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Wavelet Estimation for Samples With Random Uniform Design

Abstract
We show that for nonparametric regression if the samples have random uniform design, the wavelet method
with universal thresholding can be applied directly to the samples as if they were equispaced. The resulting
estimator achieves within a logarithmic factor from the minimax rate of convergence over a family of Hölder
classes. Simulation result is also discussed.
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Wavelet Estimation For Samples With RandomUniform DesignT. Tony CaiDepartment of Statistics, Purdue UniversityLawrence D. BrownDepartment of Statistics, University of PennsylvaniaAbstractWe show that for nonparametric regression if the samples have random uniformdesign, the wavelet method with universal thresholding can be applied directly tothe samples as if they were equispaced. The resulting estimator achieves within alogarithmic factor from the minimax rate of convergence over a family of H�olderclasses. Simulation result is also discussed.Keywords: wavelets, nonparametric regression, minimax, adaptivity, H�older class.AMS 1991 Subject Classi�cation: Primary 62G07, Secondary 62G20.
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1 IntroductionWavelet shrinkage methods have been very successful in nonparametric regression. Butso far most of the wavelet regression methods have been focused on equispaced samples.There, data are transformed into empirical wavelet coe�cients and threshold rules areapplied to the coe�cients. The estimators are obtained via the inverse transform of the de-noised wavelet coe�cients. The most widely used wavelet shrinkage method for equispacedsamples is the Donoho-Johnstone's VisuShrink procedure (Donoho & Johnstone (1992),Donoho, Johnstone, Kerkyacharian & Picard (1995)) . It has three steps:1. Transform the noisy data via the discrete wavelet transform;2. Denoise the empirical wavelet coe�cients by \hard" or \soft" thresholding rules withthreshold � = �p2 logn.3. Estimate function f at the sample points by inverse discrete wavelet transform of thedenoised wavelet coe�cients.This procedure is adaptive and easy to implement. The computational cost is of O(n). Andwith high probability, VisuShrink estimator is at least as smooth as the target function.The estimator produced by the procedure achieves minimax convergence rates up to alogarithmic penalty over a wide range of function classes.In many statistical applications, however, the samples are nonequispaced. It is shownthat the procedure might produce suboptimal estimator if it is applied directly to noneq-uispaced samples (Cai, 1996). Wavelet methods for samples with nonequispaced designshave been studied by Cai and Brown (1998) and Hall and Turlach (1997). Cai and Brown(1998) introduced a wavelet shrinkage method for samples with �xed nonequispaced designsbased on approximation approach. It is shown that the estimator attains near-minimaxityacross a range of piecewise H�older classes. Hall and Turlach (1997) proposed interpola-tion methods for samples with random designs. They used samples with random uniformdesign as examples for their methods. Despite the asymptotic near-optimality for thesenonequispaced methods, the estimators are computationally much harder to implementthan VisuShrink for equispaced samples.In the present paper, we consider the special case of samples with random uniformdesign. We show that in this special case the samples can in fact be treated as if they wereequispaced. That is, the VisuShrink procedure of Donoho and Johnstone can be applieddirectly to the data and the resulting estimator adaptively achieves within a logarithmicfactor of the optimal convergence rate across a range of H�older classes. Therefore, wehave a fast estimation procedure for samples with random uniform design. Simulation isconducted to evaluate the numerical performance of the method. It is shown that the meansquared error is comparable to that of the samples with truly equispaced designs.In Section 2 we describe the method and state the asymptotic optimality property of theestimator. Section 3 summarizes the simulation results. Some relevant results on waveletapproximation is presented in Section 4. Section 5 contains a concise proof of the mainresults. 2



2 Methodology2.1 WaveletsLet � and  denote the orthogonal father and mother wavelet functions. The functions �and  are assumed to be compactly supported with associated discrete wavelet transformW . Assume  has r vanishing moments and � satis�es R � = 1. Let�jk(x) = 2j=2�(2jx� k);  jk(x) = 2j=2 (2jx� k):And denote the periodized wavelets�pjk(x) = X̀2Z �jk(x� `);  pjk(x) = X̀2Z �jk(x� `) for x 2 [0; 1].For the purposes of this paper, we use the periodized wavelet bases on [0; 1]. The collectionf�pj0k; k = 1; :::; 2j0; pjk; j � j0; k = 1; :::; 2jg constitutes such an orthonormal basis ofL2[0; 1]. Note that the basis functions are periodized at the boundary. The superscript\p" will be suppressed from the notations for convenience. This basis has an associatedexact orthogonal Discrete Wavelet Trasnform (DWT) that transforms data into waveletcoe�cient domains.For a given square-integrable function f on [0; 1], denote�jk = hf; �jki; �jk = hf;  jki:So the function f can be expanded into a wavelet series:f(x) = 2j0Xk=1 �j0k�j0k(x) + 1Xj=j0 2jXk=1 �jk jk(x): (1)Wavelet transform decomposes a function into di�erent resolution components. In (1),�j0k are the coe�cients at the coarsest level. They represent the gross structure of thefunction f . And �jk are the wavelet coe�cients. They represent �ner and �ner structuresof the function f as the resolution level j increases.We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussiannoise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DWTallows us to transform the problem in the function domain into a problem in the sequencedomain of the wavelet coe�cients with isometry of risks.2.2 The EstimatorConsider the nonparametric regression model:yi = f(xi) + �zi (2)3



i = 1; 2; :::; n(= 2J), xi's are independently uniformly distributed on [0, 1], zi's areindependent N(0; 1) variables and independent of xi's, and the noise level � is �xed andknown.The function f is an unknown function of interest. We wish to estimate f globally withsmall integrated mean squared error:R(f̂ ; f) = E Z 10 (f̂(x)� f(x))2 dx:Let 0 � x(1) < x(2) < ::: < x(n) � 1 be the order statistics of the xi's. Now relabel yi'sand zi's according the order of the xi's. For convenience, we use the same label. So,yi = f(x(i)) + �zi: (3)Now we observed (x(1); y1); (x(2); y2); � � � ; (x(n); yn) with xi independently uniformly dis-tributed on [0, 1]. So x0(i)s are not equispaced in general. But we pretend that x(i) isEx(i) = i=(n+ 1). That is, we pretend to have an equispaced sample:( 1n+ 1 ; y1); ( 2n+ 1 ; y2); � � � ; ( nn+ 1 ; yn):We apply Donoho and Johnstone's VisuShrink procedure directly to y = fy1; y2; :::; yng.Let ~� =W � n�1=2y be the discrete wavelet transform of n�1=2y. Write~� = (~�j01; � � � ; ~�j02j0 ; ~�j01; � � � ; ~�j02j0 ; � � � ; ~�J�1;1; � � � ; ~�J�1;2J�1)T :Here ~�j0k are the empirical coe�cients of the father wavelets at the lowest resolution level.They represent the gross structure of the function and are usually not thresholded. Thecoe�cients ~�jk(j = j0; � � � ; J � 1; k = 1; � � � ; 2j) are �ne structure wavelet terms.The empirical wavelet coe�cients is denoised via soft thresholding:�̂jk = �s�(~�jk) = sgn(~�jk)(j~�jkj � �)+; where � = �p2n�1 logn.The whole function f is estimated byf̂�(x) = 2j0Xk=1 ~�j0k�j0k(x) + J�1Xj=j0 2jXk=1 �̂jk jk(x):If one is interested in estimating the function at the sample points, apply the inversediscrete wavelet transform to the denoised wavelet coe�cients.( df�(x(k)))nk=1 =W�1 � n1=2�̂:The estimator is adaptive and easy to implement.4



Theorem 1 Suppose that the sample (x1; y1); (x2; y2); � � � ; (xn; yn) is observed as in (2)and the mother wavelet  has r vanishing moments. Then the estimator constructed aboveachieves within a logarithmic factor of the optimal convergence rate over the a range ofH�older classes ��(M) (de�ned in Section 4) with 1=2 � � � r. That is,supf2��(M)Ekf̂� � fk22 � C � ( lognn ) 2�1+2� (4)supf2��(M) 1nXEk df�(xi)� f(xi)k22 � C � ( lognn ) 2�1+2� (5)for all M 2 (0;1) and � 2 [1=2; r].Remark: The same result holds for hard threshold estimator. The result shows that inthe case of random design with uniformly distributed xi's, we can treat it as if they are�xed equispaced design. The constraint � � 1=2 is due to the approximation of f(x(i)) byf(i=(n+ 1)).3 SimulationsA simulation study is conducted to compare the estimator based on random-x samples withthe estimator based on truly equispaced samples. The results show that the quality of theestimator based on random-x samples is comparable to the estimator based on equispacedsamples.We consider four test functions of Donoho and Johnstone (1994) representing di�erentlevel of spatial variability. The test functions are plotted in Figure 2. For each of the fourobjects under study, we compare the estimators at two noise levels, one with signal-to-noiseratio SNR = 5 and another with SNR = 7. Sample sizes from n = 512 to n = 8192 areconsidered.Table 1 reports the mean squared errors over 200 replications of the four test functions:Doppler, HeaviSine, Bumps and Blocks. The wavelet used is the Symmlet \s8". Theconventional t-test is used to test the signi�cance of the di�erences between the MSEs ofrandom design and the equispaced design. Table 1 shows that the MSEs of random-x areworse than those of equispaced-x in 29 out of 40 cases, and are signi�cantly worse in thecase of Doppler function. Random design is better in 6 cases, and the di�erences in MSEbetween the two designs are insigni�cant in 5 cases at 95% level according to the t-test.The following plots compare the visual quality of the reconstructions. The solid lineis the estimator and the dotted line is the true function. The sample size is 1024 andSNR = 7. For each function, one is based on a sample with random-x and another isbased on a sample with equispaced-x. One can see from the plots, the visual quality ofthe estimators are comparable, with the random-x reconstruction a little wobblier due tothe stochastic nature of the design. For more simulation results, the readers are referredto Brown and Cai (1997). 5
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Figure 1: Comparisons of the reconstructions4 Wavelet ApproximationWavelets provide smoothness characterization of function spaces. Many traditional smooth-ness spaces, for example H�older spaces, Sobolev spaces and Besov spaces, can be completelycharacterized by wavelet coe�cients. See Meyer [8]. In the present paper, we consider theestimation problem over a range of H�older classes.De�nition 1 We de�ne the following H�older classes ��(M):(i): if � � 1, ��(M) = ff : jf(x)� f(y)j �M jx� yj�g(ii): if � > 1, ��(M) = ff : jf (b�c)(x)� f (b�c)(y)j � M jx� yj�0 and jf 0(x)j �Mgwhere b�c is the largest integer less than � and �0 = �� b�c.The wavelet coe�cients of functions in a H�older class ��(M) decay exponentially asthe resolution level j increases (see Daubechies (1992)).Lemma 1 Let f 2 ��(M) and let the wavelet function  has r vanishing moments withr � �. Let �jk = hf;  jki be wavelet coe�cients of f. Thenj�jkj � C � 2�j(1=2+�) (6)where C is a constant depending on M and the wavelet basis only.If one has a sampled function ff(k=(n+ 1))gnk=1 with n = 2J , one can utilize a waveletbasis to get a good approximation of the entire function f . Denote s(�) = min(�; 1). Wehave the following (also see Daubechies (1992)).6



Proposition 1 Suppose that f 2 ��(M); and let �Jk = hf; �Jki, thenjn�1=2 f( kn+ 1)� �Jkj � C � n�(1=2+s(�)): (7)According to this result, we may use n�1=2 f(k=(n + 1)) as an approximation of �Jk.This means that if an equispaced sampled function is given, we can use a wavelet basis toget an approximation of the entire function f . To be more speci�c, we can use fn(x) =Pnk=1 n�1=2 f(k=(n+ 1))�Jk(x) as an approximation of f . Furthermore, the approximationerror can be bounded based on the sample size and the smoothness of the function. Wequote the following result from Cai (1996).Proposition 2 Suppose that f 2 ��(M). Let fn(x) = Pnk=1 n�1=2 f(k=(n+1))�Jk(x) Thenthe approximation error satis�es kfn � fk22 � Cn�2s(�): (8)5 ProofWe need some preparations before we prove the theorem. First some well known resultson the order statistics of uniform variables.Lemma 2 Let xi be iid uniform random variables on [0, 1]. And let 0 � x(1) < x(2) <::: < x(n) � 1 be the order statistics. Then x(k) is distributed as Beta(k, n - k + 1). Inparticular,Ex(k) = kn + 1 ; Ex2(k) = k + k2(n + 1)(n+ 2) ; V arfx(k)g = (n+ 1)k � k2(n + 1)2(n+ 2) :Now let us consider the noiseless case. We want to simply use f(x(i)) as an approx-imation of f(i=(n + 1)) and wish to know the approximation error. Denote E1 the con-ditional expectation given x1; x2; � � � ; xn and denote Ex the expectation with respect tox1; x2; � � � ; xn.Lemma 3 The upper bound of the approximation error issupf2��(M) 1nXEx(f(x(k))� f( kn+ 1))2 � Cn�s(�): (9)Proof: For a �xed f 2 ��(M), we have jf(x)� f(y)j � C jx� yjs(�). Some algebra showsthat 1nXk Ex(f(x(k))� f( kn+ 1))2 � Cn Xk [Ex(x(k) � kn + 1)2]s(�)� C(n + 1)1+s(�)n(n+ 1)s(�)(n+ 2)s(�) � Cn�s(�):7



To prove the main result, we also need the following upper bound of the risk of thresholdestimator of a univariate normal mean. Similar bound holds for hard threshold. The proofcan be found in Cai (1996).Lemma 4 Suppose that y � N(�; n�1�2). Then �̂ = �s�(y) with � = �p2n�1 logn satis�esE(�̂ � �)2 � (2�2 + n�2�2) ^ (2 logn + 1)n�1�2: (10)Proof of Theorem 1: We give the proof of (4) only. The proof of (5) is similar. First,some notations. We use �jk as coe�cients of �jk (the \father wavelets"), and use �jk ascoe�cients of  jk (the \mother wavelets"). The ~�j0k are the empirical coe�cients at thecoarsest level. They represent the gross structure of the function and they are usuallynot thresholded. The discrete wavelet transform W is an orthogonal transform, so it isnorm-preserving.Let ~f(x) = Pi n�1=2yi�Jk(x). Then ~f(x) can be written as~f(x) = Xi [�Ji + Az }| {(n� 12 f( in+ 1)� �Ji)+ Bz }| {(n� 12 f(x(i))� n� 12f( in+ 1))+ Rz }| {n� 12�zi]�Ji(x)= Xk [�j0k + ~aj0k + ~bj0k + ~rj0k]�j0k(x) +Xj Xk [�jk + ajk + bjk + rjk] jk(x):Here the �j0k and �jk are the discrete wavelet transform of �Ji , and likewise ~aj0k and ajkthe transform of the term A, ~bj0k and bjk the transform of B and ~rj0k and rjk the transformof R.Let ~�j0k = �j0k + ~aj0k + ~bj0k + ~rj0k be the coe�cients of gross structure terms and set�̂j0k = ~�j0k. Let �0jk = �jk + ajk + bjk and let ~�jk = �0jk + rjk be the noisy empiricalwavelet coe�cients. Then ~�jk � N(�0jk; n�1�2). Now denote � = �p2n�1 logn and let�̂jk = sgn(~�jk)(j~�jkj � �)+. Now the estimator of the regression function f is given byf̂�(x) =Xk �̂j0k�j0k(x) + J�1Xj=j0Xk �̂jk jk(x)and the risk function can be written asEkf̂� � fk22 =Xk Ex(E1(�̂j0k � �j0k)2) + J�1Xj=j0Xk Ex(E1(�̂jk � �jk)2) + 1Xj=JXk �2jk:Lemma 1 yields that 1Xj=JXk �2jk = O(n�2�): (11)Also we haveXk E1(�̂j0k � �j0k)2 = 2j0n�1�2 +Xk (~aj0k +~bj0k)2 � 2j0n�1�2 + 2Xk ~a2j0k + 2Xk ~b2j0k: (12)8



Applying Lemma 4 to the term E1(�̂jk � �jk)2, we haveE1(�̂jk � �jk)2 � 2E1(�̂jk � �0jk)2 + 2a2jk + 2b2jk� 8�2jk ^ 3n�1�2 logn+ 10a2jk + 10b2jk + n�2�2:Let J1 be an integer satisfying 2J1 � (n= logn)1=(1+2�). Then,Xj;k E1(�̂jk � �jk)2 � J1�1Xj=j0 Xk 3n�1�2 logn + J�1Xj=J1Xk 8�2jk + 10 J�1Xj=j0Xk (a2jk + b2jk) + n�1�2� C(n�1 logn) 2�1+2� + 10 J�1Xj=j0Xk a2jk + 10 J�1Xj=j0Xk b2jk: (13)It follows from Proposition 1 and Lemma 3 thatXk ~a2j0k + J�1Xj=j0Xk a2jk = Xi (n� 12 f( in+ 1)� �Ji)2 � C � n�2s(�) (14)Ex(Xk ~b2j0k + J�1Xj=j0Xk b2jk) = 1n nXi=1Ex(f(x(i))� f( in+ 1))2 � Cn�s(�): (15)For � � 12 , s(�) � 2�1+2� . Now it follows from (11) { (15) thatEkf̂� � fk22 � C � ( lognn ) 2�1+2� :AcknowledgmentThe authors thank the referee for the helpful comments which improve the presentation ofthis work.References[1] Brown, L.D. & Cai, T. (1997). Wavelet Regression For Random Uniform Design,Technical Report #97-15, Department of Statistics, Purdue University.[2] Cai, T. & Brown, L.D. (1998). Wavelet Shrinkage For Nonequispaced Samples. Ann.Statist., to appear.[3] Cai, T. (1996). Nonparametric Function Estimation via Wavelets. Ph.D Thesis, CornellUniversity.[4] Daubechies, I. (1992). Ten Lectures on Wavelets SIAM: Philadelphia.[5] Donoho, D.L. & Johnstone, I.M. (1994). Ideal Spatial Adaptation via Wavelet Shrink-age. Biometrika, 81, 425{455. 9



[6] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. & Picard, D. (1995). WaveletShrinkage: Asymptopia?, J. Roy. Stat. Soc. Ser. B, 57, 301{369.[7] Hall, P. & Turlach, B.A. (1997). Interpolation Methods for Nonlinear Wavelet Regres-sion with Irregularly Spaced Design. Ann. Statist. 25 1912-1925.[8] Meyer, Y. (1990). Ondelettes et Op�erateurs: I. Ondelettes. Hermann et Cie, Paris.6 AppendixThe four test functions represent di�erent degrees of spatial variability. The functions arenormalized so that every function has standard deviation 10. Formulae of the test functionscan be found in Donoho and Johnstone (1994).
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SNR = 5 SNR = 7n Uniform-x Equispaced-x % di�. Uniform-x Equispaced-x % di�.Doppler512 3.94 2.88 37% 2.85 1.80 58%1024 2.54 1.88 35% 1.79 1.19 50%2048 1.61 1.21 33% 1.10 0.76 44%4096 0.86 0.69 24% 0.57 0.43 34%8192 0.53 0.44 18% 0.34 0.26 29%HeaviSine512 0.62 0.55 13% 0.45 0.40 14%1024 0.42 0.40 4% 0.30 0.29 4%2048 0.28 0.30 -4% 0.20 0.20 0*4096 0.17 0.20 -11% 0.11 0.12 -6%8192 0.11 0.12 -7% 0.08 0.08 0*Bumps512 8.27 9.31 -11% 5.26 5.79 -9%1024 6.07 5.97 0* 3.80 3.61 5%2048 4.02 3.82 5% 2.51 2.26 11%4096 2.22 1.98 12% 1.39 1.16 20%8192 1.34 1.21 11% 0.83 0.71 18%Blocks512 5.39 5.34 0* 3.39 3.42 0*1024 3.83 3.69 4% 2.37 2.28 4%2048 2.66 2.55 4% 1.63 1.58 3%4096 1.54 1.43 8% 0.95 0.89 7%8192 1.04 0.99 4% 0.64 0.62 3%Table 1: Mean Squared Errors From 200 Replications. The \% di�." columns are thepercentage di�erences between the MSEs of random-x and of equispaced-x. The percentagedi�erences are set to 0 when the di�erences are insigni�cant at 95% level according to theconventional t-test.
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