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Abstract
This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal
recovery and low-rank matrix recovery. It is shown that if the measurement matrix A satisfies the RIP
condition δkA < 1/3, then all k-sparse signals β can be recovered exactly via the constrained ℓ1 minimization
based on y = Aβ. Similarly, if the linear map M satisfies the RIP condition δrM, then all matrices X of rank at
most r can be recovered exactly via the constrained nuclear norm minimization based on b = M(X).
Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition,
noisy cases are considered and oracle inequalities are given under the sharp RIP condition.
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Sharp RIP Bound for Sparse Signal and Low-Rank

Matrix Recovery

T. Tony Cai∗ and Anru Zhang

University of Pennsylvania

Abstract

This paper establishes a sharp condition on the restricted isometry property (RIP) for

both the sparse signal recovery and low-rank matrix recovery. It is shown that if the mea-

surement matrix A satisfies the RIP condition δA
k
< 1/3, then all k-sparse signals β can be

recovered exactly via the constrained ℓ1 minimization based on y = Aβ. Similarly, if the

linear map M satisfies the RIP condition δMr < 1/3, then all matrices X of rank at most r

can be recovered exactly via the constrained nuclear norm minimization based on b = M(X).

Furthermore, in both cases it is not possible to do so in general when the condition does

not hold. In addition, noisy cases are considered and oracle inequalities are given under the

sharp RIP condition.

Keywords: Compressed sensing; Dantzig selector; ℓ1 minimization; low-rank matrix recovery;

nuclear norm minimization; restricted isometry; sparse signal recovery.

1 Introduction

Compressed sensing has been a very active field of recent research with a wide range of ap-

plications, including signal processing, medical imaging, seismology, and statistics. The goal

is to develop efficient data acquisition techniques that allow accurate reconstruction of highly

undersampled sparse signals. It is now well understood that the constrained ℓ1 minimization

∗The research of Tony Cai was supported in part by NSF FRG Grant DMS-0854973.
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method provides an effective way for recovering sparse signals. See, e.g., Candès and Tao [6, 7],

Donoho [11] and Donoho, Elad, and Temlyakov [12]. A closely related problem is the affine rank

minimization problem, where the goal is to recover a large low-rank matrix based on an observa-

tion of an affine transformation of the matrix. Applications include linear system identification

and control, Euclidean embedding, and image compression. See, e.g., Candès and Plan [9], and

Recht, Fazel and Parrilo [18].

More specifically, in compressed sensing, one observes (A, y) with

y = Aβ + z (1)

where y ∈ R
n, A ∈ R

n×p with n ≪ p, β ∈ R
p is a sparse signal of interest, and z ∈ R

n is a vector

of measurement errors. One wishes to recover the unknown sparse signal β ∈ R
p based on A

and y using an efficient algorithm. The affine rank minimization problem aims to reconstruct a

low-rank matrix X based on a known linear map M and an observed vector b ∈ R
q where

b = M(X) + z. (2)

Here M : Rm×n → R
q is a linear map, X ∈ R

m×n is an unknown low-rank matrix of interest,

and z ∈ R
q is an error vector.

The methods of constrained ℓ1 and nuclear norm minimization,

(PB) β̂ = argmin
β

{‖β‖1 : Aβ − y ∈ B} (3)

(PB) X∗ = argmin
X

{‖X‖∗ : M(X) − b ∈ B}, (4)

as convex relaxations to ℓ0 and rank minimization respectively, have been shown to be very

effective in solving these problems. Here ‖X‖∗ is the nuclear norm of X, which is defined to be

the sum of the singular values of X, and B is a bounded set determined by the noise structure.

For example, B = {0} in the noiseless case and B is the feasible set of the error vector z in the

case of bounded noise.

One of the most commonly used frameworks for sparse signal and low-rank matrix recovery

is the Restricted Isometry Property (RIP). See Candès and Tao [6] and Recht et al. [18]. A

vector is said to be k-sparse if |supp(v)| ≤ k, where supp(v) = {i : vi 6= 0} is the support of

v. In this paper, we shall use the phrase“r-rank matrices” to refer to matrices of rank at most
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r. In compressed sensing, the RIP requires subsets of certain cardinality of the columns of A

to be close to an orthonormal system. The RIP conditions for the signal and matrix recovery

are similar and we shall state them together to save space. Let A ∈ R
n×p be a matrix and let

M : Rm×n → R
q be a linear map. For integers 1 ≤ k ≤ p and 1 ≤ r ≤ min{m,n}, define the

restricted isometry constants (RIC) δAk and δMr to be the smallest non-negative numbers such

that for all k-sparse vectors β and all r-rank matrices X,

(1− δAk )‖β‖22 ≤ ‖Aβ‖22 ≤ (1 + δAk )‖β‖22 (5)

(1− δMr )‖X‖2F ≤ ‖M(X)‖22 ≤ (1 + δMr )‖X‖2F (6)

where ‖X‖2F =
∑

x2ij is the squared Frobenius norm of X = (xij).

A major focus of compressed sensing is to find explicit and simple conditions under which

the sparse signals can be recovered exactly using a computational efficient algorithm. A variety

of sufficient conditions on the RIP for the exact/stable recovery of k-sparse signals and r-rank

matrices have been introduced in the literature. Sufficient conditions for the signal recovery

include δA2k <
√
2− 1 in Candès [5], δA2k < 0.472 in Cai, Wang and Xu [2], δ2k < 0.493 in Mo and

Li [15] and δAk < 0.307 in Cai, Wang and Xu [4]; for the matrix recovery, sufficient conditions

are δM4r <
√
2− 1 in Candès and Plan [9], δM5r < 0.607, δM4r < 0.558, δM3r < 0.4721 in Mohan and

Fazel [16], δM2r < 0.4931, δMr < 0.307 in Wang and Li [20]. On the other hands, negative results

have also been obtained. In the case of signal recovery, Davies and Gribonval [10] and Cai,

Wang and Xu [4] showed respectively that it is impossible to recover certain k-sparse signals

when δA2k >
√
2/2 and when δAk = k−1

2k−1 < 0.5. For matrix recovery, Wang and Li [20] proved

that nuclear norm minimization cannot recover exactly all rank r matrices in the noiseless case

when δMr = 1/3 or δM2r =
√
2/2 + ε, where ε is arbitrarily small.

Among those RIP conditions, the ones on δAk and δMr are arguably the most natural for the

reconstruction of k-sparse signals and r-rank matrices, respectively. The main goal of this paper

is to establish a sharp condition on δAk and δMr . Specifically, we show that in the noiseless case

(z = 0) the conditions

δAk <
1

3
and δMk <

1

3
(7)

are sharp respectively for the exact recovery of k-sparse signals based on (1) and for the exact

recovery of r-rank matrices based on (2). These conditions are also sharp for the stable recovery

3



in the noisy case. That is, under the condition δAk < 1/3, all k-sparse signals can be exactly

recovered via the constrained ℓ1 minimization (3) in the noiseless case and can be stably recovered

in the noisy case. Furthermore, it is not possible to do so in general if δAk ≥ 1/3. Similarly,

for the recovery of r-rank matrices using the constrained nuclear norm minimization based on

(2), the condition δMr < 1/3 is sharp. To the best of our knowledge, (7) is the first sharp RIP

condition.

Various oracle inequalities have been given in the literature for the constrained ℓ1/nuclear

norm minimization estimators, known as the Dantzig Selector, in the setting of Gaussian noise.

See, for example, Candès and Tao [7] and Cai, Wang and Xu [3] for the sparse signal recovery

and Candès and Plan [9] for the matrix recovery under the condition δM4r <
√
2 − 1. In this

paper we derive oracle inequalities for both sparse signal and low-rank matrix recovery under

the condition δAk < 1/3 and δMr < 1/3.

Besides providing a sharp condition on δAk and δMr , the same techniques can also be used to

sharpen other RIP conditions such as δA2k and δM2r . We show that, in the noiseless case, δA2k ≤ 1/2

and δM2r ≤ 1/2 are respectively sufficient for the exact recovery of k-sparse signals based on (1)

and for the exact recovery of r-rank matrices based on (2).

The rest of the paper is organized as follows. Section 2 reviews basic notations and defini-

tions and states some useful facts on the null spaces. Section 3.1 then introduces a technically

important tool called the Division Lemma, which is used in the detailed analysis for both the

signal and matrix recovery. Sections 3.2 and 3.3 separately analyze the sparse signal recovery

and low-rank matrix recovery, in both the noiseless and noisy settings. Section 4 provides oracle

inequalities for Gaussian noise under the conditions δAk < 1/3 and δMr < 1/3, and discusses

other RIP conditions. The proofs of the main results are given in Section 5.

2 Notations and Preliminaries

In this section, we introduce basic notations and definitions that will be used throughout the

paper, and state some facts on the null spaces that will be used later.

For a vector v = (v1, · · · , vp)′ ∈ R
p, define vmax(k) to be the vector v with all but the
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largest k entries in absolute values set to zero, and let v−max(k) = v − vmax(k). For a matrix

X ∈ R
m×n (without loss of generality, assume that m ≤ n), let a1 ≥ a2 ≥ · · · ≥ am be its

singular values and let X =
∑m

i=1 aiuiv
T
i be the singular value decomposition of X. We define

Xmax(r) =
∑r

i=1 aiuiv
T
i and X−max(r) = X −Xmax(r) =

∑m
i=r+1 aiuiv

T
i .

For 0 < α < ∞ define the ℓα norm of a vector v ∈ R
p as ‖v‖α = (

∑p
i=1 |vi|α)1/α. In addition,

‖v‖∞ = supi |vi| and ‖v‖0 = |supp(v)|. For matrices X = (xij), Y = (yij) ∈ R
m×n, define the

inner product of X and Y as 〈X,Y 〉 = trace(XTY ) =
∑m

i=1

∑n
j=1 xijyij. The norm associated

with this inner product is the Frobenius norm, ‖X‖F =
√

〈X,X〉 =
√
∑m

i=1

∑n
j=1 x

2
ij. Note

that Rm×n associated with this inner product is a Hilbert space. The spectral norm of a matrix

X ∈ R
m×n is defined as ‖X‖ = supβ∈Rn ‖Xβ‖2/‖β‖2, which is equal to the largest singular

value of X.

For a linear map M : Rm×n → R
q, we denote its adjoint operator by M∗ : Rq → R

m×n, so

that for all X ∈ R
m×n and b ∈ R

q, 〈X,M∗(b)〉 = 〈M(X), b〉ℓ2 . For any given norm |·| in an inner

product space (Rm×n, 〈·, ·〉), the dual norm | · |d is defined as |X|d = max{〈X,Y 〉 : |Y | = 1}. It is
well known that the dual norm of the Frobenius norm is itself and the nuclear norm and spectral

norm are dual norms of each other. The null spaces of a matrix A ∈ R
n×p and a linear map

M : Rm×n → R
q are denoted respectively byN (A) andN (M), i. e., N (A) = {β ∈ R

p : Aβ = 0}
and N (M) = {X ∈ R

m×n : M(X) = 0}.

Finally, we introduce a useful tool for providing conditions for the exact recovery. Stojnic,

Xu, Hassibi [19] gave a necessary and sufficient condition on the null space for the exact recovery

of k-sparse signals in the noiseless case. It was shown that one can recover all k-sparse signals

β using (3) with B = {0} if and only if for all β ∈ N (A) \ {0},

‖βmax(k)‖1 < ‖β−max(k)‖1. (∗)

Oymak, Hassibi [17] gave a similar result for the exact recovery of r-rank matrices in the noiseless

case. One can recover all r-rank matrices X using (4) with B = {0} if and only if for all

X ∈ N (M) \ {0},
‖Xmax(r)‖∗ < ‖X−max(r)‖∗. (∗∗)

Based on these results, one can consider the recovery problem by investigating the null spaces

of A and M instead of checking the original definition of exact recovery, which often simplifies
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the problem.

3 Sharp RIP conditions for Sparse Signal and Low-rank Matrix

Recovery

With the preparations given in Section 2, we establish in this section the main results of this

paper – a sharp RIP bound for the exact recovery of sparse signals and low-rank matrices in

the noiseless case and the stable recovery in the noisy case. A unified treatment is given for

the sparse signal recovery and low-rank matrix recovery. We first introduce in Section 3.1 an

elementary but important technical lemma which we call the Division Lemma, and then discuss

the main results for sparse signal recovery in Section 3.2 and the low-rank matrix recovery in

Section 3.3.

3.1 Division Lemma

As discussed in Section 2, we will establish the RIP condition for the exact recovery using the

null space properties of A and M. In order to relate the general elements in the null space with

the RIP condition whose constraint is on the sparse vectors and low-rank matrices, a natural

approach is to divide these elements into sums of sparse or low-rank components. Consequently,

we introduce the Division Lemma below, which is a key technical tool for the proof of the main

results.

Lemma 3.1 (Division Lemma) Let r and m be positive integers with m ≥ 2r. Let a1 ≥ a2 ≥
a3 ≥ · · · ≥ am ≥ 0 be a sequence of non-increasing real numbers satisfying

r∑

w=1

aw ≥
m∑

w=r+1

aw. (8)

Then there exist non-negative real numbers {sij}1≤i≤r,2r+1≤j≤m such that

r∑

i=1

sij = aj , ∀ 2r + 1 ≤ j ≤ m, (9)

and
1

r

r∑

w=1

aw ≥ ar+i +

m∑

j=2r+1

sij, ∀ 1 ≤ i ≤ r. (10)
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The proof of Lemma 3.1 is simply by induction on m. The Division Lemma can be illustrated

as in the following table. Each row is an inequality; every element in the first row equals the

sum of remaining elements in the same column:

a1 a2 · · · ar ≥ ar+1 ar+2 · · · a2r + a2r+1 · · · am

a1/r a2/r · · · ar/r ≥ ar+1 + s1,2r+1 · · · s1,m

a1/r a2/r · · · ar/r ≥ ar+2 + s2,2r+1 · · · s2,m
...

...
. . .

... ≥ . . . +
...

...

a1/r a2/r · · · ar/r ≥ a2r + sr,2r+1 · · · sr,m

3.2 Sparse signal recovery

We begin with the noiseless case (z = 0) of the sparse signal recovery model (1). In this case,

The commonly used ℓ1 minimization method is by (3) with B = {0}. We shall present the sharp

RIP condition on δAk for the exact recovery of all k-sparse signals for any given integer k ≥ 2.

The following theorem shows that the condition δAk < 1/3 is sufficient for the exact recovery

of k-sparse signals in the noiseless case.

Theorem 3.1 Suppose the measurement matrix A ∈ R
n×p satisfies δAk < 1/3 for some integer

2 ≤ k ≤ p. Let y = Aβ where β ∈ R
p is a k-sparse vector. Then the minimizer β̂ of (3) with

B = {0} recovers β exactly, i.e., β̂ = β.

The result below shows that the condition δAk < 1/3 is sharp for the exact recovery in the

noiseless case.

Theorem 3.2 Let 2 ≤ k ≤ p/2. There exists a measurement matrix A ∈ R
n×p with δAk = 1/3

such that for some k-sparse signals γ, η ∈ R
p with γ 6= η, Aγ = Aη. Consequently, it is not

possible for any method to exactly recover all k-sparse signals β based on (A, y) with y = Aβ.

In particular, the ℓ1 minimization (3) with B = {0} cannot recover all k-sparse signals.

Theorems 3.1 and 3.2 together show that the condition δAk < 1/3 is sharp for all 2 ≤ k ≤ p/2.

7



Remark 3.1 In the above theorems, The case k = 1 is excluded because the RIP cannot provide

any sufficient condition for the exact recovery via the constrained ℓ1 minimization in this case.

Take, for example, n = p − 1 ≥ 1. Let A ∈ R
n×p with Aβ = (β1 − β2, β3, β4, · · · , βp)T for any

β = (β1, β2, β3, · · · , βp)T ∈ R
p. Then for all 1-sparse vectors β,

‖Aβ‖22 =

p
∑

i=1

β2
i − 2β1β2 = ‖β‖22,

which implies the restricted isometry constant δA1 = 0. However, b = Aγ = Aη where γ =

(1, 0, · · · , 0) and η = (0,−1, 0, · · · , 0) are both 1-sparse signals. Thus it is impossible to recover

both of them exactly relying only on the information of (A, b). In particular, the ℓ1 minimization

(3) with B = {0} cannot recover all 1-sparse signals. Since δA1 = 0, the RIP cannot provide any

sufficient condition in this case.

We shall now turn to the noisy case of the sparse signal recovery model (1). The noiseless

case provides much insight to the noisy case. In this case the error vector z is nonzero and we

shall consider two bounded noise settings

Bℓ2(η) = {z : ‖z‖2 ≤ η}, (11)

BDS(η) = {z : ‖AT z‖∞ ≤ η}. (12)

The case of Gaussian noise, which is a canonical model in statistics, can be treated similarly.

See Remark 3.2 below. In the noisy case we shall also consider more general signals β which

are not necessarily k-sparse. Decompose β = βmax(k) + β−max(k). The ℓ1 norm minimization

approach for recovering β in these bounded noise settings is by solving (3) with B = Bℓ2(η) or

B = BDS(η).

We first consider the stable recovery of β with the error z in a bounded ℓ2 ball.

Theorem 3.3 Consider the signal recovery model (1) with ‖z‖2 ≤ ε. Let β̂ be the minimizer

of (3) with B = Bℓ2(η) defined in (11) for some η ≥ ǫ. If δ = δAk < 1/3 with k ≥ 2, then

‖β̂ − β‖2 ≤
√

2(1 + δ)

1− 3δ
(ε+ η) +

2
√
2(2δ +

√

(1− 3δ)δ) + 2(1 − 3δ)

1− 3δ

‖β−max(k)‖1√
k

. (13)

In particular, for all k-sparse signals β,

‖β̂ − β‖2 ≤
√

2(1 + δ)

1− 3δ
(ε+ η).
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The result is similar if the error z is in the bounded set ‖AT z‖∞ ≤ ε. The ℓ1 minimization

method with B = BDS is called the Dantzig Selector. See Candès and Tao [7].

Theorem 3.4 Consider the signal recovery model (1) with ‖AT z‖∞ ≤ ε. Let β̂ be the minimizer

of (3) with B = BDS(η) defined in (12) for some η ≥ ǫ. If δ = δAk < 1/3 with k ≥ 2, then

‖β̂ − β‖2 ≤
√
2k

1− 3δ
(ε+ η) +

2
√
2(2δ +

√

(1− 3δ)δ) + 2(1 − 3δ)

1− 3δ

‖β−max(k)‖1√
k

. (14)

Remark 3.2 Since Gaussian noise is essentially bounded, the results for the signal recovery in

Theorems 3.3 and 3.4 can be directly applied to the Gaussian noise case. Interested readers are

referred to Section 4 in [2] and Lemma 5.1 in [1] for details.

3.3 Low-rank matrix recovery

We now turn to the affine rank minimization problem. As mentioned before, the results are

parallel to those for the sparse signal recovery. As in Section 3.2, we begin with the noiseless

case. The ideas and results can be extended to the noisy case later. Consider the matrix recovery

model (2) with z = 0. The nuclear norm minimization method in this case is given by (4) with

B = {0}. The goal is to recover the matrix X whose rank is at most r.

For the same reason as in the signal recovery problem, we shall only consider the case r ≥ 2.

The following two theorems, which are parallel to Theorems 3.1 and 3.2, are the main results in

this paper for the low-rank matrix recovery. Theorem 3.5 shows that the condition δMr < 1/3 is

sufficient for the exact recovery of r-rank matrices.

Theorem 3.5 Suppose 2 ≤ r ≤ min(m,n). Let X be a matrix of rank at most r and let

b = M(X). If δMr < 1/3, then the solution X∗ of the nuclear norm minimization (4) with

B = {0} recovers X exactly, i.e., X∗ = X.

The following theorem shows that the condition δMr < 1/3 is sharp. These results together

establish the optimal bound on δMr for the exact recovery in the noiseless case.

Theorem 3.6 Let 2 ≤ r ≤ min(m,n)/2. there exists a linear map M with δMr = 1/3 such that

for some matrices X, Y ∈ R
m×n with rank(X), rank(Y ) ≤ r, M(X) = M(Y ). Consequently,
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there does not exist any method that can exactly recover all matrices of rank at most r based on

(M, b) with b = M(X). In particular, the nuclear norm minimization (4) with B = {0} cannot

recover all r-rank matrices.

We should note that the result above is stronger than Theorem 1.2 in Wang and Li [20] as

it shows that there exists some linear map M with δMr = 1/3 such that all methods, not just

nuclear norm minimization, fail to recover all rank r matrices in the noiseless case.

Remark 3.3 The reason for excluding the case r = 1 in the two theorems given above is the

same as that in the signal recovery problem: the RIP cannot provide any sufficient condition in

this case for the exact recovery through the nuclear norm minimization. An example is given as

follows. Let m,n ≥ 2 and let the linear map M : Rm×n → R
mn−2 be defined by

M(X) = (x11 − x22, x12 + x21, x13, · · · , x1n, x23 · · · , x2n, x31, · · · , xmn)
T

for X = (xij) ∈ R
m×n. Then for all matrices X such that rank(X) ≤ 1,

‖M(X)‖22 =

m∑

i=1

n∑

j=1

x2ij − 2(x11x22 − x12x21) = ‖X‖2F .

This implies the restricted isometry constant δMr = 0. In addition, one can check that X =

diag(1, 0, · · · , 0), Y = diag(0,−1, 0, · · · , 0) are both of rank 1. In addition, b = M(X) = M(Y ).

This means that the exact recovery is impossible based on (M, b) in the noiseless case. Hence

the RIP cannot provide a sufficient condition to ensure the exact recovery of all matrices with

rank at most 1.

We now turn to the noisy case. As in the signal recovery problem, we also consider bounded

noise in two settings

Bℓ2(η) = {z : ‖z‖2 ≤ η}, (15)

BDS(η) = {z : ‖M∗z‖ ≤ η}. (16)

We shall also consider general matrices that are not necessarily exactly low-rank. Decompose

X = Xmax(r) + X−max(r). The nuclear norm minimization method is to recover X by solving

(4) with B = Bℓ2(η) or B = BDS(η).

We first consider the case where the error z is in a bounded ℓ2 ball, ‖z‖2 ≤ ε.
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Theorem 3.7 Consider the affine rank minimization problem (2) with ‖z‖2 ≤ ε. Let X∗ be the

minimizer of (4) with B = Bℓ2(η) defined in (15) for some η ≥ ǫ. If δMr < 1/3 with r ≥ 2, then

‖X∗ −X‖F ≤
√

2(1 + δ)

1− 3δ
(ε+ η) +

2
√
2(2δ +

√

(1− 3δ)δ) + 2(1− 3δ)

1− 3δ

‖X−max(r)‖∗√
r

. (17)

For matrix recovery under the model (2) with the error bound ‖M∗(z)‖ ≤ ε, we have the

following similar result for the matrix Dantzig Selector.

Theorem 3.8 Consider the affine rank minimization problem (2) with ‖M∗(z)‖ ≤ ε. Let X∗

be the minimizer of (4) with B = BDS(η) defined in (16) for some η ≥ ǫ. If δMr < 1/3 with

r ≥ 2, then

‖X∗ −X‖F ≤
√
2r

1− 3δ
(ε+ η) +

2
√
2(2δ +

√

(1 − 3δ)δ) + 2(1 − 3δ)

1− 3δ

‖X−max(k)‖∗√
r

. (18)

We omit the proof of Theorem 3.8, which is essentially the same as that of Theorem 3.7.

Remark 3.4 Similarly as in the sparse signal recovery problem, the results for the low-rank

matrix recovery in Theorems 3.7 and 3.8 can be extended to the Gaussian noise case. The

readers are referred to Lemma 1.1 in Candès and Plan [9] for details.

4 Oracle inequalities and RIP conditions on δ
A
2k and δ

M
2r

Oracle inequality provides great insight into the performance of a procedure as compared to that

of an ideal estimator. It was first introduced in Donoho and Johnstone [14] in the context of

statistical signal processing using wavelet thresholding. This method has since been applied in

many other problems. In particular, various oracle inequalities have been given in the literature

for the constrained ℓ1/nuclear norm minimization procedures. See, for example, Candès and

Tao [7], Cai, Wang and Xu [3], and Candès and Plan [9]. Theorem 4.1 below provides oracle

inequalities for sparse signal and low-rank matrix recovery under the condition δAk < 1/3 and

δMr < 1/3 given in this paper. The technique is analogous to the one used in Candès and Plan

[9], along with Lemma 4.1 given below, Theorem 3.4 and Theorem 3.8.
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Theorem 4.1 Given the signal recovery model (1), suppose z ∼ Np(0, σ
2I) and the signal

β ∈ R
p is k-sparse. Assume that β̂ is the minimizer of (3) with B = {z : ‖AT z‖∞ ≤ λ =

4σ
√

(2/3) log p}. If δAk < 1/3 with k ≥ 2, then

‖β̂ − β‖22 ≤
512

3(1 − 3δAk )
2
log p

∑

i

min(β2
i , σ

2) (19)

with probability at least 1− 1√
π log p

.

Similarly, for the matrix case (2), suppose z ∼ Nq(0, σ
2I) and rank(X) ≤ r. Assume that

X∗ is the minimizer of (4) with B = {z : ‖M∗(z)‖ ≤ λ = 16σ
√

(1/3) log(12)max(m,n)}. If

δMr < 1/3 with r ≥ 2, then

‖X∗ −X‖2F ≤ 212 log 12

3(1− 3δMr )2

∑

i

min(σ2
i (X),max(m,n)σ2) (20)

with probability at least 1 − e−cmax(m,n), where c > 0 is an absolute constant, and σi(X), i =

1 · · · ,min(m,n) are the singular values of X.

We should note that the main ideas for the proof here are essentially the same as those for

the proof of Theorem 2.6 in [9], where readers can find more details. Finally, it is noteworthy

from these oracle inequalities that in the case of β = 0 or X = 0, i.e., the input signal or

matrix is identically zero, the Dantzig Selector recovers the zero input exactly by zero with high

probability in the Gaussian noise case.

In addition to providing the sharp condition on δAk and δMr , the techniques developed in

this paper can also be applied to sharpen other RIP conditions such as δA2k and δM2r for the

exact/stable recovery of the sparse signals and low-rank matrices. Since δ2k < 1 is known as a

necessary condition for the model identifiability (see Lemma 1.2 in [6]), much previous attention

has been on the bounds for δA2k and δM2r as the sufficient conditions for the recovery of the sparse

signals and low-rank matrices. Applying the same method as that used in the previous section

on δMr and δAk , we have the following theorem for δA2k and δM2r .

Theorem 4.2 Suppose 1 ≤ k ≤ p. Let y = Aβ for a k-sparse vector β ∈ R
p. If δA2k ≤ 1/2, then

the minimizer β̂ of (3) with B = {0} recovers β exactly, i.e., β̂ = β.

Similarly, suppose 1 ≤ r ≤ min(m,n) and let b = M(X) for some matrix X with r-rank. If

δM2r ≤ 1/2, then the minimizer X∗ of (4) with B = {0} recovers X exactly, i.e., X∗ = X.

12



To the best of our knowledge, these are the best bounds on δA2k and δM2r available as a sufficient

condition for the exact recovery of the sparse signals and low-rank matrices, respectively. Note

that Davies and Gribonval [10] proved that it is not possible to exactly recover all k-sparse

signals in the noiseless case when δA2k >
√
2/2. Hence, the upper bounds on δA2k are necessarily

less than
√
2/2. There is still a gap between the two bounds 1/2 and

√
2/2 on δA2k. It is an

interesting future project to close this gap.

It is also noteworthy that Zhang ([21], Remark 1) proved for some concave penalty ρ, the

estimator

β̂ = argmin
β

(

‖y −Xβ‖22 +
p
∑

i=1

ρ(|βi|, λ)
)

recovers k-sparse signals exactly in the noiseless case with a suitable choice of λ under the

condition δ2k < 1/2 or δ3k < 2/3. The constrained ℓ1 minimization estimator β̂ defined in (3)

with B = {0} is straightforward to compute. In contrast, the concave penalized minimization

estimator requires a good choice of the tuning parameter λ and is not as easy to implement.

It is also interesting to consider conditions on δAsk and δMsr for some integer s ≥ 1. The

following result provides convenient bounds on δAsk and δMsr in terms of δAk and δMr respectively.

It is also useful for the proof of Theorem 4.1.

Lemma 4.1 For all matrix A ∈ R
n×p and k ≥ 2, s ≥ 2, we have δAsk ≤ (2s − 1)δAk . Similarly,

for all linear map M : Rm×n → R
q and r ≥ 2, s ≥ 2, we have δMsr ≤ (2s − 1)δMr .

5 Proofs

In this section we shall first prove the main results. The proofs of some of the main theorems

rely on a few additional technical lemmas. These technical results are collected and proved in

Section 5.9.

5.1 Proof of Theorem 3.5

The key to the proof of this theorem is parallelogram identity, since it provides equality rather

than inequality in the estimation in ℓ2 norm as we shall see later.
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By (∗∗), we only need to show for all R ∈ N (M)\{0}, it satisfies ‖Rmax(r)‖∗ < ‖R−max(r)‖∗.

Suppose there exists R ∈ N (M) \ {0} such that ‖Rmax(r)‖∗ ≥ ‖R−max(r)‖∗. Assume R has

SVD decomposition R =
∑m

i=1 aiu
T
i vi, a1 ≥ a2 ≥ · · · ≥ am. Since we can set ai = 0 if i ≥ m,n,

without loss of generality we can assume that m,n ≥ r.

By Lemma 3.1, we can find {sij}1≤i≤r,2r+1≤j≤m satisfying (9) and (10).

1. When r is even, suppose

R11 =

r/2
∑

i=1

aiuiv
T
i , R12 =

r∑

i=r/2+1

aiuiv
T
i , R21 =

3r/2
∑

i=r+1

aiuiv
T
i , R22 =

2r∑

i=3r/2+1

aiuiv
T
i

R31 =
m∑

j=2r+1

(

r/2
∑

i=1

sijujv
T
j ), R32 =

m∑

j=2r+1

(
r∑

i=r/2+1

sijujv
T
j )

(21)

then M(R11 +R12 +R21 +R22 +R31 +R32) = M(R) = 0. By the parallelogram identity,

‖M(−R11 +R22 +R32)‖2 + ‖M(−R12 +R21 +R31)‖2

=
1

2

[
‖M(−R11 −R12 +R21 +R22 +R31 +R32)‖2 + ‖M(−R11 +R12 −R21 +R22 −R31 +R32)‖2

]

=
1

2

[

‖M(2R11 + 2R12)‖2 +
1

2
‖M(−2R11 − 2R21 − 2R31)‖2 +

1

2
‖M(2R12 + 2R22 + 2R32)‖

]

=2‖M(R11 +R12)‖2 + ‖M(R11 +R21 +R31)‖2 + ‖M(R12 +R22 +R32)‖2

(22)

We use Lemma 5.2 by setting

g = h = r/2, bi = ai, ci = −ai+r/2, di = ai+r, ∀1 ≤ i ≤ r/2,

ej =
r∑

i=1

si,j+2r, tij = si,j+2r, 1 ≤ i ≤ r/2, 1 ≤ j ≤ m− 2r,

then we get

‖M(R11 +R21 +R31)‖2 − ‖M(−R12 +R21 +R31)‖2

≥(1− δMr )(

r/2
∑

i=1

a2i +

3r/2
∑

i=r+1

(ai +
m∑

j=2r+1

sij)
2)− (1 + δMr )(

r∑

i=r/2+1

a2i +

3r/2
∑

i=r+1

(ai +
m∑

j=2r+1

sij)
2)

(23)
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Similarly,

‖M(R12 +R22 +R32)‖2 − ‖M(−R11 +R22 +R32)‖2

≥(1− δMr )(

r∑

i=r/2+1

a2i +

2r∑

i=3r/2+1

(ai +

m∑

j=2r+1

sij)
2)− (1 + δMr )(

r/2
∑

i=1

a2i +

2r∑

i=3r/2+1

(ai +

m∑

j=2r+1

sij)
2)

(24)

Let the right hand side of (22) minus the left hand side. Along with (23), (24), we get

0 = RHS − LHS

≥ 2(1− δMr )(

r∑

i=1

a2i )− 2δMr

r∑

i=1

a2i − 2δMr (

2r∑

i=r+1

(ai +

m∑

j=2r+1

sij)
2)

≥ 2(1− 2δMr )
r∑

i=1

a2i − 2δMr r

(∑r
i=1 ai
r

)2

≥ 2(1− 3δMr )

r∑

i=1

a2i

The last two inequalities are due to (10) and Cauchy-Schwarz inequality. It contradicts

the fact that R 6= 0 and δMr < 1/3.

2. When r is odd, r ≥ 3, note

R11 = a1u1v
T
1 , R12 =

(r+1)/2
∑

i=2

aiuiv
T
i , R13 =

r∑

i=(r+3)/2

aiuiv
T
i

R21 = ar+1ur+1v
T
r+1, R22 =

(3r+1)/2
∑

i=r+2

aiuiv
T
i , R23 =

2r∑

i=(3r+3)/2

aiuiv
T
i

R31 =
m∑

j=2r+1

s1jujv
T
j , R32 =

m∑

j=2r+1

(

(r+1)/2
∑

i=2

sij)ujv
T
j , R33 =

m∑

j=2r+1

(
2r∑

i=(r+3)/2

sij)ujv
T
j

(25)

Note X1 = −R11 + R21 + R31,X2 = −R12 + R22 + R23,X3 = −R13 + R23 + R33, we can

easily show the following equality

4‖M(X1)‖2 + 4‖M(X2)‖2 + 4‖M(X3)‖2

=‖M(X1 +X2 −X3)‖2 + ‖M(−X1 +X2 +X3)‖2

+ ‖M(X1 −X2 +X3)‖2 + ‖M(X1 +X2 +X3)‖2
(26)
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By the fact that M(R) = 0, (26) means

‖M(−R11 +R21 +R31)‖2 + ‖M(−R12 +R22 +R32)‖2 + ‖M(−R13 +R23 +R33)‖2

=‖M(R12 +R13 +R21 +R31)‖2 + ‖M(R11 +R13 +R22 +R32)‖2

+ ‖M(R11 +R12 +R23 +R33)‖2 + ‖M(R11 +R12 +R13)‖2

(27)

Similarly as the even case, by Lemma 5.2 we have

‖M(R12 +R13 +R21 +R31)‖2 − ‖M(−R11 +R21 +R31)‖2

≥(1− δMr )





r∑

i=2

a2i + (ar+1 +

m∑

j=2r+1

s1,j)
2



− (1 + δMr )



a21 + (ar+1 +

m∑

j=2r+1

s1,j)
2





(28)

‖M(R11 +R13 +R22 +R32)‖2 − ‖M(−R12 +R22 +R32)‖2

≥(1− δMr )



a21 +

r∑

i=(r+3)/2

a2i +

(r+1)/2
∑

i=2

(ai +

m∑

j=2r+1

sij)
2





− (1 + δMr )





(r+1)/2
∑

i=2

a2i +

(r+1)/2
∑

i=2

(ai +
m∑

j=2r+1

sij)
2





(29)

‖M(R11 +R12 +R23 +R33)‖2 − ‖M(−R13 +R23 +R33)‖2

≥(1− δMr )





(r+1)/2
∑

i=1

a2i +
r∑

i=(r+3)/2

(ai +
m∑

j=2r+1

sij)
2





− (1 + δMr )





r∑

i=(r+3)/2

a2i +

r∑

i=(r+3)/2

(ai +

m∑

j=2r+1

sij)
2





(30)

Let the right hand side of (27) minus the left hand side, we can get

0 ≥ (1− δMr )



3

r∑

i=1

a2i +

r∑

i=1

(ar+i +

m∑

j=2r+1

sij)
2



− (1 + δMr )





r∑

i=1

a2i +

r∑

i=1

(ar+i +

m∑

j=2r+1

sij)
2





= 2



(1− 2δMr )

r∑

i=1

a2i − δMr

r∑

i=1

(ar+i +

m∑

j=2r+1

sij)
2





≥ 2(1 − 2δMr )

r∑

i=1

a2i − 2δMr r

(∑r
i=1 ai
r

)2

≥ 2(1 − 3δMr )

r∑

i=1

a2i
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The last two inequalities are due to (10) and Cauchy Schwarz inequality. It contradicts

the fact that R 6= 0 and δMr < 1/3. �

5.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is essentially the same as Theorem 3.5. By (∗), we only need to show

for all β ∈ N (A) \ {0}, it satisfies ‖βmax(k)‖1 < ‖β−max(k)‖1.

For the convenience of presentation, we call a vector with 1 or -1 in only one entry and zeros

elsewhere as the indicator vector.

Suppose there exists β ∈ N (A) \ {0} such that ‖βmax(k)‖1 < ‖β−max(k)‖1. Then β can be

written as

β =

p
∑

i=1

aiui

where {ui}pi=1 are indicator vectors with different support in R
p; {ai}pi=1 is a non-negative and

decreasing sequence. Since we can set ai = 0 if i ≥ p, without loss of generality we can assume

that p ≥ k.

By Lemma 3.1, we can find {sij}1≤i≤k,2k+1≤j≤p satisfying (9) and (10) with a modification

of notations.

1. When k is even, suppose

β11 =

k/2
∑

i=1

aiui, β12 =

k∑

i=k/2+1

aiui, β21 =

3k/2
∑

i=k+1

aiui, β22 =

2k∑

i=3k/2+1

aiui

β31 =

p
∑

j=2k+1

(

k/2
∑

i=1

sijuj), β32 =

p
∑

j=2k+1

(

k∑

i=k/2+1

sijuj)

(31)

then A(β11 + β12 + β21 + β22 + β31 + β32) = Aβ = 0. By the parallelogram identity,

‖A(−β11 + β22 + β32)‖2 + ‖A(−β12 + β21 + β31)‖2

=
1

2

[
‖A(−β11 − β12 + β21 + β22 + β31 + β32)‖2 + ‖A(−β11 + β12 − β21 + β22 − β31 + β32)‖2

]

=
1

2

[

‖A(2β11 + 2β12)‖2 +
1

2
‖A(−2β11 − 2β21 − 2β31)‖2 +

1

2
‖A(2β12 + 2β22 + 2β32)‖

]

=2‖A(β11 + β12)‖2 + ‖A(β11 + β21 + β31)‖2 + ‖A(β12 + β22 + β32)‖2

(32)
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Similarly as the matrix case, we use Lemma 5.2 and get

‖A(β11 + β21 + β31)‖2 − ‖A(−β12 + β21 + β31)‖2

≥(1− δAk )(

k/2
∑

i=1

a2i +

3k/2
∑

i=k+1

(ai +

p
∑

j=2k+1

sij)
2)− (1 + δAk )(

k∑

i=k/2+1

a2i +

3k/2
∑

i=k+1

(ai +

p
∑

j=2k+1

sij)
2)

(33)

Similarly,

‖A(β12 + β22 + β32)‖2 − ‖A(−β11 + β22 + β32)‖2

≥(1− δAk )(

k∑

i=k/2+1

a2i +

2k∑

i=3k/2+1

(ai +

p
∑

j=2k+1

sij)
2)− (1 + δAk )(

k/2
∑

i=1

a2i +

2k∑

i=3k/2+1

(ai +

p
∑

j=2k+1

sij)
2)

(34)

Let the right hand side of (32) minus the left hand side. Along with (33), (34), we get

0 = RHS − LHS

≥ 2(1− δAk )(

k∑

i=1

a2i )− 2δAk

k∑

i=1

a2i − 2δAk (

2k∑

i=k+1

(ai +

p
∑

j=2k+1

sij)
2)

≥ 2(1− 2δAk )

k∑

i=1

a2i − 2δAk k

(∑k
i=1 ai
k

)2

≥ 2(1− 3δAk )
k∑

i=1

a2i

The last two inequalities are due to (10) and Cauchy-Schwarz inequality. It contradicts

the fact that β 6= 0 and δAk < 1/3.

2. When k is odd, k ≥ 3, note

β11 = a1u1, β12 =

(k+1)/2
∑

i=2

aiui, β13 =

k∑

i=(k+3)/2

aiui

β21 = ak+1uk+1, β22 =

(3k+1)/2
∑

i=k+2

aiui, β23 =

2k∑

i=(3k+3)/2

aiui

β31 =

p
∑

j=2k+1

s1juj, β32 =

p
∑

j=2k+1

(

(k+1)/2
∑

i=2

sij)uj , β33 =

p
∑

j=2k+1

(

2k∑

i=(k+3)/2

sij)uj

(35)
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Note γ1 = −β11 + β21 + β31, γ2 = −β12 + β22 + β23, γ3 = −β13 + β23 + β33, we can easily

show the following equality

4‖Aγ1‖2 + 4‖Aγ2‖2 + 4‖Aγ3‖2

=‖A(γ1 + γ2 − γ3)‖2 + ‖A(−γ1 + γ2 + γ3)‖2

+ ‖A(γ1 − γ2 + γ3)‖2 + ‖A(γ1 + γ2 + γ3)‖2
(36)

By the fact that Aβ = 0, (36) means

‖A(−β11 + β21 + β31)‖2 + ‖A(−β12 + β22 + β32)‖2 + ‖A(−β13 + β23 + β33)‖2

=‖A(β12 + β13 + β21 + β31)‖2 + ‖A(β11 + β13 + β22 + β32)‖2

+ ‖A(β11 + β12 + β23 + β33)‖2 + ‖A(β11 + β12 + β13)‖2
(37)

Similarly as the even case, by Lemma 5.2 we have

‖A(β12 + β13 + β21 + β31)‖2 − ‖A(−β11 + β21 + β31)‖2

≥(1− δAk )





k∑

i=2

a2i + (ak+1 +

p
∑

j=2k+1

s1,j)
2



− (1 + δAk )



a21 + (ak+1 +

p
∑

j=2k+1

s1,j)
2





(38)

‖A(β11 + β13 + β22 + β32)‖2 − ‖A(−β12 + β22 + β32)‖2

≥(1− δAk )



a21 +
k∑

i=(k+3)/2

a2i +

(k+1)/2
∑

i=2

(ai +

p
∑

j=2k+1

sij)
2





− (1 + δAk )





(k+1)/2
∑

i=2

a2i +

(k+1)/2
∑

i=2

(ai +

p
∑

j=2k+1

sij)
2





(39)

‖A(β11 + β12 + β23 + β33)‖2 − ‖A(−β13 + β23 + β33)‖2

≥(1− δAk )





(k+1)/2
∑

i=1

a2i +

k∑

i=(k+3)/2

(ai +

p
∑

j=2k+1

sij)
2





− (1 + δAk )





k∑

i=(k+3)/2

a2i +

k∑

i=(k+3)/2

(ai +

p
∑

j=2k+1

sij)
2





(40)

Let the right hand side of (37) minus the left hand side, we can get

0 ≥ (1− δAk )



3
k∑

i=1

a2i +
k∑

i=1

(ak+i +

p
∑

j=2k+1

sij)
2



− (1 + δAk )





k∑

i=1

a2i +
k∑

i=1

(ak+i +

p
∑

j=2k+1

sij)
2





= 2



(1− 2δAk )

k∑

i=1

a2i − δAk

k∑

i=1

(ak+i +

p
∑

j=2k+1

sij)
2
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≥ 2(1 − 2δAk )

k∑

i=1

a2i − 2δAk k

(∑k
i=1 ai
k

)2

≥ 2(1 − 3δAk )

k∑

i=1

a2i

The last two inequalities are due to (10) and Cauchy Schwarz inequality. It contradicts

the fact that β 6= 0 and δAk < 1/3. �

5.3 Proof of Theorem 3.6

It is well known that for matrices X, B with the same size, |〈X,B〉| ≤ ‖X‖F ‖B‖F . The following
lemma provides a stronger result given further constraint on matrix rank.

Lemma 5.1 Let X ∈ R
m×n(m ≤ n) be a matrix with singular values λ1 ≥ λ2 ≥ · · · ≥ λm, then

for all B ∈ R
m×n such that rank(B) ≤ r, we have

|〈B,X〉| ≤ ‖B‖F

√
√
√
√

r∑

i=1

λ2
i .

Proof of Lemma 5.1 Since the rank of B is at most r, we can suppose B,X have singular

value decomposition B = UΣV ,X = WΛZ, where U,W ∈ R
m×m,Σ,Λ ∈ R

m×n, V, Z ∈ R
n×n.

Then

〈B,X〉 = tr(BTX) = tr(V TΣTUTWΛZ) = tr(ΣTUTWΛZV T ) = diag(Σ) · diag(UTWΛZV T )

Since the rank of B is at most r, diag(Σ) is supported on the first r entries,

|〈B,X〉| ≤

√
√
√
√

r∑

i=1

Σ2
ii·

√
√
√
√

r∑

i=1

(UTWΛZV T )2ii ≤ ‖B‖F

√
√
√
√

r∑

i=1

n∑

j=1

(UTWΛZV T )2ij = ‖B‖F ‖KΛZV T ‖F

where we note K ∈ R
r×n as the first r rows of UTW . In addition,

‖KΛZV T ‖2F = tr(V ZTΛTKTKΛZV T ) = tr(ΛZV TV ZTΛTKTK) = tr(Λ2KTK)

By K is the first r row of an n×n orthogonal matrix, we have tr(KTK) = tr(KKT ) = tr(Ir) = r

and all diagonal elements of KTK are in [0, 1], then

tr(Λ2KTK) =

n∑

i=1

λ2
i (K

TK)ii ≤
r∑

i=1

λ2
i
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In summary,

|〈B,X〉| ≤ ‖B‖F ‖KΛZV T ‖F ≤ ‖B‖F

√
√
√
√

r∑

i=1

λ2
i . �

It is noteworthy that the signal version of this lemma simply holds by Cauchy-Schwarz

inequality.

Now we construct an example for Theorem 3.6, then check the feasibility by the lemma

above. Note

X1 = diag(

2r
︷ ︸︸ ︷

1√
2r

, · · · , 1√
2r

, 0, · · · , 0) ∈ R
m×n

Suppose H = (Rm×n, ‖X‖F ) is the Hilbert with inner product 〈·, ·〉. Since ‖X1‖F = 1, we can

extend X1 into a basis {X1, · · · ,Xmn}. Define M : Rm×n → R
mn as

M(X) =

√

4

3

mn∑

i=2

aiXi (41)

for all X =
∑mn

i=1 aiXi.

Then by Lemma 5.1, for all matrix X with rank at most r, we have

|〈X,X1〉| ≤
√

r · 1

2r
‖X‖F =

√

1

2
‖X‖F

‖M(X)‖22 =
4

3

mn∑

i=2

a2i =
4

3
(‖X‖2F − a21) =

4

3
(‖X‖2F − |〈X,X1〉|2)

Thus,
2

3
‖X‖2F ≤ ‖M(X)‖22 ≤ 4

3
‖X‖2F , δMr (X) ≤ 1/3

Notice that

‖M(diag(

r
︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0))‖22 =
2

3
r =

2

3
‖(diag(

r
︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0))‖2F

‖M(diag(1,−1, 0, · · · , 0))‖22 =
8

3
=

4

3
‖diag(1,−1, 0, · · · , 0)‖2F

we can conclude that δMr = 1/3. Finally, suppose

X = diag(

r
︷ ︸︸ ︷

1, 1 · · · , 1, 0, · · · , 0), Y = diag(

r
︷ ︸︸ ︷

0, · · · , 0,
r

︷ ︸︸ ︷

−1,−1 · · · ,−1, 0, · · · , 0)

Then X, Y are both matrices of rank r such that X − Y ∈ N (M), M(X) = M(Y ). Therefore,

it is impossible to recover both X and Y only given (b,M), which finishes the proof. �
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5.4 Proof of Theorems 3.2

Again, the proof to this theorem is essentially the same as Theorem 3.6. Note

β1 = (

2k
︷ ︸︸ ︷

1√
2k

, · · · , 1√
2k

, 0, · · · , 0) ∈ R
p

Suppose H = (Rp, ‖ · ‖2) is the Hilbert with inner product 〈·, ·〉. Since ‖β1‖2 = 1, we can extend

β1 into a basis {β1, · · · , βp}. Define A : Rp → R
p as

Aβ =

√

4

3

p
∑

i=2

aiβi (42)

for all β =
∑p

i=1 aiβi.

Then by Cauchy-Schwarz inequality, for all k-sparse vector γ, we have

|〈γ, β1〉| ≤ ‖β1 · 1supp(γ)‖2‖γ‖2 ≤
√

1

2
‖γ‖2

‖Aγ‖22 =
4

3

p
∑

i=2

a2i =
4

3
(‖γ‖22 − a21) =

4

3
(‖γ‖22 − |〈γ, β1〉|2)

Thus,
2

3
‖γ‖22 ≤ ‖Aγ‖22 ≤ 4

3
‖γ‖22, δAk ≤ 1/3

Notice that

‖A(
k

︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)‖22 =
2

3
k =

2

3
‖(

k
︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)‖22

‖A(1,−1, 0, · · · , 0)‖22 =
8

3
=

4

3
‖(1,−1, 0, · · · , 0)‖22

we can conclude that δAk = 1/3. Finally, suppose

γ = (

k
︷ ︸︸ ︷

1, 1 · · · , 1, 0, · · · , 0), η = (

k
︷ ︸︸ ︷

0, · · · , 0,
k

︷ ︸︸ ︷

−1,−1 · · · ,−1, 0, · · · , 0)

Then γ, η are both matrices of rank k such that γ − η ∈ N (A), Aγ = Aη. Therefore, it is

impossible to recover both γ and η only given (y,A), which finishes the proof. �

5.5 Proof of Theorems 3.3 and 3.7

For the proof of Theorem 3.3 and Theorem 3.7, we only show the the latter one about the matrix

case, as the proof to the signal case is similar and simpler. Suppose R = X∗ − X, h = β̂ − β.
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We will use a widely used fact. The readers may see [1], [7], [8], [13] (signal case) or [20] (matrix

case) for details:

‖h−max(k)‖1 ≤ ‖hmax(k)‖∗ + 2‖β−max(k)‖1

‖R−max(r)‖∗ ≤ ‖Rmax(r)‖+ 2‖X−max(r)‖∗

For the remaining part of proof, we only prove the matrix case. Suppose R has singular value

decomposition R =
∑m

i=1 aiuiv
T
i . Then we have

r∑

i=1

ai + 2‖X−max(r)‖∗ ≥
m∑

i=r+1

ai (43)

Apply Division Lemma 3.1 by setting a′i = ai + 2‖X−max(r)‖∗/r, i = 1, · · · , r and a′j = aj, j >

r + 1, we can find {sij}1≤i≤r,2r+1≤j≤m satisfying

r∑

i=1

sij = aj , ∀ 2r + 1 ≤ j ≤ m, (44)

1

r

r∑

w=1

aw +
2‖X−max(r)‖∗

r
≥ ar+i +

m∑

j=2r+1

sij, ∀ 1 ≤ i ≤ r. (45)

We also know

‖M(R)‖ ≤ ‖M(X) − b‖+ ‖b−M(X∗)‖ ≤ ε+ η. (46)

Similarly as Theorem 3.5, we finish the remaining part of proof for even or odd r separately.

1. When r is even, we define R11, · · · , R32 as (21), similarly as (22) and by parallelogram

equality, we get

‖M(−R11 +R22 +R32)‖2 + ‖M(−R12 +R21 +R31)‖2

=
1

2

[
‖M(−R11 −R12 +R21 +R22 +R31 +R32)‖2

+ ‖M(−R11 +R12 −R21 +R22 −R31 +R32)‖2
]

=
1

2
‖M(2R11 + 2R12)−M(R)‖2 + 1

4
‖M(−2R11 − 2R21 − 2R31)‖2

+
1

4
‖M(2R12 + 2R22 + 2R32)‖2 −

1

8
‖M(2R)‖2

=2‖M(R11 +R12)‖2 + ‖M(R11 +R21 +R31)‖2

+ ‖M(R12 +R22 +R32)‖2 − 2〈M(R),M(R11 +R12)〉

(47)
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Let the right hand side of (47) minus the left hand side. Along with (23), (24), one get

0 = RHS − LHS

≥ 2(1− δMr )

r∑

i=1

a2i − 2δMr

r∑

i=1

a2i − 2δMr (

2r∑

i=r+1

(ai +

m∑

j=2r+1

sij)
2)− 2〈M(R),M(R11 +R12)〉

≥ 2(1− 2δMr )

r∑

i=1

a2i − 2δMr r(

∑r
i=1 ai
r

+
2‖X−max(r)‖∗

r
)2 − 2(ε+ η)

√
√
√
√(1 + δMr )

r∑

i=1

a2i

≥ 2(1− 2δMr )

r∑

i=1

a2i − 2δMr (

√
√
√
√

r∑

i=1

a2i +
2‖X−max(r)‖∗√

r
)2 − 2(ε + η)

√
√
√
√(1 + δMr )

r∑

i=1

a2i

(48)

By (48) we can get an inequality of
√
∑r

i=1 a
2
i :

√
√
√
√

r∑

i=1

a2i ≤
δ
2‖X

−max(r)‖∗√
r

+ ε+η
2

√
1 + δ

1− 3δ

+

√

(δ
2‖X

−max(r)‖∗√
r

+ ε+η
2

√
1 + δ)2 + (1− 3δ)δ‖2X−max(r)‖2∗/r
1− 3δ

≤
√
1 + δ(ε+ η) + 2(2δ +

√

(1− 3δ)δ)‖X−max(r)‖∗/
√
r

1− 3δ

(49)

Finally, by Lemma 5.3,

m∑

i=r+1

a2i ≤ (

√
√
√
√

r∑

i=1

a2i +
2‖X−max(r)‖∗√

r
)2

Then

‖R‖F =

√
√
√
√

m∑

i=1

a2i ≤

√
√
√
√
√

r∑

i=1

a2i + (

√
√
√
√

r∑

i=1

a2i +
2‖X−max(r)‖∗√

r
)2 ≤

√
√
√
√2

r∑

i=1

a2i +
2‖X−max(r)‖√

r

≤
√

2(1 + δ)

1− 3δ
(ε+ η) +

2
√
2(2δ +

√

(1− 3δ)δ) + 2(1 − 3δ)

1− 3δ

‖X−max(r)‖∗√
r

(50)

2. When r is odd, we use the definitions in (25). Similar equality as (47) holds as follows,

‖M(−R11 +R21 +R31)‖2 + ‖M(−R12 +R22 +R32)‖2 + ‖M(−R13 +R23 +R33)‖2

=‖M(R12 +R13 +R21 +R31)‖2 + ‖M(R11 +R13 +R22 +R32)‖2

+ ‖M(R11 +R12 +R23 +R33)‖2 + ‖M(R11 +R12 +R13)‖2

− 2〈M(R11 +R12 +R13,M(R)〉
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By the method in the even case, we can still get the inequality (48). Hence we have the

same estimation. �

5.6 Proof of Theorem 4.2

By (∗), we only need to show for all R ∈ N (M)\{0}, it satisfies ‖Rmax(r)‖∗ < ‖R−max(r)‖∗.

Suppose there exists R ∈ N (M)\{0} such that ‖Rmax(r)‖∗ ≥ ‖R−max(r)‖∗. Suppose R has

singular value decomposition:
∑m

i=1 aiuiv
T
i . Note:

R1 =
r∑

i=1

aiuiv
T
i , R2 =

2r∑

i=r+1

aiuiv
T
i , R3 =

3r∑

i=2r+1

aiuiv
T
i , Rc =

m∑

i=3r+1

aiuiv
T
i (51)

Notice that
∑r

i=1 ai ≥
∑m

i=r+1 ai ≥
∑m

i=2r+1 ai. In addition, two equalities cannot hold simul-

taneously since R 6= 0. Thus,
r∑

i=1

ai >
m∑

i=2r+1

ai.

Apply Lemma 3.1 to {a1, · · · , ar, a2r+1, · · · , am}, we can find {sij}1≤i≤r,3r+1≤j≤m such that

r∑

i=1

sij = aj , ∀3r + 1 ≤ j ≤ m;

∑r
w=1 aw
r

≥ a2r+i +
m∑

j=3r+1

sij, ∀1 ≤ i ≤ r

By
∑r

i=1 ai >
∑m

i=2r+1 ai, there exists 1 ≤ i ≤ r such that
∑

r

w=1 aw
r > a2r+i +

∑m
j=3r+1 sij. We

also have the equality in l2 space as follows,

6‖M(R1 +R2)‖2 + 3‖M(R1 +R3 +Rc)‖2 = 2‖M(−R2 +R3 +Rc)‖2 + ‖M(3R1 + 2R2 +R3 +Rc)‖2

= 2‖M(−R2 +R3 +Rc)‖2 + ‖M(−R1 +R3 +Rc)‖2

(52)

Let the left hand side of (52) minus the right hand side, by Lemma 5.2 we get

0 = 6‖M(R1 +R2)‖2 + 2
(
‖M(R1 +R3 +Rc)‖2 − ‖M(−R2 +R3 +Rc)‖2

)

+
(
‖M(R1 +R3 +Rc)‖2 − ‖M(−R1 +R3 +Rc)‖2

)

≥ 6(1− δM2r )
2r∑

i=1

a2i + (1− δM2r )



2
r∑

i=1

a2i + 3
r∑

i=1

(a2r+i +
m∑

j=3r+1

sij)
2 +

r∑

i=1

a2i





−(1 + δM2r )



2

2r∑

i=r+1

a2i + 3

r∑

i=1

(a2r+i +

m∑

j=3r+1

sij)
2 +

r∑

i=1

a2i
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= (8− 10δM2r )
r∑

i=1

a2i + (4− 8δM2r )
2r∑

r+1

a2i − 6δM2r

r∑

i=1

(a2r+i +

m∑

j=3r+1

sij)
2

≥ 3





r∑

i=1

a2i −
r∑

i=1

(a2r+i +
m∑

j=3r+1

sij)
2





> 3

(
r∑

i=1

a2i − r(

∑r
i=1 ai
r

)2

)

≥ 0

which is a contradiction. �

5.7 Proof of Lemma 4.1

We only show the matrix case. For all X ∈ R
m×n such that rank(X) ≤ 2r, suppose X has

singular value decomposition X =
∑l

i=1 aiuiv
T
i , l ≤ sr. Without loss of generality we can

assume l = sr as we can set ai = 0 if l < i ≤ sr. Note

wi = M(aiuiv
T
i ) ∈ R

q, 1 ≤ i ≤ sr

We can verify the following identity

‖
sr∑

i=1

wi‖22 +
s− 1

sr − 1

∑

1≤i<j≤sr

‖wi − wj‖22

= (1 + (s− 1))

sr∑

i=1

‖wi‖22 + 2(1 − s− 1

sr − 1
)

∑

1≤i<j≤sr

〈wi, wj〉

=
s2
(
sr
r

)

∑

1≤i1<···<ir≤sr

‖wi1 + wi2 + · · ·+ wir‖22

which implies

‖M(X)‖22 = ‖
sr∑

i=1

wi‖22

≤ s2(1 + δMr )
(sr
r

)

∑

1≤i1<···<ir≤sr

(a2i1 + · · ·+ a2ir)−
(s− 1)(1− δMr )

sr − 1

∑

1≤i<j≤sr

(a2i + a2j)

= (s(1 + δMr )− (s − 1)(1 − δMr ))

rs∑

i=1

a2i

= (1 + (2s − 1)δMr )‖X‖2F

‖M(X)‖22 = ‖
sr∑

i=1

wi‖22
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≥ s2(1− δMr )
(sr
r

)

∑

1≤i1<···<ir≤sr

(a2i1 + · · ·+ a2ir)−
(s− 1)(1 + δMr )

sr − 1

∑

1≤i<j≤sr

(a2i + a2j)

= (s(1− δMr )− (s − 1)(1 + δMr ))
rs∑

i=1

a2i

= (1− (2s − 1)δMr )‖X‖2F

Hence, δMsr ≤ (2s− 1)δMr . �

5.8 Proof of Theorem 4.1

By a small extension on Lemma 5.1 in [1], we know ‖AT z‖∞ ≤ σ
√

(1 + δA1 ) log p ≤ λ/2 with

probability at least 1/
√
π log p. While for the matrix case, by Lemma 1.1 in [9], we know

‖M∗‖ ≤ 4σ
√

max(m,n)(1 + δA1 ) log 12 ≤ λ/2 with probability at least 1− ecmax(m,n). Then in

order to finish the proof, we only need to show (19) or (20) given the assumption ‖AT z‖∞ ≤ λ/2

or ‖M∗(z)‖ ≤ λ/2. For the following part, we only give the proof for the signal case, since the

matrix case is similar and the original proof by Candès and Plan in [9] is already for the matrix

case. Define

K(ξ, β) = γ‖ξ‖0 + ‖Aβ −Aξ‖22, γ =
3λ2

16
= 2σ2 log p

Let β̄ = argminξ K(ξ, β), then we can deduce ‖β̄‖0 ≤ ‖β‖0 ≤ k by K(β̄, β) ≤ K(β, β). By

Lemma 4.1,

‖β̄ − β‖22 ≤
1

1− δA2k
‖Aβ̄ −Aβ‖22 ≤

1

1− 3δAk
‖Aβ̄ −Aβ‖22 (53)

By Lemma 5.4, we have

‖AT (y −Aβ̄)‖∞ ≤ ‖AT (y −Aβ)‖∞ + ‖ATA(β − β̄)‖∞ ≤ λ

which implies we can apply Theorem 3.4 by plugging β by β̄:

‖β̂ − β̄‖ ≤
√

2‖β̄‖0
1− 3δAk

· 2λ

Hence,

‖β̂ − β‖22 ≤ 2‖β̂ − β̄‖22 + 2‖β̄ − β‖22 ≤
16‖β̄‖0λ2

(1− 3δAk )
2
+

2

1− 3δAk
‖Aβ̄ −Aβ‖22

≤ 256

3(1 − 3δAk )
2
K(β̄, β)
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Suppose β′ =
∑p

i=1 βi1{|βi|>µ}ei, where ei is the vector with 1 in the ith entry and 0 elsewhere,

µ =
√

γ
1+δA

k

=
√

3λ2

16(1+δA
k
)
. Then

K(β̄, β) ≤ K(β′, β) ≤ γ

p
∑

i=1

1{|βi|>µ} + ‖Aβ −Aβ′‖22

≤ γ

p
∑

i=1

1{|βi|>µ} + (1 + δAk )

p
∑

i=1

1{|βi|≤µ}|βi|2 ≤
p
∑

i=1

min
(
γ, (1 + δAk )|βi|2

)

≤ 2 log p

p
∑

i=1

min(σ2, |βi|2)

The last inequality is due to 2 log p ≥ (1 + δAk ). In summary, we get (19) given the assumption

‖AT z‖∞ ≤ λ/2, which finishes the proof. �

5.9 Technical Lemmas

As seen in the proofs of Theorems 3.1 and 3.5, it is necessary to estimate the left hand side of

(23), (24), (28), (29) and (30). Notice that these terms are of the similar type – they are all

the differences of the squared Frobenius norm of two matrices which only differ on a few leading

terms in their SVD decompositions, we have the following lemma for the general estimation of

this type of differences. Before we present the lemma, recall that we have defined the concept

of indictor vector in Theorem 3.1.

Lemma 5.2 For the vector case, suppose g, h ≥ 0, g + h ≤ k, {di}gi=1, {ej}lj=1, {tij}1≤i≤g,1≤j≤l

are non-negative real numbers satisfying

min
1≤i≤g

di ≥ max
1≤i≤l

ei, (54)

g
∑

i=1

tij = ej , ∀1 ≤ j ≤ l (55)

{bi}hi=1, {ci}hi=1 are real numbers. {u11, · · · , u1h;u31, · · · , u3g;u41, · · · , u4l} is a set of indicator

vectors with different support in R
p; {u21, · · · , u2h;u31, · · · , u3g;u41, · · · , u4l} is also a set of

indicator vectors with different support. Define

β1 =

h∑

i=1

biu1i +

g
∑

i=1

diu3i +

l∑

j=1

eju4j ∈ R
p
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β2 =

h∑

i=1

ciu2i +

g
∑

i=1

diu3i +

l∑

j=1

eju4j ∈ R
p

Then we have

‖Aβ1‖22−‖Aβ2‖22 ≥ (1−δAk )(

h∑

i=1

b2i +

g
∑

i=1

(di+

l∑

j=1

tij)
2)−(1+δAk )(

h∑

i=1

c2i +

g
∑

i=1

(di+

l∑

j=1

tij)
2) (56)

For the matrix case, suppose g, h ≥ 0, g + h ≤ r, {di}gi=1, {ej}lj=1, {tij}1≤i≤g,1≤j≤l are non-

negative real numbers satisfying

min
1≤i≤g

di ≥ max
1≤i≤l

ei, (57)

g
∑

i=1

tij = ej , ∀1 ≤ j ≤ l (58)

{bi}hi=1, {ci}hi=1 are real numbers. {u31, · · · , u3g;u41, · · · , u4l} is a set of orthogonal unit vectors

in R
m, {u11, · · · , u1h} and {u21, · · · , u2h} are two sets of orthogonal unit vectors lying in the

perpendicular space of span{u31, · · · , u3g;u41, · · · , u4l}; {v31, · · · , v3g; v41, · · · , v4l} is a set of

orthogonal unit vectors in R
n, {v11, · · · , v1h} and {v21, · · · , v2h} are two sets of orthogonal unit

vectors lying in the perpendicular space of span{v31, · · · , v3g; v41, · · · , v4l}. Define

X1 =
h∑

i=1

biu1iv
T
1i +

g
∑

i=1

diu3iv
T
3i +

l∑

j=1

eju4jv
T
4j ∈ R

m×n

X2 =

h∑

i=1

ciu2iv
T
2i +

g
∑

i=1

diu3iv
T
3i +

l∑

j=1

eju4jv
T
4j ∈ R

m×n

Then we have

‖M(X1)‖22−‖M(X2)‖22 ≥ (1−δMr )(

h∑

i=1

b2i+

g
∑

i=1

(di+

l∑

j=1

tij)
2)−(1+δMr )(

h∑

i=1

c2i+

g
∑

i=1

(di+

l∑

j=1

tij)
2)

(59)

Proof of Lemma 5.2. We prove the Lemma by induction on l.

When l = 0, (59) is clear to hold by the definition of δMr and the fact that g+h ≤ r. Suppose

(59) holds for l − 1, (l ≥ 1), we note

Yi = −u3iv
T
3i + u4lv

T
4l, 1 ≤ i ≤ g (60)

Pz = Xz −
g
∑

i=1

tilYi, z = 1, 2 (61)
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Qiz = Xz −
g
∑

w=1

twlYw + (til + di)Yi z = 1, 2, 1 ≤ i ≤ g (62)

We can show the following equality in l2-space:

µ‖M(Xz −
g
∑

i=1

tilYi)‖22 +
g
∑

i=1

νi‖M(Xz −
g
∑

w=1

twlYw + (til + di)Yi)‖22

=‖M(Xz)‖22 + µ‖M(

g
∑

i=1

tilYi)‖22 +
g
∑

i=1

νi‖M(−
g
∑

w=1

twlYw + (til + di)Yi)‖22
(63)

where z = 1, 2, νi =
til

di+til
, µ = 1−∑g

i=1
til

di+til
. By (57), (58) we have

µ ≥ 1−
g
∑

i=1

til
di

= 1− el
di

≥ 0

Thus, νi, µ are all non-negative numbers satisfying µ +
∑g

i=1 νi = 1. Consider the difference of

these two equalities (63) (z = 1, 2), we get

‖M(X1)‖22−‖M(X2)‖22 = µ
[
‖M(P1)‖22 − ‖M(P2)‖22

]
+

g
∑

i=1

νi
[
‖M(Qi1)‖22 − ‖M(Qi2)‖22

]
(64)

By computing directly we can get

P1 =
h∑

i=1

biu1iv
T
1i +

g
∑

i=1

(di + til)u3iv
T
3i +

l−1∑

j=1

eju4jv
T
4j

P2 =

h∑

i=1

ciu2iv
T
2i +

g
∑

i=1

(di + til)u3iv
T
3i +

l−1∑

j=1

eju4jv
T
4j

Qi1 =

h∑

w=1

bwu1wv
T
1w +





g
∑

w=1,w 6=i

(dw + twl)u3wv
T
3w + (di + til)u4lv

T
4l



+

l−1∑

j=1

eju4jv
T
4j

Qi2 =

h∑

w=1

cwu2wv
T
2w +





g
∑

w=1,w 6=i

(dw + twl)u3wv
T
3w + (di + til)u4lv

T
4l



+

l−1∑

j=1

eju4jv
T
4j

which corresponds with the assumption of l − 1. Now by induction assumption of l − 1, for all

1 ≤ w ≤ g we have

‖M(P1)‖22 − ‖M(P2)‖22 ≥ (1− δMr )(
h∑

i=1

b2i +

g
∑

i=1

(di +
l∑

j=1

tij)
2)− (1 + δMr )(

h∑

i=1

c2i +

g
∑

i=1

(di +
l∑

j=1

tij)
2)

‖M(Qw1)‖22 − ‖M(Qw2)‖22 ≥ (1− δMr )(
h∑

i=1

b2i +

g
∑

i=1

(di +
l∑

j=1

tij)
2)− (1 + δMr )(

h∑

i=1

c2i +

g
∑

i=1

(di +
l∑

j=1

tij)
2)

(65)

Together (65) with (64), we can get (59) for the case l. �
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Lemma 5.3 Suppose m ≥ r, a1 ≥ a2 ≥ · · · ≥ am ≥ 0,
∑r

i=1 ai ≥
∑m

i=r+1 ai, then for all α ≥ 1,

m∑

j=r+1

aαj ≤
r∑

i=1

aαi . (66)

More generally, suppose a1 ≥ a2 ≥ · · · ≥ am ≥ 0, λ ≥ 0 and
∑r

i=1 ai + λ ≥∑m
i=r+1 ai, then for

all α ≥ 1,
m∑

j=r+1

aαj ≤ r

(

α

√∑r
i=1 a

α
i

r
+

λ

r

)α

(67)

Proof of Lemma 5.3. It is sufficient to show the general part only. Since we can set aj = 0

when j > m, we assume m ≥ 2r without loss of generality. By Lemma 3.1, we can find

{sij}1≤i≤r,2r+1≤j≤m satisfying (44), (45). Hence,

m∑

j=r+1

aαj =

m∑

j=2r+1

aα−1
j (

r∑

i=1

sij) +

2r∑

j=r+1

aαj =

r∑

i=1



aαr+i +

m∑

j=2r+1

aα−1
j sij





≤
r∑

i=1

aα−1
r+i



ar+i +

m∑

j=2r+1

sij



 ≤
r∑

i=1



ar+i +

m∑

j=2r+1

sij





α

≤ r

(∑r
i=1 ai
r

+
λ

r

)α

≤ r

(

α

√∑r
i=1 a

α
i

r
+

λ

r

)α

. �

Lemma 5.4 Suppose β̄ = argminξ K(ξ, β), then it satisfies ‖ATA(β̄ − β)‖ ≤ λ/2.

This is the vector version of Lemma 3.5 in [9], for which we omit the proof here.
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