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Abstract

We show that for nonparametric regression if the samples have random uniform
design, the wavelet method with universal thresholding can be applied directly to
the samples as if they were equispaced. The resulting estimator achieves within a
logarithmic factor from the minimax rate of convergence over a family of Holder
classes. Simulation result is also discussed.
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1 Introduction

Wavelet shrinkage methods have been very successful in nonparametric regression. But
so far most of the wavelet regression methods have been focused on equispaced samples.
There, data are transformed into empirical wavelet coefficients and threshold rules are
applied to the coefficients. The estimators are obtained via the inverse transform of the de-
noised wavelet coefficients. The most widely used wavelet shrinkage method for equispaced
samples is the Donoho-Johnstone’s VisuShrink procedure (Donoho & Johnstone (1992),
Donoho, Johnstone, Kerkyacharian & Picard (1995)) . It has three steps:

1. Transform the noisy data via the discrete wavelet transform;

2. Denoise the empirical wavelet coefficients by “hard” or “soft” thresholding rules with
threshold A = ov/2logn.

3. Estimate function f at the sample points by inverse discrete wavelet transform of the
denoised wavelet coefficients.

This procedure is adaptive and easy to implement. The computational cost is of O(n). And
with high probability, VisuShrink estimator is at least as smooth as the target function.
The estimator produced by the procedure achieves minimax convergence rates up to a
logarithmic penalty over a wide range of function classes.

In many statistical applications, however, the samples are nonequispaced. It is shown
that the procedure might produce suboptimal estimator if it is applied directly to noneq-
uispaced samples (Cai, 1996). Wavelet methods for samples with nonequispaced designs
have been studied by Cai and Brown (1998) and Hall and Turlach (1997). Cai and Brown
(1998) introduced a wavelet shrinkage method for samples with fixed nonequispaced designs
based on approximation approach. It is shown that the estimator attains near-minimaxity
across a range of piecewise Holder classes. Hall and Turlach (1997) proposed interpola-
tion methods for samples with random designs. They used samples with random uniform
design as examples for their methods. Despite the asymptotic near-optimality for these
nonequispaced methods, the estimators are computationally much harder to implement
than VisuShrink for equispaced samples.

In the present paper, we consider the special case of samples with random uniform
design. We show that in this special case the samples can in fact be treated as if they were
equispaced. That is, the VisuShrink procedure of Donoho and Johnstone can be applied
directly to the data and the resulting estimator adaptively achieves within a logarithmic
factor of the optimal convergence rate across a range of Holder classes. Therefore, we
have a fast estimation procedure for samples with random uniform design. Simulation is
conducted to evaluate the numerical performance of the method. It is shown that the mean
squared error is comparable to that of the samples with truly equispaced designs.

In Section 2 we describe the method and state the asymptotic optimality property of the
estimator. Section 3 summarizes the simulation results. Some relevant results on wavelet
approximation is presented in Section 4. Section 5 contains a concise proof of the main
results.



2 Methodology

2.1 Wavelets

Let ¢ and v denote the orthogonal father and mother wavelet functions. The functions ¢
and 1 are assumed to be compactly supported with associated discrete wavelet transform
W. Assume 1) has r vanishing moments and ¢ satisfies [¢ = 1. Let

djr(z) = WP x — k), Yin(r) = W2 — k).
And denote the periodized wavelets

?k(x) = Z ¢3k($ — 1), fk(ﬂf) = Z ¢]k(33 — 1) for z €0,1].

ez ez

For the purposes of this paper, we use the periodized wavelet bases on [0, 1]. The collection
{qﬁ?ok,k = 1,..,20; ;’k,j > jo,k = 1,...,27} constitutes such an orthonormal basis of
L»[0,1]. Note that the basis functions are periodized at the boundary. The superscript
“p” will be suppressed from the notations for convenience. This basis has an associated
exact orthogonal Discrete Wavelet Trasnform (DWT) that transforms data into wavelet
coefficient domains.

For a given square-integrable function f on [0, 1], denote

Eiw = (f, djn) O = (f, Vi)

So the function f can be expanded into a wavelet series:

270 oo 27
f) =" Eoudior() + D D Outhu(x). (1)
k=1 j=jo k=1

Wavelet transform decomposes a function into different resolution components. In (1),
&jor are the coefficients at the coarsest level. They represent the gross structure of the
function f. And 0;;, are the wavelet coefficients. They represent finer and finer structures
of the function f as the resolution level j increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian
noise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DW'T
allows us to transform the problem in the function domain into a problem in the sequence
domain of the wavelet coefficients with isometry of risks.

2.2 The Estimator

Consider the nonparametric regression model:

v = f(z;) + 0z (2)



i = 1,2,....n(= 27), z;’s are independently uniformly distributed on [0, 1], z;’s are
independent N (0, 1) variables and independent of z;'s, and the noise level ¢ is fixed and
known.

The function f is an unknown function of interest. We wish to estimate f globally with
small integrated mean squared error:

RUD) = B [ () - 1) do

Let 0 < (1) < w2 < ... < 23,y < 1 be the order statistics of the z;’s. Now relabel y;’s
and z;’s according the order of the x;’s. For convenience, we use the same label. So,

yi = flzw) + oz (3)

Now we observed (z(1),11), (Z(2),¥2). - -, (¥(n), Yn) With 2; independently uniformly dis-
tributed on [0, 1]. So m’(i)s are not equispaced in general. But we pretend that z;) is
Ex;y =i/(n+1). That is, we pretend to have an equispaced sample:

1 2 n

(n—_l_layl)v (n—_l_lva)a T, (TL +1

 Yn)-

We apply Donoho and Johnstone’s VisuShrink procedure directly to y = {y1, y2, .., Yn}-
Let # = W - n="/2y be the discrete wavelet transform of n~/2y. Write

n__ (¢ c ) n N T
0 = (€j017 o '7€j02]07 0]'017 Ty 9j02]07 ) 9J71,17 Ty 9J71,2J’1) :

Here éjok are the empirical coefficients of the father wavelets at the lowest resolution level.
They represent the gross structure of the function and are usually not thresholded. The
coefficients éjk(j =0, +,J — 1,k =1,---,27) are fine structure wavelet terms.

The empirical wavelet coefficients is denoised via soft thresholding:

0, = 15(0;1) = sgn(0x)(|0;%] — )4, where A = o/2n Tlogmn.

The whole function f is estimated by

200 J-1 2
Fo(2) =D Euntior (@) + D> Ojthjn(x).
k=1 Jj=jo k=1

If one is interested in estimating the function at the sample points, apply the inverse
discrete wavelet transform to the denoised wavelet coefficients.

—

(fulzg))io, = WL -n?/%.

The estimator is adaptive and easy to implement.



Theorem 1 Suppose that the sample (x1,v1), (x2,y2), -+, (Tn, yn) is observed as in (2)
and the mother wavelet 1 has r vanishing moments. Then the estimator constructed above

achieves within a logarithmic factor of the optimal convergence rate over the a range of
Hélder classes A*(M) (defined in Section 4) with 1/2 < o <. That is,

; logn, _2a
sup E|f. - fl3 <C - (——)7= n
fEAX(M)
1 ™ IOg’n 2a
sup  — ZEH]C*(‘%) - f(a:1)||§ S C - ( )1+2a (5)
feAx (M) T n

for all M € (0,00) and o € [1/2,7].

Remark: The same result holds for hard threshold estimator. The result shows that in
the case of random design with uniformly distributed z;’s, we can treat it as if they are
fixed equispaced design. The constraint o > 1/2 is due to the approximation of f(z(;) by

f(i/(n+1)).

3 Simulations

A simulation study is conducted to compare the estimator based on random-x samples with
the estimator based on truly equispaced samples. The results show that the quality of the
estimator based on random-x samples is comparable to the estimator based on equispaced
samples.

We consider four test functions of Donoho and Johnstone (1994) representing different
level of spatial variability. The test functions are plotted in Figure 2. For each of the four
objects under study, we compare the estimators at two noise levels, one with signal-to-noise
ratio SNR = 5 and another with SNR = 7. Sample sizes from n = 512 to n = 8192 are
considered.

Table 1 reports the mean squared errors over 200 replications of the four test functions:
Doppler, HeaviSine, Bumps and Blocks. The wavelet used is the Symmlet “s8”. The
conventional ¢-test is used to test the significance of the differences between the MSEs of
random design and the equispaced design. Table 1 shows that the MSEs of random-x are
worse than those of equispaced-x in 29 out of 40 cases, and are significantly worse in the
case of Doppler function. Random design is better in 6 cases, and the differences in MSE
between the two designs are insignificant in 5 cases at 95% level according to the ¢-test.

The following plots compare the visual quality of the reconstructions. The solid line
is the estimator and the dotted line is the true function. The sample size is 1024 and
SNR = 7. For each function, one is based on a sample with random-x and another is
based on a sample with equispaced-x. One can see from the plots, the visual quality of
the estimators are comparable, with the random-x reconstruction a little wobblier due to
the stochastic nature of the design. For more simulation results, the readers are referred
to Brown and Cai (1997).



Randorm-—->< Equispaced->x<

Heavisine Heavisine

Randorm-—->< Equispaced->x

Doppler Doppler

Figure 1: Comparisons of the reconstructions

4 Wavelet Approximation

Wavelets provide smoothness characterization of function spaces. Many traditional smooth-
ness spaces, for example Holder spaces, Sobolev spaces and Besov spaces, can be completely
characterized by wavelet coefficients. See Meyer [8]. In the present paper, we consider the
estimation problem over a range of Holder classes.

Definition 1 We define the following Hélder classes A®(M):

(4). ifa<l, A%(M) = {f:|f(z)— fly)| <M |z —y|"}
(i). ifa>1, A (M) = {f:|f1D(@) = flD@)| < Mz —y|” and |f'(z)] < M}

where |« is the largest integer less than a and o' = o — |a].

The wavelet coefficients of functions in a Hélder class A*(M) decay exponentially as
the resolution level j increases (see Daubechies (1992)).

Lemma 1 Let f € A*(M) and let the wavelet function ¥ has r vanishing moments with
r>a. Let 0, = (f, ;1) be wavelet coefficients of f. Then

0;1] < C - 9—i(1/2+a) (6)
where C is a constant depending on M and the wavelet basis only.

If one has a sampled function {f(k/(n+ 1))}?_, with n = 27, one can utilize a wavelet
basis to get a good approximation of the entire function f. Denote s(a) = min(a,1). We
have the following (also see Daubechies (1992)).
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Proposition 1 Suppose that f € A“(M), and let &5 = (f, 1), then

k

n——i—l) — &pp| < C - (1/2Hs(@) (7)

V2 g

According to this result, we may use n~Y/2 f(k/(n + 1)) as an approximation of &y;.

This means that if an equispaced sampled function is given, we can use a wavelet basis to

get an approximation of the entire function f. To be more specific, we can use f,(z) =

S n Y2 f(k/(n+1))¢sm(z) as an approximation of f. Furthermore, the approximation

error can be bounded based on the sample size and the smoothness of the function. We
quote the following result from Cai (1996).

Proposition 2 Suppose that f € A*(M). Let f,(z) = X¢_,n Y2 f(k/(n+1))dsi(z) Then
the approzimation error satisfies

£ = flI5 < O (8)

5 Proof

We need some preparations before we prove the theorem. First some well known results
on the order statistics of uniform variables.

Lemma 2 Let x; be iid uniform random variables on [0, 1]. And let 0 < Ty < T(p) <
. < @@y < 1 be the order statistics. Then x) is distributed as Beta(k, n - k + 1). In
particular,

k ) k+k? (n+ 1)k — k2

=51 BT G ey Vbl = iy

Now let us consider the noiseless case. We want to simply use f(z(;) as an approx-
imation of f(i/(n + 1)) and wish to know the approximation error. Denote F; the con-
ditional expectation given zy,x»,---,x, and denote F, the expectation with respect to
L1, Lo, ", Tn-

Lemma 3 The upper bound of the approzimation error is

k

)< O ©

p 3 Bl (o) — S

feAe (M

Proof: For a fixed f € A*(M), we have |f(z) — f(y)| < C |z — y[*®). Some algebra shows
that




To prove the main result, we also need the following upper bound of the risk of threshold
estimator of a univariate normal mean. Similar bound holds for hard threshold. The proof
can be found in Cai (1996).

Lemma 4 Suppose that y ~ N(8,n '02). Then 6 = i (y) with A = o+/2n Llogn satisfies
Ef —0)? < (20> +n 20%) A (2logn + 1)n o2 (10)

Proof of Theorem 1: We give the proof of (4) only. The proof of (5) is similar. First,
some notations. We use & as coefficients of ¢ (the “father wavelets”), and use 6;; as
coefficients of ¢, (the “mother wavelets”). The éjok are the empirical coefficients at the
coarsest level. They represent the gross structure of the function and they are usually
not thresholded. The discrete wavelet transform W is an orthogonal transform, so it is
norm-preserving.

Let f(z) = S;n Y2y;¢ 0(2). Then f(z) can be written as

A B

fa) = Sleri+ 2 f ()~ &)+ (0 5 fla) —n 2 f(—

= > ok + djor + bjok + Tok) Bjok () + D Y [0k + ag + bjr + 7u b ().
% ik

R
—

) +n Tozg(z)

Here the ;. and 0, are the discrete wavelet transform of ;; . and likewise a;, and aj
the transform of the term A, Ejok and bj; the transform of B and 7, and r;; the transform
of R.

Let fjok = Eiok + @jor + bjor + Tjor be the coefficients of gross structure terms and set
éjok = fjok Let ij = Ojr + ajr + bjr and let ij = ij + 75, be the noisy empirical

wavelet coefficients. Then 6, ~ N (0, n '6?). Now denote A\ = o+/2n Tlogn and let

;1 = sgn(6;)(|0jx] — A)+. Now the estimator of the regression function f is given by
Z 6]0/4925]014 + Z Z eﬂkl/)]k
J=jo k

and the risk function can be written as

R R J—1 . 00
Elfe = flI5 =D Ea(Br(&or — Eior)®) + D2 D Eu(Br(0 — 05)%) + > > 07
% j=jo k =7 &

Lemma 1 yields that

> > 0 =0m"). (11)
i=J k

Also we have

ZEl(éjOk — fjok) = 2Jop~152 4 Z(amk + bmk) < 2op~lg? 4 22(1] e 12 mek. (12)
k k



Applying Lemma 4 to the term El(éjk — 6;1)?, we have
El(éjk — ij)z 2E1(9Ajk — 9, )2 + 2&3]6 + 2b2
2,2

<
< 805, A3n~ 10 logn + 1043, + 1063, +n *o

Let J; be an integer satisfying 271 < (n/logn)Y/(1*2%) Then,

Ji—1
S B0 —01)° < > Y 3nlotlogn+ Z 280]2k+102 > (a3, +b%)
gk Jj=jo k = Jj=jo k
< C(n Mlogn) T + 10 Z S a2, + 10 Z S8,

Jj=jo k Jj=jo k

It follows from Proposition 1 and Lemma 3 that

J-1 4
St Y Yah = S0t () ) < O
k

i=io & 7 ”+1

S I i —s(a
Zbgok 2N = 3 Ea(f(a) — F( )P < On
j=jo k ni5 n +
For a > . s(a) > 1+2 (11) — (15) that
- logn, 20
Blf.—fli<C-(2)wEm. g
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6 Appendix

The four test functions represent different degrees of spatial variability. The functions are
normalized so that every function has standard deviation 10. Formulae of the test functions
can be found in Donoho and Johnstone (1994).

Doppler HeaviSine
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Figure 2: Test Functions
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SNR =15 SNR=1T

n Uniform-x ‘ Equispaced-x ‘ % diff. || Uniform-x ‘ Equispaced-x ‘ % diff.
Doppler

512 3.94 2.88 37% 2.85 1.80 58%
1024 2.54 1.88 35% 1.79 1.19 50%
2048 1.61 1.21 33% 1.10 0.76 44%
4096 0.86 0.69 24% 0.57 0.43 34%
8192 0.53 0.44 18% 0.34 0.26 29%
HeaviSine

512 0.62 0.55 13% 0.45 0.40 14%
1024 0.42 0.40 4% 0.30 0.29 4%
2048 0.28 0.30 -4% 0.20 0.20 0*
4096 0.17 0.20 -11% 0.11 0.12 -6%
8192 0.11 0.12 -T% 0.08 0.08 0*
Bumps

512 8.27 9.31 -11% 5.26 5.79 -9%
1024 6.07 5.97 0* 3.80 3.61 5%
2048 4.02 3.82 5% 2.51 2.26 11%
4096 2.22 1.98 12% 1.39 1.16 20%
8192 1.34 1.21 11% 0.83 0.71 18%
Blocks

512 5.39 5.34 0* 3.39 3.42 0*
1024 3.83 3.69 4% 2.37 2.28 4%
2048 2.66 2.55 4% 1.63 1.58 3%
4096 1.54 1.43 8% 0.95 0.89 ™%
8192 1.04 0.99 4% 0.64 0.62 3%

Table 1: Mean Squared Errors From 200 Replications. The “% diff.” columns are the
percentage differences between the MSEs of random-x and of equispaced-x. The percentage
differences are set to 0 when the differences are insignificant at 95% level according to the
conventional ¢-test.
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