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Abstract

This article presents two expectation identities and a series of applications. One of

the identities uses the heat equation, and we show that in some families of distributions

the identity characterizes the normal distribution. We also show that it is essentially

equivalent to Stein’s identity. The applications we have presented are of a broad range.

They include exact formulas and bounds for moments, an improvement and a reversal of

Jensen’s inequality, linking unbiased estimation to elliptic partial differential equations,

applications to decision theory and Bayesian statistics, and an application to counting

matchings in graph theory. Some examples are also given.

1. INTRODUCTION

In 1981, Charles Stein published a simple but greatly useful identity that has now

come to be known as Stein’s identity. The simplest version of the identity says that if

X ∼ N(µ, 1), then for sufficiently smooth functions g(X), E((X − µ)g(X)) = E(g′(X));

see Stein(1981). The identity may be called an expectation identity. In this article, we

present two expectation identities, and present a series of applications. One of the identities

is derived by using the heat equation. We show that this identity is essentially equivalent

to Stein’s identity. It is thus not very surprising that it seems to have a broad range of

potential applications, as we indicate in this article. The other identity is applicable to

problems in time series, and to normally distributed data when both the mean and variance

are unknown. However, it is the first identity derived from the heat equation that we have

∗Research supported by the National Science Foundation & National Security Agency
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analyzed and applied in more detail.

We have indicated a broad range of applications. They can be roughly classified into

the following areas:

a) deriving exact moment formulas and analytical lower and upper bounds;

b) an improvement as well as a reversal of Jensen’s inequality;

c) connecting unbiased estimation to elliptic partial differential equations;

d) applications to decision theory, specifically, establishing inadmissibilty results and a

Stein inequality (as opposed to a Stein identity) for spherically symmetric t distribu-

tions;

e) applications to Bayesian statistics, specifically, establishing lower bounds on Bayes

risks in the spirit of Brown-Gajek-Borovkov-Sakhanienko, and establishing a connec-

tion between oscillations of a Bayes estimate to its Bayes risk;

f) applications in graph theory, and specifically, establishing a connection to counting

perfect matchings in graphs.

These applications and other illustrative examples are presented in sections 2 through 8.

We have not developed all the applications to their full potential in this article. We

think that there is an excellent potential for additional applications. In fact, that seems

to be the best feature of the results we have presented. These results developed over a

period of several years. We are indebted to Persi Diaconis, Joe Eaton and Malay Ghosh

for valuable suggestions, and for graciously reading through the article’s previous drafts.

2. NOTATION AND IDENTITIES

2.1. Notation

a. p(x
˜
, µ
˜
, t): will generally mean a probability density function on R

p, p ≥ 1 : µ
˜
, t are to

be understood as parameters, with µ
˜

in R
p and t > 0.

b. g
˜
(x
˜
, µ
˜
, t): will generally denote a nonstochastic k dimensional function, k ≥ 1;

For any scalar function g(x
˜
, µ
˜
, t), gt will denote ∂

∂tg, gtt will denote ∂2

∂t2 g,∇xg will

denote the gradient vector with respect to x
˜
,∇x · g will denote divergence, and ∆x
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will denote the Laplacian. Similar meanings will apply to ∇µg,∇µ ·g, and ∆µg. Also,

Hg will denote the Hessian matrix of g, with respect to x
˜
. If x

˜
is scalar, g(n)(x) will

as usual mean the nth derivative of g.

c. B(a
˜
, r): will denote a sphere in p dimensions with radius r and center at a

˜
; ∂B(a

˜
, r)

will denote the boundary of B(a
˜
, r) and

∫
∂B

udσ will denote the surface integral of a

given function u on ∂B(a
˜
, r).

d. ||y
˜
|| will denote Euclidean norm and y

˜
′z
˜

will denote inner product. I = Ip will denote

the p× p identity matrix and e
˜

i the ith unit vector.

e. Eµ
˜

,t will denote expectation and often will be written as just E; similarly, var(·) will

stand for variance and cov for covariance.

f. h(µ
˜
, t): will generally denote a parametric function and δ(·) an estimate of a para-

metric function.

g. R(µ
˜
, t, δ): will generally denote the risk function of an estimate under squared error

loss; also, π(µ
˜
) will denote a prior density for µ

˜
and r(π, t) = r(π, t, δ) the Bayes risk

of an estimate δ.

h. φ(·) will denote, as usual, the standard normal density and Φ(·) the standard normal

CDF; also, Hn will denote the nth Hermite polynomial.

i. Γ(α, y) will denote
∞∫
y

e−uuα−1du and γ(α, y) will denote
y∫
0

e−uuα−1du.

j. Np(µ
˜
, tΣ0) will denote a p-dimensional normal distribution with mean vector µ

˜
and

covariance matrix t
∑

0;Cp(µ
˜
, t

∑
0) will denote a p-dimensional elliptically symmetric

Cauchy distribution with location parameter µ
˜

and scale matrix t
∑

0; χ
2(m) will

denote a central chi-square distribution with m degrees of freedom; tp(m) will denote

the p-dimensional t distribution with m degrees of freedom defined as the distribution

of
√

mZ
˜√

Y
if Z

˜
∼ Np(0

˜
, I), Y ∼ χ2(m) and Y,Z

˜
are independent; the distribution of

µ
˜

+
√

mZ
˜√

Y
will be denoted as tp(m,µ

˜
).
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2.2. Heat Equation Identity

Theorem 1.

Let X
˜

∼ Np(µ
˜
, tI). Let g(x

˜
, µ) be a twice continuously differentiable function and

suppose g(x
˜
, µ
˜
) and ||∇g(x

˜
, µ
˜
)|| are O(ec||x

˜
||) for some 0 ≤ c <∞. Then

∂

∂t
E(g(X

˜
, µ
˜
)) =

1
2
E(∆xg(X

˜
, µ
˜
)) (1)

Identity (1) will be referred to as the Heat Equation Identity.

Proof of Theorem 1:

The Np(µ
˜
, tI) density will be denoted as p(x

˜
, µ
˜
, t) in this proof.

Step 1. By an interchange of the order of differentiation and integration and by use of

the heat equation
∂

∂t
E(g(X

˜
, µ
˜
)) =

1
2

∫
(g(x

˜
, µ
˜
))∆xp(x

˜
, µ
˜
, t)dx

˜
. (2)

Step 2. By Green’s second identity, for any sphere B(0
˜
, r),

∫
B(o

˜
,r)

(g∆xp− p∆xg)dx
˜

=
∫

∂B(0
˜

,r)

(g∇p− p∇g)′ndσ, (3)

where n denotes the unit outer normal.

Step 3. By Schwartz’s inequality and the fact that ||n|| = 1,

∫
∂B(o

˜
,r)

(g∇p− p∇g)′ndσ

≤
∫

∂B(o
˜

,r)

|g| ||∇p||dσ +
∫

∂B(o
˜

,r)

p||∇g||dσ

≤Aecr

∫
∂B(o

˜
,r)

||∇p||dσ +Becr

∫
∂B(o

˜
,r)

pdσ, (4)

for some constants 0 ≤ A,B, c <∞, by the assumptions made on g.
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Step 4. From (2), write ∂
∂tE(g(X

˜
, µ
˜
)) as

∂

∂t
E(g(X

˜
, µ
˜
)) =

1
2

∫
(p∆xg)dx

˜
+

1
2

∫
(g∆xp− p∆xg)dx

˜
. (5)

Step 5. Finally, ∫
(g∆xp− p∆xg)dx

˜

= lim
r→∞

∫
B(o

˜
,r)

(g∆xp− p∆xg)dx
˜

=0 by (3) and (4).

2.3. Canonical Normal Identity

Two statistically important cases not covered by the preceding theorem are handled

here. These are: a. the case where X1, . . . , Xn are iid univariate normal with the mean

and the variance being both treated as unknown parameters, and b. the case of time series

data where X1, . . . , Xn have a common mean µ but are not independent. In fact, a single

general result covers both cases and we present that below.

Theorem 2. Let c,m ≥ 0. Suppose X ∼ N(µ, ct), Y ∼ tχ2(m), and suppose X, Y are

independent. Let g(x, y, µ) satisfy the following conditions;

i. g is twice continuously differentiable in x and once continuously differentiable in

y;

ii. g, gx are each O(ea|x|yk) for some 0 ≤ a, k <∞. Then

∂

∂t
E(g(X,Y, µ)) =

c

2
E(gxx(X,Y, µ)) +

1
t
E(Y gy(X,Y, µ)). (6)

Identity (6) will be referred to as the Canonical Normal Identity.

Proof:

Step 1. Let p1(x, µ, t) denote the density of X and let p2(y, t) denote the density of Y .

Then,

∂

∂t
p1 =

c

2
∂2

∂x2
p1, (7)
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and
∂

∂t
p2 =

y

2t2
p2 − m

2t
p2 = −y

t

∂

∂y
p2 − p2

t
, (8)

on some calculations.

Step 2. Since X,Y are independent, the joint density is given by

p(x, y, µ, t) = p1(x, µ, t)p2(y, t). (9)

Multiplying both sides by g(x, y, µ), (6) follows on integration after some algebra.

Remark. If X1, . . . , Xn are iid N(µ, t), then (x, y) are to be understood as the jointly

sufficient statistic (x,
n∑

i=1

(xi − x)2). On the other hand, if X1, . . . , Xn are jointly normal

each with mean µ and the covariance matrix tΣ0, then (x, y) are to be understood as(
1
˜
′Σ−1

0 x
˜1

˜
′Σ−1

0 1
˜
, x
˜
′Σ−1

0 x
˜
− (1

˜
′Σ−1

0 x
˜
)2

1
˜
′Σ−1

0 1
˜

)
, again the jointly sufficient statistic. Note that c is to be

taken as
1

1
˜

′Σ−1
0 1

˜
in this case.

3. FROM PDES TO UNBIASED ESTIMATION

The identities in Section 2 have some implications in the theory of unbiased estima-

tion. The typical result we will present will either characterize an unbiasedly estimable

parametric function or characterize parametric functions unbiasedly estimable by statistics

of relevant natural form. We would note here that some of the applications in Theorem 3

are reexpressions of known facts in the area of partial differential equations.

First we state a convention subsequently assumed in the results of this section.

Convention. For any result specific to a given distribution in this section, by a statistic

g(X
˜

) we shall mean a function g(X
˜

) which satisfies the smoothness and growth conditions

previously imposed on g in Section 2 for the relevant expectation identity to hold.

Theorem 3. Let X
˜

∼ Np(µ
˜
, tI). Let h = h(µ

˜
, t) be a twice continuously differentiable

parametric function.

a. If h(µ
˜
, t) has an unbiased estimate g(X

˜
), then h must satisfy the heat equation ∂

∂th =
1
2∆µh.

b. Conversely, if h satisfies the heat equation and if lim
t→0+

h(µ
˜
, t) = g(µ

˜
) exists, then

g(X
˜

) is an unbiased estimate of h provided E(g(X
˜

)) exists.
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Corollary 1.

a. Let h = h(µ
˜
) be a twice continuously differentiable function of µ

˜
. h is unbiasedly

estimable only if h is harmonic, in which case it is self-estimable, i.e., E(h(X
˜

)) = h(µ
˜
),

provided E(h(X
˜

)) exists.

b. Let h = h(µ
˜
) be a twice continuously differentiable function of µ

˜
. Suppose h is

unbiasedly estimable. Then,

i. If h is radial, i.e., h = h(||µ
˜
||), then h must be a constant;

ii. If h is bounded, then h must be a constant;

iii. If h is integrable, then h ≡ 0;

iv. If |h(µ
˜
)| ≤ a + b||µ

˜
|| for some a, b ≥ 0, then h must be linear; similarly, if

|h(µ
˜
)| ≤ a+ b||µ

˜
||2 for some a, b ≥ 0, then h must be a quadratic.

c. Let h = h(t) be once continuously differentiable. h is unbiasedly estimable only if it

is a constant function.

d. Let p = 1 and let h = h(µ, t) be a function of the form f(µ+ c
√
t) for some constant

c 6= 0. If f is twice continuously differentiable and f ′(0) 6= 0, then h is not unbiasedly

estimable. In particular, the quantiles of X are not unbiasedly estimable.

e. Let p = 1 and let h = h(µ, t) be a bivariate polynomial in the mean µ and the

standard deviation
√
t (i.e., h(µ, t) =

k∑
j=0

cjµ
j(
√
t)k−j for some k and constants cj).

Then h(µ, t) is unbiasedly estimable if and only if h(µ, t) is a multiple of E(Xk).

Proof:

a. This follows form part a. of Theorem 3, for ∂
∂th = 0, and hence ∆µh = 0. On the

other hand, lim
t→0+

h(µ
˜
) = h(µ

˜
) and so h is self-estimable.

b. For i. by part a., it follows that the function h(·) must satisfy the differential equation

h′′(z) + (p− 1)h′(z)
z = 0 at all z > 0 if h(||µ

˜
||) is unbiasedly estimable.

For p = 2, this makes h(z) = a log z + b for z > 0 and for p ≥ 3, this makes

h(z) = az2−p + b for z > 0, and so one cannot have h(||µ
˜
||) to be in C2(Rp) unless h is a

constant.
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ii. follows from part a. and the fact that the only bounded harmonic functions are

constants;

iii. note that an integrable harmonic function must be identically zero; see Rudin

(1974) and also Proposition 8.1 in Axler, Bourdon and Ramey (1992).

Finally, for iv., by taking A = max (a, b), we have, respectively, |h(µ
˜
)| ≤ A(1 + ||µ

˜
||i), i =

1, 2, and the assertion follows from the fact that a harmonic function with this property is

necessarily a polynomial of degree i (e.g., see Axler, Bourdon and Ramey (1992)).

c. Again, as ∆µh = 0 now, ∂
∂th is also 0.

d. Suppose f(µ+ c
√
t) was unbiasedly estimable. By Theorem 3,

c

2
√
t
f ′(µ+ c

√
t) =

∂

∂t
h = hµµ = f ′′(µ+ c

√
t)

⇒ cf ′(µ+ c
√
t) = 2

√
tf ′′(µ+ c

√
t). (10)

Consider now (µ, t) lying on the one-dimensional curve µ = −c√t. Then, from (10),

cf ′(0) = 2
√
tf ′′(0). This forces f ′′(0) to be not 0, implying t to be (cf ′(0))2

4(f ′′(0))2 , a constant,

thus a contradiction.

Remark: Since the quantiles of X are of the form µ + Φ−1(p)
√
t for some p, it follows

that they are not unbiasedly estimable.

e. Let h(µ, t) =
k∑

j=0

cjµ
j(
√
t)k−j be unbiasedly estimable and suppose without loss of

generality that ck = 1. By Theorem 3,

∂

∂t
h =

k

2
c0t

k
2−1 + c1

k − 1
2

t
k−3
2 µ+

k∑
i=2

ciµ
i k − i

2
(
√
t)k−i−2

=
1
2
∂2

∂µ2
h

=
1
2

k−2∑
i=0

(i+ 1)(i+ 2)ci+2µ
i(
√
t)k−i−2. (11)

By comparing coefficients of the powers of µ on the two sides of (11), one gets ck−1 =

ck−3 = . . . = 0 and ck−2j = (k−2j+1)(k−2j+2)
2j ck−2j+2, j ≥ 1. As ck = 1, it follows

8



that ck−2j = k!
(k−2j)!2jj! =

(
k
2j

) (2j)!
2jj! =

(
k
2j

)
E(X−µ√

t
)2j(

√
t)2j . Hence, h(µ, t) = E(Xk) if

ck = 1.

Remark. Theorem 3 is easily generalized to the case X
˜
∼ Np(µ

˜
, tΣ0). For instance, h(µ

˜
)

is unbiasedly estimable if and only if h(Σ
1
2
0 µ˜

) is harmonic.

The next result uses identity (6).

Theorem 4. Let c,m > 0 and suppose X ∼ N(µ, ct), Y ∼ tχ2(m), and X,Y are

independent. Let h(µ, t) be twice continuously differentiable in µ and once in t.

a. If h(µ, t) = h(µ), then it is unbiasedly estimable by a function g(X) of X alone if and

only if h is linear in µ.

b. If h(µ, t) = h(µ), then it can be unbiasedly estimated by the extended class of functions

g1(X) + g2(Y ) if and only if h is a quadratic in µ. Furthermore, g1(X) has to be a

quadratic in X and g2(Y ) has to be linear in Y .

c. If h(µ, t) = h1(µ) + h2(t), then it can be unbiasedly estimated by a function g1(X) +

g2(Y ) only if h1 is a quadratic in µ. Furthermore, g1(X) has to be a quadratic in X,

but there is no further constraint on g2(Y ).

Proof: For each part, the key step is to rewrite the canonical normal identity (6) as

∂

∂t
E(g(X,Y ) =

c

2
∂2

∂µ2
E(g(X,Y )) +

1
t
E(Y

∂

∂Y
g(X,Y )). (12)

a. This is an immediate consequence of the above identity (12).

b. Again, by (12),

0 =
c

2
h′′(µ) +

1
t
E(Y g′2(Y ))

⇒ 1
t
E(Y g′2(Y )) = − c

2
h′′(µ). (13)

The RHS of (13) is a function of µ and the LHS a function of t. Consequently, each

side is a constant function, which shows h to be a quadratic.

Hence, from (13) again, E(Y g′2(Y )) = at for some constant ‘a’, which by standard

completeness arguments forces g′2(Y ) to be a constant.

9



Now, therefore, for constants α, β, γ, η, δ,

h(µ) = αµ2 + βµ+ γ = E(g1(X)) + E(δY + η), (14)

and hence g1(X) is a quadratic in X by another completeness argument.

c. The proof of this is quite similar to that of b. and we shall omit it.

4. ANALYSIS OF THE HEAT EQUATION IDENTITY

The heat equation identity (1) of Section 2 says that under certain conditions on a

function g(x
˜
), ∂

∂tE(g(X
˜
, µ
˜
)) = 1

2E(∆xg(X
˜
, µ
˜
)) if X

˜
∼ Np(µ

˜
, tI). Stein (1981) showed that

for a vector-valued function h
˜
(x
˜
, µ
˜
)) satisfying certain conditions, E((X

˜
− µ

˜
)′h

˜
(X
˜
, µ
˜
)) =

tE(∇·h
˜
(X
˜
, µ
˜
)) if X

˜
∼ Np(µ

˜
, tI); this is known as Stein’s identity. It is known that Stein’s

identity characterizes the normal distribution in an appropriately precise sense; one may

see Diaconis and Zabell (1991). The following two questions, therefore, emerge naturally:

Question 1. Does the heat equation identity characterize the normal distribution in any

precise sense?

Question 2. Is there a connection between Stein’s identity and the heat equation identity?

We shall now address these two questions.

4.1. Characterization of the Normal Distribution

The characterization results below are for the one dimensional case. For part a.,

extension to the multivariate spherically symmetric case is apparent. For part b., however,

we do not presently have a multivariate analog.

Theorem 5. Let Cm(R) be the class of m times continuously differentiable functions and

C∞
0 (R) be the class of infinitely differentiable functions with compact support.

a. Suppose X has a location scale parameter density 1√
t
p(x−µ√

t
) and p(·) is in C2(R).

Suppose the heat equation identity d
dtE(g(X)) = 1

2E(g′′(X)) holds for all g in C∞
0 (R).

Then p(x) = 1√
2π
e−

x2
2 .

b. Let X ∼ p(x|t) = e−
T (x)

t β(t)h(x), where h(x) > 0, T (x) ≥ 0, t > 0, β belongs to

C1(R), and the functions T, h belong to C2(R). Suppose d
dtE(g(X)) = 1

2E(g′′(X)) for

all g in C∞
0 (R). Then p(x|t) is the density of N(µ, t) for some constant µ.

10



Proof:

Step 1. We shall take µ to be 0.

a. Let g be an element of C∞
0 (R). By hypothesis,

2
d

dt
Eg(X) = −2

∫
g(x)

{
1

2t3/2
p

(
x√
t

)
+

x

2t3/2

1√
t
p′

(
x√
t

)}
dx

= Eg′′(X)

=
∫
g′′(x)

1√
t
p

(
x√
t

)
dx ∀t > 0

Step 2. Therefore,

−
∫
g(x)

{
1
t
p

(
x√
t

)
+

x

t3/2
p′

(
x√
t

)}
dx

=
∫
g′′(x)p

(
x√
t

)
dx

=
∫
g(x)

1
t
p′′

(
x√
t

)
dx (on integration by parts) ∀t > 0. (15)

Hence, by using t = 1,
∫
g(x){p′′(x) + xp′(x) + p(x)} = 0 for all g in C∞

0 (R)

⇒ p′′(x) + xp′(x) + p(x) = a.e. (and hence everywhere) (16)

Step 3. One solution of (16) is p1(x) = φ(x) = 1√
2π
e−

x2
2 . By a direct application

of Abel’s identity (see, e.g., pp. 1132 in Gradsheyn and Ryzhik (1980)) one sees that

a second linearly independent solution is p2(x) = φ(x)
x∫
0

e
u2
2 du. Hence the general

solution of (16) is of the form φ(x)(a+ b
x∫
0

e
u2
2 du), of which only the case a = 1, b = 0

corresponds to a probability density. This completes part a.

b. Step 1. Following the first few lines of part a., one gets after some algebra,

h(x)(T ′(x))2 − tT ′′(x)h(x) − 2tT ′(x)h′(x) + t2h′′(x)

= 2h(x)T (x) + 2t2
β′(t)
β(t)

h(x) ∀t,∀x. (17)
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Step 2. On letting t→ 0, one therefore gets:

(T ′(x))2 − 2T (x) = 0, (18)

and hence T (x) = (x−µ)2

2 for some constant µ

Step 3. Substituting T (x) = (x−µ)2

2 in (17) and setting x = µ, one now gets:

−th(µ) + t2h′′(µ) = 2t2
β′(t)
β(t)

h(µ) ∀t > 0

⇒ 2t
β′(t)
β(t)

= t
h′′(µ)
h(µ)

− 1 ∀t > 0. (19)

Step 4. From (19), it follows on separation of variables that it must be the case that

h′′(µ) = 0 and consequently, β′(t)
β(t) = − 1

2t , i.e., β(t) = k√
t

for some constant k.

Step 5. Since we already have T (x) = (x−µ)2

2 , this now forces h(x) to be a constant and

p(x|t) to be the N(µ, t) density. This completes b.

4.2. Relation to the Stein Identity

We now show that the heat equation identity (1) is equivalent to Stein’s identity in one

dimension and in more than one dimension, they are equivalent if Stein’s h
˜
(x
˜
, µ
˜
) function

is the gradient ∇g of some function g.

Theorem 6.

a. For every p ≥ 1, Stein’s identity ⇒ Identity (1).

b. For p = 1, Identity (1) ⇒ Stein’s identity.

c. For p > 1, Identity (1) ⇒ Stein’s identity if Stein’s h
˜
(x
˜
, µ
˜
) = ∇xg(x

˜
, µ
˜
) for some g

satisfying the growth conditions in part a. of Theorem 1.

Proof:

a. The proof given here is for p = 1, but with just a notational change, the same proof

works for p > 1.

Step 1. Given g as in identity (1), define h(x, µ) = gx(x, µ). Then by Stein’s identity,

tE(gxx(X,µ)) = tE(hx(X,µ)) = E((X − µ)h(X,µ)). (20)

12



Step 2. However,

E((X − µ)h(X,µ))

=
∫

(x− µ)
1√
2πt

e−
1
2t (x−µ)2gx(x, µ)dx

=
√
t

∫
1√
2π
ze−

1
2 z2

gx(µ+ z
√
t, µ)dz, (21)

by a change of variable.

Step 3. Write (21) as

2t
∫

1√
2π
e−

z2
2
∂

∂t
g(µ+ z

√
t, µ)dz = 2t+

∂

∂t

∫
1√
2π
e−

z2
2 g(µ+ z

√
t, µ)dz (22)

Step 4. Now, make the change the change of variable back to x = µ + z
√
t, yielding

(22)= 2t ∂
∂tE(g(X,µ)), hence establishing identity (1).

b. Step 1. Given h as in Stein’s identity, define g(x, µ) =
x∫
0

h(u, µ)du.

Step 2. Thus, E(g(X))

=

∞∫
0

x∫
0

1√
2πt

e−
(x−µ)2

2t h(u)dudx−
0∫

−∞

0∫
x

1√
2πt

e−
(x−µ)2

2t h(u)dudx

=

∞∫
0

∞∫
u

1√
2πt

e−
(x−µ)2

2t h(u)dxdu−
0∫

−∞

u∫
−∞

1√
2πt

e−
(x− µ)2

2t
h(u)dxdu

=

∞∫
0

{
1 − Φ

(
u− µ√

t

)}
h(u)du−

0∫
−∞

Φ
(
u− µ√

t

)
h(u)du. (23)

Step 3. By the heat equation identity,

d

dt
E(g(X)) =

1
2
E(gxx(X))

=
1
2
E(hx(X)). (24)
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Step 4. Therefore, by (23),

1
2
E(hx(X)) =

d

dt

[ ∞∫
0

{
1 − Φ

(
u− µ√

t

)}
h(u)du−

0∫
−∞

Φ
(
u− µ√

t

)
h(u)du

]

=

∞∫
−∞

u− µ

2t3/2
φ

(
u− µ√

t

)
h(u)du, (25)

on differentiation.

But (25) = 1
2tE((X − µ)h(X)), yielding Stein’s identity.

c. The same argument as in part b. applies on using the multivariate analog of the

fundamental theorem of calculus, i.e., if x
˜
ε R

p, if h
˜

= ∇g for some g in C1(Rp), and if

σ : [0, 1] → R
p is a C1 path joining 0

˜
and x

˜
, then the line integral of h along σ satisfies∫

σ

h · dS = g(σ(1) − σ(0)) (see, e.g., Marsden and Tromba (1996)).

5. FIRST APPLICATIONS OF THE HEAT EQUATION IDENTITY

We now provide a few applications of identity (1). First we present a moment formula.

5.1. A General Moment Formula

The moment formula given immediately below is for a function g(x
˜
, µ
˜
) when

X
˜

∼ Np(µ
˜
, tI), p ≥ 1. Since the moment formula is derived from the heat equation

identity, g has to meet the assumptions of that identity. g has to satisfy one additional

technical assumption that will almost always hold in applications.

Proposition 1. Let X
˜
∼ Np(µ

˜
, tI), p ≥ 1. Let g(x

˜
, µ
˜
) satisfy the assumptions of identity

(1) and in addition assume that E(|∆xg(X
˜
, µ
˜
)|) <∞. Then

E(g(X
˜
, µ
˜
)) = g(µ

˜
, µ
˜
) + e(µ

˜
, t),

where e(µ
˜
, t) = eg(µ

˜
, t) =

1
4π

p
2

∫
(∆xg)||x

˜
− µ

˜
||2−pΓ(

p

2
− 1,

||x
˜
− µ

˜
||2

2t
)dx

˜
. (26)

Proof:

Step 1. By identity (1), for s > 0, ∂
∂sEµ˜

,s(g(X
˜
, µ
˜
)) = 1

2Eµ˜
,s(∆xg) and it follows that for

every fixed µ
˜
, ∂

∂sEµ˜
,s(g(X

˜
, µ
˜
)) is continuous in s. Therefore it can be integrated to yield,

14



by the Fundamental Theorem of calculus:

Eµ
˜

,t(g(X
˜
, µ
˜
)) − g(µ

˜
, µ
˜
)

=

t∫
0

∂

∂s
Eµ

˜
,s(g(X

˜
, µ
˜
))ds

=
1
2

t∫
0

Eµ
˜

,s(∆xg)ds. (27)

Step 2. Now,

t∫
0

Eµ
˜

,s(∆xg)ds

=

t∫
0

∫
1

(2πs)
p
2
e−

1
2s ||x˜

−µ
˜
||2(∆xg)dx

˜
ds

=
1

(2π)
p
2

∫
(∆xg)

t∫
0

e−
1
2s ||x˜

−µ
˜
||2

sp/2
dsdx

˜
. (28)

It is for this application of Fubini’s theorem that the additional assumption E|∆xg| < ∞
is needed.

Step 3. Now if one transforms s to say u = 1
s in the inner integral, then formula (26)

follows after a few lines of algebra.

5.2. Reduction to Useful Forms

We will now show that the general moment formula (26) reduces to more useful forms.

The reduction presented below is as follows:

a. for p =1,2, and 3, formula (26) will be used to establish a lower as well as an upper

bound on E(g(X
˜
, µ
˜
)) for general g as in Proposition 1. Among the immediate appli-

cations of these bounds are an improvement as well as a reversal of Jensen’s inequality

for convex functions;
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b. for p ≥ 4, formula (26) will in fact be reduced to a considerably more useful exact

form if p is even. This latter exact formula (formula (38) below) for E(g(X
˜
, µ
˜
)) is

a surprising reduction and leads to lower and upper bounds again. The case of odd

p ≥ 5 will not be reported here, but the bounds (slightly complex) can be obtained

similarly.

5.2.1. A Technical Lemma

Lemma 1. Let z > 0.

a. For p ≤ 3,Γ
(

p
2 − 1, z

)
≥ e−zz

p
2 −1

z+2− p
2

; (29)

b. For p = 1,Γ
(

p
2 − 1, z

)
≤ 2e−z

√
z

; (30)

For p = 2,Γ
(

p
2 − 1, z

)
≤ e−z(1 + |log z|); (31)

For p = 3,Γ
(

p
2 − 1, z

)
≤ e−z

√
z
; (32)

c. If p ≥ 4 and is even, Γ
(

p
2 − 1, z

)
=

(
p
2 − 2

)
!e−z

p
2−2∑
i=0

zi

i! . (33)

Proof:

a. Use the representation that for α < 1,

Γ(α, z) =
e−zzα

Γ(1 − α)

∞∫
0

e−tt−α

z + t
dt (34)

(e.g., see pp. 941 in Gradsheyn and Ryzhik (1980))

= e−zzα · E
(

1
T + z

∣∣∣∣T ∼ Gamma(1 − α)
)

≥ e−zzα

E(T ) + z
=

e−zzα

z + 1 − α
.

b. The case p = 1 is immediate.
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If p = 2,Γ(p
2 − 1, z) =

∫ ∞
z

e−t

t dt. If z ≥ 1, this is evidently ≤ e−z. If z < 1,

∞∫
z

e−t

t
dt =

1∫
z

e−t

t
dt+

∞∫
1

e−t

t
dt

≤ e−z · |log z| +
∞∫
1

e−t

t
dt

= e−z|log z| + e−z · ez

∞∫
1

e−t

t
dt

≤ e−z|log z| + e−z · e ·
∞∫
1

e−t

t
dt

≤ e−z(|log z| + 1).

For p = 3, Γ(p
2 − 1, z) =

∞∫
z

e−t√
t
dt ≤ e−z√

z
(see inequality (1.05) on pp. 67 in Olver (1997)).

c. This is just a well known representation of the Poisson CDF.

5.2.2. Upper and Lower Bounds

We provide below upper bounds on E(g(X
˜
, µ
˜
)) for fairly general smooth functions

and lower bounds if the function g is subharmonic, i.e, ∆xg ≥ 0 (convex for p = 1).

The interesting thing is that the bounds only involve the second order derivatives and yet

they are not Taylor expansion results: normality is definitely playing a role. Also, the

bounds for p = 1 provide a reversal as well as an improvement of Jensen’s inequality for

expectations of convex functions; the reversal is part a. and the improvement is in part b.

Proposition 2. Let X
˜
∼ Np(µ

˜
, tI), p ≥ 1, and let g(x

˜
, µ
˜
) be any function as in Proposi-

tion 1.

a. If p = 1,

E(g(X,µ)) ≤ g(µ, µ) + t · E(|gxx(X,µ)|). (35)

If p = 2,

E(g(X
˜
, µ
˜
)) ≤ g(µ

˜
, µ
˜
) +

t

2
· E

(∣∣∣∣∆xg

(
X
˜
, µ
˜

)∣∣∣∣
(

1 +
∣∣∣∣log

||X
˜
− µ

˜
||2

2t

∣∣∣∣
))

. (36)
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If p = 3

E(g(X
˜
, µ
˜
)) ≤ g(µ

˜
, µ
˜
) + t · E

( |∆xg(X
˜
, µ
˜
)|

||X
˜

−µ
˜
||2

t

)
. (37)

If p ≥ 4 and is even one has the equality

E(g(X
˜
, µ
˜
)) = g(µ

˜
, µ
˜
) + t ·

(
p

2
− 2

)
!

{ p
2−1∑
j=1

2j−1

(p
2 − j − 1)!

E

(
∆xg(X

˜
, µ
˜
)(

||X
˜

−µ
˜
||2

t

)j

)}
(38)

b. If p = 1 and g is known to be convex,

E(g(X,µ)) ≥ g(µ, µ) + t · E
(
gxx(X,µ)
(X−µ)2

t + 3

)
. (39)

If p = 2 and g is subharmonic,

E(g(X
˜
, µ
˜
)) ≥ g(µ

˜
, µ
˜
) + t · E

(
∆xg(X

˜
, µ
˜
)

||X
˜

−µ
˜
||2

t + 2

)
. (40)

If p = 3 and g is subharmonic,

E(g(X
˜
, µ
˜
)) ≥ g(µ

˜
, µ
˜
) + t · E

(
∆xg(X

˜
, µ
˜
)

||X
˜

−µ
˜
||2

t + 1

)
. (41)

Proof: The bounds for p = 1, 2, 3 and the equality of p ≥ 4 all follow on combining

the basic moment formula (26) with Lemma 1; we therefore omit the calculational

details.

5.2.3. Two Short Examples

Although the more substantive applications are postponed till later sections, we will

present two examples briefly to create a context for the bounds of Proposition 2.

Example 1. Marginal Density in Bayesian Statistics.

Suppose X
˜
∼ Np(µ

˜
, tI) and we want to estimate µ

˜
. A recently popular prior is the t-prior

with density

π(µ
˜
) =

Γ(α+p
2 )

(απ)p/2Γ(α
2 )

1

(1 + µ
˜

′µ
˜α )

α+p
2

; (42)
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see Berger (1986).

The marginal density of X
˜

is

m(x
˜
) =

∫
1

(2πt)
p
2
e−

||x
˜

−µ
˜

||2
2t π(µ

˜
)dµ

˜
, (43)

which is therefore E(π(Y
˜
)) when Y

˜
∼ Np(x

˜
, tI). π(·) has all the properties needed and so

Proposition 2 is applicable. For instance, for specificity if we choose α = 1 (i.e., the prior

is a Cauchy prior) and p = 3, then on calculations, the Laplacian of π is 12(µ
˜

′µ
˜
−1)

π2(1+µ
˜

′µ
˜

)4 . And

so, if we apply (37), then we have, uniformly in x
˜
,m(x

˜
) ≤ π(x

˜
) + 12t

π2 , a simple bound (of

the correct order).

Example 2. Improving on Jensen’s Inequality. Of course, in general, for a convex

function g, one only can assert that E(g(X)) ≥ g(E(X)). (39) says that due to normality,

we can say more. To be specific take Z ∼ N(0, 1) and a symmetric convex function

g(z) = f(z2). Thus, g′′(z) = 2(f ′(z2) + 2z2f ′′(z2)). So if f ′(t) ≥ a ≥ 0 and f ′′(t) ≥ b ≥ 0,

then g′′(z) ≥ 2(a+ 2bz2) and so, if we apply (39), then we get

E(g(Z)) ≥g(0) + 2E
a+ 2bZ2

Z2 + 3

= g(0) + 4(b+ (φ(
√

3) − 1)e
3
2

√
π

6
(66 − a))

= g(0) + .54a+ .766, (44)

as can be seen by exact computation of E( 1
W+k ) for a chi-square (1) random variable W .

This is a significant improvement over what we can get from Jensen’s inequality.

6. APPLICATION TO DECISION THEORY

The heat equation identity (1) and the canonical normal identity (6) are now used to

provide some applications to decision theory.

i) We prove, by using the canonical normal identity, the inadmissibility of X
˜

for

estimating the location parameter of a multivariate t distribution in 3 or more

dimensions. Along the way, we show that Stein’s identity for the normal distri-

bution holds as an inequality for t distributions and his unbiased estimate of risk

is now an upwardly biased estimate of risk, under a condition.
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ii) We show that the heat equation identity produces a totally new proof of a Bayes risk

lower bound previously derived using altogether different means.

6.1. A Stein-Inequality for t Distributions

Diaconis and Zabell (1991) showed that the identity E((X − µ)h(X)) = E(h′(X))

cannot hold for all C1
c (R) functions except when X ∼ N(µ, 1). Interestingly, the inequality

E((T − µ)h(T )) ≥ m
m−1E(h′(T )) does hold if T ∼ t(µ,m) and if h(·) is monotone nonde-

creasing, as we show below. In fact, we give a multidimensional version. This can be called

a Stein inequality for t distributions. The previously derived identity (6) is the key. We

shall also see how an upwardly biased estimate of risk and thence certain inadmissibility

results follow from this inequality. It should be remarked that inequality (46) below can

be derived from Stein’s identity itself.

Lemma 2. Let Z
˜
∼ Np(0

˜
, t

nI), n, p ≥ 1, Y ∼ tχ2(m),m+p > 2, and suppose Y and Z
˜

are

independent. Let T0 =
√

mnZ
˜√

Y
. Suppose h

˜
: R

p → R
p has the following properties:

i h
˜

= ∇f for some scalar function f

ii ∇ · h =
p∑

i=1

∂
∂xi

hi(x
˜
) ≤ 0.

a Then, E(T
˜
′
0h˜

(T
˜

o)) ≤ m
m+p−2E(∇ · h

˜
(T
˜

0)). (45)

b If for a given µ
˜
, T
˜

= T
˜

0 + µ
˜
, where T

˜
0 is as defined above, then,

E((T
˜
− µ

˜
)′h

˜
(T
˜
)) ≤ m

m+ p− 2
E(∇ · h

˜
(T
˜
)). (46)

Proof: The proof uses the multidimensional version of the canonical normal identity

(6). In the notation of the present lemma, the multidimensional version is:

Step 1. If a scalar function g(z
˜
, y) is twice continuously differentiable in z

˜
and once in

y, and if g,∇zg are each O(ea||z
˜
||yk) for some 0 ≤ a, k <∞, then

∂

∂t
E(g(Z

˜
, Y )) =

1
2n
E(∆zg(Z

˜
, Y )) +

1
t
E((Y )gy(Z

˜
, Y )). (47)

Step 2. Let h
˜

and f be as in the statement of the lemma, i.e., h
˜

= ∇f . For this f , define

a function g(z
˜
, y) as g(z

˜
, y) = f(

√
mn
√

y
z
˜
). The multivariate identity (47) will be applied to
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this g. Note that the distribution of g does not depend on t, and so ∂
∂tE(g(Z

˜
, Y )) = 0.

Step 3. In a straightforward manner,

∆zg(z
˜
, y) =

mn

y
∇ · h

˜
(t
˜
0),

and gy(z
˜
, y) = − 1

2y

p∑
i=1

t0ihi(t
˜
0), (48)

where we have used t
˜
0 to denote

√
mnz

˜√
y

.

Step 4. Therefore, by identity (47),

E

( p∑
i=1

T0ihi(T
˜

0)
)

= mt · E
(∇ · h

˜
(T
˜

0)
Y

)
. (49)

Step 5. Treating t as a parameter as merely a technical device, we see that Y +nZ
˜
′Z
˜

is a

complete sufficient statistic for t, and so by Basu’s (1956) theorem, T0 and Y + nZ
˜
′Z
˜

are

independent.

Hence,

E

( p∑
i=1

T0ihi(T
˜

0)
)

= mt · E
(∇ · h

˜
(T
˜

0)
Y

)

≤ mt · E
( ∇ · h

˜
(T
˜

0)
Y + nZ

˜
′Z
˜

)

(since by assumption ∇ · h
˜
≤ 0)

= mt · E(∇ · h
˜
(T
˜

0)) · E
(

1
Y + nZ

˜
′Z
˜

)

=
m

m+ p− 2
E(∇ · h

˜
(T
˜

0)), (50)

where the last line is a consequence of the χ2(m+ p) distribution for
Y +nZ

˜
′Z
˜t .

(50) proves part a of Lemma 2. Part b follows from part a.

Corollary 3. Let f : R
p → R

1 be superharmonic and define h = ∇f . Then

E((T
˜
− µ

˜
)′h

˜
(T
˜
)) ≤ m

m+ p− 2
E(∇ · h

˜
(T
˜
)).
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Corollary 3 increases the applicability of Lemma 2 by demonstrating how to construct

the function h
˜

as in Lemma 2. Its proof is just a restatement of the Laplacian property

∆f ≤ 0.

6.2. Proving Inadmissibility from Biased Estimates of Risk

Lemma 2 and Corollary 3 permit construction of an upwardly biased estimate of the

risk of an estimate T
˜

+ h
˜
(T
˜
) of the location parameter µ

˜
, analogous to Stein’s unbiased

estimate of risk in the normal case. The biased estimate converges pointwise to Stein’s

unbiased estimate as the degrees of freedom, m, of T tend to infinity. By suitable selection

of the function h
˜
(T
˜
), uniform domination over T

˜
still follows, although the risk estimate

is biased.

Explicit estimates dominating T
˜

for p ≥ 3 are known; however, unlike the common

methods that use the mixture structure (normal mixture) and covariance inequalities,

Lemma 2 permits one to follow a more direct route squarely in the spirit of Stein (1981) for

the normal case; see Cellier and Fourdrinier (1995, Proposition 2.3.1) for another context.

In addition, the famous Stein superharmonicity result for the normal case also follows for

the t case for all p ≥ 3.

Proposition 3. A Biased Estimate of Risk. Let T
˜
∼ tp(m,µ

˜
) and let h

˜
(T
˜
) be any

function satisfying inequality (46). For m > 2,

E(||T
˜

+ h
˜
(T
˜
) − µ

˜
||2) − E(||T

˜
− µ

˜
||2)

≤ E(||h
˜
||2 +

2m
m+ p− 2

∇ · h). (51)

Proposition 3 is evident because h
˜

is assumed to satisfy inequality (46). The domination

result to follow from this is given next.

Proposition 4. Let T
˜
∼ tp(m,µ

˜
), p ≥ 3,m > 2. Let h

˜
= ∇f for some scalar function f

and suppose ||h
˜
||2 + 2m

m+p−2∇ · h
˜
≤ 0. Then T

˜
+ h

˜
(T
˜
) dominates T

˜
in risk for all µ

˜
. In

particular, the following special results hold:

a. An estimate of the form (1− r(||T ||2)
||T ||2 )T

˜
dominates T

˜
if r(·) is differentiable, monotone

nondecreasing, and 0 ≤ r(z) ≤ 2m
m+p−2 (p− 2), or more generally, if

r2(z) − 2m
m+ p− 2

(p− 2)r(z) − 4m
m+ p− 2

zr′(z) ≤ 0,
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for all z > 0;

b. An estimate of the form T
˜

+ ∇ log m(T
˜
) dominates T

˜
if m : R

p → R
1 is a positive

superharmonic function.

Proof: The general statement that T
˜

+ h
˜
(T
˜
) dominates T

˜
if h

˜
= ∇f and

||h
˜
||2 + 2m

m+p−2∇ · h ≤ 0 is an immediate consequence of Proposition 3 and Lemma 2.

The special cases a and b both follow on calculation of ||h
˜
||2 + 2m

m+p−2∇ · h
˜

for h
˜
(T
˜
) of the

respective forms in a and b; we omit the calculation.

Discussion

Evidently, the condition ||h
˜
||2 + 2m

m+p−2∇ · h
˜
≤ 0 is a stronger condition than ||h

˜
||2 +

2∇·h
˜
≤ 0. On the other hand, Proposition 4 does not make additional other assumptions,

as in Brandwein and Strawderman (1990, pp. 363 and 1991, Theorem 2.1 and Example

2.1). Another positive feature is that the Stein superharmonicity result for the normal

case is given for the t case also (part b. in Proposition 4) for p ≥ 3.

Most of all, the route adopted is directly in the spirit of Stein. So, on balance, there

are both pros and cons of the methods presented here.

6.3. Application to Bayesian Statistics

The heat equation identity can be usefully exploited to study Bayes risks in point

estimation problems. Specifically, (1) leads to identities and bounds for Bayes risks. The

Bayes risk identities relate the Bayes risk to oscillations of the Bayes estimate; the Bayes

risk bounds show methods to bound the Bayes risk from below by expressions similar to

those in the now classic Borovkov–Brown–Gajek–Sakhanienko lower bounds for Bayes risk.

In fact, as we shall see, in one case our lower bound is exactly the one previously obtained

by these authors, by entirely different methods.

6.3.1. A Bayes Risk Identity

Proposition 5. Let X
˜

∼ Np(µ
˜
, tΣ), p ≥ 1, and suppose µ

˜
has a prior G with posterior

mean δG. Then the Bayes risk r(t, G) = r(t, G, δG) of the Bayes estimate δG satisfies the
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identity
d

dt
r(t, G) = Em[

p∑
k=1

(∇δG,k)′Σ(∇δG,k)], (52)

where δG,k is the kth coordinate of δG and Em denotes marginal expectation.

Corollary 4. Let X ∼ N(µ, t) and let µ ∼ G. Then the Bayes risk r(t, G) satisfies

d

dt
r(t, G) = Emδ

′
G(X)2. (53)

Since the proof of (52) is essentially the same as that of (53), we will only prove

Corollary 4.

Proof of Corollary 4: Consider the function g(x, µ, t) = (δG(x, t) − µ)2. By the

expectation identity (1),

d

dt
r(t, G) =

d

dt

∫
Eµ(g(X,µ, t))dG(µ)

=
1
2
EGEµ(g′′x(X,µ, t)) + 2

∫ ∫
(δG(x, t) − µ)

∂

∂t
δG(x, t)p(x|µ, t)dxdG(µ);(54)

now note that the second term in (54) is zero because δG(x, t) is E(µ|x). In addition, from

the definition of g,

g′x(x, µ, t) = 2(δG(x, t) − µ)δ′G(x, t)

⇒ g′′x(x, µ, t) = 2(δ′G(x, t))2 + 2(δG(x, t) − µ)δ′′G(x, t).

Of these, EGEµ((δG(X, t)−µ)δ′′G(X, t)) = 0 again, and so from (54), d
dtr(t, G) = Em(δ′G(X, t))2.

Remark: A minor but immediate consequence of Proposition 5 is that for any prior G,

the Bayes risk is always an increasing function of t. Of course, this increasingness in t will

follow from simply comparison of experiments results. But Proposition 5 goes further by

laying out explicitly what d
dtr(t, G) equals, not just that it is > 0. This exact formula is

of some interest.
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6.3.2. Bayes Risk Bounds

We will now show how one can obtain lower bounds on r(t, G) by using the identity of

Proposition 5. The derivation of the bound, as we shall now see, may seem to be strange!

Not only shall we use the apparently new identity (53), but a well known old Bayes risk

identity for the normal case, namely the Brown identity for Bayes risk (Brown (1971,

1986); see also Lehmann and Casella (1998)). The proof manipulates the tautology that

if two formulas exactly represent the same quantity (in this case the Bayes risk r(t, G)),

then the expressions implied by the two formulas must be the same. As regards the lower

bound itself, perhaps the comment most worth making is that the bound is the classic

Borovkov–Brown–Gajek–Sakhanienko bound (Corollary 2.3 in Brown and Gajek (1990)),

but the method is different. For example, we never use any Cramer-Rao type inequalities

in our proof. There must be some connections, it seems. The bound in Proposition 6

below is attained when G is a normal prior.

Proposition 6 Let X ∼ N(µ, t) and let µ ∼ G. Then

r(t, G) ≥ t

1 + tI(G)
(55)

where I(G) denotes the Fisher information of G. (Note that (55) is formally valid even if

I(G) = ∞)

Proof: Step 1. The Bayes estimate δG(x) itself has the representation

δG(x, t) = x+ t
m′(x)
m(x)

⇒ δ′G(x, t) = 1 + t
m′′(x)
m(x)

− t
(m′(x))2

m2(x)
.

Note: we should write mt for m, but the ‘t’ is being suppressed
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Step 2. By Step 1 and Corollary 4,
d

dt
r(t, G)

= Em(δ′G(X, t))2

≥ [Em(δ′G(X, t))]2

= (1 − tI(m))2, (as

∞∫
−∞

m′′(x)dx = 0)

where I(m) is the Fisher information of the marginal.

Step 3. The Brown identity says

r(t, G) = t− t2I(m).

Step 4. By Step 2 and Step 3,
d

dt
r(t, G)

=
d

dt
(t− t2I(m)) (Step 3)

= 1 − 2tI(m) − t2
d

dt
I(m)

≥ (1 − tI(m))2 (Step 2)

= 1 − 2tI(m) + t2I2(m)

⇒− d

dt
I(m) ≥ I2(m)

⇒ d

dt

1
I(m)

≥ 1 ∀t > 0

Step 5. Therefore, ∀t > 0,

1
I(mt)

=

t∫
0

d

ds

1
I(ms)

ds+
1

I(G)

≥ t+
1

I(G)

⇒ I(mt) ≤ I(G)
tI(G) + 1

.
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Step 6. Using the Brown identity (Step 3) again,

r(t, G) ≥ t− t2I(G)
tI(G) + 1

=
t

tI(G) + 1
,

completing the proof.

Discussion

Bounds similar to the one in Proposition 6 are obtainable by our methods for the case

X
˜
∼ Np(µ

˜
, tΣ) by using Proposition 5 and the Brown identity for r(t, G) and δG(x, t) for

the Np(µ
˜
, tΣ) case.

7. DIFFERENTIAL EQUATIONS DRIVING A MOMENT SEQUENCE

We will now show that it follows from the heat equation identity (1) that if

X ∼ N(µ, t), then for any n ≥ 1, Eµ,t((X − µ)2ng(X)) satisfies a ‘universal’ nth order

linear differential equation. Precisely, if h(t) ∆= Eµ,t(g(X)), then there exists a fixed trian-

gular array of constants {ai,n} such that a0,nt
nh(t)+a1,nt

n+1h′(t)+ . . .+an,nt
2nh(n)(t)−

E((X − µ)ng(X)) ≡ 0. A similar equation holds for Eµ,t((X − µ)2n+1g(X)). We find it

interesting that such a universal differential equation should hold at all. We then provide

some applications, in particular an application to counting perfect matchings in graph

theory.

7.1. A Universal Differential Equation

For simplicity, we present the derivation for the case µ
˜

= 0. First we state a lemma

that would be used in the derivation. This lemma is the reason that the constants {ai,n} in

the differential equation can be written explicitly, which adds to the utility of the equation.

Lemma 3. Let Hn(x) be the nth Hermite polynomial defined as

dn

dxn (e
−x2

2 ) = (−1)nHn(x)e−
x2
2 . Then xn =

[ n
2 ]∑

i=0

n!
i!(n−2i)!2iHn−2i(x).

In particular,

x2n =
n∑

i=0

(2n)!2i

(n− i)!(2i)!2n
H2i(x), (56)

27



and

x2n+1 =
n∑

i=0

(2n+ 1)!2i

(n− i)!(2i+ 1)!2n
H2i+1(x). (57)

Proof: This representation of the powers xn in terms of Hermite polynomials may be

derived from the identity given in Problem 77 in pp 389 in Szego (1975).

The differential equation is given next.

Theorem 7. Let X ∼ N(0, t).

a. Let n ≥ 1 and suppose g(2j) satisfies the heat equation identity (1) for j = 0, 1, . . . ,

n− 1. Then

Et(X2ng(X)) =
n∑

i=0

ai,nt
n+i d

i

dti
(Etg(X)), (58)

where ai,n =
(2n)!22i

2n(2i)!(n− i)!
, 0 ≤ i ≤ n;

b. Let n ≥ 1 and suppose g(2j+1) satisfies the heat equation identity (1) for j = 0, 1, . . . ,

n− 1. Then

Et(X2n+1g(X)) =
n∑

i=0

ci,nt
n+i+1 d

i

dti
(Etg

′(X)), (59)

where ci,n =
(2n+ 1)!22i

2n(2i+ 1)!(n− i)!
, 0 ≤ i ≤ n.

Proof: We will only prove part a) here as part b) is similar. Towards this end,

Et(X2ng(X))

= tnEt=1(X2ng(X
√
t))

= tn
n∑

i=0

(2n)!2i

(n− i)!(2i)!2n
Et=1(H2i(X)g(X

√
t)) (Lemma 3)

= tn
n∑

i=0

(2n)!2i

(n− i)!(2i)!2n
tiEt(g(2i)(X)) (integration by parts)

= tn
n∑

i=0

(2n)!2i

(n− i)!(2i)!2n
ti2i d

i

dti
(Etg(X)) (heat equation identity)

=
n∑

i=0

(2n)!22i

(n− i)!(2i)!2n
tn+i d

i

dti
(Etg(X)),
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as claimed.

The coefficients ai,n and ci,n as given in Theorem 7, are tabulated below for n ≤ 5 for

the user’s convenience.

Table 1

n ai,n ci,n
i 1 2 3 4 5 1 2 3 4 5

0 1 3 15 405 945 3 15 105 945 10395
1 2 12 90 840 9450 2 20 210 2520 34650
2 0 4 60 840 12600 0 4 84 1512 27720
3 0 0 8 224 5040 0 0 8 288 7920
4 0 0 0 16 720 0 0 0 16 880
5 0 0 0 0 32 0 0 0 0 32

8. APPLICATIONS IN GRAPH THEORY

The heat equation identity (3) leads to certain applications in graph theory. In the

following, we will indicate its application in counting matchings in graphs. Roughly speak-

ing, the heat equation identity gives a method to count perfect matchings in a graph

by breaking it into graphs with successively smaller numbers of vertices. If the original

graph has n vertices, then the reduced graphs have n − 2, n − 4, n − 6, . . . vertices. This

method may have some practical utility due to reduction to simpler graphs for which

counting matchings may be physically easier. Matchings in graphs appear to have been

independently reinvented a number of times in different branches of science. Important

applications have been made in statistical physics and theoretical chemistry; Godsil (1993)

describes the discovery that the properties of aromatic hydrocarbons depend on the num-

ber of matchings if a molecule is represented as a graph with the atoms as vertices and

the bonds as edges. Farrell (1979) introduced matching polynomials in the combinatorics

literature; a later exposition is Godsil and Gutman (1981). A common example of the use

of perfect matchings is assignment of a set of tasks to a set of competent individuals so

that none is assigned more that one task. First we present the definitions, notation and

certain technical facts that we will use in our derivation.
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8.1. Definitions and Notations

Definition.

a. An r-matching in a graph G with n vertices is a set of r edges no two of which have

a vertex in common. It will be denoted as p(G, r). By convention, p(G, 0) = 1.

b. The matching polynomial of a graph G with n vertices is the nth degree polynomial

µG(x) =
[ n
2 ]∑

r=0

(−1)rp(G, r)xn−2r. (60)

c. A perfect matching in a graph G with n vertices is an r-matching with r = n
2 (thus,

n has to be even). It will be denoted by ψ(G).

d. The complement of a graph G is a graph with the same vertex set as G and two

vertices sharing an edge if they did not share an edge in G. It will be denoted as G.

e. For a graphG with n vertices, and u1, . . . , ut some t ≥ 1 specified vertices, G−u1, . . . ut

is the graph with u1, . . . ut deleted from the vertex set of G.

f. A graph G with n vertices having no edges is called an empty graph. It will be denoted

as φn.

g. The complement of φn is called the complete graph on n vertices. It will be denoted

as Kn.

8.2 Certain Known Technical Facts

Below we state a collection of facts on matchings and matching polynomials that we

will use in the proof of our subsequent result. Significantly more similar facts are known

but we do not state them here; many of these can be seen in Godsil and Gutman (1981)

and Godsil (1993).

Lemma 3.

a. The matching polynomial of the disjoint union of any two graphs G and H satisfies

µG∪H(x) = µG(x)µH(x). (61)

b. For any graph G, d
dxµG(x) =

∑
u
µ

(x)
G−u. (62)
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c. For any graph G, the total number of perfect matchings in G satisfies

ψ(G) =
1

√
2π

∞∫
−∞

µG(x)e−
x2
2 dx. (63)

Remark. Formula (63) manifests the enjoyably surprising connection between matchings

in graphs and the normal distribution. It will also be a key ingredient for our result.

8.3. Perfect Matchings and the Heat Equation

The result below gives an identity relating perfect matchings in the complement of the

disjoint union of two graphs to matchings in appropriate subgraphs. Of course, there are

various other ways to express the number of perfect matchings in complement of a union

of graphs, but we will not mention them here.

Theorem 8. For some m ≥ n ≥ 1, let G be a graph on 2m vertices and H a graph on

2n vertices. Then the number of perfect matchings in the complement of G ∪H equals

ψ(G ∪H) =
n∑

i=0

2i

(2i)!
αi,n,H(Σiψ(G− u1, u2 . . . u2i)), (64)

where Σi denotes sum over all subsets of 2i vertices of G regarding identical collections

with different orderings of u1, u2, . . . , u2i as different, and

αi,n,H =
n∑

r=i

(−1)n−r (2r)!
2r(r − i)!

p(H,n− r). (65)

Proof: The principal tools for this identity on perfect matchings are Lemma 3 above and

Theorem 7 in section 7.1. Towards this end,

ψ(G ∪H) =
∫
µG∪H(x)φ(x)dx (equation (63))

=
∫
µG(x)µH(x)φ(x)dx (equation (61))

=
n∑

r=0

(−1)rp(H, r)
∫
x2n−2rµG(x)φ(x)dx (equation (60))

=
n∑

r=0

(−1)rp(H, r){
n−r∑
i=0

(2n− 2r)!22i

2n−r(2i)!(n− r − i)!
(
di

dti
EN(0,t)(µG(x)))t=1}
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(equation (58))

=
n∑

r=0

(−1)rp(H, r){
n−r∑
i=0

(2n− 2r)!22i

2n−r(2i)!(n− r − i)!
1
2i
EN(0,1)(µ

(2i)
G (x))}

(iteration of the heat equation identity (1))

=
n∑

r=0

(−1)rp(H, r){
n−r∑
i=0

(2n− 2r)!2i

2n−r(n− r − i)!(2i)!
EN(0,1)(Σiµ(x)G−u1 , . . . , u2i}

(iteration of equation (62))

=
n∑

r=0

(−1)rp(H, r){
n−r∑
i=0

(2n− 2r)!2i

2n−r(n− r − i)!(2i)!
ΣiEN(0,1)(µ(x)G−u1...u2i)}

=
n∑

r=0

(−1)rp(H, r){
n−r∑
i=0

(2n− 2r)!2i

2n−r(n− r − i)!(2i)!
Σiψ(G− u1, . . . , u2i)}

(equation (63) again)

=
n∑

i=0

2i

(2i)!
{

n−i∑
r=0

(−1)rp(H, r)
(2n− 2r)!

2n−r(n− r − i)!
}Σiψ(G− u1, . . . , u2i)

(change in order of summation)

=
n∑

i=0

2i

(2i)!
{

n∑
r=i

(−1)n−rp(H,n− r)
(2r)!

2r(r − i)!
}Σiψ(G− u1, . . . , u2i),

(change of variable)

completing the proof.

The following corollary is for the special case when H has 2 or 4 vertices.

Corollary 5.

a. If G has an even number of vertices and H has 2 vertices, then

ψ(G ∪H) = (1 − p(H, 1))ψ(G) +
∑ ∑

v 6=u

ψ(G− uv). (66)

b. If G has 2m vertices for some m ≥ 2 and H has 4 vertices, then

ψ(G ∪H) = (3 − p(H, 1) + p(H, 2))ψ(G) + (6 − p(H, 1))
∑ ∑

v 6=u

ψ(G− uv)

+
∑ ∑ ∑ ∑

z 6=w 6=v 6=u

ψ(G− uvwz). (67)
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Proof: Each part follows on some algebra from Theorem 8.
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