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On Information Pooling, Adaptability And Superefficiency in

Nonparametric Function Estimation

T. Tony Cai ∗

Abstract

The connections between information pooling and adaptability as well as super-
efficiency are considered. Separable rules, which figure prominently in wavelet and
other orthogonal series methods, are shown to lack adaptability; they are necessarily
not rate-adaptive. A sharp lower bound on the cost of adaptation for separable rules
is obtained. We show that adaptability is achieved through information pooling. A
tight lower bound on the amount of information pooling required for achieving rate-
optimal adaptation is given. Furthermore, in a sharp contrast to the separable rules,
it is shown that adaptive non-separable estimators can be superefficient at every point
in the parameter spaces. The results demonstrate that information pooling is the key
to increasing estimation precision as well as achieving adaptability and even supereffi-
ciency.
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1 Introduction

The problem of adaptation in estimating a function globally and a function locally at a
point figures prominently in the nonparametric functional estimation literature. There is an
interesting distinction between the global and local estimation problems. Lepski (1990) and
Brown and Low (1996b) consider the adaptation problem in estimating a function at a point.
It is shown that it is impossible to achieve the minimax rate of convergence adaptively over
a range of Hölder classes. That is, the estimation problem lacks adaptability. Efromovich
and Low (1996a, 1996b) show that a similar phenomenon also appears in estimating certain
nonlinear functionals.

On the other hand, it is well known that in the global estimation problem it is possible
to achieve adaptively the minimax rate and in some cases even the minimax constant across
different function classes. Indeed, one of the main goals in global estimation is to construct
adaptive estimators which are simultaneously minimax over a wide range of function spaces;
see, for example, Efromovich and Pinsker (1984), Cai, Low, and Zhao (2001), and Zhang
(2005). It is unclear, however, why and how the adaptability is achieved. In the present
paper we make the connection between adaptability and information pooling.

We begin by considering separable rules. Separable rules figure prominently in wavelet
and other orthogonal series methods in contemporary nonparametric function estimation.
They play a fundamental role similar to the linear estimators in more traditional function
estimation literature. Separable rules are simple and intuitively appealing. More impor-
tantly, separable rules are minimax for a wide range of function classes. In deriving the
minimax risk for estimating functions over Besov and Triebel classes using a wavelet basis,
Donoho and Johnstone (1998) showed that the least favorable priors necessarily have in-
dependent coordinates and the Bayes minimax rules are separable. The results imply that
one needs to look no further than the separable rules for the minimax estimators, provided
the smoothness parameters are known.

After Section 2 in which basic notation and definitions are reviewed, adaptability of the
separable rules is considered in Section 3. It is shown that if a separable rule attains the
optimal rate over a Besov body, then it necessarily attains the exact same rate at every
point in the Besov body. Therefore superefficiency is impossible for such an estimator at
any point in the parameter space. This behavior of separable rules resembles estimators in
the standard finite-dimensional normal mean problem: if an estimator is superefficient at a
point, then the estimator must be penalized at a neighboring point. A direct consequence
of this result is that separable rules lack adaptability; they cannot be rate-adaptive across
Besov bodies. As a particular example, Bayes rules with independent priors are not rate-
adaptive. Furthermore we show that separable rules must pay the minimum penalty of
a logarithmic factor for adaptation and that the lower bound is sharp. Although the
problem is quite different from adaptive estimation of a function at a point, the logarithmic
penalty appears in both cases. The difference is that in the global estimation problem
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under consideration the penalty is avoidable.
The connection between adaptability and information pooling is made in Section 4. A

lower bound on the amount of information pooling required to achieve global adaptivity is
derived. The results are interesting. It is shown that in order to achieve full adaptability an
estimator must pool essentially at least O(log n) number of observations for estimating each
individual coordinate. By using the BlockJS estimator introduced in Cai (1999) we show
in Section 4.2 that the lower bound on the amount of information pooling is tight. These
results together demonstrate that information pooling is the key to achieving adaptability.

Furthermore, in a sharp contrast to the separable rules, we show in Section 5 that by
improving estimation accuracy through information pooling it is possible for rate-adaptive
estimators to be superefficient at every point in the parameter spaces. This demonstrates a
fundamental difference between the adaptive non-separable rules and the separable rules, as
well as between the infinite-dimensional nonparametric problem and the finite-dimensional
normal mean problem. It is well known that the set of superefficient points for any estimator
in the finite-dimensional normal mean problem must have measure 0, but in the infinite-
dimensional problem, it is possible that the set of superefficient points can be the whole
parameter space. The proofs are given in Section 7.

2 Notation and definitions

In the present paper we consider the canonical infinite series version of the nonparametric
function estimation problem which is exactly equivalent to the conventional white noise
model. This version is also directly equivalent to nonparametric regression. See Brown
and Low (1996a) and Brown, Cai, Low, and Zhang (2002). There is also a slightly less
direct equivalence to nonparametric density estimation. See Nussbaum (1996) and Brown,
Carter, Low and Zhang (2004).

In the conventional white noise model, we observe stochastic processes Yn(t) governed
by

dYn(t) = f(t)dt + n−1/2dW (t), 0 ≤ t ≤ 1 (1)

where W (t) is a standard Brownian motion. We wish to estimate the drift function f . The
accuracy of an estimator f̂ is measured by the mean integrated square error:

R(f̂ , f) = E‖f̂ − f‖2
2 = E

∫ 1

0
(f̂(t)− f(t))2 dt. (2)

Suppose {βi(t), i ∈ I} is an orthonormal basis of L2[0, 1]. Let yi =
∫

βi(t)dYn(t) and
θi =

∫
f(t)βi(t)dt. Then the function estimation problem is exactly equivalent to the

following sequence model.
Observe

yi = θi + n−1/2zi, zi
iid∼ N(0, 1), i ∈ I (3)
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and wish to estimate θ under the risk

R(δ, θ) = Eθ‖δ − θ‖2
`2 .

An estimator δ of the coefficient sequence θ directly provides an estimator

f̂(t) =
∑
i∈I

δi βi(t)

of the function f with an isometry of risk R(f̂ , f) = R(δ, θ).
In the present paper our discussions will primarily focus on the Besov Spaces in the

wavelet bases, although all of the results apply to, for example, the Sobolev Spaces in the
Fourier basis. We will use the conventional notation in the wavelet literature and write (3)
as

yj,k = θj,k + n−1/2zj,k, zj,k
iid∼ N(0, 1), (j, k) ∈ J (4)

where the index set

J = {(j, k) : k = 1, · · · , 2j , j = 1, 2, · · ·}.

The performance of a sequence of estimators {δ(n)} is measured by its maximum risk
over a parameter space Fα:

Rn(δ(n), Fα) = sup
θ∈Fα

E‖δ(n) − θ‖2
`2 ,

where α is some smoothness index. The benchmark is the minimax risk

R∗
n(Fα) = inf

δ(n)
sup
θ∈Fα

E‖δ(n) − θ‖2
`2 .

For convenience, we will suppress the dependence of δ(n) on n and omit the superscript
from the notation.

In this paper, the parameter spaces of interest are the Besov Spaces which include the
conventional Hölder Spaces and Sobolev Spaces as special cases. See Meyer (1992) for
further details on wavelets and Besov Spaces. Define the Besov seminorm | · |bα

p,q
as

|θ|bα
p,q

= (
∞∑

j=1

(2js(
2j∑

k=1

|θjk|p)1/p)q)1/q,

where s = α + 1/2− 1/p > 0. Then a Besov body Bα
p,q(M) is a ball under this seminorm:

Bα
p,q(M) = {θ : |θ|bα

p,q
≤ M}.

In the remainder of the paper, the condition α+1/2−1/p > 0 is always implicitly assumed.
It is shown in Donoho and Johnstone (1998) that the minimax rate of convergence over

the Besov body Bα
p,q(M) is n2α/(1+2α). That is,

0 < lim
n→∞

n2α/(1+2α)R∗
n(Bα

p,q(M)) ≤ lim
n→∞

n2α/(1+2α)R∗
n(Bα

p,q(M)) < ∞.
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3 Separable rules

Separable rules figure prominently in wavelet as well as other orthogonal series methods.
They are often used as the benchmark for deriving the minimax risks or minimax estimators
over Besov and other function spaces (see e.g., Donoho and Johnstone (1998) and Zhang
(2005)). This fundamental role is similar to the linear estimators over more traditional
function spaces in the literature.

Under the sequence model (4), an estimator δ = (δj,k) is separable if for all (j, k) ∈ J ,
δj,k depends solely on yj,k, not on any other y’s. Well known examples of separable rules
include term-by-term thresholding wavelet estimators and Bayes estimators derived from
independent priors.

Separable rules are attractive because of their simplicity and intuitive appeal. More
importantly, separable rules are minimax for a wide range of function classes. In an im-
portant paper, Donoho and Johnstone (1998) showed that the Bayes minimax rules for a
Besov body Bα

p,q(M) are separable and furthermore the optimal separable rules are asymp-
totically minimax when p ≤ q and are within a constant factor of minimax when p > q.
Hence when smoothness parameters are known, separable rules can be optimal. Specific
rate-optimal separable rules have been constructed, for example, in Delyon and Juditsky
(1996) for nonparametric regression and density estimation.

3.1 Adaptive estimation

Simple separable rules can be rate-optimal over a Besov Body Bα
p,q(M) if the smoothness

parameter α is known. A natural question is: can the optimal rate be achieved adaptively
by separable rules? To answer the question, we now investigate the adaptability of separable
rules. Let us begin with a simple version of the adaptation problem. Let Bα1

p1,q1
(M1) and

Bα2
p2,q2

(M2) be two Besov bodies with α1 6= α2. We call an estimator δ rate-adaptive over
the two Besov bodies if δ attains the minimax rate simultaneously over them, i.e.,

max
i=1,2

lim
n→∞

n2αi/(1+2αi) sup
θ∈B

αi
pi,qi

(Mi)

E‖δ − θ‖2
`2 < ∞.

Can separable rules be rate-adaptive over two Besov bodies? The answer is NO. The results
below show that separable rules have their limitation; they are necessarily not rate-adaptive.
We shall denote by Et the class of all separable rules.

Theorem 1 If δn ∈ Et attains the optimal rate of convergence over a Besov body Bα
p,q(M),

then it must attain the exact same rate at every point, i.e.,

0 < lim
n→∞

n2α/(1+2α)E‖δn − θ‖2
`2 ≤ lim

n→∞
n2α/(1+2α)E‖δn − θ‖2

`2 < ∞,

for every θ ∈ Bα
p,q(M).
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We will discuss the reasons behind Theorem 1 in Section 3.2. But first let us look at
the implications of the result. A direct consequence of Theorem 1 is that separable rules
are not rate-adaptive.

Corollary 1 If α1 6= α2, then

max
i=1,2

lim
n→∞

n2αi/(1+2αi) inf
δ∈Et

sup
θ∈B

αi
pi,qi

(Mi)

E‖δ − θ‖2
`2 = ∞. (5)

In other words, separable rules lack adaptability.

The proof of (5) is straightforward. Suppose α1 > α2 and a separable rule δ attains
the minimax rate nr2 with r2 = 2α2/(1 + 2α2) over the Besov body Bα2

p2,q2
(M2). Then it

follows from Theorem 1 that δ converges at the rate nr2 at every point θ ∈ Bα2
p2,q2

(M2). In
particular, δ converges at the rate nr2 at those points in the intersection of the two Besov
bodies, Bα1

p1,q1
(M1) ∩ Bα2

p2,q2
(M2). Bα1

p1,q1
(M1) ∩ Bα2

p2,q2
(M2) is always nonempty since 0 is

always in the intersection. Therefore the uniform rate of convergence of δ over Bα1
p1,q1

(M1)
is at most nr2 which is slower than the minimax rate n2α1/(1+2α1). So (5) is true.

Remark 1: In the context of Bayesian estimation, Zhao (2000) shows that independent
priors must depend on n or be improper in order for the corresponding Bayes rules to
achieve the optimal rate of convergence over a fixed Sobolev class. Our results above
implies that independent priors cannot yield rate-adaptive Bayes rules. Hence, in order for
Bayes procedures to be rate-adaptive, the priors must be more complex than the relatively
simple independent priors.

Now we know that separable rules cannot achieve optimal rate adaptively. The next
question is: what is the minimum cost of adaptation for separable rules? We derive below
a sharp lower bound for the adaptive minimax rate of convergence for separable rules.

Theorem 2 Suppose α1 6= α2 (say, α1 > α2). If a separable rule δ achieves rate of
convergence nr with r > 2α2/(1 + 2α2) over Bα1

p1,q1
(M1) (in particular, if δ attains the

minimax rate n2α1/(1+2α1) over Bα1
p1,q1

(M1)), then

lim
n→∞

(
n

log n

)2α2/(1+2α2)

sup
θ∈B

α2
p2,q2

(M2)

E‖δ − θ‖2
`2 > 0. (6)

That is, the rate of convergence over Bα2
p2,q2

(M2) cannot be faster than (n/ log n)2α2/(1+2α2).

Therefore, the minimum cost of adaptation for the separable rules is at least a logarithmic
factor. The universal threshold estimator, VisuShrink, introduced in Donoho and Johnstone
(1994), achieves the convergence rate of (n/ log n)2α/(1+2α) adaptively across a range of
Besov bodies Bα

p,q(M). Therefore the lower bound given in (6) for the adaptive minimax
rate of the class of separable rules is sharp. VisuShrink is thus optimal among separable
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rules in the sense that it attains the lower bound on the adaptive convergence rate for the
class of the estimators.

Theorem 2 bears a strong similarity to the problem of adaptive estimation of a function
at a point. It is well known that for the local estimation problem one has to pay a minimum
cost of a logarithmic factor for adaptation. See Lepski (1990) and Brown and Low (1996b).
The difference in these two cases is that the penalty is avoidable in the global estimation
problem and unavoidable in the local estimation problem. The reason for the logarithmic
penalty in (6) is that separable rules estimate each coordinate θj,k independently based
solely on one individual observation yj,k; they do not pool information contained in the
observations (4) to make more informative and accurate decisions.

3.2 Reasons for lack of adaptability

To understand fully why separable rules lack adaptability, let us first review very briefly
the standard univariate normal mean problem. In a univariate normal mean problem of
estimating µ based on X ∼ N(µ, n−1), the minimax rate of convergence over IR under
square error is n. An estimator µ̂ is superefficient at some point µ ∈ IR if nEµ(µ̂ − µ)2

converges to zero. It is well known that in the univariate problem there exist estimators that
are superefficient at any given point θ0 but the estimators must “pay for” the superefficiency
at θ0 by being subefficient in a neighborhood of θ0. The Hodges estimator is a well known
example of such estimators. See Le Cam (1953) and Van der Vaart (1998). See also Brown
and Low (1996b).

Under the sequence model (4), the minimax rate of convergence over the Besov body
Bα

p,q(M) is n2α/(1+2α). We call an estimator δ superefficient at a fixed point θ ∈ Bα
p,q(M) if

n2α/(1+2α)Eθ‖δ− θ‖2
`2 converges to zero. Theorem 1 shows that any rate-optimal separable

rule over Bα
p,q(M) cannot be superefficient at any point θ ∈ Bα

p,q(M); it necessarily has a
“flat” rate of convergence everywhere in Bα

p,q(M). This is not the case for non-separable
rules. As we show in Section 5 that it is in fact possible for a non-separable rule to
be superefficient at EVERY point in Bα

p,q(M). See Section 5 for further discussions on
superefficiency.

To shed light to the reasons why separable rules lack adaptability, we give a heuristic
proof of Theorem 1 here. The detailed proof is given in Section 7.

A heuristic proof of Theorem 1: Let δ = (δj,k) be a separable rule attaining the minimax
rate over Bα

p,q(M). Then each δj,k can be regarded as an estimator in a univariate normal
mean problem.

1. Suppose δ is superefficient at some point θ∗ ∈ Bα
p,q(M), i.e., δ converges faster than

the minimax rate at θ∗.

2. Then as a univariate normal mean problem, many δj,k are superefficient at θ∗j,k and
thus each of these δj,k must be penalized in a “subefficient neighborhood” of θ∗j,k.
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3. There exists some θ′ ∈ Bα
p,q(M) with coordinates θ′j,k in those “subefficient neighbor-

hoods” of θ∗j,k. Because δ is superefficient at θ∗, there are “too many” δj,k that are
subefficient at θ′j,k.

4. As a consequence, δ as a whole is subefficient at θ′ relative to the minimax risk
over Bα

p,q(M). This contradicts the assumption that δ is rate-optimal uniformly over
Bα

p,q(M).

The sketch of the proof shows that separable rules behave very similarly to the estimators
in a finite-dimensional normal mean problem. That is, if an estimator is superefficient
at a point in the parameter space, then it must be penalized in a neighborhood of the
point of superefficiency. The main reason is that separable rules do not efficiently utilize
the information contained in the sample and do not fully take advantage of the infinite-
dimensional nature of the estimation problem. One can improve the estimation accuracy
by information pooling.

For the infinite-dimensional problem under consideration, an estimator does not neces-
sarily need to “pay for” superefficiency. This is one of the fundamental differences between
infinite-dimensional and finite-dimensional problems. In Section 5 we show that if an es-
timator uses information contained in the sample (4) more efficiently, it is possible for
the estimator not only to achieve adaptability uniformly over a range of the Besov bodies
Bα

p,q(M), but also to be superefficient at every point in Bα
p,q(M).

4 Information pooling and adaptability

4.1 A lower bound on information pooling

Separable rules are necessarily not rate-adaptive, therefore in order for an estimator to
achieve adaptability it must pool information contained in more than one coordinate to
make more accurate decisions. A natural question is how much information pooling is
necessary to achieve adaptability over Besov bodies? To answer this question we have the
following result.

Theorem 3 Let α > 0 and let δ = (δj,k) be an estimator such that each δj,k depends on at
most hn = o((log n)2α/(1+2α)) observations. Let θ† ∈ Bα

p,q(M). If

lim
n→∞

nrR(δ, θ†) < ∞,

for some r > 2α/(1 + 2α), then

lim
n→∞

n2α/(1+2α) hn

(log n)2α/(1+2α)
sup

θ∈Bα
p,q(M)

E‖δ − θ‖2
`2 > 0.

In particular,
lim

n→∞
n2α/(1+2α) sup

θ∈Bα
p,q(M)

E‖δ − θ‖2
`2 = ∞. (7)
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Therefore, in order to achieve adaptability over all Besov bodies Bα
p,q(M) for all α > 0,

the information pooling index hn should be essentially at least of the order log n.
In many cases the amount of information pooling varies from resolution level to res-

olution level, sometimes even from coefficient to coefficient within the same level. The
results of Theorem 3 still holds if the condition on the amount of information pooling in
the theorem is satisfied in an average sense.

Let δ = (δj,k) be an estimator and let

Gj,k = {(l, m) ∈ J : l ≤ j and δj,k depends on yl,m}

be the set of indices of observations up to the level j used in the estimation of θj,k. We
define a sequence of information-pooling indices by

hj = Average {Card(Gl,k) : k = 1, . . . , 2l, l ≤ j} =
1

2j+1 − 1

j∑
l=1

∑
k

Card(Gl,k),

where Card(Gl,k) denotes the cardinality of the set Gl,k. Here hj can be viewed as a measure
of the average amount of information pooling up to the level j. Let jn be a sequence of
integers satisfying c0n

1/(1+2α) ≤ 2jn ≤ c1n
1/(1+2α) for some fixed constants 0 < c0 < c1.

If hjn/(log n)2α/(1+2α) → 0, then, if limn→∞ nrR(δ, θ†) < ∞ for some θ† ∈ Bα
p,q(M) and

r > 2α/(1 + 2α),
lim

n→∞
n2α/(1+2α) sup

θ∈Bα
p,q(M)

E‖δ − θ‖2
`2 = ∞.

Therefore, if the average amount of information pooling up to the level jn is essentially
smaller than (log n)2α/(1+2α), then the estimator has to pay for superefficiency at any point
by being subefficient in a neighborhood and consequently cannot be adaptive over two
Besov bodies Bα

p,q(M) and Bα′
p′,q′(M

′) with α < α′.
One of the main tools used in the proof of Theorem 3 is a constrained risk inequality

stated in Section 7.1.1. It is a generalization of the risk inequality introduced in Brown and
Low (1996b) which gives a sharp lower bound for the squared error risk at one parameter
point subject to having a small risk at another parameter point in a scalar-parameter uni-
variate random variable setting. A further generalization and its applications are presented
in Cai, Low and Zhao (2006). The inequalities are also related to the study of ε-minimax
procedures and to superefficient estimation. See Brown and Low (1996b). See also Bickel
(1983).

4.2 The lower bound is tight

Theorem 3 states that in order to achieve adaptability over Besov bodies Bα
p,q(M) for all

α > 0, the information pooling index hn should be essentially at least of the order log n. Is
this lower bound tight?

Block thresholding has been shown to be an effective and convenient tool for informa-
tion pooling to enhance the estimation accuracy. Recent results on block thresholding are
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discussed, for example, in Hall, Kerkyacharian, and Picard (1998, 1999), Cai (1999, 2002),
Cai and Silverman (2001), and Cai and Low (2005).

We will use the BlockJS estimator, introduced in Cai (1999), to show that the lower
bound O(log n) on information pooling obtained in Theorem 3 is indeed tight. Further-
more, as a sharp contrast to the separable rules, we will also show in Section 5 that the
BlockJS estimator has an interesting and somewhat surprising property: it is superefficient
at every point in the parameter spaces. The adaptability and the superefficiency properties
of BlockJS clear demonstrate the benefits of information pooling.

Among all the shrinkage estimators developed in the classical normal decision theory,
the James-Stein estimator is perhaps the best-known. See James and Stein (1961) and
Efron and Morris (1973). The BlockJS estimator, which was originally introduced for the
nonparametric regression problem, is a blockwise application of a modified James-Stein
rule. In the present sequence model setting the estimator can be defined as follows.

Let J = [log2 n]. Divide each resolution level j < J into nonoverlapping blocks of
approximate length L = log n. Denote (jb) the b-th block at level j and S2

(jb) =
∑

k∈(jb) y2
j,k

the sum of squares for the block (jb). Let λ∗ = 4.50524 be the root of the equation
λ− log λ− 3 = 0. The BlockJS estimator δ∗ is given by

δ∗j,k =

 (1− λ∗Ln−1

S2
(jb)

)+ yj,k for k ∈ (jb), j < J

0 for j ≥ J
(8)

It is shown in Cai (1999) that the BlockJS estimator (8) enjoys many desirable properties
both numerically and asymptotically. In particular,

lim
n→∞

n2α/(1+2α) sup
θ∈Bα

p,q(M)
E‖δ∗ − θ‖2

`2 < ∞.

for all α > 0, p ≥ 2, q > 0 and M > 0. Therefore, BlockJS attains the optimal rate of
convergence adaptively over a wide range of Besov bodies. The adaptability of the BlockJS
estimator is achieved through information pooling. It pools information contained in blocks
of size log n to make simultaneous shrinkage decisions for all coefficients within the same
block. Furthermore, since each δ∗j,k depends on at most log n observations for the BlockJS
estimator, it shows that the lower bound on the amount of information pooling necessary
for achieving adaptability is tight.

5 Superefficiency at a fixed point

It is shown in Section 3 that if a separable rule attains the minimax rate of convergence
over a Besov body Bα

p,q(M), then it must attain exactly the same convergence rate at every
point in the Besov body. Therefore, no superefficiency is possible for such an estimator.
In contrast, we demonstrate in this section that adaptive non-separable estimators behave
much more “intelligently”. In the following theorem we use the BlockJS estimator as

10



an example to show that through information pooling it is possible to have estimators
which are not only rate-adaptive uniformly over a wide range of parameter spaces but also
superefficient at every point in the parameter spaces. This result together with Theorem
1 show a major difference in performance between the separable rules and adaptive non-
separable rules.

Theorem 4 Let δ∗ denote the BlockJS estimator. Then at any fixed point θ ∈ Bα
p,q(M)

with p ≥ 2 and q < ∞, the estimator δ∗ is superefficient. That is

lim
n→∞

n2α/(1+2α)E‖δ∗ − θ‖2
`2 = 0. (9)

In other words, the BlockJS estimator is superefficient at every point in the parameter space
Bα

p,q(M).

Remark 2: In fact, it can be shown that the BlockJS estimator δ∗ is superefficient uni-
formly over any compact subset C ⊂ Bα

p,q(M),

lim
n→∞

sup
θ∈C

n2α/(1+2α)E‖δ∗ − θ‖2
`2 = 0.

This result also demonstrates a fundamental difference between the infinite-dimensional
problem and the classical finite-dimensional normal mean problem. In the standard finite-
dimensional problem, it is well known that although superefficiency is possible, the set of
superefficient points for any estimator must have measure 0. In the infinite-dimensional
problem, however, it is possible to have estimators that are superefficient at every point
in the parameter space. The phenomenon of superefficiency at a fixed parameter point in
nonparametric function estimation has been discussed in Brown, Low, and Zhao (1997).
Zhang (2005) considers fixed-parameter superefficiency in the context of an empirical Bayes
estimator.

6 Concluding Remarks

Separable rules cannot achieve superefficiency at any parameter point without paying a
penalty. They thus lack adaptability. The difficulty of separable rules is due to the relative
inaccuracy with which individual coordinates are estimated when the smoothness parameter
is unknown. Information pooling is shown to be the key to increase estimation precision
and achieve adaptability. In order to achieve full adaptability an estimator must use at
least O(log n) number of observations for estimating each individual coordinate. The lower
bound on information pooling is tight. Moreover, in a sharp contrast to the separable rules,
it is shown that adaptive non-separable estimators can be superefficient at every point in
the parameter spaces.

Besides block thresholding, empirical Bayes is another effective way of pooling infor-
mation to achieve adaptability. Johnstone and Silverman (2005) and Zhang (2005) demon-
strate that adaptability can be achieved by relatively simple empirical Bayes procedures.

11



7 Proofs

7.1 Proof of Theorems 1 and 2

We first introduce the following constrained risk inequality.

7.1.1 A general constrained risk inequality

Let X be a (vector-valued) random variable having distribution Pθ1,ξ with density fθ1,ξ, or
distribution Pθ2,ξ with density fθ2,ξ, with respect to a measure λ. Here the parameter of
interest is θ and ξ is some fixed nuisance parameter. Suppose θi = (θi,1, ..., θi,K) ∈ IRK

(i = 1, 2). For any estimator δ of θ based on X its risk is defined by

R(δ, θ) = E‖δ(X)− θ‖2
`2 =

∫ K∑
k=1

|δk(x)− θk|2fθ(x)λ(dx)

Denote by r(x) = fθ2,ξ(x)/fθ1,ξ(x) the ratio of the two density functions. (r(x) = ∞ for
some x is possible, with the obvious interpretation r(x)fθ1,ξ(x) = fθ2,ξ(x).) Denote

D = ‖θ2 − θ1‖`2 = (
K∑

k=1

|θ2,k − θ1,k|2)1/2 (10)

and
∆ = ∆(θ1, θ2) = (Eθ1(r

2(X)))1/2. (11)

The following result gives a lower bound for R(δ, θ2) under the constraint of R(δ, θ1) ≤ ε2.

Theorem 5 Suppose R(δ, θ1) ≤ ε2 and D > ε∆, then

R(δ, θ2) ≥ (D − εI)2 ≥ D2(1− 2ε∆
D

). (12)

Remark 3: The constrained risk inequality (12) is a generalization of the risk inequality
introduced in Brown and Low (1996b). A further generalization with proof is presented in
Cai, Low and Zhao (2006).

7.1.2 A preparatory result

Theorems 1 and 2 are consequences of the following result.

Proposition 1 Suppose An → ∞, n/ log An → ∞. Let θ† ∈ Bα
p,q(M) be fixed and let

δ = (δj,k) ∈ Et be a separable rule. If

lim
n→∞

n2α/(1+2α)AnR(δ, θ†) < ∞,

then

lim
n→∞

(
n

log An

)2α/(1+2α)

sup
θ∈Bα

p,q(M)
R(δ, θ) > 0.

12



Proof of Proposition 1: Without loss of generality, we assume θ† = 0. Denote w = 2α/(1 +
2α). Since limn→∞ nwAnR(δ, 0) < ∞, there exists constants c,N > 0 such that for all
n ≥ N ,

R(δ, 0) ≡
∑

(j,k)∈J
E0(δj,k(yj,k))2 ≤ cn−wA−1

n . (13)

Let j0 be the smallest integer satisfying 2j0 ≥ 2(n/ log An)1−w. Let

Gn = {(j, k) ∈ J : j ≤ j0, and E0(δj,k(yj,k))2 ≤ cn−1A−1/2
n } (14)

It is easy to see from (13) that the number of indices (j, k) ∈ J with j ≤ j0 that are
not in Gn is at most n1−wA

−1/2
n . Therefore the cardinality Kn of the set Gn is at least

(n/ log An)1−w when n is sufficiently large. Let

θj,k =

{
c1(log An/n)1/2 if (j, k) ∈ Gn

0 if (j, k) /∈ Gn

(15)

where c1 > 0 is some constant. We now need the following lemma. The proof is straight-
forward and is thus omitted.

Lemma 1 There exists some constant c2 > 0 such that for all 0 ≤ c1 ≤ c2, the sequence
θ = (θj,k) defined in (15) belongs to the Besov body Bα

p,q(M).

Now return to the proof of Proposition 1. Denote the density function of N(θ, σ2)distribution
by φ(x; θ, σ2). Using the notation in Section 7.1.1, for Pθi,σ2 = N(θi, σ

2) simple calculus
shows that

∆(θ1, θ2) =

(
Eθ1

φ2(X; θ2, σ
2)

φ2(X; θ1, σ2)

) 1
2

= exp{(θ2 − θ1)2

2σ2
}.

Let c2 > 0 be given as in Lemma 1. Fix 0 < c1 < min(1/
√

2, c2). Then θ = (θj,k) defined
in (15) is in Bα

p,q(M). For each (j, k) ∈ Gn, we then have

∆(0, θj,k) = exp{
nθ2

j,k

2
} = A

c21/2
n ≤ A1/4

n

and ε = c1/2n−1/2A
−1/4
n . Now (12) yields

Eθj,k
(δj,k(yj,k)− θj,k)2 ≥ θ2

j,k(1−
2ε∆
|θj,k|

) ≥ c1
log An

n
· (1− 2c1/2n−1/2A

−1/4
n A

1/4
n

c1n−1/2(log An)1/2
)

= c1
log An

n
· (1− 2c1/2

c1(log An)1/2
)

Therefore, for θ = (θj,k) defined in (15),

R(δ, θ) ≥
∑

(j,k)∈Gn

Eθj,k
(δj,k(yj,k)− θj,k)2 ≥ Kn

log An

n
(c1 + o(1)) (16)

≥ (
log An

n
)2α/(1+2α)(c1 + o(1)). (17)
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Hence,

lim
n→∞

(
n

log An

)2α/(1+2α)

sup
θ∈Bα

p,q(M)
R(δ, θ) ≥ c1 > 0.

Remark 4: The proof shows that if a separable rule δ is superefficient at some θ† ∈
Bα

p,q(M), then, coordinatewise as an estimate of θ†j,k, δj,k must be superefficient at a large
number of coordinates of θ†. This in turn forces the estimators δj,k to be subefficient in a
small neighborhood of each of those coordinates. As a direct consequence the sum of mean
squared errors of δ is large in a neighborhood of θ† which makes the rate of convergence
of δ over Bα

p,q(M) suboptimal. As we see from Theorem 4 that this phenomenon can be
avoided by using non-separable rules.

7.1.3 Proof of Theorems 1 and 2

With the preparations given in Sections 7.1.1 and 7.1.2, Theorems 1 and 2 are now easy to
prove.

Proof of Theorem 1: Suppose that δ attains the minimax rate over the Besov body Bα
p,q(M)

and δ is superefficient at some point θ† ∈ Bα
p,q(M), i.e., R(δ, θ†) converges to 0 faster

than the rate n2α/(1+2α). Then there exists An → ∞ and n/ log An → ∞ such that
limn→∞ n2α/(1+2α)AnR(δ, θ†) < ∞. Now Proposition 1 yields that

lim
n→∞

(
n

log An

)2α/(1+2α)

sup
θ∈Bα

p,q(M)
R(δ, θ) > 0.

Hence, limn→∞ n2α/(1+2α) supθ∈Bα
p,q(M) R(δ, θ) = ∞, which contradicts the assumption that

δ is rate optimal over Bα
p,q(M).

Proof of Theorem 2: First note that 0 ∈ Bα1
p1,q1

(M1) ∩ Bα2
p2,q2

(M2). Since δ attains the rate
nr over Bα1

p1,q1
(M1), δ converges at least at the rate nr at 0. Let An = nr−2α2/(1+2α2). Then

lim
n→∞

n2α2/(1+2α2)AnR(δ, 0) < ∞.

Now Theorem 2 follows from Proposition 1 with An = nr−2α2/(1+2α2).

7.2 Proof of Theorem 3

Again we assume, without loss of generality, the point of superefficiency θ† = 0. Since
lim nrR(δ, 0) < ∞, for sufficiently large n,

R(δ, 0) ≡
∑

(j,k)∈J
E0δ

2
j,k ≤ cn−r. (18)

where c > 0 is some fixed constant. Let j0 be the smallest integer satisfying 2j0 ≥
6(n/ log n)1/(1+2α). Let An = nr−2α/(1+2α) and let

G1 = {(j, k) ∈ J : j ≤ j0, and E0δ
2
j,k ≤ cn−1A−1/2

n }. (19)
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Then it is easy to see that for sufficiently large n the cardinality of G1 is at least 2j0 .
We call two indices (j, k), (l, m) ∈ J related if δj,k depends on yl,m or δl,m depend on

yj,k, and unrelated otherwise. Define

G2 = {(j, k) ∈ G1 : the number of (l, m) ∈ G1 with δl,m depending on yj,k is at most 2hn}.

Then it is easy to see that Card(G2) ≥ 2j0−1. Let (j, k) ∈ G2. Define Ij,k be the set
of all indices in G2 that are related to (j, k). Then Card(Ij,k) ≤ 3hn for all (j, k) ∈ G2.
This implies that there exists a subset G′

n ⊆ G2 such that all indices in G′
n are mutually

unrelated and

K ′
n ≡ Card(G′

n) ≥ Card(G2)/(3hn) ≥ h−1
n (n/ log n)1/(1+2α).

Define θ same as in (15) with An = nr−2α/(1+2α) and Gn replaced by G′
n. Then again

for a sufficiently small constant 0 < c1 < 1/4, θ is in Bα
p,q(M). Fix (j, k) ∈ G′

n. Let
Y (j,k) = (yl,m : δj,k depends on yl,m) be the vector of observations used in estimating θj,k.
Without loss of generality, let us put yj,k as the first element of the vector Y (j,k). Then
under θ the mean of Y (j,k) can be written as (θj,k, 0, . . . , 0), since all indices in G′

n are
mutually unrelated and all coordinates in θ with indices not in G′

n are 0.
Now applying the constrained risk inequality (12) with θ1 = 0 and θ2 = θj,k, we have,

after some algebra,

Eθ(δj,k(Y (j,k))− θj,k)2 ≤ c1
log An

n
· (1− 2c1/2

c1(log An)1/2
).

Since K ′
n ≥ h−1

n (n/ log n)1/(1+2α), so

R(δ, θ) ≥
∑

(j,k)∈G′
n

Eθj,k
(δj,k(yj,k)− θj,k)2 ≥ K ′

n

log An

n
(c1 + o(1))

≥ h−1
n (

log n

n
)2α/(1+2α)(c2 + o(1)).

where the constant c2 = c1(r − 2α/(1 + 2α)) > 0. Hence,

lim
n→∞

hn

(
n

log n

)2α/(1+2α)

R(δ, θ) ≥ c2 > 0.

The proof of (7) is similar.

7.3 Proof of Theorem 4

Let θ ∈ Bα
p,q(M) be fixed. Denote by θj· = (θj,k)2

j

k=1 the coefficient vector at level j. Let
γj = 2j(α+1/2−1/p)‖θj.‖p. Since θ ∈ Bα

p,q(M),

|θ|bs
p,q

= (
∞∑

j=1

γq
j )

1/q ≤ M.
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So, γj → 0 as j → ∞. Let ρj = supj′≥j γj′ . Then ρj also tends to 0 as j → ∞. Let Jn

be the largest integer satisfying 2Jn ≤ ρ
2/(1+2α)
Jn

n1/(1+2α). It follows from the BP Oracle
Inequality in Cai (1999), the risk of the BlockJS estimator θ̂∗ at each resolution level j < J

can be bounded as ∑
k

E(θ̂∗j,k − θj,k)2 ≤
∑

b

(β2
(jb) ∧ λ∗Ln−1) + 2j+1n−2 (20)

where β2
(jb) =

∑
k∈(jb) θ2

j,k is the sum of the squared coefficients within the block (jb). Now
(20) yields

E‖θ̂∗ − θ‖2
`2 ≤

J−1∑
j=1

∑
b

(β2
(jb) ∧ λ∗Ln−1) + 2n−1 +

∞∑
j=J

2j∑
k=1

θ2
jk

≤
J−1∑
j=Jn

∑
b

β2
(jb) +

Jn−1∑
j=1

∑
b

λ∗Ln−1 + 2n−1 + Cn−2α

≤
J−1∑
j=Jn

2j∑
k=1

θ2
j,k + Cρ

2/(1+2α)
Jn

n−2α/(1+2α) + 2n−1 + Cn−2α. (21)

Note that the following elementary inequalities on two different norms hold:

‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 , for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞. (22)

It follows from (22) that

‖θj·‖`2 ≤ 2j(1/2−1/p)‖θj·‖`p = 2−αjγj .

So,

J−1∑
j=Jn

2j∑
k=1

θ2
j,k ≤

J−1∑
j=Jn

2j∑
k=1

2−2αjγ2
j ≤ ρ2

Jn
· Cρ

−4α/(1+2α)
Jn

n−2α/(1+2α)

= Cρ
2/(1+2α)
Jn

n−2α/(1+2α). (23)

Since ρJn → 0 as n →∞, it follows from (21) and (23) that

lim
n→∞

n2α/(1+2α)E‖θ̂∗ − θ‖2
`2 = 0.
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