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Calibrated Learning and Correlated Equilibrium

Abstract
Suppose two players repeatedly meet each other to play a game where:

1. each uses a learning rule with the property that it is a calibrated forecast of the other's plays, and

2. each plays a myopic best response to this forecast distribution.

Then, the limit points of the sequence of plays are correlated equilibria. In fact, for each correlated equilibrium
there is some calibrated learning rule that the players can use which results in their playing this correlated
equilibrium in the limit. Thus, the statistical concept of a calibration is strongly related to the game theoretic
concept of correlated equilibrium.
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AbstractSuppose two players meet each other in a repeated game where:1. each uses a learning rule with the property that it is a calibratedforecast of the others plays, and2. each plays a best response to this forecast distribution.Then, the limit point of the sequence of plays are Correlated Equilib-ria. In fact, for each Correlated equilibrium there is some calibratedlearning rule that the players can use which result in their playing thiscorrelated equilibrium in the limit. Thus, the statistical concept of cal-ibration is strongly related to the game theoretic concept of correlatedequilibrium.
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1 IntroductionThe concept of a Nash Equilibrium (NE) is so important to game theorythat an extensive literature devoted to its defense and advancement exists.Even so, there are aspects of the Nash equilibrium concept that are puzzling.One is why any player should assume that the other will play their Nashequilibrium strategy? Aumann (1987) says: \This is particularly perplexingwhen, as often happens, there are multiple equilibria; but it has considerableforce even when the equilibrium is unique."One resolution is to argue that the assumption about an opponent's playsare the outcome of some learning process (see for example Chapter 6 of Kreps(1991a)). Learning is modeled as recurrent updating. Players choose a bestreply on the basis of their forecasts of their opponents future choices. Fore-casts are described as a function of previous plays in the repeated game.Much attention has focused on developing forecast rules by which a Nashequilibrium (or its re�nements) may be learned. Many rules have been pro-posed and convergence to Nash equilibrium has been established under cer-tain conditions (see Skyrms 1990). For example, Fudenberg and Kreps (1991)introduce the class of rules satisfying a property called `asymptotic myopicbayes.' They prove that if convergence takes place, it does so to a NE. No-tice that convergence is not guaranteed. In summarizing other approaches,Kreps (1991b) points out, \in general convergence is not assured." This lackof convergence serves to lessen the importance of NE and its re�nements.On the positive side Milgrom and Roberts (1991) have shown that anylearning rule that requires the player to make approximately best responsesconsistent with their expectations, play tends towards the serially undomi-nated set of strategies. They call such learning rules adaptive and prove that3



if the sequence of plays converges to a NE (or correlated equilibrium) theneach players play is consistent with adaptive learning.Learning, as we have described it, takes place at the level of the indi-vidual. An important class of learning models involve learning at the levelof populations (evolutionary models). Here the di�erent strategies are rep-resented by individuals in the population. In particular a mixed strategywould be represented by assigning an appropriate fraction of the populationto each strategy. A pair of individuals is selected at random to play the game.Individuals do not update their strategies but their numbers wax and waneaccording to their average (suitably de�ned) payo�. Even in this environ-ment convergence to a NE is not guaranteed. On the positive side, resultsanalogous to Milgrom and Roberts have been obtained by Samuelson andZheng (1992).A second objection to NE is that it is inconsistent with the Bayesian per-spective. A Bayesian player starts with a prior over what their opponent willselect and chooses a best response to that. To argue that Bayesians shouldplay the NE of the game is to insist that they each choose a particular prior.Aumann (1987) has gone further and argued that the solution concept con-sistent with the Bayesian perspective is not NE but Correlated Equilibrium(CE). Support for such a view can be found in Nau and McCardle (1990)who characterize CE in terms of the no arbitrage condition so beloved byBayesians. Also, Kalai and Lehrer (1994) show that Bayesian players withuncontradicted beliefs learn a correlated equilibrium.In this note, we provide a direct link between the Bayesian beliefs ofplayers to the conclusion that they will play a CE. We do this by showing thata CE can be `learned'. We do not particular a speci�c learning rule, rather, werestrict our attention to learning rules that possess an asymptotic property4



called calibration. The key result is that if players use any forecasting rulewith the property of being calibrated, then, in repeated plays of the game,the limit points of the sequence of plays are correlated equilibria.The game theoretic importance of calibration follows from a theorem ofDawid (1992). Given the Bayesians prior look at the forecasts generated bythe posterior. The sequences of future events on which this forecast will notbe calibrated, have measure zero. That is the Bayesian's prior assigns prob-ability zero to such outcomes. Thus, under the common prior assumption, abayesian would expect all the other players to be using their posterior, andhence to be calibrated. Now using our result that calibration implies cor-related equilibria, and the common prior assumption shows that bayesiansexpect that in the limit, they will be playing a correlated equilibrium. Thisprovides an alternative prove to Aumann's proof that the common prior as-sumption and rationality implies a correlated equilibrium. If the commonprior assumption holds then it is common knowledge that all players are cal-ibrated. If the players use a Bayesian forecasting scheme that is calibrated,then, by the above, in repeated plays of the game, the limit points of thesequence of plays are correlated equilibria.In the next section of this paper we introduce notation and provide a rig-orous de�nition of some of the terms used in the introduction. Subsequentlywe state and prove the main result of our paper. For ease of exposition weconsider only the 2-person case. However, our results generalize easily to then-person case.11See discussion after Theorem 3. 5



2 Notation and De�nitionsFor i = 1; 2, denote by S(i) the �nite set of pure strategies of player i andby ui(x; y) 2 < the payo� to player i where x 2 S(1) and y 2 S(2). Letm = jS(1)j and n = jS(2)j. A correlated strategy is a function h from a �niteprobability space � into S(1) � S(2), i.e., h = (h1; h2) is a random variablewhose values are pairs of strategies, one from S(1) and the other from S(2).Note that if h is a correlated strategy, then ui(h1; h2), is a real valued randomvariable.So as to understand the de�nition of a correlated equilibrium, imagine anumpire who announces to both players what � and h are. Chance chooses anelement g 2 � and hands it to the umpire who computes h(g). The umpirethen reveals hi(g) to player i only and nothing more.De�nition: A correlated strategy h is called a correlated equilibrium if:E ( u1(h1; h2) ) � E ( u1(�(h1); h2) ) for all � : S(1)! S(1);and, E ( u2(h1; h2) ) � E ( u2(h1;�(h2)) ) for all � : S(2)! S(2);Thus, a CE is achieved when no player can gain by deviating from theumpire's recommendation, assuming the other player will not deviate either.The deviations, are restricted to be functions � of hi because player i knowsonly hi(g). For more on CE see Aumann (1974) and Aumann (1987).We turn now to the notion of calibration. This is one of a number ofcriteria used to evaluate the reliability of a probability forecast. It has beenargued by a number of writers (see Dawid (1982)) that calibration is an6



appealing minimal condition that any respectable probability forecast shouldsatisfy. Dawid o�ers the following intuitive de�nition:Suppose that, in a long (conceptually in�nite) sequence of weatherforecasts, we look at all those days for which the forecast prob-ability of precipitation was, say, close to some given value p and(assuming these form an in�nite sequence) determine the longrun proportion � of such days on which the forecast event (rain)in fact occurred. The plot of � against p is termed the forecaster'sempirical calibration curve. If the curve is the diagonal � = p,the forecaster may be termed well calibrated.2To give the notion a formal de�nition, suppose that player 1 is usinga forecasting scheme f . The output of f in round t of play is an n-tuplef(t) = fp1(t); : : : ; pn(t)g where pj(t) is the forecasted probability that player2 will play strategy j 2 S(2) at time t. Let �(j; t) = 1 if player 2 plays theirj-th strategy in round t and zero otherwise. Denote by N(p; t) the numberof rounds up to the t-th round that f generated a vector of forecasts equalto p. Let �(p; j; t) be the fraction of these rounds for which player 2 plays j,i.e., �(p; j; t) = tXs=1 If(s)=p�(j; s)N(p; t) ;if N(p; t) > 0 and zero otherwise.The forecast f is said to calibrated with respect to the sequences of playsmade by player 2 if: limt!1Xp j�(p; j; t)� pj jN(p; t)t = 02Dawid (1982) page 605. His notation has been changed to match ours.7



for all j 2 S(2). Notice that taking 0=0 = 0 is now seen not to matter sincethe only time it will occur is if N(p; t) = 0, and thus it would be multipliedby zero anyway. Roughly, calibration says that the empirical frequenciesconditioned on the assessments converge to the assessments. This is to becontrasted with the asymptotic myopic bayes condition of Fudenberg andKreps which says that the empirical frequencies in round t converge togetherwith the assessments in round t.3 Calibration and Correlated EquilibriumIt is clear from the de�nition of correlated strategies that a CE is simplya joint distribution over S(1) � S(2) with a particular property. Hence, wefocus on Dt(x; y), the fraction of times up to time t that player 1 plays xand player 2 plays y. This is the empirical joint distribution. We assumethat when players select their best response (for a given forecast) they usea a stationary and deterministic tie breaking rule; say the lowest indexedstrategy.Theorem 1 Let � be the set of all correlated equilibria. If each player usesa forecast that is calibrated against the others sequence of plays, and thenmakes a best response to this forecast, then,minD2� maxx2S(1);y2S(2) jDt(x; y)�D(x; y)j ! 0as t, the number of rounds of play, tends to in�nity.PROOF: Observe �rst that the nm-tuple each of whose components isof the form Dt(x; y) lies in the nm � 1 dimensional unit simplex. By the8



Bolzano-Weirstrass theorem any bounded sequence in it contains a conver-gent subsequence. Thus, for any subsequence fDti(x; y)g and D(x; y) suchthat Xx2S(1)y2S(2) jDti(x; y)�D(x; y)j ! 0;we need to show that D is a CE.For each x 2 S(1) let Mb(x) be the set of mixtures over S(2) for which xis a best response. Mb(x) is a closed convex subset of the n� 1 dimensionalsimplex. Let Mp(x) be the set of mixtures where player 1 actually plays xgiven that the forecast is in Mp(x). By the assumption that players choosebest responses, Mp(x) � Mb(x). Further, fMp(x) : x 2 S(1)g forms apartition of the simplex. The empirical conditional distribution of y 2 S(2)given that player 1 played x is Dti(x;y)Pc2S(2)Dti(x;c). This converges to D(x;y)Pc2S(2)D(x;c)as long as Pc2S(2)Dti(x; c) does not converge to zero. If it did, it would meanthat the proportion of times that x is played tends to zero. Hence, in thelimit, player 1 never plays x, so it can be ignored. To complete the proofit su�ces to show that the n-tuple whose y-th component is D(x;y)Pc2S(2)D(x;c) iscontained in Mb(x). Observe that:Dti(x; y) = t�1i Xr�ti:f(r)2Mp(x)�(y; r)= t�1i Xp2Mp(x) Xr�ti:f(r)=p�(y; r)= t�1i Xp2Mp(x)�(p; y; ti)N(p; ti)= t�1i Xp2Mp(x)pyN(p; ti) ++ t�1i Xp2Mp(x)(�(p; y; ti)� py)N(p; ti)9



Since the forecasts being used are calibrated, the second term in the lastexpression goes to zero as t tends to in�nity. Note:Xp2Mp(x)py N(p; ti)Pq2Mp(x)N(q; ti) 2Mb(x)because it is a convex combination of vectors in Mb(x) f recall, Mp � Mbg,and Mb(x) is convex. ThereforeD(x; y)Pc2S(2)D(x; c) = limti!1 Xp2Mp(x) py N(p; t)Xp2Mp(x)N(p; t)which is then the yth component of a vector in Mb(x) also.We have shown that any sequence fDti(x; y)g contains a convergent sub-sequence whose limit is a CE. The theorem now follows. 2In some sense the result above is not surprising. We know from Milgromand Roberts (1991) if players use best responses they eliminate dominatedstrategies. Secondly, the calibration requirement forces limit points to satisfyan additional equilibrium requirement. Correlation arises because players areable to condition on previous plays.It is natural to ask if Theorem 1 would hold with a non-stationary tie-breaking rule. The following version of matching pennies shows that this isnot possible. In each round the row player will forecast that there is a 50%Matching Penniesh tH 1n-1 -1n1T -1n1 1n-1chance that column will play heads and a 50% chance that column will play10



tails, i.e., (0.5, 0.5) is the forecast. The column player will do likewise. Giventhese forecasts there is a tie for the best reply. Consider the following tiebreaking rule: on even numbered rounds play heads and tails on the otherrounds. Notice that the resulting sequence of plays will be: Tt, Hh, Tt, Hh,: : :. Clearly the forecasts of each player are calibrated, but the distributionof plays does not converge to a CE.Theorem 1 raises the question of how a calibrated forecast is to be pro-duced. Oakes (1985), has shown that there is no deterministic forecast that iscalibrated for all possible sequences of outcomes. Our requirements are moremodest. Given a game, and a correlated equilibrium of this game, is therea sequence of plays and a deterministic forecasting rule depending only onobserved histories that is calibrated? The next theorem provides a positiveanswer to this question.De�nition: Call a point of the distribution D(x; y) a limit point of cal-ibrated forecasts if there exist deterministic best reply functions Ri(�) andcalibrated forecasting rules pi such that if each player i, plays Ri(pi), then thelimiting joint distribution will be D(x; y).De�nition: Let � be the set of all distributions which are limit points ofcalibrated forecasts.Using this notation we can restate Theorem 1 as saying that � � �.We can represent every game by a vector in <2mn, where each componentcorresponds to a players payo�. A set of games is of measure zero if thecorresponding set of points in <2mn has Lebesgue measure zero.11



Theorem 2 For almost every game �(G) = �(G). In other words, for al-most every game, the set of distributions which calibrated learning rules canconverge to is identical to the set of correlated equilibriums.Proof: Because of Theorem 1 we need only prove that � � �. Let(xj; yj) be a deterministic computable sequence such that the limiting jointdistribution is D(x; y). At time j, have player 1 forecastp1;j(�) = D(xj ; �), Xy2S(2)D(xj ; y)and player two forecastp2;j(�) = D(�; yj), Xx2S(1)D(xj; y) :By the assumption that the joint distribution converges to D(x; y), it is clearthat both of these forecasts are calibrated. Further, xj is in fact a bestresponse to the forecast p1;j(�), and yj to p2;j(�). So, de�ne R1(p) such thatfor all j, xj = R1(p1;j) and similarly for R2(p). These forecasts and thesebest reply functions are the key idea of the proof. In fact, in the situationwhere R1(�) and R2(�) are both well de�ned we have completed the proof.But, R1(�) and R2(�) might not be well de�ned. In other words, theremight be two di�erent strategies x0 and x00 such that xj0 = x0 and xj00 = x00,then p1;j0(�) = p1;j00(�) = p�. This is where the \almost every game" conditioncomes into play.Almost every game has the property that all the sets Mb(x) have non-empty interior. To see why this is the case, observe that Mb(x) is formed bythe intersection of half-spaces. Start with a closed convex set with non-emptyinterior, C, say and add these half-spaces one at a time. We can choose C12



to be the simplex of all mixed strategies. Consider a half-space H, chosen atrandom such that the coe�cients that de�ne H are continuous with respectto lebesgue measure. We claim that the intersection of C and H is either theempty set, or a set with an open interior.Pick a point p in the interior of C. Let q be the point in the boundary ofHwhich is closest to p. Let v be the ray from p to q and d its length. Both v andd have continuous distributions since they are a continuous transformation ofthe half-space H. Now consider distribution of d conditional on v. Given vthere is a unique d such that H will be tangent to C and not contain C . Theconditional probability of d taking this value is 0. Hence the unconditionalprobability is zero also.The interiors of the sets of the form Mb(x) are disjoint. 3 Thus, near thepoint p� there are points px0 and px00 such that the unique best response topx0 is x0 and the unique best response to px00 is x00. Forecasting px0 or px00instead of p� makes the reply function well de�ned. Unfortunately, when theforecast of px0 is made, the actual frequency will turn out to be p�. Thus,the calibration score will be o� by at most jpx0 � p�j. If we can choose px0 tobe convergent to p� solves this last problem and our proof is complete.De�ne a sequence px0i = (1 � 1=i)p� + (1=i)px0 . Then px0i converges top� and for all i, px0i has x0 as its unique best reply. For each i forecast px0isu�ciently many times to ensure that there is a high probability that theempirical distribution is within 1=i of p�. With high probability the empiricalfrequency conditional on forecast px0i will be within 2=i of px0i and hence thecalibration score will converge to zero. 23The interiors and the union of the boundaries would form a partition.13



To see why theorem 2 only holds for almost every game and not everygame, consider the following game:Example of � 6= �1 2 3A 2n2 0n3 0n1B 2n2 0n1 0n3C 2n0 1n1 1n0If ROW randomizes between A and B (with equal probability) and COLplays 1, then this is a Correlated Equilibrium with a payo� of (2,2). But, theonly point in � is the distribution which puts all its weight on point (C,2)which yields a payo� of (1,1). This is because: Mb(A) =Mb(B) = f(1; 0; 0)gand Mb(c) is the entire simplex. So, if RROW((1; 0; 0)) = A, then ROW willnever play strategy B, and likewise if RROW((1; 0; 0)) = B, then ROW willnever play A. So, a mixture of A and B is impossible and thus the payo�(2,2) is impossible. Thus, � 6= �.Can Theorem 1 be strengthened such that convergence to Nash Equi-librium is assured instead of to a CE? The previous theorem shows if oneassumes only calibration, one gets any CE in �. So, without further assump-tions on the forecasting rule, convergence to Nash cannot be assured. Inparticular by adding an assumption that the limit exists does not re�ne theequilibrium attained (in contrast with Fudenberg and Kreps who show thatif a limit exists, it must be Nash). This is because Theorem 2 does not just�nd an accumulation point it �nds a direct limit.Is it easy to construct a forecast that is calibrated? Given the impossibil-ity theorem of Oakes (1985) the existence of a deterministic scheme that iscalibrated for all sequences is ruled out. However, a randomized forecasting14



scheme is possible.Theorem 3 ( Foster and Vohra 1991) There exists a randomized fore-cast that player 1 can use such that no matter what learning rule player 2uses, player 1 will be calibrated. That is to say, player 10s calibration scoreCt �Xp Xj2S(2) j�(p; j; t)� pj jN(p; t)t (1)converges to zero in probability. In other words, for all �00 we have thatlimt!1P (Ct < �) = 1:Proof: See the appendix.The important thing to notice about Theorem 3 is that each player canindividually choose to be calibrated. The other player can not foil this choice.Player 1 does not have to assume that player 2 is using an exchangeablesequence, nor that the player 2 is rational. Player 1 is still calibrated ifplayer 2 plays any arbitrary sequence. Secondly, the proof is constructive,i.e., there is an explicit algorithm for producing such a forecast.4 To extendthis result to the n-person case the forecasting rules must predict the jointdistribution of what everyone else will play.If in Theorem 1 we require only that the players use a forecasting rulethat is close to calibrated in the sense of Theorem 3, we obtain:Corollary There exists a randomized forecasting scheme, such that if bothplayer 1 and player 2 follow this scheme, then FOR ANY normal form matrixgame and for all � > 0, there exists a t0 > 0, such that for all t > t0,P (minD2� maxx;y jDt(x; y)�D(x; y)j < �) > 1� �:4The most involved step is inverting a matrix.15



In other words, Dt converges in probability to the set � under the Hausdor�topology.4 The Shapley Game and Fictitious PlayThe most famous of learning rules for games is called Fictitious Play (FP),�rst conceived in 1949 by George Brown. In a two person game it goes asfollows:De�nition: De�nition of Fictitious Play: Row computes the proportion oftimes up to the present that Column has played each of his/her strategies.Then, Row treats these proportions as the probabilities that Column will selectfrom among his/her strategies. Row then selects the strategy that is his/herbest response. Column does likewise.In 1951 Julia Robinson proved that FP converges to a NE in 2 personzero sum games.After the Robinson paper, interest naturally turned to trying to generalizeRobinson's theorem to non-zero sum games. In 1961, K. Miyasawa provedthat FP converges to a NE in 2-person non-zero sum games where each playerhas at most two strategies.5 However, in 1964 Lloyd Shapley dashed hopesof a generalization by describing a non-zero sum game consisting of threestrategies for each player in which FP did not converge to a NE. In thissection we show that FP doesn't converge to a Correlated Equilibrium. Weuse Shapley's original example:5See Monderer and Shapley (1993) for other situations in which FP converges.16



Payo� Matrix for Shapley Game1 2 31 1n0 0n1 0n02 0n0 1n0 0n13 0n1 0n0 1n0As observed by Shapley, FP in this game will oscillate between 6 states,(1,1) then (1,2), then (2; 2); (2; 3); (3; 3); (3; 1), then repeat. Fictitious playstays longer and longer in each state, so the periods of oscillation get largerand larger. There is only one Correlated equilibrium with support on thesesix states.6 It assigns probability 1=6 to each state. Fictitious play is neverclose to this distribution.7 Thus, it does not converge to a CE.6Using Nau and McCardle (1990) the following linear program produces all the CE.p11 � p12 � p22 � p23 � p33 � p31 � p11;p13 � p11; p13 � p23;p21 � p22; p21 � p31;p32 � p33; p32 � p12:Which is equivalent to the LP : p11 = p12 = p22 = p23 = p33 = p31 = p11; p13 � p11; p21 �p11; p32 � p11. Adding the constraint that p13 = p21 = p32 = 0, this LP has a uniquesolution of p11 = p12 = p22 = p23 = p33 = p31 = 1=6.7This can be see either by direct calculation, or by the following trick. If Fictitious playwas ever close to this CE, then the marginals would have to be close to (1=3; 1=3; 1=3).But, these marginals correspond to the Nash Equilibrium. Shapley created this exampleprecisely to show that the marginals didn't converge to the marginals of the Nash equi-librium, in fact the marginals are bounded away from the (1=3; 1=3; 1=3) point. Thus theNash equilibrium is not an accumulation point of the sequence of plays. Thus, we knowthat the marginals are never close to being correct, and thus the joint distribution is alsonever close. 17



The Shapley game is interesting because it has a CE which is not amixture of Nash Equilibriums. 8 Theorem 3 tells us that there are calibratedlearning rules which will then converge to this CE. The expected payo� is(1=2; 1=2) which Pareto dominates the Nash payo� of (1=3; 1=3).PostscriptEarlier versions of this paper as well as presentations of the results at variousconferences have generated a deal of follow on papers on calibration and itsconnections to game theory. In this section, we give a brief description ofsome of this work.Theorem 3, which establishes the existence of randomized forecastingscheme that is calibrated has prompted a number of alternative proofs. The�rst of these was due to Sergiu Hart (personal communication) and is par-ticularly simple and short. It makes use of the mini-max theorem. The drawback is that the scheme implied by the method is impractical to implement.Independently, Fudenberg and Levine (1995) also gave a proof using the min-imax theorem. The approach is more elaborate than Hart's but produces aforecasting scheme that is practical to implement. In a follow up paper Fu-denberg and Levine [1996] consider a re�nement of the calibration idea thatinvolves the classi�cation of observations into various categories. For thisre�nement they derive a procedure that yields almost as high a time-averagepayo� as could be obtained if the player chooses knowing the conditionaldistribution of actions given categories. If players use such a procedure, longrun the time average play resembeles a correlated equilibrium.8The unique Nash Equilibrium for this game is (1=3; 1=3; 1=3) vs (1=3; 1=3; 1=3). So,any CE which isn't Nash, is also not a mixture of Nash Equilibriums.18



Our own proof of Theorem 3 (which is described in the appendix) is basedon establishing the existence of a forecasting scheme that has a propertycalled no-regret. An proof along the lines of Theorem 1 shows that a no-regret procedure would also lead to a correlated equilibrium. Hart and Mas-Collel (1996) have extended this idea in many ways. First they proved avery elegant proof of no-regret based on Blackwell's (195?) vector mini-maxtheorem. Second they modify this scheme which requires a matrix inversionto one that involves regret-matching. This greatly reduces the computationsrequired to implement the procedure. The simpli�ed procedure no longerhas the no-regret property but it will converge to a correlated equilibrium.Their theorem is much harder to prove since they can't simply appeal to ano-regret/calibration property as we have done.Kalai, Lehrer and Smorodinsky (1996) have recently shown that the no-tion of calibration is mathematically equivalent to that of merging. Thisallows one to establish relationships between convergence results based onmerging and those based on calibration and so derive some new convergenceresults.AppendixThis appendix provides a telegraphic proof of Theorem 3. For more detailssee Foster and Vohra (1991).We will �rst prove a property called \no-regret." Consider k forecastseach with a loss or penalty at time t of 0 � Lit � 1 for i = 1; : : : ; k. Now con-sider a randomized forecast which picks forecast i at time t with probabilitywit. We de�ne the loss from using the combined forecast to be the weightedsum of the losses of each forecast, namely,Pki=1 witLit.19



De�nition: The regret generated by changing all i forecasts to j forecastsis Ri!jT � maxf0; SijT g = SijT ISijT >0 where Ix>0 is the indicator function andSijT � TXt=1wit(Lit � Ljt ):We choose the probability vector wt so that it satis�es the following owconservation equations:(8i) wit kXj=1Ri!jt�1 = kXj=1wjtRj!it�1 :The duality theorem of linear programming can be used to establish theexistence of a non-negative solution wt to this system such that Pki=1wit = 1.Lemma 1 (No-regret) For all i� and j� the regret grows as the squarerootof T . In particular, Ri�!j�T � p2kT .Proof: Let G�(x) � �x22 Ix>0. Since x � 12� +G�(x) we see thatRi�!j�T � 12� +G�(Si�j�T ) � 12� +Xij G�(SijT )Now G0�(x) = �xIx>0 and soXij (Sijt � Sijt�1)G0�(Sijt�1) = Xij wit(Lit � Ljt)(�Sijt�1ISijt�1>0)= �Xi Lit�witXj Ri!jt�1 �Xj wjtRj!it�1| {z }= 0 by ow conservation �= 0Expanding G�(Sijt ) as a two term Taylor series around Sijt�1 showsXij G�(Sijt ) � Xij G�(Sijt�1) +Xij (Sijt � Sijt�1)G0�(Sijt�1) +Xij (wit)2(Lit � Ljt )2�20



� Xij G�(Sijt�1) + k�Xi (wit)2� Xij G�(Sijt�1) + k�:Computing the recursive sum we see thatPij G�(SijT ) � Tk� and so Ri�!j�T �12� + Tk�. Picking � = 1=p2kT shows Ri�!j�T � p2Tk. 2We will now show that for a suitable loss function, a randomized forecastthat has no regret must also be calibrated.� First, our forecasting scheme will choose in each round a probabilityvector from the set fpiji = 0; 1; : : : ; kg which is chosen so that anyprobability distribution over S(2) (the opponents strategies) is within� of one of these points.� We denote the movemade by player in 2 by the vectorXt = [Xt;1;Xt;2;Xt;3; : : :]where Xt;j = 1 if strategy j 2 S(2) was chosen and zero otherwise. No-tice that Xt will be a 0-1 vector with exactly on non-zero component.� Next, the loss incurred in round t from forecasting pi will be Lit =jXt � pij2 = Pj2S(2) jXt;j � pij j2.� The probability of forecasting pi at time t will be wit.We would like to choose the wt's so that L-2 calibration C2(t) goes to zeroin probability as t gets large, whereC2(t) =Xp (�(p; j; t)� pj)2N(p; t)tThe expected value of C2(t) is given by:E(C2(t)) = tXs=1 kXi=1 Xj2S(2)wit(�t(pi; j; s)� pij)2=s:21



Simple algebra yieldsXi maxj Ri!jt =t � E(C2(t)) � � +Xi maxj Ri!jt =tIf the probabilities wt's are chosen to satisfy the ow conservation equationsdisplayed earlier, we deduce thatE(C2(t)) � � +O( kpt):Thus if we let k grow slowly and � go slowly to zero, we see that C2(t)! 0in expectation which implies C2(t)! 0 in probability by Jensen's inequality.The L-1 calibration de�nition of equation (1) follows from the fact that itis smaller than the square root of the L-2 calibration. Thus we have provedTheorem 3.REFERENCESAumann, R. J., \Subjectivity and Correlation in Randomized Strategies",Journal of Mathematical Economics, 1, 67-96, 1974.Aumann, R. J., \Correlated Equilibrium as an Expression of Bayes Ra-tionality", Econometrica, 55, #1, 1-18, 1987.Blackwell, D., \A vector valued analog of the mini-max theorem," Paci�cJ. Math. 6, 1-8, 1956.Dawid, A. P., \The Well Calibrated Bayesian", Journal of the AmericanStatistical Association, 77, #379, 605-613, 1982.Foster, D. P., and R. Vohra \Asymptotic Calibration", unpublished manuscript,1991.Foster, D. P., and H. P. Young \Stochastic Evolutionary Game Dynam-ics," Theoretical Population Biology, 38, 219-232, 1990.22
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