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A Proof of Calibration Via Blackwell's Approachability Theorem

Abstract
Over the past few years many proofs of the existence of calibration have been discovered. Each of the
following provides a different algorithm and proof of convergence: D. Foster and R. Vohra (1991, Technical
Report, University of Chicago), (1998, Biometrika85, 379–390), S. Hart (1995, personal communication), D.
Fudenberg and D. Levine (1999, Games Econ. Behavior29, 104–130), and S. Hart and A. Mas-Colell (1997,
Technical Report, Hebrew University). Does the literature really need one more? Probably not. But the
algorithm proposed here has two virtues. First, it only randomizes between two forecasts that are very close to
each other (either p or p + ϵ). In other words, the randomization only hides the last digit of the forecast.
Second, it follows directly from Blackwell's approachability theorem, which shortens the proof substantially.
Journal of Economic Literature Classification Numbers: C70, C73, C53.

Keywords
individual sequences, worst-case data, regret, learning

Disciplines
Behavioral Economics | Statistics and Probability

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/statistics_papers/591

http://repository.upenn.edu/statistics_papers/591?utm_source=repository.upenn.edu%2Fstatistics_papers%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages


A proof of Calibration via Blackwell’s

Approachability Theorem ∗

Dean P. Foster†

Department of Statistics

University of Pennsylvania

Philadelphia, Pennsylvania 19104-6302

1999

Abstract

Over the past few years many proofs of the existence of calibration

have been discovered. Each of the following provides a different algo-

rithm and proof of convergence: Foster and Vohra (1991, 1998), Hart

(1995), Fudenberg and Levine (1999), Hart and Mas-Colell (1997)).
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Does the literature really need one more? Probably not. But this

algorithm has two virtues. First it only randomizes between two fore-

casts that are very close to each other (either p and p + ε). In other

words, the randomization only hides the last digit of the forecast. Its

second virtue is that it follows directly from Blackwell’s approachabil-

ity theorem which shorten the proof extensively. Journal of Economic

Literature Classification Numbers: C70, C73, C53.

Key words: Individual sequences, worst-case data, regret, learning.
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A reasonable definition of calibration can be gotten from the way it is

measured by psychologist. They proceed as follows: Ask a subject to make

a sequence of forecasts about a sequence of event (for example, whether

the subject will win the current hand of bridge she is playing.) Bin these

forecasts into 10 bins: [0, .1], [.1, .2], . . ., [.9, 1.0]. Compute the frequency

of of the event occurring within each of these bins. Now plot this empirical

frequency of winning the hand vs. mid-points of these 10 bins. If the plot is

an approximate 45 degree line, the subject is calibrated. The extent it falls

away from the y = x line measures how uncalibrated the subject is.

One curious property of calibration is that there are algorithms that can

guarantee calibration even if the algorithm is forecasting the behavior of

an opponent. Many proofs of this fact have been given: Foster and Vohra

(1991, 1998), Hart (1995), Fudenberg and Levine (1999), Hart and Mas-Colell

(1997). This paper will present another such algorithm.

Suppose that the sequence of events being forecast is Xt ∈ {0, 1} for

t = 1, 2, 3 . . .. Just before time t a forecast, ft, is made of the probability

that Xt = 1. I will assume that this forecast takes on values that are the

midpoint of one of the following intervals

[0, 1
m

], [ 1
m
, 2
m

], . . . , [ i−1
m
, i
m

], . . . , [m−1
m
, 1].

Call the mid-point of interval i:

M(i) =
2i− 1

2m
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We can now define the empirical frequency ρi as:

ρi =



T∑
t=1

XtIft=M(i)

T∑
t=1

Ift=M(i)

if
T∑
t=1

Ift=M(i) > 0

M(i) otherwise

where

Ift=M(i) =

 1 if ft = M(i)

0 otherwise

Notice that this is just the weighted distance to the 45 degree line mentioned

in the first paragraph. Hopefully, ρi lies in the interval [ i−1
m
, i
m

] for all i. If

so, the forecast is approximately calibrated. More precisely we can define

the L1 calibration as

C1 ≡
m∑
i=0

|ρi −M(i)|I i.

where

I
i

=
T∑
t=1

Ift=M(i)

T
.

My goal is to come up with an algorithm that will guarantee the L1 calibra-

tion score will converge to zero as time goes to infinity.

If ρi does not lie in the interval [ i−1
m
, i
m

], I will measure how far outside

the interval it is by two distances: d
i

t and eit (for deficit and excess) which

are defined as:

d
i

= ( i−1
m
− ρi)I i

ei = (ρi − i
m

)I
i

If d
i ≤ 0 and ei ≤ 0 then ρi lies in the ith interval. From these definitions,
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we can come up with an equivalent definition of the L1 calibration score:

C1 =
1

2m
+

m∑
i=1

max(d
i
, ei)

Showing that all the ei and d
i

converge to zero, implies that C1 converges to

1
2m

.

I will show that the following forecasting rule will drive both of these

distances to zero:1

1. If there exist an i∗ such that ρi
∗ ∈ [ i

∗−1
m
, i

∗

m
] (in other words, ei

∗ ≤ 0

and d
i∗ ≤ 0) then forecast M(i∗).

2. Otherwise, find an i∗ such that d
i∗
> 0 and e(i

∗−1) > 0 then randomly

forecast either M(i∗) or M(i∗ + 1) with probabilities:

P (fT+1 = M(i∗)) =
d
i∗

d
i∗

+ e(i
∗−1)

P (fT+1 = M(i∗ + 1)) =
e(i

∗−1)

d
i∗

+ e(i
∗−1)

The following argument shows that it is always possible to find such an

i∗. First note that d
1 ≤ 0. So if e1 ≤ 0, we have found i∗ = 1 using case

1. If e1 > 0, then consider case 2 with i∗ = 2. It is satisfied if d
2
> 0. But

if d
2 ≤ 0 it fails. So from the fact that d

1 ≤ 0 this has shown that either

d
2 ≤ 0 or we have found an i∗ satisfying case 1 or case 2. We can proceed

inductively until either we find an i∗ which works, or until we have shown

that d
m ≤ 0. But, em ≤ 0, so we satisfy step 1 with i∗ = m.

1This algorithm is almost identical to the first algorithm we came up with in 1991

(Foster and Vohra). Unfortunately, the proof that that algorithm worked was very long.
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Theorem 1 (Foster and Vohra) For all ε > 0, there exists a forecasting

method which is calibrated in the sense that C1 < ε if T is sufficiently large.

In particular the above algorithm will achieve this goal if m ≥ 1
ε
.

I will prove this theorem using Blackwell’s approachability theorem. So

I will first translate the above algorithm into his setup. First I will describe

Blackwell’s approachability game.

Consider a two player game, where the first player has m pure strategies

and the second player has n pure strategies. The payoff instead of being a

single number is a vector, c(i, j). This game will be played repeatedly. Call

the average cT . There is a convex target set called C. The goal of the first

player is to have cT approach this set, whereas the goal of the second player

is to keep the first player away from this set. Since it is possible for a series

to sometimes be inside C and sometimes to be away from it, it isn’t obvious

that there has to be a winner of this game. But Blackwell not only showed

there is a winner, but how to determine which player wins.

We will have the first player (the approacher) be the statistician and the

second player (the excluder) be nature. At each period, the statistician picks

i from 1, 2, 3, . . . ,m corresponding to the forecasting M(i). Nature picks a

value j corresponding to the outcome {0, 1}. Define

dk(i, j) = (k−1
m
− j)Ik=i

ek(i, j) = (j − k
m

)Ik=i

for k = 1, 2, . . . ,m. Then we can treat the vector of both the e’s and the d’s

as the vector valued payoff c(f, x) ∈ <2m. In other words:

c(i, j) = [d1(i, j), e1(i, j), d2(i, j), e2(i, j), . . . , dm(i, j), em(i, j)]
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which looks in general like:

c(i, j) = [0, 0, 0, . . . , di(i, j), ei(i, j), . . . , 0, 0, 0]

which can also be written as:

c(i, j) = [0, 0, 0, . . . , c2i−1, c2i, . . . , 0, 0, 0]

The goal of the statistician is to drive all of the d’s and e’s to be as small as

possible. This suggests taking the target set as the all negative orthant:

C = {x ∈ <2m|(∀k)xk ≤ 0}

Obviously, C is convex. So we have described our statistics problem in terms

of an approachability game.

Using Blackwell’s theorem, we will see that the statistician can approach

the set C. Further, we will see that the algorithm given is exactly the winning

strategy given by Blackwell. This means that the statistician can force all

the d
i
’s and es’s to be arbitrarily close to zero. Thus the L1 calibration score

will be driven to 1/m or less.

Theorem 2 (Blackwell 1956) Consider the setup given above. The set C

is approachable if and only if for all a, there exist a weight vector w(i) such

that for all j, ∑
i

w(i)(c(i, j)− b)′(a− b) ≤ 0. (1)

where b is the closest point to a in the set C (i.e. b = arg minx∈C |x− a|2 ).

The weight vector w in our setting is the vector of probability of forecasting

M(i). In other words, wk = P (ft = M(k)).
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An optimal policy for the approacher is to play the weight vector from

equation (1) when the current average of the losses is a. To prove Theorem

1 I need to show two things, first that such a w exists, and second that

it corresponds to the probabilities chosen by the algorithm. Both of these

follow if the probabilities from the algorithm satisfy (1).

The closest point in C to a ∈ <2m is:

b = [(a1)−, (a2)−, . . . , (a2m)−];

where we have defined the positive and negative parts as x+ = max(0, x) and

x− = min(0, x).

Notice that a− b is:

a− b = [(a1)+, (a2)+, . . . , (a2m)+];

Using the property that (x)+(x)− = 0 we see that b′(a− b) = 0. Thus,

(c(i, j)− b)′(a− b) = di(i, j)(a2i−1)+ + ei(i, j)(a2i)+

So Blackwell’s equation is equivalent to:

∑
i

w(i)
(
di(i, j)(a2i−1)+ + ei(i, j)(a2i)+

)
≤ 0 (2)

I don’t have to actually show that equation (2) is satisfied for all vectors,

but merely for all vectors in some set that that contains all the possible payoff

vectors. Vectors outside of this set easily satisfy equation (1). The set I will

use is a2i−1 + a2i ≤ 0, and a1 ≤ 0 and a2m ≤ 0. Clearly every possible payoff

c(i, j) is contained in this set. Recall that these conditions are enough to

insure that there exists an i∗ that satisfies the algorithm.

8



If a2i−1 ≤ 0 and a2i ≤ 0, then the algorithm will assign probability 1 to

playing i. So,
∑
w(i)(c(i, j)− b)′(a− b) = 0, which shows equation (2).

When case (2) of the algorithm is used a2i−1 > 0 and a2i−2 > 0, so

a2i−3 < 0 and a2i < 0. These follow from the constraints given above. Thus,

I want to show

w(i− 1)
(
di−1(i− 1, j)(a2i−3)+ + ei−1(i− 1, j)(a2i−2)+

)
+

w(i)
(
di(i, j)(a2i−1)+ + ei(i, j)(a2i)+

)
≤ 0

But, (a2i−3)+ = 0 and (a2i)+ = 0, so it suffices to show

w(i)di(i, j)(a2i−1)+ + w(i− 1)ei−1(i− 1, j)(a2i−2)+ ≤ 0

or

di(i, j)
(
w(i)(a2i−1)+ − w(i− 1)(a2i−2)+

)
≤ 0

Since, di(i, j) = −ei−1(i − 1, j). But, from the way that the weights were

chosen, the term inside the parentheses is in exactly zero. So we have shown

equation (1) holds and hence Theorem 1 holds.
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