 100         | 150L          | 20            | 30            | 160         | 100        | B                                                                                                              | 30            |
| D176179          | 150          | 30            | 3             | .18L        | N             | 5             | 15            | 32          | 50         | B                                                                                                              | 20            |
| D176180          | 150          | 15            | 3             | 2.3         | N             | 3             | 15            | 15          | 50         | B                                                                                                              | 30            |
| D176181          | 150          | 30            | 3             | .72         | N             | 10            | 15            | 27          | 110        | В                                                                                                              | 30            |
| D176182          | 70           | 30            | 1.5L          | .42         | N             | 15            | 10            | 92          | 45         | В                                                                                                              | 50            |
| D176183          | 100          | 30            | 2             | 20          | 150L          | 30            | 15            | 71          | 45         | B                                                                                                              | 50            |
| D176184          | 100          | 30            | 2             | .23L        | N             | 70            | 15            | 38          | 65         | 8                                                                                                              | 15            |
| D176185          | 70           | 7             | 2             | .32L        | N             | 15            | 10            | 38          | 20         | B                                                                                                              | 20            |
| D176186          | 50           | 15            | 2             | 1.7         | 150L          | 15            | 10            | 29          | 25         | В                                                                                                              | 20            |
| D176187          | 70           | 20            | 2             | .76         | N             | 7             | 10            | 9.1         | 30         | В                                                                                                              | 20            |
| D176188          | 150          | 70            | 1.5           | .25         | 150L          | 7             | 30            | 18          | 140        | 7                                                                                                              | 15            |
| D176189          | 150          | 50            | 2             | .25L        | N             | 7             | 15            | 42          | 50         | В                                                                                                              | 20            |
| D176190          | 100          | 2,000         | N             | .46L        | N             | 15            | 30            | 28          | 140        | 5                                                                                                              | 10            |
| D176191          | 15           | 50            | 2             | 9.3         | N             | 2             | 7             | 15          | 30         | 5                                                                                                              | 50            |
| D176192          | 100          | 30            | 2             | 74          | N             | 10            | 20            | 22          | 120        | 3                                                                                                              | 10            |
| D176193          | 70           | 70            | 3             | 13          | 200L          | 30            | 70            | 45          | 155        | 7                                                                                                              | N             |
| D176194          | 70           | 70            | 2             | .32         | 150L          | 100           | 30            | 35          | 100        | 10                                                                                                             | 10            |
| D176195          | 150          | 10            | 3             | .11L        | N             | 10            | 7             | 11          | 30         | В                                                                                                              | 30            |
| D176196          | 100          | 20            | 2             | .24L        | N             | 5             | 15            | 15          | 55         | 7                                                                                                              | 15            |
| 0176197          | 150          | 7             | 2             | 1.5         | N             | 5             | 10            | 43          | 40         | В                                                                                                              | 50            |
| D176198          | 150          | 200           | Ž             | .29L        | 150L          | 10            | 50            | 46          | 160        | 10                                                                                                             | 10            |
| D176199          | 100          | 100           | 2             | .16L        | 70L           | 5             | 7             | 7.1         | 110        | 3                                                                                                              | 15            |
| <b>0176200</b>   | 100          | 3.000         | 2             | 57          | N             | 20            | 20            | 25          | 80         | В                                                                                                              | 70            |
| D179838          | 70           | 15            | 3             | .12L        | N             | 7             | 15            | 26          | 40         | 7                                                                                                              | 20            |
| D179839          | 150          | 300           | 5             | .50L        | 100           | 20            | 150           | 73          | 350        | 30                                                                                                             | 10            |
| D179840          | 100          | 30            | 3             | 1.1         | 20            | 15            | 30            | 23          | 40         | 10                                                                                                             | 20            |
| D179841          | 70           | 20            | 3             | 5.4         | N             | 3             | 7             | 7.4         | 50         | 7                                                                                                              | 20            |
| 0179842          | 50           | 300           | • <b>N</b>    | .69L        | N             | 20            | 100           | 110         | 370        | 30                                                                                                             | Ň             |
| D179843          | 70           | 1.000         | 7             | .39L        | N             | 300           | 10            | 170         | 20         | 7                                                                                                              | 70            |
| • • • • •        | • •          |               |               | 4 4 7 L     | ••            | 000           | A-17          |             |            | •                                                                                                              |               |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Hg<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) | р<br>(ррт) | Pb<br>(ppm) |
|------------------|-------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|------------|-------------|
| D176177          | 0.07        | 15L           | 12          | 56          | 1             | 3L            | 20L           | 30            | 7301       | 65          |
| 0176178          | .25         | 30            | 74          | 67          | 7             | 7L            | 50L           | 70            | 1.300L     | 110         |
| D176179          | .23         | N             | 17          | 230         | 3             | 3L            | В             | 30            | 800L       | 120         |
| D176180          | .09         | N             | 2.1         | 230         | 15            | 2L            | B             | 15            | 450L       | 13          |
| D176181          | .15         | N             | 9.1         | 370         | 5             | 3             | B             | 30            | 790L       | 88          |
| D176182          | .37         | N             | 4.2         | 470         | 15            | 10L           | B             | 50            | 1.800L     | 220         |
| D176183          | .44         | 50            | 8.8         | 230         | 20            | 7L            | 50            | 200           | 1.300L     | 150         |
| D176184          | .20         | N             | 15          | 84          | 7             | 5L            | 8             | 70            | 980L       | 72          |
| D176185          | .12         | N             | 3.5         | 200         | N             | 7L            | В             | 50            | 1,400L     | 50          |
| D176186          | .08         | 30            | 10          | 82          | N             | 7L            | 70            | 50            | 1,500L     | 65          |
| D176187          | .08         | 20            | 6.8         | 120         | 2             | 2L            | 20            | 10            | 500L       | 20          |
| D176188          | .10         | 30            | 49          | 99          | N             | 5L            | 30            | 15            | 1.100L     | 33          |
| D176189          | .17         | 20L           | 22          | 150         | 3             | 5L            | N             | 30            | 1.100L     | 260         |
| D176190          | .20         | N             | 10          | 780         | 15            | 10L           | В             | 30            | 2,000L     | 60          |
| 0176191          | .08         | N             | 2.8         | 330         | 2             | 21_           | В             | 20            | 560L       | 24          |
| D176192          | .14         | N             | 13          | 160         | 15            | 3L            | B             | 50            | 7401       | 22          |
| D176193          | .20         | 70            | 80          | 110         | 7             | 7L            | 70            | 100           | 1.700L     | 28          |
| D176194          | .12         | 50            | 25          | 740         | 5             | 7L            | 50            | 200           | 1.400L     | 32          |
| D176195          | .08         | N             | 3.0         | 130         | 3             | 2L            | B             | 20            | 470L       | 36          |
| D176196          | .08         | N             | 11          | 550         | 2             | 5L            | 8             | 20            | 1,000L     | 37          |
| D176197          | .34         | N             | 12          | 110         | 5             | 3L            | 8             | 30            | 7201       | 88          |
| D176198          | .10         | 50            | 32          | 80          | 5             | 7             | 50            | 50            | 1.300L     | 32          |
| D176199          | .09         | 20            | 5.7         | 290         | N             | 3L            | 20            | 10            | 710L       | 14          |
| D176200          | .21         | N             | 17          | 120         | 5             | 7L            | В             | 50            | 1.300L     | 86          |
| D179838          | .25         | N             | 2.9         | 130         | 7             | 2             | B             | 15            | 510L       | 99          |
| D179839          | .14         | 50            | 88          | 130         | N             | 15            | 100           | 70            | 2,2001     | 30          |
| D179840          | .07         | 15            | 12          | 110         | 10            | 3             | 20            | 30            | 520L       | 12          |
| D179841          | .13         | N             | 3.5         | 300         | 7             | Ň             | B             | 15            | 900L       | 62          |
| D179842          | .41         | · N           | 18          | 320         | 50            | 15            | B             | 100           | 3,000      | 210         |
| D179843          | .49         | N             | 4.2         | 300         | 100           | 7             | Ē             | 700           | 1.700L     | 420         |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Sb<br>(ppm) | Sc-S<br>(ppm) | Se<br>(ppm) | Sr-S<br>(ppm) | Th<br>(ppm) | U<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|-------------|---------------|-------------|------------|--------------|--------------|---------------|-------------|---------------|
| D176177          | 0.5         | 10            | 5.4         | 20            | 9.3         | 1.8        | 20           | 15           | <br>B         | 10          | 10            |
| D176178          | 10.0        | 15            | 7.1         | 50            | 22.0        | 9.3        | 150          | 20           | В             | 5,400       | 50            |
| D176179          | .9          | 3             | 3.6         | 30            | 3.0L        | 1.1        | 20           | 15           | B             | 18          | 20            |
| D176180          | 1.5         | 1.5           | 12          | 15            | 3.OL        | 12         | 70           | 7            | .7            | 99          | 7             |
| D176181          | 2.5         | 5             | 3.6         | 30            | 6.6         | 1.7        | 30           | 15           | В             | 38          | 30            |
| D176182          | 4.0         | 10            | 2.4         | 70            | 6.8         | 3.5        | 20           | 20           | В             | 200         | 15            |
| D176183          | 6.4         | 5             | 18          | 200           | 3.0L        | 18         | 50           | 70           | В             | 3,200       | 20            |
| D176184          | 1.3         | 7             | 7.5         | 30            | 14.0        | 4.9        | 50           | 10           | B             | 41          | 20            |
| D176185          | .5          | 10            | 2.5         | 10            | 3.OL        | 3.7        | 20           | 10           | В             | 13          | 10            |
| D176186          | .4          | 5             | 3.5         | 15            | 3.0L        | 6.8        | 15           | 50           | В             | 470         | 10            |
| D176187          | .3          | 2             | 6.4         | 30            | 3.0L        | 1.3        | 20           | 15           | В             | 350         | 10            |
| D176188          | .3          | 7             | 3.2         | 200           | 8.1         | 2.0        | 30           | 15           | В             | 45          | 20            |
| D176189          | 10.5        | 5             | 4.2         | 30            | 3.0L        | 5.3        | 20           | 15           | В             | 14          | 30            |
| D176190          | 16.0        | 7             | 21          | 70            | В           | 19         | 100          | 10           | 1.5           | 21          | 70            |
| D176191          | 1.3         | 5             | 2.1         | 20            | 3.0L        | 1.6        | 10           | 10           | 1             | 780         | 10            |
| D176192          | 3.9         | 2             | 75          | 500           | В           | 35         | 150          | 10           | 1             | 5,200       | 20            |
| D176193          | 1.7         | 10            | 17          | 700           | 3.0L        | 8.4        | 70           | 30           | B             | 1,300       | 70            |
| D176194          | 1.3         | 10            | 4.9         | 100           | 10.0        | 3.3        | 70           | 30           | В             | 41          | 50            |
| D176195          | .3          | 5             | 1.8         | 30            | 3.0L        | 2.2        | 15           | 10           | В             | 10          | 15            |
| D176196          | .3          | 5             | 2.3         | 30            | 3.OL        | 3.6        | 20           | 15           | .7            | 16          | 15            |
| 0176197          | 2.6         | 5             | 11          | 15            | 3.0L        | 8.3        | 20           | 7            | 8             | 450         | 10            |
| D176198          | .5          | 15            | 8.2         | 70            | 17.0        | 5.3        | 70           | 20           | 2             | 16          | 50            |
| D176199          | .3          | 2             | 2.3         | 100           | 3.0L        | .9         | 15           | 15           | B             | 7.1         | 7             |
| D176200          | .8          | 10            | 2.6         | 200           | 3.0L        | 2.7        | 50           | 10           | B             | 18,000      | 30            |
| D179838          | .6          | 3             | 4.0         | 30            | 4.4         | 2.6        | 30           | 10           | .7            | 8.8         | 7             |
| D179839          | 1.2         | 15            | 3.5         | 150           | 11.0        | 3.8        | 300          | 30           | 3             | 55          | 100           |
| D179840          | 2.1         | 7             | 3.0         | 30            | 3.0L        | .7         | 100          | 10           | 1.5           | 170         | 15            |
| D179841          | .3          | 1.5           | 2.2         | 100           | 3.0L        | .5         | 15           | 15           | 1.5           | 940         | 10            |
| D179842          | 39.0        | 10            | 53          | 100           | 4.3         | 6.0        | 200          | 20           | 5             | 28          | 50            |
| D179843          | 22.0        | 5             | 4.0         | 70            | 1.0         | 41         | 30           | 30           | 3             | 46          | 30            |

Table 5. Element composition of 106 Iowa coal samples--continued

\_\_\_\_

| Sample<br>number | Si<br>(percent) | Al<br>(percent) | Ca<br>(percent) | Mg<br>(percent) | Na<br>(percent) | K<br>(percent) | Fe<br>(percent) | Ti<br>(percent) | Ag-S<br>(ppm) | As<br>(ppm) |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|---------------|-------------|
| D179844          | 3.2             | 1.5             | 1.8             | 0.091           | 0,027           | 0.19           | 7.6             | 0.075           | 0.5           | 28          |
| D179845          | .38             | .45             | .99             | .007            | .009            | .010L          | 21              | .023            | .7            | 49          |
| D179846          | 2.2             | 1.7             | 1.6             | .039            | .029            | .10            | 14              | .064            | .5            | 13          |
| D179847          | .86             | .40             | 1.8             | .046            | .010            | .081           | 1.9             | .021            | 2             | 28          |
| D179848          | 1.4             | .43             | .98             | .026            | .018            | .057           | .27             | .023            | N             | 4.5         |
| D179849          | 1.1             | .56             | 2.6             | .19             | .023            | .058           | 4.6             | .030            | .3            | 24          |
| D179850          | 2.4             | 1.4             | .10             | .051            | .040            | .14            | 1.9             | .063            | Ň             | 11          |
| D179851          | .59             | .27             | .64             | .028            | .014            | .058           | .68             | .012            | .7            | 10          |
| 0179852          | 1.3             | .42             | 1.4             | .033            | .025            | .067           | 1.1             | .023            | .15           | 16          |
| D179853          | 1.4             | .75             | 5.1             | .31             | .029            | .074           | 5.2             | .035            | •5            | 26          |
| D179854          | 3.6             | 2.4             | -84             | .078            | .058            | .26            | 3.9             | .093            | .5            | 7.5         |
| D179855          | .88             | .92             | 1.1             | .018            | .026            | .054           | 4.3             | .030            | Ň             | 13          |
| D179856          | 2.1             | 1.7             | .60             | .033            | .028            | .075           | 11              | .092            | 1             | 16          |
| D185601          | .50             | .27             | 1.3             | .026            | .010            | .13            | 5.8             | .012            | Ň             | 4.9         |
| D185602          | .87             | .40             | 1.7             | .039            | .012            | .13            | 4.8             | .027            | N             | 6.4         |
| D185603          | .86             | .10             | 1.5             | .033            | .016            | .086           | 4.0             | .009            | N             | 11          |
| D185604          | 1.1             | .31             | 1.9             | .037            | .017            | .098           | 2.6             | .025            | Ň             | 6.9         |
| D185605          | .89             | .26             | 1.4             | .035            | .017            | .097           | 3.1             | .018            | N             | 9.8         |
| D185606          | 2.1             | .76             | 1.0             | .11             | .016            | .14            | 2.2             | .078            | N             | 6.6         |
| D185609          | 1.2             | .35             | 3.9             | .051            | .016            | .17            | 5.3             | .031            | N             | 19          |
| D185610          | -75             | .24             | 1.9             | .025            | .014            | .14            | 6.4             | -018            | N             | 20          |
| D185611          | 1.6             | .34             | 7.1             | .057            | .017            | .094           | .93             | .037            | Ň             | 4.3         |
| D185612          | 1.6             | .77             | .19             | .042            | .012            | .16            | 3.6             | .039            | 1             | 13          |
| D185613          | 1.3             | .53             | .72             | .037            | .012            | .11            | 1.5             | .035            | 5             | 3.7         |
| D186062          | .81             | .31             | 1.6             | .027            | .030            | .078           | 3.6             | .011            | .15           | 47          |
| D185063          | .70             | .32             | 2.6             | .028            | .029            | -083           | 4.3             | .011            | .2            | 62          |
| D185064          | .87             | .38             | .83             | .025            | .029            | .073           | 2.6             | .014            | .15           | 43          |
| D185065          | 1.3             | .71             | 1.7             | .040            | .017            | .15            | 5.3             | .032            | Ň             | 3.9         |
| D185066          | 1.8             | 1.1             | 1.2             | .025            | .014            | .11            | 2.4             | .046            | Ň             | 2.0         |
| D185067          | 2.9             | 1.6             | 1.1             | .070            | .037            | .33            | 8.1             | .040            | .3            | 75          |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | B-S<br>(ppm) | Ba-S<br>(ppm) | Be~S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) | Cu<br>(ppm) | F<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) |
|------------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|-------------|------------|---------------|---------------|
| D179844          | 70           | 150           | 3             | 7.2         | N             | 20            | 50            | 48          | 105        | 20            | 30            |
| D179845          | 50           | 30            | 3             | 8.9         | N             | 30            | 10            | 69          | 20L        | 10            | 50            |
| D179846          | 50           | 20            | 3             | 1.1         | N             | 10            | 20            | 56          | 30         | 20            | 30            |
| D179847          | 100          | 20            | 3             | 15          | N             | 10            | 20            | 19          | 30         | 10            | 30            |
| D179848          | 50           | 50            | 2             | 1.1         | N             | 1             | 7             | 7.9         | 40         | 5             | 50            |
| D179849          | 50           | 30            | 3             | .22L        | 50            | 30            | 30            | 42          | 45         | 7             | 30            |
| D179850          | 70           | 50            | 5             | .52         | N             | 10            | 50            | 15          | 175        | 10            | 15            |
| D179851          | 70           | 10            | 1.5           | 2.0         | N             | 1             | 30            | 8.5         | 135        | 3             | 15            |
| D179852          | 30           | 200           | 2             | 9.9         | N             | 3             | 15            | 16          | 50         | 5             | 30            |
| D179853          | 50           | 20            | 2             | 1.6         | N             | 7             | 15            | 36          | 85         | 15            | 30            |
| D179854          | 70           | 70            | 5             | . 251       | 70            | 15            | 50            | 34          | 100        | 20            | 15            |
| D179855          | 100          | 20            | 5             | .13L        | Ň             | 5             | 20            | 9.2         | 60         | 10            | 15            |
| D179856          | 50           | 1.000         | 5             | 1.3         | N             | 50            | 100           | 55          | 30         | 15            | 20            |
| D185601          | 50           | 10            | 2             | _14L        | Ň             | 7             | 3             | 4.0         | 90         | B             | 10            |
| D185602          | 50           | 10            | 2             | .14L        | Ň             | 7             | 5             | 4.9         | 100        | 5             | 15            |
| D185603          | 150          | 7             | 2             | .12         | N             | 7             | 2             | 12          | 85         | 8             | 20            |
| D185604          | 150          | 10            | 1.5           | .12         | 70L           | 7             | 3             | 9.1         | 75         | 3             | 15            |
| D185605          | 150          | 10            | 1.5           | .11L        | 50L           | 5             | 3             | 10          | 75         | 3             | 15            |
| D185606          | 100          | 300           | 2             | .52         | 100           | 7             | 15            | 16          | 95         | 5             | 20            |
| D185609          | 70           | 15            | ī             | .44         | N             | 7             | 5             | 15          | 75         | 3             | 7             |
| D185610          | 100          | 10            | 1             | . 171       | N             | 10            | 3             | 45          | 45         | 8             | 10            |
| D185611          | 70           | 10            | ī             | .231        | Ň             | 2             | 5             | 70          | 70         | 3             | 15            |
| 0185612          | 100          | 20            | 2             | 62          | N             | 7             | 7             | 250         | 250        | 8             | 20            |
| D185613          | 50           | 20            | 1.5           | 31          | Ň             | 2             | 7             | 70          | 70         | 1.5           | 15            |
| D186062          | 70           | 7             | 1.5           | .12L        | N             | 3             | 3             | 70          | 70         | B             | 7             |
| D185063          | 100          | 15            | 1.5           | .15         | N             | 5             | 5             | 22          | 75         | В             | 10            |
| D185064          | 150          | 10            | 2             | 1.1         | Ň             | 5             | 7             | 16          | 80         | Ē             | 15            |
| D185065          | 100          | 100           | ī             | 17          | N             | 2             | 10            | 25          | 65         | B             | 10            |
| D185066          | 100          | 20            | 2             | .18         | 70L           | 3             | 10            | 11          | 60         | 3             | 20            |
| D185067          | 70           | 30            | ī.5           | .25L        | Ň             | 20            | 15            | 38          | 65         | B             | 15            |

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Hg<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) | р<br>(ррт) | Pb<br>(ppm) |
|------------------|-------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|------------|-------------|
| D179844          | 0.25        | N             | 14          | 260         | 20            | 7             | B             | 70            | 1.400L     | 130         |
| D179845          | .42         | N             | 3.9L        | 89          | 10            | N             | В             | 100           | 1,700L     | 310         |
| D179846          | .46         | N             | 16          | 140         | 30            | 7             | В             | 70            | 1,600L     | 250         |
| D179847          | .22         | N             | 1.5         | 350         | 150           | 2             | ß             | 30            | 550L       | 64          |
| D179848          | .07         | N             | 5.0         | 160         | 5             | 1.5           | В             | 5             | 350L       | 5.9         |
| D179849          | .40         | 30            | 7.2         | 610         | 7             | 5             | N             | 70            | 950L       | 110         |
| D179850          | .15         | N             | 33          | 21          | 5             | 2             | В             | 20            | 570L       | 22          |
| D179851          | .30         | N             | 1.0         | 98          | 15            | 1             | B             | 10            | 340        | 11          |
| D179852          | .12         | N             | 2.7         | 220         | 3             | 2             | В             | 15            | 460L       | 56          |
| D179853          | .24         | N             | 5.6         | 680         | 15            | N             | 8             | 50            | 1,400L     | 85          |
| D179854          | .24         | 50            | 55          | 130         | 15            | 5             | 70            | 70            | 1,100      | 47          |
| D179855          | .22         | 20            | 6.0         | 110         | 2             | 3             | N             | 30            | 5901       | 20          |
| D179856          | .41         | N             | 23          | 180         | 5             | 7             | B             | 150           | 1.4001     | 72          |
| D185601          | .13         | N             | 1.4         | 160         | ī             | 3L            | B             | 7             | 610L       | 50          |
| D185602          | .14         | N             | 2.3         | 180         | 1             | 3L            | В             | 7             | 620L       | 57          |
| D185603          | .12         | ~ N           | 1.2         | 230         | 1             | 2L            | B             | 20            | 5401       | 25          |
| D185604          | .08         | 10            | 1.9         | 200         | ī             | 2L            | 15            | 15            | 5201       | 12          |
| D185605          | .08         | 10            | 1.9         | 200         | 7             | 2L            | 15            | 15            | 4601       | 17          |
| D185606          | .16         | 30            | 14          | 210         | 1.5           | 3             | 50            | 15            | 570L       | 30          |
| D185609          | .09         | N             | 3.1         | 420         | N             | 5L            | B             | 20            | 950L       | 37          |
| D185610          | .12         | N             | 1.9         | 230         | N             | 31.           | В             | 30            | 740)       | 42          |
| D185611          | .07         | N             | 3.0         | 980         | 3             | Ň             | B             | 7             | 1.000      | 10          |
| D185612          | .40         | N             | 12          | 44          | 10            | 2             | B             | 70            | 530        | 62          |
| D185613          | .14         | Ň             | 5.7         | 110         | 7             | 1.5           | B             | 20            | 3701       | 11          |
| D186062          | .13         | N             | 1.5         | 170         | 1.5           | 2L            | B             | 30            | 510L       | 75          |
| D185063          | .18         | N             | 1.5L        | 270         | 2             | N             | B             | 50            | 6501       | 120         |
| D185064          | .10         | N             | 2.2         | 86          | ī.5           | 2             | Ē             | 30            | 3901       | 59          |
| D185065          | .07         | 15L           | 4.8         | 150         | 2             | 3L            | 50            | 15            | 7301       | 13          |
| D185066          | .08         | 20            | 11          | 74          | 2             | 2             | 20            | 10            | 530        | Q_1         |
| D185067          | .13         | 20L           | 9.1         | 91          | 1.5           | 51            | 70            | 70            | 1.100      | 150         |

Table 5. Element composition of 106 Iowa coal samples--continued

| <u> </u>         |             |               |             |               |             |            |              |              |               |             |               |
|------------------|-------------|---------------|-------------|---------------|-------------|------------|--------------|--------------|---------------|-------------|---------------|
| Sample<br>number | Sb<br>(ppm) | Sc-S<br>(ppm) | Se<br>(ppm) | Sr-S<br>(ppm) | Th<br>(ppm) | U<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
| D179844          | 2.2         | 10            | 5.1         | 50            | 3.0L        | 13         | 100          | 20           | 2             | 2,400       | 50            |
| D179845          | 1.2         | 7             | 2.0         | 70            | 3.0L        | 4.3        | 70           | 10           | 5             | 2,800       | N             |
| D179846          | 1.4         | 5             | 3.3         | 50            | 3.0L        | 3.8        | 20           | 20           | 2             | 490         | 20            |
| D179847          | 37.0        | 2             | 25          | 70            | .7          | 26         | 200          | 10           | 1.5           | 1,200       | 10            |
| D179848          | 4.4         | 2             | .9          | 20            | 1.4         | 2.5        | 10           | 10           | 1             | 79          | 5             |
| D179849          | 1.8         | 7             | 3.2         | 70            | 3.0L        | 4.6        | 50           | 20           | 1.5           | 70          | 15            |
| D179850          | .3          | 5             | 3.2         | 50            | 3.0L        | 3.0        | 50           | 15           | 1.5           | 130         | 20            |
| D179851          | 29.0        | 1             | 15          | 30            | .6          | 36         | 150          | 7            | 1             | 130         | 5             |
| D179852          | 2.0         | 3             | 1.8         | 30            | 3.OL        | 1.9        | 20           | 10           | 1.5           | 660         | 7             |
| D179853          | 1.0         | 10            | 2.6         | 100           | 3.0L        | 6.5        | 30           | 20           | 2             | 410         | 15            |
| D179854          | .6          | 15            | 5.5         | 300           | 5.8         | 5.8        | 70           | 15           | 2             | 91          | 20            |
| D179855          | .3          | 5             | 2.8         | 300           | 3.0L        | .8         | 30           | 10           | 1             | 130         | 10            |
| D179856          | .6          | 10            | 17          | 50            | 3.0L        | 2.7        | 100          | 20           | 3             | 820         | 50            |
| D185601          | <b>.</b> 1L | 1.5L          | 1.0         | 10            | .5          | .2L        | 5            | 7            | B             | 11          | 5             |
| D185602          | .1L         | 1.5L          | 1.1         | 10            | .9          | .6         | 7            | 7            | B             | 12          | 7             |
| D185603          | .3          | 2             | 1.7         | 30            | .4          | .5         | 3            | 7            | B             | 10          | 3             |
| 0185604          | .2          | 1.5           | 1.1         | 100           | .7          | .2L        | 10           | 10           | В             | 9.4         | 10            |
| D185605          | .1          | 1.5           | 1.2         | 70            | .6          | .4         | 5            | 7            | B             | 9.2         | 7             |
| D185606          | .2          | 5             | 4.2         | 150           | 3.8         | 2.5        | 30           | 20           | B             | 140         | 20            |
| D185609          | .3          | 2L            | 1.4         | 30            | 1.0         | .5         | 3            | 10           | В             | 180         | 7             |
| D185610          | .5          | 1.5L          | 1.6         | 20            | .6          | .4         | 3            | 10           | В             | 9.2         | 5             |
| D185611          | .6          | 2L            | .8          | 50            | .9          | 3.2        | 7            | 15           | 1.5           | 17          | 7             |
| D185612          | 12.5        | 2             | 13          | 20            | .1L         | 1.8        | 10           | 10           | B             | 3,800       | 10            |
| D185613          | 11.1        | 1.5           | 6.0         | 15            | 1.2         | 2.3        | 15           | 7            | B             | 1,100       | 10            |
| D186062          | 1.0         | 1.5           | 1.6         | 15            | 1.1         | 1.7        | 7            | 7            | B             | 58          | 7             |
| D185063          | 1.2         | 2             | 1.5         | 20            | 1.1         | 1.7        | 10           | 10           | В             | 60          | 5             |
| D185064          | 1.4         | 2             | 1.5         | 15            | 1.1         | 1.9        | 15           | 7            | B             | 280         | 7             |
| D185065          | .1          | 5             | 1.7         | 20            | 1.9         | 2.0        | 15           | 10           | В             | 13          | 10            |
| D185066          | .1          | 3             | 3.1         | 20            | 1.8         | 1.7        | 20           | 20           | B             | 120         | 10            |
| D185067          | 3.2         | 3             | .1L         | 20            | 3.1         | 2.6        | 30           | 15           | B             | 15          | 15            |
|                  |             |               |             |               | - • -       |            |              |              | -             |             |               |

•

~

Table 5. Element composition of 106 Iowa coal samples--continued

| Sample<br>number | Si<br>(percent) | Al<br>(percent) | Ca<br>(percent) | Mg<br>(percent) | Na<br>(percent) | K<br>(percent) | Fe<br>(percent) | Ti<br>(percent) | Ag-S<br>(ppm) | As<br>(ppm) |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|---------------|-------------|
| D186068          | 0.90            | 0.53            | 2.7             | 0.020           | 0,020           | 0.071          | 3.0             | 0.018           |               | 13          |
| D186069          | 5.6             | 3.2             | .58             | .13             | .037            | .45            | 2.9             | .14             | Ň             | 7.4         |
| D186070          | 1.5             | 1.1             | .79             | .031            | .019            | .13            | 2.2             | .042            | Ň             | 7.0         |
| D186071          | .74             | .58             | 1.4             | .022            | .018            | .11            | 5.2             | .024            | .2            | 33          |
| D186072          | 1.6             | .95             | 5.1             | .059            | .031            | .15            | 3.1             | .060            | N             | 3.2         |
| D186073          | 1.6             | .76             | 2.0             | .040            | .020            | .15            | 3.4             | .049            | N             | 6.3         |
| D186074          | 1.7             | .67             | 2.6             | .060            | .019            | .17            | 5.1             | .048            | Ň             | 14          |
| D186075          | 1.4             | .52             | 2.4             | .046            | .039            | .099           | 2.0             | .034            | Ň             | 12          |
| D186076          | 1.3             | .38             | 2.3             | .055            | .035            | .11            | 3.5             | .026            | Ň             | 22          |
| D192368          | 2.1             | .58             | 3.6             | .044            | .023            | .042           | 3.7             | .038            | N             | 15          |
| D192369          | 1.7             | .58             | .98             | .038            | .032            | .067           | 1.8             | .033            | N             | 29          |
| D192370          | .62             | .25             | 1.1             | .014            | .025            | .006L          | 11              | .012            | N             | 15          |
| D192371          | 1.3             | .61             | 1.3             | .038            | .040            | .050           | 6.6             | .030            | N             | 19          |
| D192372          | 1.5             | .86             | .92             | .029            | .031            | .053           | 2.9             | .037            | N             | 2.8         |
| D192373          | 1.9             | .70             | 1.1             | .043            | .037            | .090           | 2.7             | .034            | N             | 11          |
| D192374          | .94             | .41             | .80             | .020            | .026            | .027           | 4.3             | .024            | N             | 13          |
| D192375          | 3.0             | 1.5             | .56             | .044            | .036            | .14            | 6.4             | .075            | N             | 27          |
| D192376          | 1.1             | .43             | 1.5             | .022            | .027            | .031           | 4.0             | .049            | Ň             | 16          |
| D192377          | 2.4             | 1.1             | .45             | .042            | .024            | .085           | 5.7             | .052            | N             | 17          |
| D192378          | 1.1             | .76             | 1.7             | .026            | .028            | .040           | 4.8             | .029            | N             | 4.6         |
| D192379          | 3.0             | 1.3             | 2.2             | .072            | .023            | .19            | 2.3             | .069            | N             | 18          |

Table 5. Element composition of 106 Iowa coal samples--continued

-

| Sample<br>number | B-S<br>(ррт) | Ba-S<br>(ppm) | Be-S<br>(ppm) | Cd<br>(ppm) | Ce-S<br>(ppm) | Co-S<br>(ppm) | Cr-S<br>(ppm) | Cu<br>(ppm) | F<br>(ppm) | Ga-S<br>(ppm) | Ge-S<br>(ppm) |
|------------------|--------------|---------------|---------------|-------------|---------------|---------------|---------------|-------------|------------|---------------|---------------|
| D186068          | 100          | 30            | 2             | 0.14        | 70            | 7             | 10            | 7.6         | 135        | B             | 15            |
| D186069          | 70           | 50            | 5             | 1.3         | 150           | 15            | 50            | 29          | 180        | 7             | 20            |
| D186070          | 100          | 50            | ž             |             | 50            | 15            | 15            | 8.3         | 160        | 5             | 15            |
| D186071          | 100          | 20            | 2             | 11          | 701           | 10            | 10            | 19          | 40         | 5             | 20            |
| D186072          | 100          | 20            | 2             | .44         | N             | 3             | 15            | 17          | 95         | 5             | 20            |
| D186073          | 70           | 15            | 2             | 3.5         | N             | 10            | 20            | 12          | 85         | 7             | 15            |
| D186074          | 100          | 20            | 2             | 12          | Ň             | 15            | 15            | 22          | 75         | 7             | 20            |
| D186075          | 150          | 20            | 2             | .20         | Ň             | 7             | 10            | 6.2         | 95         | 5             | 20            |
| D186076          | 150          | 20            | 2             | 3.6         | N             | 5             | 7             | 8.9         | 125        | 5             | 20            |
| D192368          | 70           | 200           | 1.5           | 2.2         | N             | 3             | 7             | 9.0         | 35         | 5             | 20            |
| D192369          | 150          | <b>20</b> .   | 1.5           | .29         | N             | 10            | 7             | 12          | 60         | 7             | 7             |
| D192370          | 70           | 5             | 2             | .26L        | N             | 5             | 7             | 16          | 201        | 7             | 15            |
| D192371          | 150          | 15            | 3             | 17          | Ň             | 50            | 15            | 26          | 25         | 15            | 30            |
| D192372          | 100          | 50            | 2             | .68         | N             | 7             | 15            | 15          | 35         | 10            | 15            |
| D192373          | 200          | 15            | 2             | .14L        | N             | 5             | 10            | 13          | 45         | 5             | 50            |
| D192374          | 150          | 10            | 2             | .40         | N             | 15            | 10            | 17          | 25         | 10            | 20            |
| D192375          | 70           | 30            | 3             | 7.1         | N             | 10            | 10            | 13          | 55         | 7             | 20            |
| D192376          | 70           | 700           | 3             | 19          | Ň             | 5             | 7             | 13          | 30         | , ,           | 20            |
| D192377          | 100          | 30            | 3             | .40         | N             | 15            | 15            | 46          | 40         | 10            | 30            |
| D192378          | 150          | 30            | 3             | 3.1         | N             | 3             | 10            | 13          | 60         | 5             | 20            |
| D192379          | 150          | 50            | 3             | .63         | N             | 7             | 15            | 14          | 90         | 7             | 15            |

Table 5. Element composition of 106 Iowa coal samples--continued

\_\_\_\_\_

•

| Sample<br>number | Hg<br>(ppm) | La-S<br>(ppm) | Li<br>(ppm) | Mn<br>(ppm) | Mo-S<br>(ppm) | Nb-S<br>(ppm) | Nd-S<br>(ppm) | Ni-S<br>(ppm) | P<br>(ppm) | Pb<br>(ppm) |
|------------------|-------------|---------------|-------------|-------------|---------------|---------------|---------------|---------------|------------|-------------|
| D186068          | 0,09        | 20            | 5.5         | 220         | N             | 31            | 20            | 20            | 6001       | 30          |
| D186069          | .14         | 50            | 59          | 62          | 5             | 5             | Ň             | 50            | 1,100      | 78          |
| D186070          | -08         | 15            | 18          | 48          | 1.5           | 2             | 30            | 10            | 630        | 12          |
| D186071          | .17         | 20            | 4.5         | 83          | 2             | 3             | 20            | 50            | 6301       | 38          |
| D186072          | .13         | 20L           | 18          | 610         | 3             | 5L            | Ň             | 10            | 970L       | 34          |
| D186073          | .14         | N             | 13          | 120         | 7             | 3L            | В             | 20            | 660L       | 23          |
| D186074          | .15         | 20L           | 7.0         | 210         | 3             | 5             | 30L           | 70            | 870L       | 81          |
| D186075          | .08         | 15L           | 4.1         | 250         | 1             | 3             | 20L           | 50            | 580L       | 22          |
| D186076          | .10         | 15L           | 3.0         | 530         | ī             | 3L            | 20L           | 50            | 660L       | 35          |
| D192368          | .14         | N             | 4.1         | 380         | 1.5           | N             | B             | 30            | 1,100L     | 36          |
| 0192369          | .07         | N             | 4.9         | 130         | N             | N             | В             | 30            | 500L       | 31          |
| 0192370          | .70         | N             | 5.2         | 160         | N             | N             | В             | 20            | 1.100L     | 470         |
| 0192371          | .17         | 20L           | 7.2         | 280         | 1.5           | N             | N             | 100           | 900L       | 91          |
| 0192372          | .09         | N             | 18          | 140         | 2             | N             | В             | 20            | 590L       | 13          |
| 0192373          | .12         | N             | 3.0         | 170         | 5             | N             | B             | 15            | 620L       | 51          |
| D192374          | .28         | 15            | 4.4         | 90          | N             | N             | N             | 50            | 590L       | 82          |
| D192375          | .28         | N             | 20          | 92          | N             | 5L            | В             | 50            | 1.000L     | 170         |
| D192376          | .29         | 15            | 7.4         | 120         | N             | 3L            | 20            | 30            | 720L       | 80          |
| D192377          | .25         | N             | 20          | 160         | 7             | 5L            | В             | 70            | 870L       | 200         |
| D192378          | .23         | 20L           | 12          | 250         | 3             | N             | N             | 20            | 790L       | 110         |
| D192379          | .10         | N             | 14          | 410         | N             | N             | В             | 30            | 910L       | 28          |

Table 5. Element composition of 106 Iowa coal samples--continued

-----

| Sample<br>number | Sb<br>(ppm) | Sc-S<br>(ppm) | Se<br>(ppm) | Sr-S<br>(ppm) | Th<br>(ppm) | U<br>(ppm) | V-S<br>(ppm) | Y-S<br>(ppm) | Yb-S<br>(ppm) | Zn<br>(ppm) | Zr-S<br>(ppm) |
|------------------|-------------|---------------|-------------|---------------|-------------|------------|--------------|--------------|---------------|-------------|---------------|
| D186068          | 0.3         | 5             | 3.3         | 200           | 1.2         | 0.5        | 20           | 20           |               | 27          | 10            |
| D186069          | .3          | 7             | .11         | 50            | 6.0         | 5.6        | 50           | 20           | B             | 490         | 50            |
| D186070          | .1          | 3             | 2.6         | 200           | 1 9         | 1 1        | 30           | 15           | Ř             | 54          | 15            |
| D186071          | 1.2         | 5             | 3.2         | 150           | 1 2         |            | 16           | 10           | R             | 2 000       | 10            |
| D186072          | .1          | 5             | 1.9         | 150           | 2.2         | 4.5        | 30           | 15           | B             | 100         | 15            |
| D186073          | .4          | 5             | .11         | 20            | 1.5         | 6.5        | 30           | 10           | B             | 730         | 15            |
| D186074          | .5          | 7             | .1L         | 30            | 1.3         | 1.8        | 30           | 15           | B             | 3,700       | 15            |
| D186075          | .7          | 3             | .10         | 100           | 1.1         | .6         | 15           | 10           | B             | 160         | 10            |
| D186076          | .8          | 2             | B           | 100           | .8          | .4         | 10           | 10           | B             | 1.000       | 10            |
| D192368          | .8          | 2             | 1.7         | 30            | 1.0         | 1.2        | 10           | 7            | B             | 170         | 7             |
| D192369          | 1.2         | 3             | 1.5         | 70            | 1.0         | 1.1        | 15           | 7            | В             | 170         | 7             |
| D192370          | .2          | 5             | 2.5         | 20            | .9          | 1.8        | 20           | 7            | B             | 9.6         | 7             |
| D192371          | .7          | 7             | 1.3         | 30            | 1.0         | 2.5        | 30           | 20           | 3             | 2.600       | 15            |
| D192372          | .1L         | 5             | 2.8         | 20            | 1.5         | 2.4        | 20           | 10           | B             | 300         | 20            |
| D192373          | 5.4         | 2             | 2.5         | 20            | 1.1         | 5.2        | 15           | 5            | B             | 9.6         | 10            |
| D192374          | .5          | 2             | 3.4         | 50            | .9          | 1.1        | 15           | 5            | В             | 69          | 7             |
| D192375          | .6          | 3             | 3.5         | 70            | 2.6         | 2.2        | 15           | 7            | В             | 690         | 15            |
| D192376          | .4          | 3             | 2.9         | 150           | 1.0         | 1.8        | 10           | 7            | В             | 4.200       | 10            |
| D192377          | 1.8         | 5             | 3.4         | 50            | 1.7         | 6.9        | 30           | 10           | B             | 12          | 15            |
| D192378          | .1L         | 3             | 2.9         | 200           | 1.4         | 1.0        | 20           | 5            | B             | 540         | 10            |
| D192379          | .7          | 5             | 1.7         | 70            | 2.1         | 1.2        | 20           | 15           | В             | 42          | 15            |

Table 5. Element composition of 106 Iowa coal samples--continued

| Table 6. | Arithmetic mean, observed range, geometric mean, and geometric deviation |
|----------|--------------------------------------------------------------------------|
|          | of proximate and ultimate analyses, heat of combustion, forms of sulfur, |
|          | and ash-fusion temperatures for 11 Middle Pennsylvanian-age coal samples |
|          | from coal-zone 2, Cherokee Group, south-central and southeastern Iowa    |

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures and geometric deviations and are reported on an as-received basis. Kcal/kg = 0.556 (Btu/lb). °F = (°C x 1.8) + 32]

|                   |                    | Obser          | ved range        | 0                 | Geometric<br>deviation |
|-------------------|--------------------|----------------|------------------|-------------------|------------------------|
|                   | Arithmetic<br>mean | Minimum        | Maximum          | Geometric<br>mean |                        |
|                   |                    | Proximate and  | l ultimate analy | sis               |                        |
| Moisture          | 9.6                | 5.3            | 13.0             | 9.3               | 1.3                    |
| matter<br>Fixed   | 34.4               | 27.9           | 40.6             | 33.9              | 1.1                    |
| carbon            | 38.6               | 30.6           | 48.5             | 37.9              | 1.1                    |
| Ash               | 18.0               | 9.7            | 31.1             | 16.8              | 1.4                    |
| Hydrogen          | 4.9                | 3.6            | 5.9              | 4.8               | 1.1                    |
| Carbon            | 54.0               | 36.6           | 65.5             | 53.0              | 1.2                    |
| Nitrogen          | .9                 | .4             | 1.2              | q                 | 1.3                    |
| Ovvden            | 15 3               | 10 0           | 10 5             | 15 1              | 1 3                    |
| Sulfur            | 7 2                | 2.2            | 10 2             | 10+1              | 1.5                    |
|                   | /•C                | J. Z           | 10.5             | 0.5               | 1.7                    |
|                   |                    | Heat of        | f combustion     |                   |                        |
| Kcal/kg<br>Btu/lb | 5,360<br>9,630     | 4,050<br>7,280 | 6,060<br>10,900  | 5,315<br>9,560    | 1.1<br>1.1             |
|                   |                    | Forms          | s of sulfur      |                   |                        |
| Sulfate           | 1.04               | 0.31           | 2.98             | 0.87              | 1.8                    |
| Pyritic           | 4.51               | 1.97           | 15.47            | 3.59              | 1.9                    |
| Organic           | 1.82               | .42            | 2.61             | 1.57              | 1.7                    |
|                   |                    | Ash-fusion     | temperatures (°C | ;)                |                        |
| Initial<br>gefor- |                    |                |                  |                   |                        |
| mation            | 1,165              | 1,040          | 1,335            | 1,165             | 1.1                    |
| Softening         | 1,210              | 1,095          | 1,380            | 1,210             | 1.1                    |
| Fluid             | 1,255              | 1,150          | 1,430            | 1,255             | 1.1                    |
|                   |                    |                |                  |                   |                        |

## Table 7. Arithmetic mean, observed range, geometric mean, and geometric deviation of 37 elements in 15 Middle Pennsylvanian age coal samples from coalzone 2, Cherokee Group, southcentral and southeastern lowa

[All analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis. L, less than the value shown]

• •

|          |                    | Obser   | ved range        |                   |                     |
|----------|--------------------|---------|------------------|-------------------|---------------------|
| Element  | Arithmetic<br>mean | Minimum | Maximum          | Geometric<br>mean | Geometric deviation |
|          |                    | Р       | ercent           |                   |                     |
| Si       | 1.6                | 0.76    | 3.0              | 1.5               | 1.6                 |
| A1       | 1.0                | .41     | 2.2              | .88               | 1.7                 |
| Ca<br>Ma | 1.8                | .10     | 5.1              | 1.2               | 2.4                 |
| ny       | •030               | .020    | *U0 <del>4</del> | •004              | 1.0                 |
| Na       | .027               | .017    | .040             | .026              | 1.3                 |
| K        | .096               | .027    | .23              | .077              | 1.9                 |
| Fe       | 4.9                | 1.9     | 14               | 4.1               | 1.8                 |
| 11       | .050               | .018    | •095             | •(J44             | 1.0                 |
|          |                    | Parts   | per million      |                   |                     |
| As       |                    | 28      | 25               | 8.7               | 2 0                 |
| B        | 100                | 50      | 150              | 100               | 1.5                 |
| Ba       | 100                | 10      | 1.000            | 50                | 3.5                 |
| Be       | 3                  | 1.5     | 5                | 2                 | 1.4                 |
| Cd       | 1.4                | .2L     | 19               | .5                | 4.4                 |
| Co       | 10                 | 3       | 50               | 7                 | 2.0                 |
| Cr       | 20                 | 7       | 100              | 15                | 2.1                 |
| Cu       | 18                 | 7.1     | 56               | 15                | 1.8                 |
| F<br>Ga  | 80<br>10           | 25      | 1/5<br>20        | 60<br>7           | 2.1                 |
| 0-       | 10                 | 15      |                  |                   |                     |
| Ge       | 15                 | 15      | 3()              | 15                | 1.2                 |
| ng<br>La | 15                 | 151     | -40<br>30        | •15<br>15         | 1.0                 |
| Li       | 16                 | 4.4     | 49               | 13                | 2.0                 |
| Mn       | 190                | 21      | 610              | 140               | 2.3                 |
| Mo       | 3                  | 1.51    | 30               | 1.5               | 3.7                 |
| Nd       | 20                 | 20L     | 30               | 20                | 1.3                 |
| Ni       | 30                 | 10      | 150              | 20                | 2.2                 |
| Pb       | 58                 | 12      | 250              | 39                | 2.4                 |
| SD       | .4                 | .1L     | 1.4              | .3                | 2.5                 |
| Sc       | 5                  | 2       | 10               | 5                 | 1.6                 |
| Se       | 3.9                | 1.7     | 17               | 3.3               | 1.7                 |
| 35<br>Th | 100                | 20      | 200              | 100               | 2.1                 |
| U        | 2.0                | .5      | 4.5              | 1.0               | 2.4<br>1.8          |
| v        | 30                 | 10      | 100              | 20                | 17                  |
| Ŷ        | 15                 | 5       | 20               | 15                | 1.6                 |
| Zn       | 470                | 7.1     | 4,200            | 120               | 5.5                 |
| Zr       | 15                 | 7       | 50               | 15                | 1.7                 |
|          |                    |         |                  |                   |                     |

91

Table 8. Arithmetic mean, observed range, geometric mean, and geometric deviation of proximate and ultimate analyses, heat of combustion, forms of sulfur, and ash-fusion temperatures for 9 Middle Pennsylvanian-age coal samples from coal-zone 3, Cherokee Group, south-central and southeastern Iowa

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures and geometric deviations, and are reported on an as-received basis. Kcal/kg = 0.556 (Btu/lb). °F = (°C x 1.8) + 32]

| <del> </del>         |                        | Obser          | ved range        | ·····             | `                                          |
|----------------------|------------------------|----------------|------------------|-------------------|--------------------------------------------|
|                      | Arithmetic<br>mean     | Minimum        | Maximum          | Geometric<br>mean | Geometric<br>deviation                     |
|                      |                        | Proximate and  | i ultimate analy | Ses               |                                            |
| Moisture<br>Volatile | 11.1                   | 7.7            | 13.8             | 10.9              | 1.3                                        |
| matter<br>Fixed      | 34.5                   | 30.4           | 40.7             | 33.9              | 1.1                                        |
| carbon               | 38.4                   | 33.0           | 43.2             | 38.2              | 1.1                                        |
| Ash                  | 16.7                   | 10.3           | 30.6             | 15.6              | 1.4                                        |
| Hydrogen             | 5.0                    | 4.2            | 5.5              | 5.0               | 1 2                                        |
| Carbon               | 54.2                   | 44 1           | 62 7             | 53 1              | 1 1                                        |
| Nitrogen             | 0                      | 7              | 1 3              | 55.1              | 1 2                                        |
| Ovygon               | • <sup>5</sup><br>17 1 | 14 5           | 21.1             | •7                | 1.2                                        |
| Culfur               | 1/.1                   | 14.5           |                  | 15./              | 1.3                                        |
| Sultur               | 7.0                    | 2.8            | 17.3             | 0.1               | 1./                                        |
|                      |                        | Heat of        | f combustion     |                   |                                            |
| Kcal/kg<br>Btu/lb    | 5,410<br>9,730         | 4,545<br>8,170 | 6,080<br>10,940  | 5,380<br>9,680 ·  | 1.1<br>1.1                                 |
|                      |                        | Forms          | s of sulfur      |                   |                                            |
| Sulfate              | 1.59                   | 0.01           | 3.57             | 0.54              | 4.6                                        |
| Pvritic              | 4.31                   | 1.41           | 16.2             | 3.36              | 2.0                                        |
| Organic              | 1.66                   | .42            | 2.89             | 1.36              | 1.8                                        |
|                      |                        | Ash-fusion 1   | temperatures (°C | )                 |                                            |
| Initial<br>defor-    |                        |                |                  |                   | , , , , <u>, , , , , , , , , , , , , ,</u> |
| mation               | 1,130                  | 1,040          | 1,240            | 1,130             | 1.1                                        |
| Softening            | 1,180                  | 1,095          | 1,290            | 1,180             | 1.1                                        |
| Fluid                | 1,225                  | 1,145          | 1,320            | 1,225             | 1.0                                        |
|                      |                        |                |                  |                   |                                            |

## Table 9. Arithmetic mean, observed range, geometric mean, and geometric deviation of 36 elements in 15 Middle Pennsylvanian-age coal samples from coalzone 3, Cherokee Group, south-central and southeastern Iowa

[All Analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis. L, less than the value shown]

|          |                    | Obser    | ved range   |                   |                        |  |
|----------|--------------------|----------|-------------|-------------------|------------------------|--|
| Element  | Arithmetic<br>mean | Minimum  | Maximum     | Geometric<br>mean | Geometric<br>deviation |  |
|          |                    | р        | ercent      |                   |                        |  |
| Si       | 1.7                | 0.38     | 5.8         | 1.3               | 2.0                    |  |
| ĂÌ       | .92                | .24      | 3.2         | .75               | 1.9                    |  |
| Ca       | 1.3                | .087     | 2.6         | .85               | 2.6                    |  |
| Mg       | .037               | .007     | .13         | .029              | 2.0                    |  |
| Na       | .022               | .009     | .043        | .020              | 1.6                    |  |
| ĸ        | .12                | .019     | .50         | .068              | 2.9                    |  |
| Fe       | 6.1                | 1.8      | 21          | 4.8               | 2.0                    |  |
| Ti       | .043               | .012     | .13         | •037              | 1./                    |  |
|          |                    | Parts    | per million |                   |                        |  |
| A        |                    | <u>.</u> | 40          | 14                | 2 /                    |  |
| AS<br>R  | 100                | 50       | 150         | 14                | 2,4                    |  |
| Ba       | 30                 | 5        | 200         | 20                | 2.8                    |  |
| Be       | 2                  | 1.5      | 5           | 2                 | 1.3                    |  |
| Cd       | 9.2                | •2L      | 15          | 9                 | 10                     |  |
| Co       | 10                 | 3        | 30          | 10                | 1.8                    |  |
| Cr       | 15                 | 7        | 50          | 15                | 1.7                    |  |
| Cu       | 25                 | 9.2      | 69          | 21                | 1.8                    |  |
| F        | 56                 | 201      | 160         | 45                | 2.0                    |  |
| Ga       | /                  | 3        | 10          | /                 | 1.5                    |  |
| Ge       | 20                 | 7        | 50          | 15                | 1.6                    |  |
| Hg       | .10                | •07      | .7          | .17               | 1.8                    |  |
| La       | 15                 | 15L      | 50          | 10                | 2.1                    |  |
| 1<br>1   | 12                 | 3.5      | 32          | 9.0               | 2.1                    |  |
| 1311     | 120                | 54       | 210         | 100               | 1.0                    |  |
| Мо       | 5                  | 2L       | 10          | 3                 | 2.1                    |  |
| N1<br>Dh | 50                 | /        | 100         | 30                | 2.1                    |  |
| 70<br>Sh | 90<br>90           | 9.1      | 4/0         | 54                | 3.0                    |  |
| Sc       | 7                  | 1 5      | 1.0         | •0<br>5           | 6.6<br>1 7             |  |
| 54       | •                  | 1.0      | 15          | 5                 | £+7                    |  |
| Se       | 3.0                | 1L       | 8.2         | 2.6               | 1.7                    |  |
| 36<br>Th | /U<br>2 E          | 5        | 300         | 30                | 3.0                    |  |
| Ű        | 3.0                | יאר<br>פ | ۲۱<br>۲۱    | 1.2               | 5.4<br>2 1             |  |
| v        | 30                 | 15       | 70          | 20                | 1.7                    |  |
| Y        | 10                 | 7        | 20          | 10                | 1 A                    |  |
| Zn       | 2,800              | 9.6      | 5.500       | 290               | 9.8                    |  |
| Zr       | 15                 | 7        | 50          | 10                | 1.7                    |  |
| <u> </u> |                    |          |             |                   |                        |  |

| Table 10. | Arithmetic mean, observed range, geometric mean, and geometric dev | iation |
|-----------|--------------------------------------------------------------------|--------|
|           | of proximate and ultimate analyses, heat of combustion, forms of s | ulfur, |
|           | and ash-fusion temperatures for 32 Middle Pennsylvanian-age coal s | amples |
|           | from coal-zone 4, Cherokee Group, south-central and southeastern I | owa    |

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures and geometric deviations and are reported on an as-received basis. L, less than the value shown. Kcal/kg = 0.556 (Btu/lb).  $^{\circ}F = (^{\circ}C \times 1.8) + 32$ ]

|                      |                    | Obser          | ved range        |                   |                     |  |
|----------------------|--------------------|----------------|------------------|-------------------|---------------------|--|
|                      | Arithmetic<br>mean | Minimum        | Maximum          | Geometric<br>mean | Geometric deviation |  |
|                      |                    | Proximate and  | ultimate analy   | Ses               |                     |  |
| Moisture<br>Volatile | 13.4               | 7.9            | 17.7             | 13.2              | 1.2                 |  |
| matter<br>Fixed      | 33.4               | 23.3           | 38.8             | 32.8              | 1.1                 |  |
| carbon               | 36.7               | 22.8           | 48.1             | 35.8              | 1.1                 |  |
| Ash                  | 17.1               | 7.0            | 32.8             | 15.7              | 1.5                 |  |
| Hydrogen             | 5.1                | 3.5            | 5.8              | 5.1               | 1.2                 |  |
| Carbon               | 52.6               | 34.4           | 61.0             | 51.5              | 1.1                 |  |
| Nitrogen             | 1.0                | •2             | 1.3              | 1.0               | 1.2                 |  |
| Oxygen               | 18.1               | 9.6            | 23.0             | 18.1              | 1.2                 |  |
| Sulfur               | 6.4                | 2.3            | 19.2             | 5.5               | 1.7                 |  |
|                      |                    | Heat of        | combustion       |                   |                     |  |
| Kcal/kg<br>Btu/lb    | 5,440<br>9,780     | 3,840<br>6,910 | 6,365<br>11,450  | 5,410<br>9,730    | 1.1<br>1.1          |  |
|                      |                    | Forms          | ; of sulfur      |                   |                     |  |
| Sulfate              | 0.68               | 0.01L          | 1.88             | 0.43              | 2.6                 |  |
| Pyritic              | 4.26               | .45            | 16.6             | 3.20              | 2.1                 |  |
| Organic              | 1.58               | .48            | 3.13             | 1.36              | 1.7                 |  |
|                      |                    | Ash-fusion 1   | cemperatures (°C | )                 |                     |  |
| Initial deform       |                    |                |                  | <u></u>           |                     |  |
| mation               | 1,145              | 1,015          | 1,485            | 1,145             | 1,1                 |  |
| Softening            | 1,195              | 1,070          | 1,530            | 1,190             | 1.1                 |  |
| Flufd                | 1,235              | 1,105          | 1,540            | 1,235             | 1.1                 |  |

## Table 11.Arithmetic mean, observed range, geometric mean, and geometric deviation<br/>of 35 elements in 49 Middle Pennsylvanian-age coal samples from coal-<br/>zone 4, Cherokee Group, south-central and southeastern lowa

[All analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis. L, less than the value shown]

|                            |                              | Obser                       | ved range                      |                              |                                 |  |
|----------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|---------------------------------|--|
| Element                    | Arithmetic<br>mean           | Minimum                     | Maximum                        | Geometric<br>mean            | Geometric deviation             |  |
|                            |                              | Р                           | ercent                         |                              |                                 |  |
| Si<br>Al<br>Ca             | 2.0<br>.94<br>2.0            | 0.48<br>.10                 | 6.7<br>3.2<br>7.1              | 1.6<br>.71<br>1.5            | 1.8<br>2.1<br>2.2               |  |
| Mg                         | .065                         | .016                        | .39                            | .052                         | 2.0                             |  |
| Na<br>K<br>Fe<br>Ti        | .027<br>.13<br>4.7<br>.046   | .009<br>.023<br>.93<br>.009 | .065<br>.61<br>16<br>.18       | .023<br>.11<br>4.1<br>.036   | 1.7<br>1.9<br>1.7<br>2.0        |  |
|                            |                              | Parts                       | per million                    |                              |                                 |  |
| As<br>B<br>Ba<br>Be<br>Cd  | 26<br>100<br>70<br>2<br>12   | 3<br>50<br>7<br>1<br>.12L   | 230<br>200<br>1,000<br>7<br>62 | 17<br>100<br>30<br>2<br>.24  | 2.7<br>1.5<br>3.5<br>1.6<br>19  |  |
| Co<br>Cr<br>Cu<br>F<br>Ga  | 15<br>15<br>25<br>84<br>7    | 2<br>2<br>4.0<br>20<br>1.5  | 300<br>50<br>170<br>250<br>20  | 7<br>10<br>19<br>75<br>7     | 2.8<br>2.2<br>2.1<br>1.6<br>2.0 |  |
| Ge<br>Kg<br>Li<br>Mn<br>Mo | 20<br>.16<br>11<br>240<br>7  | 7<br>.07<br>1.2<br>44<br>.7 | 70<br>.49<br>58<br>980<br>100  | 15<br>.14<br>6.8<br>190<br>3 | 1.7<br>1.7<br>2.8<br>2.0<br>3.4 |  |
| N1<br>Pb<br>Sb<br>Sc<br>Se | 50<br>63<br>1.7<br>5<br>3.3  | .7<br>8.1<br>1.5<br>.1L     | 700<br>420<br>22<br>15<br>29   | 30<br>43<br>.7<br>3<br>2.1   | 2.5<br>2.4<br>3.6<br>2.1<br>2.5 |  |
| Sr<br>Th<br>V<br>V<br>Y    | 50<br>2.8<br>4.2<br>20<br>10 | 10<br>.4<br>.2L<br>3<br>5   | 500<br>18<br>43<br>100<br>70   | 30<br>.7<br>2.0<br>15<br>10  | 2.4<br>6.3<br>3.3<br>2.3<br>1.7 |  |
| Zn<br>Zr                   | 850<br>15                    | 9.2<br>3                    | 4,200<br>70                    | 150<br>15                    | 6.7<br>1.9                      |  |

Table 12.Arithmetic mean, observed range, geometric mean, and geometric deviation<br/>of proximate and ultimate analyses, heat of combustion, forms of sulfur,<br/>and ash-fusion temperatures for four Middle Pennsylvanian-age coal<br/>samples from coal-zone 5, Cherokee Group, south-central and southeastern<br/>Iowa

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures and geometric deviations, and are reported on an as-received basis. Kcal/kg = 0.556 (Btu/lb). °F = (°C x 1.8) + 32]

| e.                   |                    | Obser          | ved range        |                   |                        |
|----------------------|--------------------|----------------|------------------|-------------------|------------------------|
|                      | Arithmetic<br>mean | Minimum        | Maximum          | Geometric<br>mean | Geometric<br>deviation |
|                      |                    | Proximate and  | l ultimate analy | ses               |                        |
| Moisture<br>Volatile | 8.5                | 5.0            | 12.3             | 8.1               | 1.5                    |
| matter<br>Fixed      | 33.9               | 29.3           | 39.0             | 33.7              | 1.1                    |
| carbon               | 34.9               | 28.1           | 40.1             | 34.5              | 1.2                    |
| Ash                  | 23.2               | 14.6           | 33.7             | 21.8              | 1.4                    |
| Hydrogen             | 4.4                | 4.0            | 5.3              | 4.4               | 1.1                    |
| Carbon               | 50.2               | 39.6           | 58.4             | 49.3              | 1.2                    |
| Nitrogen             | .9                 | .7             | 1.0              | .9                | 1.2                    |
| Oxygen               | 14.2               | 10.9           | 18.2             | 14.0              | 1.2                    |
| Sulfur               | 7.7                | 5.1            | 10.8             | 7.3               | 1.4                    |
|                      |                    | Heat of        | f combustion     |                   |                        |
| Kcal/kg<br>Btu/lb    | 4,870<br>8,760     | 3,905<br>7,020 | 5,790<br>10,410  | 4,800<br>8,640    | 1.2<br>1.2             |
|                      |                    | Forms          | s of sulfur      |                   |                        |
| Sulfate              | 1.07               | 0.18           | 1.89             | 0.66              | 2.8                    |
| Pyritic<br>Organic   | 4.11 2.65          | 1.82<br>2.17   | 6.03<br>3.01     | 3.62<br>2.62      | 1.7<br>1.2             |
|                      |                    | -<br>          |                  |                   | <u></u>                |
|                      |                    | Ash-fusion 1   | temperatures (°C | )                 |                        |
| Initial<br>defor-    |                    |                | 1 150            | 1 110             | 1.0                    |
| mation               | 1,115              | 1,080          | 1,150            | 1,115             | 1.0                    |
| Softening            | 1,145              | 1,110          | 1,205            | 1,145             | 1.0                    |
| Fluid                | 1,200              | 1,140          | 1,280            | 1,200             | 1.1                    |
|                      |                    |                |                  |                   |                        |

## Table 13.Arithmetic mean, observed range, geometric mean, and geometric deviationof 35 elements in five Middle Pennsylvanian-age coal samples from coal-<br/>zone 5, Cherokee Group, south-central and southeastern Iowa

[All analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis]

|          |                    | Obser    | ved range   |                   |                        |
|----------|--------------------|----------|-------------|-------------------|------------------------|
| Element  | Arithmetic<br>mean | Mintmum  | Maximum     | Geometric<br>mean | Geometric<br>deviation |
|          |                    | P        | ercent      |                   |                        |
| Si       | 3.9                | 2.1      | 7.6         | 3.4               | 1.7                    |
| . A1     | 1.7                | .58      | 3.6         | 1.3               | 2.1                    |
| Ca       | 1.3                | .32      | 3.6         | .92               | 2.4                    |
| Mg       | .062               | .044     | .084        | .060              | 1.3                    |
| Na       | .050               | .023     | .078        | .045              | 1.6                    |
| ĸ        | .18                | .042     | .27         | .14               | 2.0                    |
| Fe       | 5.6                | 2.7      | 8.0         | 5.1               | 1.6                    |
| Ťi       | .095               | .038     | .21         | .077              | 1.9                    |
|          |                    | Parts    | per million |                   |                        |
|          | 17                 |          |             |                   | 1.6                    |
| AS       | 1/                 | 0<br>70  | 30          | 15                | 1.2                    |
| D<br>Ra  | 70                 | 30       | 300         | 70                | 2 2                    |
| Bo       | 2                  | 1 5      | 300         | 2                 | 1 3                    |
| 0e<br>C4 | 20                 | 2<br>T+D | 7/          | 21                | 17                     |
| CU .     | 23                 | •3       |             | C • 1             | 17                     |
| Co       | 30                 | 3        | 100         | 15                | 4.1                    |
| Cr       | 30                 | 7        | 70          | 20                | 2.3                    |
| Cu       | 28                 | 9.0      | 45          | 23                | 1.9                    |
| F        | 96                 | 35       | 155         | 78                | 1.9                    |
| Ga       | /                  | 3        | 10          | /                 | 1./                    |
| Ge       | 15                 | 10       | 30          | 15                | 1.8                    |
| Hg       | .15                | .12      | .20         | .15               | 1.2                    |
| LĪ       | 27                 | 4.1      | 80          | 15                | 3.2                    |
| Mn       | 310                | 110      | 740         | 220               | 2.3                    |
| Мо       | 7                  | 1.5      | 15          | 5                 | 2.7                    |
| NI       | 100                | 30       | 200         | 70                | 2.3                    |
| РЬ       | 45                 | 22       | 100         | 38                | 1.8                    |
| Sb       | 1.8                | .8       | 3.9         | 1.5               | 1.8                    |
| Sc       | 7                  | 2        | 10          | 5                 | 2.2                    |
| Se       | 21                 | 1.7      | 75          | 8.1               | 4.5                    |
| Sr       | 300                | 30       | 700         | 150               | 4.5                    |
| Th       | 3.5                | 1.0      | 10          | 1.6               | 2.8                    |
| U        | 10                 | 1.2      | 35          | 4.8               | 3.7                    |
| v        | /0                 | 10       | 150         | 50                | 3.1                    |
| r        | 20                 | 7        | 30          | 15                | 2.0                    |
| Zn       | 2,100              | 12       | 5,200       | 220               | 12                     |
| Zr       | 30                 | 7        | 70          | 20                | 2.5                    |
|          |                    |          |             | ••                |                        |

Table 14.Arithmetic mean, observed range, geometric mean, and geometric deviation<br/>of proximte and ultimate analyses, heat of combustion, forms of sulfur,<br/>and ash-fusion temperatures for 9 Middle Pennsylvanian-age coal samples<br/>from coal-zones 6, 7, 8, and 9, Cherokee Group, south-central and<br/>southeastern lowa.

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures, and geometric deviations, and are reported on an as-received basis. Kcal/kg = 0.556 (Btu/lb).  $^{\circ}F = (^{\circ}C \times 1.8) + 32$ ]

| ···                | • • • • • • • •                         | Obsei          | rved range       |                   |                        |
|--------------------|-----------------------------------------|----------------|------------------|-------------------|------------------------|
|                    | Arithmetic<br>mean                      | Minimum        | Maximum          | Geometric<br>mean | Geometric<br>deviation |
|                    |                                         | Proximate and  | 1 ultimate analy | Ses               |                        |
| Moisture           | 13.1                                    | 7.9            | 18.7             | 12.7              | 1.3                    |
| matter             | 33.8                                    | 27.3           | 41.2             | 33.2              | 1.1                    |
| carbon             | 38.8                                    | 25.5           | 45.2             | 38.0              | 1.2                    |
| Ash                | 14.9                                    | 8.4            | 36.7             | 13.2              | 1.6                    |
| Hydrogen           | 5.3                                     | 3.9            | 6.0              | 5.2               | 1.2                    |
| Carbon             | 55.3                                    | 38.4           | 67.2             | 54.1              | 1.2                    |
| Nitrogen           | .9                                      | .6             | 1.2              | .9                | 1.2                    |
| Oxvaen             | 18.8                                    | 12.5           | 24.8             | 16.9              | 1.3                    |
| Sulfur             | 4.8                                     | 2.4            | 8.9              | 4.4               | 1.5                    |
|                    | <u>,, , , , , , , , , , , , , , , ,</u> | Heat o         | f combustion     |                   | ·····                  |
| Kcal/kg<br>Btu/lb  | 5,530<br>9,940                          | 3,710<br>6,670 | 6,270<br>11,280  | 5,560<br>9,820    | 1.2<br>1.2             |
| <u></u>            |                                         | Form           | s of sulfur      | <u></u>           |                        |
| Sulfate            | 0.70                                    | 0.01           | 1.09             | 0.29              | 3,8                    |
| Pyritic<br>Organic | 2.72<br>1.71                            | .33<br>.97     | 6.40<br>2.45     | 2.04<br>1.62      | 2.1<br>1.3             |
|                    | <u></u>                                 | Ash-fusion     | temperatures (°C | )                 |                        |
| Initial<br>defor-  |                                         |                | <u></u>          |                   |                        |
| mation             | 1,085                                   | 1,040          | 1,140            | 1,085             | 1.0                    |
| Softening          | 1,120                                   | 1,060          | 1,175            | 1,115             | 1.0                    |
| Fluid              | 1,145                                   | 1,080          | 1,200            | 1,140             | 1.0                    |
|                    |                                         |                |                  |                   |                        |

| Table 15. | Arithmetic mean, observed range, geometric mean, and geometric deviation |
|-----------|--------------------------------------------------------------------------|
|           | of 38 elements in 16 Middle Pennsylvanian-age coal samples from coal-    |
|           | zones 6, 7, 8 and 9, Cherokee Group, south-central and southeastern Iowa |

[All analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis]

|                            |                            | Observed range      |                              |                           |                                 |
|----------------------------|----------------------------|---------------------|------------------------------|---------------------------|---------------------------------|
| Element                    | Arithmetic<br>mean         | Minimum             | Maximum                      | Geometric<br>mean         | Geometric deviation             |
|                            |                            | Ρ                   | ercent                       |                           |                                 |
| Si                         | 2.7                        | 0.59                | 12                           | 1.9                       | 2.3                             |
| Al                         | 1.1                        | .27                 | 5.9                          | .74                       | 2.3                             |
| Ca                         | 1.5                        | .28                 | 4.9                          | 1.1                       | 2.3                             |
| Mg                         | .083                       | .026                | .39                          | .061                      | 2.2                             |
| Na                         | .052                       | .010                | .21                          | .036                      | 2.4                             |
| K                          | .18                        | .057                | 1.0                          | .13                       | 2.4                             |
| Fe                         | 3.3                        | .27                 | 7.8                          | 2.3                       | 2.4                             |
| T1                         | .064                       | .012                | .31                          | .043                      | 2.4                             |
|                            |                            | Parts               | per million                  |                           |                                 |
| Ag                         | 0.5                        | 0.1                 | 2                            | 0.2                       | 4.8                             |
| As                         | 31                         | 4.5                 | 230                          | 18                        | 2.8                             |
| B                          | 100                        | 15                  | 150                          | 100                       | 1.9                             |
| Ba                         | 100                        | 10                  | 2,000                        | 50                        | 3.9                             |
| Be                         | 3                          | 1.5                 | 5                            | 2                         | 1.5                             |
| Cd                         | 8.9                        | .71                 | 100                          | 1.3                       | 8.5                             |
| Co                         | 10                         | 1                   | 20                           | 5                         | 2.7                             |
| Cr                         | 20                         | 7                   | 150                          | 20                        | 2.1                             |
| Cu                         | 31                         | 7.4                 | 160                          | 22                        | 2.3                             |
| F                          | 78                         | 30                  | 350                          | 62                        | 2.0                             |
| Ga                         | 7                          | 2                   | 30                           | 7                         | 2.0                             |
| Ge                         | 20                         | 10                  | 50                           | 20                        | 1.6                             |
| Hg                         | .17                        | .07                 | .30                          | .14                       | 1.6                             |
| Li                         | 15                         | 1.0                 | 88                           | 6.2                       | 3.9                             |
| Mn                         | 250                        | 67                  | 780                          | 210                       | 1.9                             |
| Mo<br>Nb<br>Ni<br>Pb<br>Sb | 15<br>2<br>30<br>69<br>9.4 | 2<br>1<br>5.9<br>.3 | 150<br>15<br>70<br>260<br>37 | 7<br>1<br>20<br>40<br>3.5 | 3.1<br>3.5<br>2.0<br>2.9<br>4.3 |
| Sc                         | 5                          | 1                   | 15                           | 3                         | 2.2                             |
| Se                         | 7.7                        | .9                  | 25                           | 4.9                       | 2.6                             |
| Sr                         | 50                         | 15                  | 150                          | 30                        | 1.9                             |
| Th                         | 8.4                        | .6                  | 22                           | .9                        | 2.8                             |
| U                          | 11                         | .5                  | 36                           | 4.3                       | 4.0                             |
| V                          | 100                        | 10                  | 300                          | 50                        | 3.0                             |
| Y                          | 15                         | 7                   | 30                           | 10                        | 1.5                             |
| Yb                         | 1.5                        | .7                  | 3                            | 1                         | 1.5                             |
| Zn                         | 620                        | 8.8                 | 5,400                        | 110                       | 7.0                             |
| Zr                         | 20                         | 5                   | 100                          | 15                        | 2.6                             |

Table 16.Arithmetic mean, observed range, geometric mean, and geometric deviation<br/>of proximate and ultimate analyses, heat of combustion, forms of sulfur,<br/>and ash-fusion temperatures for 65 Middle Pennsylvanian-age coal samples<br/>from the Cherokee and Marmaton Groups, south-central and southeastern<br/>lowa

[All values are in percent except kcal/kg, Btu/lb, ash-fusion temperatures and geometric deviations, and are reported on an as-received basis. L, less than the value shown. Kcal/kg = 0.556 (Btu/lb).  $^{\circ}F = (^{\circ}C \times 1.8) + 32$ ]

|                                        |                                        | Observed range |                  | -                 |                                               |
|----------------------------------------|----------------------------------------|----------------|------------------|-------------------|-----------------------------------------------|
|                                        | Arithmetic<br>mean                     | Mintmum        | Maximum          | Geometric<br>mean | Geometric<br>deviation                        |
|                                        |                                        | Proximte and   | ultimate analys  | 25                | <u>, , , , , , , , , , , , , , , , , , , </u> |
| Moisture<br>Volatile                   | 12.1                                   | 5.3            | 18.7             | 11.7              | 1.3                                           |
| matter<br>Fixed                        | 33.1                                   | 23.3           | 41.5             | 33.4              | 1.1                                           |
| carbon                                 | 37.3                                   | 22.8           | 48.5             | 37.0              | 1.1                                           |
| Ash                                    | 17.2                                   | 7.0            | 36.7             | 15.9              | 1.5                                           |
| Hydrogen                               | 5.0                                    | 2.9            | 6.0              | 5.0               | 1.2                                           |
| Carbon                                 | 52.9                                   | 34.4           | 67.2             | 52.5              | 1.1                                           |
| Nitrogen                               | .9                                     | .4             | 1.3              | .9                | 1.2                                           |
| Oxygen                                 | 17.2                                   | 2.5            | 27.9             | 17 1              | 1 3                                           |
| Sulfur                                 | 6.6                                    | 2.3            | 20.9             | 5.8               | 1.7                                           |
| <u> </u>                               | ······································ | Heat of        | combustion       |                   |                                               |
| Kcal/kg<br>Btu/lb                      | 5,400<br>9,710                         | 3,710<br>6,670 | 6,370<br>11,450  | 5,360<br>9,640    | 1.1<br>1.1                                    |
| •••••••••••••••••••••••••••••••••••••• |                                        | Forms          | of sulfur        |                   |                                               |
| Sulfate                                | 0.92                                   | 0.01L          | 3.57             | 0.50              | 3.0                                           |
| Pyritic<br>Organic                     | 4.19<br>1.70                           | .33<br>.42     | 18.8<br>3.13     | 3.20<br>1.50      | 2.1<br>1.7                                    |
|                                        |                                        | Ash-fusion t   | cemperatures (°C | )                 |                                               |
| Initial<br>defor-                      |                                        |                |                  |                   |                                               |
| mation                                 | 1,130                                  | 985            | 1,485            | 1,130             | 1.1                                           |
| Softening                              | 1,175                                  | 1,040          | 1,530            | 1,175             | 1.1                                           |
| Fluid                                  | 1,215                                  | 1,080          | 1,540            | 1,215             | 1.1                                           |

| Table 17. | Arithmetic mean, observed range, geometric mean, and geometric deviation |
|-----------|--------------------------------------------------------------------------|
|           | of 38 elements in 105 Middle Pennsylvanian-age coal samples from the     |
|           | Cherokee and Marmaton Groups, south-central and southeastern lowa        |

| Arithmetic<br>mean     Minimum     Maximum     Geometric<br>mean     Geometric<br>deviation       Si     2.0     0.38     12     1.7     1.9       Si     2.0     0.38     12     1.7     1.9       Si     2.0     0.38     12     1.7     1.9       Al     1.0     5.9     .78     2.0       Ca     1.7     .087     7.1     1.2     2.3       Mg     .030     .009     .21     .026     1.8       K     .13     .010L     1.0     .10     2.1       Fe     5.0     .27     21     .040     2.0       Ti     .051     .009     .31     .040     2.0       Itis     .01     15     2.0     1.6     8       100     15     200     100     1.6       Ba     100     5     3.000     7     2.5       Cr     15     2     150     15     2.1       Cu     2                                                      |            | Observed range     |             |             |                   |                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-------------|-------------|-------------------|---------------------|--|
| Percent       Si     2.0     0.38     12.9     1.7     1.9       A1     1.0     5.9     .78     2.0       Ca     1.7     0.87     7.1     1.2     2.3       Mg     .058     .007     .39     .045     2.0       Na     .030     .009     .21     .026     1.8       Fe     5.0     .27     21     4.0     2.0       Ti     .051     .009     .31     .040     2.0       Parts per million       Ag     0.05     8.1       As     24     2.0     240     15     2.5       Ba     100     15     2.00     100     1.6       Ba     100     5     3.000     30     3.6       Ba     100     .4     17     Co     1.5     2.1       Cd     18     .1L     100     .4     17     Co     1.2       Co     15                                                                                                        | Element    | Arithmetic<br>mean | Minimum     | Maximum     | Geometric<br>mean | Geometric deviation |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                    | F           | Percent     |                   |                     |  |
| A1   1.0   .10   5.9   .78   2.0     Ca   1.7   .087   7.1   1.2   2.3     Mg   .058   .007   .39   .045   2.0     Na   .030   .009   .21   .026   1.8     K   .13   .010L   1.0   .10   2.1     Fe   5.0   .27   21   4.0   2.0     Ti   .051   .009   .31   .040   2.0     Parts per million     Parts per million     Ag   0.3   0.11   3   0.05   8.1     As   24   2.0   240   15   2.5     B   100   15   2.00   30   3.6     Be   2   1   7   2   1.5     Cd   18   .1L   100   .4   17     Co   15   2   150   15   2.1     Cd   18   .1L   100   .4   17     Co   15   1 </td <td>Si</td> <td>2.0</td> <td>0.38</td> <td>12</td> <td>1.7</td> <td>1.9</td>                                                                                                                                           | Si         | 2.0                | 0.38        | 12          | 1.7               | 1.9                 |  |
| Ca     1.7     .087     7.1     1.2     2.3       Mg     .058     .007     .39     .045     2.0       Na     .0300     .009     .21     .026     1.8       K     .13     .010L     1.0     .10     2.1       Fe     5.0     .27     21     4.0     2.0       Parts per million         Ag     0.3     0.11     3     0.040     2.0       Parts per million         Ag     0.3     0.11     3     0.05     8.1       As     24     2.0     240     15     2.5       B     100     15     200     100     1.6       Ba     100     5     3.000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     1.8       Ga                                                                                                       | A1         | 1.0                | .10         | 5.9         | .78               | 2.0                 |  |
| Mg     .058     .007     .39     .045     2.0       Na     .030     .009     .21     .026     1.8       K     .13     .010L     1.0     .10     2.1       Fe     5.0     .27     21     .026     1.8       .051     .009     .31     .040     2.0       Parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ca         | 1.7                | .087        | 7.1         | 1.2               | 2.3                 |  |
| Na     .030     .009     .21     .026     1.8       Fe     .13     .010     1.0     .10     2.1       Fe     5.0     .27     21     4.0     2.0       Parts per million       Parts per million       Ag     0.3     0.11     3     0.05     8.1       As     2.0     240     15     2.5     5     5     5     2.5     5     2.0     1.6     5       Ba     100     5     3.000     30     3.6     5     2.5     5     7     2     1.5       Cd     18     .1L     100     .4     17     2     2.5       Cr     15     1     300     7     2.5     2.1     2.0     1.5     2.1       Cu     25     4.0     170     19     2.0     1.7     1.5     30     7     1.8     5     4.0     1.7     1.7     1.7     1.7     1.7 </td <td>Mg</td> <td>.058</td> <td>.007</td> <td>.39</td> <td>.045</td> <td>2.0</td> | Mg         | .058               | .007        | .39         | .045              | 2.0                 |  |
| K     .13     .010L     1.0     .10     2.1       Fe     5.0     .27     21     4.0     2.0       Parts per million       Parts per million       Ag     0.3     0.11     3     0.05     8.1       As     24     2.0     240     15     2.5       B     100     15     200     100     1.6       Ba     100     5     3.000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .11L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Ga     7     1.5     30     7     1.8       Ge     20     7     70     .14     1.7       Hg     .17     .07     .70     .14     1.7       Hg     .10 <t< td=""><td>Na</td><td>.030</td><td>.009</td><td>.21</td><td>.026</td><td>1.8</td></t<>                              | Na         | .030               | .009        | .21         | .026              | 1.8                 |  |
| Fe     5.0     .27     21     4.0     2.0       Ti     .051     .009     .31     .040     2.0       Parts per million       Parts per million       Ag     0.3     0.1L     3     0.05     8.1       As     24     2.0     240     15     2.5       B     100     15     200     100     1.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.7       Ga     7     1.5     30     7     1.8       Ga     70     70     20     1.7     1.7       Li     13     1.0                                                                                                                   | ĸ          | .13                | .010L       | 1.0         | .10               | 2.1                 |  |
| Ti     .051     .009     .31     .040     2.0       Parts per million       Ag     0.3     0.1L     3     0.05     8.1       As     24     2.0     240     15     2.5       B     100     15     200     100     1.6       Ba     100     5     3.000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.8       Ga     7     1.5     30     7     1.8       Ge     20     7     70     2.1     7.1       Hg     .17     .07     .70     .1.7     8                                                                                                                    | Fe         | 5.0                | .27         | 21          | 4.0               | 2.0                 |  |
| Ag     0.3     0.1L     3     0.05     8.1       As     24     2.0     240     15     2.5       B     100     15     2.0     100     1.6       Ba     100     5     3.000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.8       Ga     7     1.5     30     7     1.8       Ge     20     7     70     20     1.7       Hg     .17     .07     .70     3     3.7       Hg     .17     .07     .70     3     3.7       Hg     .17     .07                                                                                                                          | Ti         | .051               | .009        | .31         | •040              | 2.0                 |  |
| Ag   0.3   0.1L   3   0.05   8.1     As   24   2.0   240   15   2.5     B   100   15   200   100   1.6     Ba   100   5   3.000   30   3.6     Be   2   1   7   2   1.5     Cd   18   .1L   100   .4   17     Co   15   1   300   7   2.5     Cr   15   2   150   15   2.1     Cu   25   4.0   170   19   2.0     F   78   20L   350   65   1.8     Ga   7   1.5   30   7   1.8     Ga   7   1.5   30   7   1.8     Ga   7   7.07   .14   1.7     Hg   .17   .07   .70   .14   1.7     Hg   .17   .07   .3   3.7   3   3.7     Mn   210   21   960   170<                                                                                                                                                                                                                                                     |            |                    | Parts       | per million |                   |                     |  |
| As242.0240152.5B100152001001.6Ba10053.000303.6Be21721.5Cd18.1L100.417Co15130072.5Cr152150152.1Cu254.0170192.0F7820L350651.8Ga71.53071.8Ge20770201.7Hg.17.07.70.141.7La1010L7054.0Li131.0887.92.8Mn210219801702.0Li15.33.733.7Nb1.51L15.35.8Ni505700302.3Pb675.9470442.5Sb2.1.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4V3033001507.5Zr1531001507.5Zr153<                                                                                                                                                                                                                                                                                                                                                                                                                              | Ag         | 0.3                | 0.1L        | 3           | 0,05              | 8.1                 |  |
| B     100     15     200     100     1.6       Ba     100     5     3,000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.8       Ga     7     1.5     30     7     1.8       Ge     20     7     70     20     1.7       Hg     .17     .07     .70     .14     1.7       La     10     10L     70     5     4.0       Li     13     1.0     88     7.9     2.8       Mn     210     21     980     170     2.0       Mo     7.5     1L                                                                                                                            | As         | 24                 | 2.0         | 240         | 15                | 2.5                 |  |
| Ba     100     5     3,000     30     3.6       Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.8       Ga     7     1.5     30     7     1.8       Ge     20     7     70     20     1.7       Hg     .17     .07     .70     20     1.7       Hg     .17     .07     .70     2.8       Mn     210     21     980     170     2.0       Li     15     .1L     150     .3     5.8       Mi     50     5     700     30     2.3       Sb     2.1     .1L     37                                                                                                                           | В          | 100                | 15          | 200         | 100               | 1.6                 |  |
| Be     2     1     7     2     1.5       Cd     18     .1L     100     .4     17       Co     15     1     300     7     2.5       Cr     15     2     150     15     2.1       Cu     25     4.0     170     19     2.0       F     78     20L     350     65     1.8       Ga     7     1.5     30     7     1.8       Ge     20     7     70     20     1.7       Hg     .17     .07     .70     .14     1.7       La     10     10L     70     5     4.0       Li     13     1.0     88     7.9     2.8       Mn     210     21     980     170     2.0       Mo     7     5.1L     15     .3     5.8       Mi     50     5     700     30     2.3       Pb     67     5.9                                                                                                                                | Ba         | 100                | 5           | 3,000       | 30                | 3.6                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Be         | 2                  | 1           | 7           | 2                 | 1.5                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cd         | 18                 | <b>.</b> 1L | 100         | .4                | 17                  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Co         | 15                 | 1           | 300         | 7                 | 2.5                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cr         | 15                 | 2           | 150         | 15                | 2.1                 |  |
| F7820L350651.8Ga71.53071.8Ge20770201.7Hg.17.07.70.141.7La1010L7054.0Li131.0887.92.8Mn210219801702.0Mo77L15033.7Nb1.51L15.35.8Ni505700302.3Pb675.9470442.5Sb2.1.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4Y15570101.7Zn1,1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cu         | 25                 | 4.0         | 170         | 19                | 2.0                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F          | 78                 | 20L         | 350         | 65                | 1.8                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ga         | 7                  | 1.5         | 30          | 7                 | 1.8                 |  |
| Hg.17.07.70.141.7La1010L7054.0Li131.0887.92.8Mn210219801702.0Mo77L15033.7Nb1.51L15.35.8Ni505700302.3Pb675.9470442.5Sb2.1.1L1552.1Sc51L1552.1Se4.5.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4Y15570101.7Zn1,1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ge         | 20                 | 7           | 70          | 20                | 1.7                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hg         | .17                | .07         | .70         | .14               | 1.7                 |  |
| L1   13   1.0   88   7.9   2.8     Mn   210   21   980   170   2.0     Mo   7   7L   150   3   3.7     Nb   1.5   1L   15   .3   5.8     Ni   50   5   700   30   2.3     Pb   67   5.9   470   44   2.5     Sb   2.1   .1L   37   .8   4.0     Sc   5   1L   15   5   2.1     Se   4.5   .1L   75   2.8   2.7     Sr   70   5   700   50   2.6     Th   3.6   .4L   22   1.0   4.0     U   4.5   .2L   43   2.4   3.1     V   30   3   300   20   2.4     Y   15   5   70   10   1.7     Zn   1.100   7.1   18,000   150   7.5     Zr   15   3   100   15                                                                                                                                                                                                                                                    | La         | 10                 | 10L         | 70          | 5                 | 4.0                 |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L1         | 13                 | 1.0         | 88          | 7.9               | 2.8                 |  |
| Mo77L15033.7Nb1.51L15.35.8Ni505700302.3Pb675.9470442.5Sb2.1.1L37.84.0Sc51L1552.1Se4.5.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4Y15570101.7Zn1,1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn         | 210                | 21          | 980         | 170               | 2.0                 |  |
| Nb1.51L15.35.8Ni505700302.3Pb675.9470442.5Sb2.1.1L37.84.0Sc51L1552.1Se4.5.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4Y15570101.7Zn1.1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mo         | 7                  | 7L          | 150         | 3                 | 3.7                 |  |
| N1505700302.3Pb675.9470442.5Sb2.1.1L37.84.0Sc51L1552.1Se4.5.1L752.82.7Sr705700502.6Th3.6.4L221.04.0U4.5.2L432.43.1V303300202.4Y15570101.7Zn1,1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nb         | 1.5                | 1L          | 15          | .3                | 5.8                 |  |
| Pb $67$ $5.9$ $470$ $44$ $2.5$ Sb $2.1$ $.1L$ $37$ $.8$ $4.0$ Sc $5$ $1L$ $15$ $5$ $2.1$ Se $4.5$ $.1L$ $75$ $2.8$ $2.7$ Sr $70$ $5$ $700$ $50$ $2.6$ Th $3.6$ $.4L$ $22$ $1.0$ $4.0$ U $4.5$ $.2L$ $43$ $2.4$ $3.1$ V $30$ $3$ $300$ $20$ $2.4$ Y $15$ $5$ $70$ $10$ $1.7$ Zn $1,100$ $7.1$ $18,000$ $150$ $7.5$ Zr $15$ $3$ $100$ $15$ $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ni         | 50                 | 5           | 700         | 30                | 2.3                 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | סץ         | 67                 | 5.9         | 470         | 44                | 2.5                 |  |
| Sc51L1552.1Se $4.5$ .1L75 $2.8$ $2.7$ Sr70570050 $2.6$ Th $3.6$ .4L $22$ $1.0$ $4.0$ U $4.5$ .2L $43$ $2.4$ $3.1$ V30330020 $2.4$ Y1557010 $1.7$ Zn $1,100$ $7.1$ $18,000$ $150$ $7.5$ Zr15310015 $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sb         | 2.1                | .1L         | 37          | .8                | 4.0                 |  |
| Se   4.5   .1L   75   2.8   2.7     Sr   70   5   700   50   2.6     Th   3.6   .4L   22   1.0   4.0     U   4.5   .2L   43   2.4   3.1     V   30   3   300   20   2.4     Y   15   5   70   10   1.7     Zn   1,100   7.1   18,000   150   7.5     Zr   15   3   100   15   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sc         | 5                  | 11          | 15          | 5                 | 2.1                 |  |
| Sr705700502.6Th $3.6$ .4L22 $1.0$ $4.0$ U $4.5$ .2L $43$ $2.4$ $3.1$ V $30$ $3$ $300$ $20$ $2.4$ Y $15$ $5$ $70$ $10$ $1.7$ Zn $1,100$ $7.1$ $18,000$ $150$ $7.5$ Zr $15$ $3$ $100$ $15$ $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se         | 4.5                | .1L         | 75          | 2.8               | 2.7                 |  |
| In 3.0 .4L 22 1.0 4.0   U 4.5 .2L 43 2.4 3.1   V 30 3 300 20 2.4   Y 15 5 70 10 1.7   Zn 1,100 7.1 18,000 150 7.5   Zr 15 3 100 15 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35<br>76   | /0                 | 5           | 700         | 50                | 2.6                 |  |
| U4.5.2L432.43.1V303300202.4Y15570101.7Zn1,1007.118,0001507.5Zr153100152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11         | 3.0                | .4L         | Z2          | 1.0               | 4.0                 |  |
| V     30     3     300     20     2.4       Y     15     5     70     10     1.7       Zn     1,100     7.1     18,000     150     7.5       Zr     15     3     100     15     2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U          | 4.5                | .2L         | 43          | 2.4               | 3.1                 |  |
| T     15     5     70     10     1.7       Zn     1,100     7.1     18,000     150     7.5       Zr     15     3     100     15     2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥.         | 30                 | 3           | 300         | 20                | 2.4                 |  |
| Zr 15 3 100 150 7.5<br>Zr 15 3 100 15 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>7e    | 15                 | 5           | 70          | 10                | 1.7                 |  |
| L, 10 3 100 15 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211<br>7 m | 1,100              | /•1         | 100         | 150               | 7.5                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41         | 10                 | 3           | 100         | 15                | 2.0                 |  |

[All analyses except geometric deviations are in percent or parts per million and are reported on a whole-coal basis. L, less than the value shown]
| Table 18. | Arithmetic mean, observed range, and geometric mean of proximate   |
|-----------|--------------------------------------------------------------------|
|           | and ultimate analyses, heat of combustion, and forms of sulfur for |
|           | 114 Pennsylvanian-age coal samples from the Illinois Basin         |

[Data are calculated from Gluskoter and others (1977, Table 8). All values are in percent except kcal/kg and Btu/lb and are reported on an as-received basis. Kcal/kg = 0.556 (Btu/lb)]

|                   | • • • • • • • •    | Obser            | Observed range  |                   |  |  |
|-------------------|--------------------|------------------|-----------------|-------------------|--|--|
| Element           | Arithmetic<br>mean | Minimum          | Maximum         | Geometric<br>mean |  |  |
|                   | Proxima            | te and ultimate  | analyses        |                   |  |  |
| Moisture          | 9.4                | 0.5              | 18              | 8.1               |  |  |
| Volatile matter   | 37                 | 27               | 43              | 37                |  |  |
| Fixed carbon      | 45                 | 37               | 57              | 45                |  |  |
| Ash               | 10                 | 4.4              | 20              | 10                |  |  |
| Hydrogen          | 5.6                | 4.6              | _6.4            | 5.5               |  |  |
| Carbon            | 64                 | 57               | 11              | 64                |  |  |
| Nitrogen          | 1.2                | •//              | 1.8             | 1.2               |  |  |
| Uxygen            | 10                 | 4.0              | 24              | 15                |  |  |
|                   |                    | Heat of combusti | on              | J•1               |  |  |
| Kcal/kg<br>Btu/lb | 6,410<br>11,520    | 5,550<br>9,985   | 7,650<br>13,760 | 6,490<br>11,670   |  |  |
|                   |                    | Forms of sulfur  | •               | <u></u>           |  |  |
| Sulfate           | 0.09               | 0.01             | 1.0             | 0.05              |  |  |
| Pyritic           | 1.8                | .26              | 4.2             | 1.7               |  |  |
| Organic           | 1.4                | .34              | 2.8             | 1.3               |  |  |
|                   |                    |                  |                 |                   |  |  |

## Table 19.Arithmetic mean, observed range, and geometric mean of 35 elementsIn 114 Pennsylvanian-age coal samples from the Illinois Basin

[Data are from Gluskoter and others (1977, table 8). All analyses are in percent or parts per million and are reported on moisture-free basis. L = less than the value shown]

|          |                    | Observ           | ed range |                   |
|----------|--------------------|------------------|----------|-------------------|
| Element  | Arithmetic<br>mean | Minimum          | Maximum  | Geometric<br>mean |
|          |                    | Percent          |          |                   |
| Si       | 2.4                | 0.58             | 4.7      | 2.3               |
| Al       | 1.2                | .43              | 3.0      | 1.2               |
| Ca       | .67                | .01              | 2.7      | .51               |
| Mg       | .05                | .01              | .17      | .05               |
| Na       | .05                | .004             | .2       | .03               |
| K        | .17                | .04              |          | .16               |
| re<br>Ti | .06                | •45<br>•02       | 4.1      | .06               |
|          | Р                  | arts per million | 1        |                   |
| Ag       | 0.03               | 0.02             | 0.08     | 0.03              |
| As       | 14                 | 1.0              | 120      | 7.4               |
| B        | 110                | 12               | 230      | 98                |
| Ba       | 100                | 5.0              | 750      | 75                |
| Be       | 1.7                | .5               | 4.0      | 1.6               |
| Cd       | 2.2                | .11              | 65       | .59               |
| Co       | 7.3                | 2.0              | 34       | 6.0               |
| Cr       | 18                 | 4                | 60       | 16                |
| Cu       | 14                 | 5                | 44       | 13                |
| F        | 67                 | 29               | 140      | 63                |
| Ga       | 3.2                | .8               | 10       | 3.0               |
| Ge       | 6.9                | 1.0L             | 43       | 4.8               |
| Hg       | .2                 | .03              | 1.6      | .16               |
| Mn       | 53                 | 6.0              | 210      | 40                |
| Mo       | 8.1                | .3L              | 29       | 6.2               |
| Nî       | 21                 | 7.6              | 68       | 19                |
| Pb       | 32                 | .8L              | 220      | 15                |
| Sb       | 1.3                | .1               | 8.9      | .81               |
| Sc       | 2.7                | 1.2              | 7.7      | 2.5               |
| Se       | 2.2                | .4               | 7.7      | 2.0               |
| Sr       | 35                 | 10L              | 130      | 30                |
| Th       | 2.1                | .71              | 5.1      | 1.9               |
| U        | 1.5                | .31L             | 4.6      | 1.3               |
| V        | 32                 | 11               | 90       | 29                |
| Yb       | .56                | .27              | 1.5      | .53               |
| Zn       | 250                | 10               | 5,300    | 87                |
| Zr       | 47                 | 12               | 130      | 41                |

Table 20. Arithmetic mean, observed range, geometric mean, and geometric deviation of proximate and ultimate analyses, and heat of combustion, forms of sulfur, and ash-fusion temperatures of 44 coal samples from the Upper Cretaceous Williams Fork Formation, Yampa coal field, northwestern Colorado

[From Hildebrand and others (1981, table 7a). All values are in percent except kcal/kg, Btu/lb, and ash-fusion temperatures, and are reported on an as-received basis. Kcal/kg = 0.556 x (Btu/lb)  $F = (^{\circ}C \times 1.8) + 32$ . L, less than the value shown]

|                      |                    | Obser                                         | ved range       |                   |                                               |
|----------------------|--------------------|-----------------------------------------------|-----------------|-------------------|-----------------------------------------------|
| Element              | Arithmetic<br>mean | Minimum                                       | Maximum         | Geometric<br>mean | Geometric<br>deviation                        |
|                      |                    | Proximate and                                 | ultimate analy  | 5es               | <u>,                                     </u> |
| Moisture<br>Volatile | 11.1               | 5.7                                           | 17.1            | 10.6              | 1.3                                           |
| matter<br>Fixed      | 34.9               | 26.1                                          | 40.3            | 34.8              | 1.1                                           |
| carbon               | 44.4               | 33.2                                          | 52.3            | 44.2              | 1.1                                           |
| Ash                  | 9.6                | 3.0                                           | 32.7            | 8.4               | 1.7                                           |
| Hydrogen             | 5.6                | 3.9                                           | 7.1             | 5.6               | 1.1                                           |
| Carbon               | 60.9               | 44.0                                          | 71.0            | 60.7              | 1.1                                           |
| Nitrogen             | 1.3                | .5                                            | 1.9             | 1.2               | 1.4                                           |
| Uxygen               | 22.0               | 16.0                                          | 27.2            | 21.8              | 1.2                                           |
| Sultur               | .6                 | .3                                            | 3.1             | •6                | 1.5                                           |
|                      |                    | Heat of                                       | f combustion    |                   |                                               |
| Kcal/kg<br>Btu/lb    | 5,930<br>10,670    | 4,170<br>7,500                                | 6,920<br>12,440 | 5,910<br>10,630   | 1.1<br>1.1                                    |
|                      |                    | Forms                                         | of sulfur       | ·····             | · · · · · · · · · · · · · · · · · · ·         |
| Sulfate              | 0.01               | 0.01L                                         | 0.04            | 0.01              | 1.4                                           |
| Pyritic              | .18                | .01                                           | 2.18            | .10               | 2.9                                           |
| Organic              | .45                | .16                                           | 2.27            | .40               | 1.6                                           |
|                      |                    | Ash-fusion                                    | temperatures (C | °)                |                                               |
| Initial              |                    | , <u>, , , , , , , , , , , , , , , , , , </u> |                 |                   |                                               |
| tion                 | 1,315              | 1,070                                         | 1,600+          | 1,310             | 1.1                                           |
| Softening            | 1,360              | 1,095                                         | 1,600+          | 1,350             | 1.1                                           |
| Fluid                | 1,390              | 1,115                                         | 1,600+          | 1,385             | 1.1                                           |
|                      |                    |                                               |                 |                   |                                               |

## Table 21. Arithmetic mean, observed range, geometric mean, and geometric deviation of 37 elements in 63 coal samples from the Williams Fork Formation, Yampa coal field, northwestern Colorado

[From Hildebrand and others (1981, table 9a). All analyses are in percent or parts per million and are reported on a whole-coal basis. L, less than the value shown]

1

|          |                    | Obser       | ved range  |                   |                     |  |
|----------|--------------------|-------------|------------|-------------------|---------------------|--|
| Element  | Arithmetic<br>mean | Minimum     | Maximum    | Geometric<br>mean | Geometric deviation |  |
|          |                    | Р           | ercent     |                   |                     |  |
| Si       | 3.1                | 0.34        | 13         | 2.2               | 2.3                 |  |
| Al<br>Ca | 1.4<br>41          | 08.9<br>10  | 9.3        | 1.2               | 1.5                 |  |
| Mg       | .079               | .011        | .31        | .066              | 1.8                 |  |
| Na       | .055               | .005        | .20        | .035              | 2.6                 |  |
| K<br>Fo  | •11                | .003        | ./2        | -Ubl<br>25        | 2.9                 |  |
| Ti       | .059               | .018        | .23        | .052              | 1.6                 |  |
|          |                    | Parts p     | er million |                   |                     |  |
| As       | 1.0                | 0,2         | 6.0        | 0.5               | 3.3                 |  |
| В        | 100                | 20          | 300        | 70                | 1.7                 |  |
| Ba       | 200                | 30          | 1,000      | 150               | 1.9                 |  |
| Cd       | .12                | .15<br>.04L | •60        | .06               | 3,3                 |  |
| Co       | 1.5                | .1L         | 7          | 1                 | 2.1                 |  |
| Cr<br>Cu | 5                  | .1L<br>2 3  | 30         | 3                 | 2.4                 |  |
| F        | 125                | 20L         | 740        | 95                | 2.1                 |  |
| Ga       | 5                  | 1           | 20         | 3                 | 1.8                 |  |
| Hg       | .06                | .01         | .29        | .04               | 2.3                 |  |
| L1<br>Ma | 10                 | 1.5         | 52<br>210  | 8.4<br>17         | 1.9                 |  |
| Mo       | .7                 | .2          | 3          | .3                | 2.9                 |  |
| Nb       | 3                  | .7L         | 15         | 2                 | 2.2                 |  |
| Ni       | 2                  | .7          | 10         | 1.5               | 2.0                 |  |
| P        | 520                | 45L         | 2,000      | 120               | 5.6                 |  |
| PD<br>Sh | 0.U<br>3           | 1.5         | 33         | 4.4               | 2.2                 |  |
| Sc       | 1.5                | .7          | 10         | 1.5               | 1.9                 |  |
| Se       | 1.0                | .1L         | 6.4        | •9                | 1.6                 |  |
| 36<br>Th | 100                | 15          | 500        | 100               | 2.0                 |  |
| Ű        | 1.2                | ./          | 15         | 1.0               | 3.n<br>1.8          |  |
| V        | 10                 | 3           | 50         | 7                 | 1.9                 |  |
| Y<br>Yb  | 7                  | 1           | 20         | 5                 | 2.0                 |  |
| Zn       | 11                 | 1.4         | د<br>100   | •5<br>7.3         | 2.5                 |  |
| Zr       | 30                 | 7           | 200        | 20                | 1.9                 |  |
| <u></u>  |                    |             |            |                   |                     |  |

## Table 22. Classification of coals by rank<sup>1</sup>

[from American Society for Testing Materials, 1978, Table 1]

|                    |                |                                                                                                        | Fixed carbon limits,<br>per cent<br>(Dry, mineral-matter- (<br>free basis) |                | Volatile matter<br>limits, per cent<br>(Dry, mineral-matter-<br>free basis) |                               | Calorific value limits<br>Btu per pound (Moist, <sup>2</sup><br>mineral-matter-<br>free basis) |                           |                                     |
|--------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|
| Class              | Group          |                                                                                                        | Equal or<br>greater<br>than                                                | Less<br>than   | Equal or<br>greater<br>than                                                 | al or<br>ater Less<br>an than | Equal or<br>greater<br>than                                                                    | Less<br>than              | Agglomerating character             |
| I. Anthracitic     | 1.<br>2.<br>3. | Meta-anthracite                                                                                        | 98<br>92<br>86                                                             | 98<br>92       | 2<br>8                                                                      | ?<br>8<br>14                  | ••••                                                                                           | ••••                      | nonagglomerating <sup>3</sup>       |
| II. Bituminous     | 1.<br>2.<br>3. | Low-volatile bituminous coal<br>Medium-volatile bituminous coal .<br>High-volatile A bituminous coal . | 78<br>69<br>                                                               | 86<br>78<br>69 | 14<br>22<br>31                                                              | 22<br>31                      | 14,000 4                                                                                       | ••••                      | commonly agglomerating <sup>5</sup> |
|                    | 4.<br>5.       | High-volatile C bituminous coal .                                                                      | ••••                                                                       | ****           | ••••                                                                        | • • • •                       | 13,600 4<br>11,500<br>10,500                                                                   | 13,000<br>11,500          | agglomerating                       |
| III. Subbituminous | 1.<br>2.<br>3. | Subbituminous A coal                                                                                   | ••••                                                                       | ••••           | ••••                                                                        | ••••                          | 10,500<br>9,500<br>8,300                                                                       | 11,500<br>10,500<br>9,500 | nonagglomerating                    |
| IV. Lignitic       | 1.<br>2.       | Lignite A                                                                                              | ••••                                                                       | ••••           | ••••                                                                        |                               | 6,300                                                                                          | 8,300<br>6,300            |                                     |

<sup>1</sup>This classification does not include a few coals, principally nonbanded varieties, which have unusual physical and chemical properties and which come within the limits of fixed carbon or calorific value of the high-volatile bituminous and subbituminous ranks. All of these coals either contain less than 48 per cent dry, mineral-matter-free fixed carbon or have more than 15,500 moist, mineral-matter-free British thermal units per pound. Whist refers to coal containing its natural inherent moisture but not including visible water on the surface of the coal. If agglomerating, classify in low-volatile group of the bituminous class.

"Coals having 69 percent or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of calorific value.

"It is recognized that nonagglomerating varieties may occur in these groups of the bituminous class, and notable exceptions exist in high-volatile C bituminous group.

|                                             | Btu/lb <sup>l</sup><br>(mmmf) | Carbon <sup>2</sup> | Hydrogen <sup>3</sup> | Mineral <sup>4</sup><br>matter | 0xygen <sup>5</sup> | Hc/Cc | 0c/Cc | S <sub>pyrite</sub><br>S <sub>organic</sub> |
|---------------------------------------------|-------------------------------|---------------------|-----------------------|--------------------------------|---------------------|-------|-------|---------------------------------------------|
| Coal zones 6-9                              | 11,930                        | 63.0                | 4.3                   | 22.6                           | 7.2                 | 0.81  | 0.086 | 5.1                                         |
| Coal zone 5                                 | 11,820                        | 54.6                | 3.6                   | 32.6                           | 5.3                 | .79   | .073  | 7.4                                         |
| Coal zone 4                                 | 12,110                        | 60.1                | 4.0                   | 26.3                           | 6.6                 | .80   | .082  | 6.7                                         |
| Coal zone 3                                 | 11,990                        | 60.6                | 4.1                   | 27.4                           | 5.1                 | .82   | .063  | 6.7                                         |
| Coal zone 2                                 | 12,080                        | 59.1                | 4.1                   | 27,5                           | 6.3                 | .83   | .081  | 6.6                                         |
| Iowa Coal                                   | 12,040                        | 59.8                | 4.0                   | 26.5                           | 6.7                 | .81   | .083  | 6.7                                         |
| Illinois Coal <sup>6</sup><br>(114 samples) | 12,990                        | 70.6                | 4.9                   | 13.1                           | 8.5                 | .84   | .090  | 3.5                                         |
| Yampa Field, Colo.<br>(44 samples)          | <sup>7</sup> 11,910           | 68.5                | 4.8                   | 11.8                           | 12.9                | .83   | .14   | .71                                         |

| Table 23. | Calculated | Btu/1b,  | hydrog  | gen/carbon  | and o | oxygen/ | carbon  | molecular  | ratios |     |
|-----------|------------|----------|---------|-------------|-------|---------|---------|------------|--------|-----|
|           | (moisture- | free bas | is) for | · Iowa Chei | rokee | Group   | coal zo | ones 2, 3, | 4, 5,  | and |
|           | 6-9. Iowa  | coal. II | linois  | Basin coal  | . and | i Yampa | field   | Colorado   | coal   |     |

Parr formula; moist, mineral-matter-free Btu = [(as-received Btu - 50S)/100 - (1.08 Ash + 0.55S)] x 100.

- $^2$  Carbon content of organic matter corrected for carbonate carbon content by Ccalculated = Canalytical 12/40 Ca, where (12/40 calcium) replaces the (12/44 CO<sub>2</sub>) in the British Standard Formula (see Given and Yarzab, 1978, equation 2). Ca is the amount of calcium assumed present as carbonate above a 0.5% non-carbonate calcium base level.
- $^3$  Hydrogen content of organic matter corrected for water of clays by H<sub>calculated</sub> = H<sub>analytical</sub> -0.014 Ash + 0.02 S<sub>pyritic</sub> x 0.02 (44/40 Ca) + 0.014 SO<sub>3</sub> (modified from Leighton and Tomlinson, 1960), where 44/40 Ca replaces CO<sub>2</sub>; calcium is defined as in  $^2$ , and SO<sub>3</sub> is SO<sub>3</sub> in coal ash reported on a whole-coal basis.
- <sup>4</sup> Mineral matter = 1.13 ash + 0.8 (44/40 Ca) + 0.5 Spyritic 2.8 (Sash Sso4 (modified from King, Maries and Crossley (1936)). Calcium is defined as in <sup>2</sup>; Sash and S<sub>SO4</sub> represents sulfur as sulfate in the ash and in the coal respectively.
- <sup>5</sup> Oxygen content calculated by difference;  $\Omega_{calculated} = 100$  (mineral matter +  $C_{calculated} + H_{calculated} + N_{analytical} + S_{organic}$ ).
- <sup>6</sup> Data from Gluskoter and others (1977, table 8).
- <sup>7</sup> Data from Hildebrand and others (1981, table 7a).

## Table 24. Depths from the surface (in meters) and the zinc/cadmium mole ratios for 40 Cherokee Group coal samples from five core holes in Wapello and Appanoose Counties, Iowa.

[Data from table 6, core hole number CP-10 is in Appanoose County; the other four core holes are in Wapello County. Because of data uncertainties, qualified cadmium values (L) and real cadmium values of 1.0 ppm or less were not used to calculate the Zn/Cd mole ratio. Table modified from Hatch and others (1976, table 5)]

Depth moles Zn Depth moles Zn Hole No. moles Cd Sample No. (meters) Sample No. (meters) Hole No. moles Cd CP-7 D176169 33.3 CP-21 50.9 D176191 144 D176170 45.5 (cont.) D176192 56.0 120 ---D176171 50.4 148 58.3 D176193 170 D176172 58.9 261 60.3 D176194 223 D176173 62.8 345 D176195 65.7 ---D176174 69.8 469 D176196 73.5 ----D176175 76.9 572 80.1 515 D176197 87.8 D176176 D176198 95.2 \_\_\_ ---D176177 98.7 96.9 D176199 ------D176200 107.8 548 CP-10 D176178 74.0 93 CP-32 7.5 D176179 79.6 D179847 134 ---85.1 D176180 D179848 123 76 18.0 D176181 93.6 91 35.7 D179849 ---D176182 109.9 54.1 445 D179850 \_\_\_ D176183 118.5 278 D176184 123.8 CP-28 D179851 17.0 108 \_\_\_ 129.5 D176185 29.5 D179852 115 \_\_\_ 142.2 46.9 D176186 468 D179853 430 55.2 D179854 ---CP-21 D176189 23.4 D179855 64.4 -------D176190 40.2 D179856 69.5 1100 \_ \_ \_

Table modified from Hatch and others (1976, table 5)

