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Abstract

Estimation of a non-parametric regression function at a point is considered. The function is assumed

to lie in a Sobolev space, Sq, of order q. The asymptotic squared-error performance of Bayes estimators

corresponding to Gaussian priors is investigated as the sample size, n, increases. It is shown that for any

such fixed prior on Sq the Bayes procedures do not attain the optimal minimax rate over balls in Sq.

This result complements that in Zhao (2000) for estimating the entire regression function, but the proof

is rather different.
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1 Introduction

Within the past two decades nonparametric regression has become an important, widely used

statistical methodology. More recently there has been increasing interest in the possibility

of effectively using a Bayesian approach for such situations. This paper involves one step in

that direction.

We investigate an aspect of the performance of the Bayes estimator for a natural conjugate

prior. (These priors correspond to infinite dimensional Gaussian distribution.) Of interest is

the asymptotic performance of the estimator of the regression function, f , at a given point,

x0.

As is customary, we assume that regression function lies in a standard function space – in

this case a Sobolev space of specified smoothness. Consistent with this we derive the prior

to be supported on this Sobolev space.

We show that for any such prior the Bayes estimators for samples size n do not attain

the optimal minimax rate of squared error risk.

Zhao (2000) demonstrates an analogous deficiency of Bayes procedures for the problems

of estimating the entire regression function. For that problem she also constructs a non-

conjugate prior distribution whose Bayes estimators do attain the optimal minimax rate. It

follows, however, from Cai, Low and Zhao (2001) that these estimators will not attain the

optimal minimax rate for estimating f(x0). The question is thus an open on of whether there

exists a prior on the Sobolev space whose Bayes procedures attain this rate for estimating

f(x0). We suspect such prior exist but have not (yet) succeeded in constructing them.

For further background on problems of this nature and additional references we refer the

reader to Zhao (2000). We close the introduction by noting two additional features of the

results in the present manuscript.

First, we prove here an additional result that shows there do exist Gaussian priors sup-

ported outside the given Sobolev-space whose estimators of f(x0) do attain the optimal

minimax rate. This result is analogous to one in Zhao (2000) for estimating all of f ; however

the appropriate priors are different in the two problems. (This is consistent with the fact

that the minimax rates are also different.) Second, although the main theorem here has
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analogies to the main result in Zhao (2000), the proof is rather different.

2 Preliminaries

In a standard nonparametric regression problem one observes (xi, zi), i = 1, . . . , n where

zi = f(xi) + εi, i = 1, . . . , n. (1)

Here we take xi = i/(n + 1) to be equally spaced on [0, 1] and we take εi
i.i.d.∼ N(0, σ2). For

simplicity assume σ2 = 1. Our goal is to estimate f(x0), the value of f at a given point,

x0 ∈ [0, 1]. The loss function is squared error loss:

L(f̂(x0), f(x0)) = (f̂(x0) − f(x0))
2. (2)

Donoho, Liu and MacGibbon (1990), Brown and Low (1996) and Brown and Zhao (2001)

show the following equivalence results. Suppose f is expressed by an orthonormal basis

{ϕi(x)} on L2 = {f :
∫ 1

0
f 2(x) dx < ∞}, i.e.

f(x) =
∑

θiϕi(x).

Then we can construct {yi} as a (randomized) function of {zi} such that

yi = θi +
1√
n

εi, i = 1, . . . , εi
i.i.d.∼ N(0, 1). (3)

Estimating a functional such as f(x0) is asymptotically equivalents to estimating the match-

ing functional of θ = {θi}. (Brown and Zhao (2001) give an equivalence construction that is

also valid if the xi are themselves observations of i.i.d. random variables on [0, 1].)

To be explicit we take ϕi to be the usual Fourier basis on [0,1]. Thus, for x ∈ [0, 1]

ϕ0(x) = 1

ϕ2k−1(x) = 2−1/2 cos(2πkx)

ϕ2k(x) = 2−1/2 sin(2πkx), k = 1, 2, . . . .

Then θi =
∫ 1

0
f(x)ϕi(x) dx, i = 0, . . .. If θ̂ = {θ̂i} is an estimator of θ = {θi} then

f̂(x0) =
∑

aiθ̂i, ai = ϕi(x0)
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is the matching estimator of f(x0). This can conveniently be rewritten as f̂(x0) = a′θ̂ where

a = {ai}, θ̂ = {θ̂i}. If T denotes an estimator of f(x0) then the risk function is of course

R(T, f(x0)) = E(T − f(x0))
2.

When f is assumed to be in a Sobolev ball Sq(B) = {{θi} :
∑

i2qθ2
i � B} when q > 1/2

the optimal minimax rate in the present problem is known to be n−(2q−1)/2q, i.e.,

0 < inf
T

sup
θ∈Sq(B)

n
2q−1
2q R(T, f(x0)) < ∞. (4)

This rate was established by Wahba (1975); see also Donoho and Low (1992). We assume

throughout that q > 1/2.

3 Main results

How does a Bayesian estimator perform for this nonparametric point estimation problem?

We are especially interested in the question of whether the Bayes solution resulting from a

Gaussian prior possesses the optimal property defined in (4).

Zhao (2000) dealt with Bayesian estimation of the entire function. We establish similar

results for estimating f(x0) under square error loss. The general results have points of

similarity, but there are also some differences and the methods of proof are rather different.

A product Gaussian prior

π(θ) =
∏

N(0, τ 2
i ) (5)

has support on Sq � {{θi} :
∑

i2qθ2
i < ∞} if and only if∑

i

i2qτ 2
i < ∞.

It is straightforward to compute the posterior mean of the prior to be

θ̂i =
τ 2
i

τ 2
i + 1

n

yi. (6)

For details of both assertion see Zhao (2000). The Bayes estimator of f(x0) is then easily

calculated to be

T̂ =
∑

aiθ̂i = a′θ̂. (7)
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We first show that there exist independent normal priors whose Bayes procedure attains

the optimal minimax rate, but these priors are not supported on Sq.

Theorem 3.1 Let τ 2
i = i−2p in (5). When p > max( q

2
, 1

2
) the Bayes estimator T̂ in (7) has

the minimax rate n−m(p,q), where m(p, q) = min(1 − 1
2p

, 2q−1
2p

). To be more precise,

0 < lim
n→∞

sup
θ∈Sq(B)

nm(p,q)R(a′θ̂, f(x0)) < ∞.

In particular, the Bayes estimator attains the optimal minimax rate if and only if p = q.

Proof: Take B = 1 with no loss of generality. The risk function can be written as

R(a′θ̂, a′θ) = Var(a′θ̂) + Bias2(a′θ̂, a′θ). (8)

Note that if bi > 0, then

sup∑
biθ2

i �1

(
∑

wiθi)
2 =

∑ w2
i

bi

. (9)

Then, for the squared bias in (8)

sup∑
i2qθ2

i �1

Bias2(a′θ̂, a′θ) = sup∑
i2qθ2

i �1

[∑
ai(

τ 2
i

τ 2
i + 1/n

θi − θi)

]2

(10)

= sup∑
i2qθ2

i �1

[∑
ai

θi

1 + nτ 2
i

]2

=
∑

a2
i

(1 + ni−2p)−2

i2q

∼ n
1−2q
2p

(11)

where the last assertion comes from∑ (1 + ni−2p)−2

i2q
∼ n

1−2q
2p

and from

a2
2k−1 + a2

2k = 1, ∀k � 1. (12)

For the variance term

Var(a′θ̂) =
1

n

∑
a2

i

(
i−2p

i−2p + 1
n

)
∼ n−(1− 1

2p
)

5



where we have again used (12).

Hence the minimax rate for a′θ̂ is n−min(1−1/(2p),(2q−1)/2p). And when p = q, min(1 −
1/(2p), (2q − 1)/2p) achieves its maximum value 2q−1

2q
, for which the corresponding rate is

just the optimal rate. �

Remark: Among priors with τ 2
i = i−2p the Bayes estimator is optimal only when p = q.

But in that case both the prior and the posterior distribution have measure 0 on the space

Sq of the interest.

The next theorem builds from Theorem 3.1 and gives a more general result about Bayesian

approaches.

Theorem 3.2 There does not exist a Gaussian prior on Sq such that the corresponding

sequence of Bayes procedures attains the optimal minimax rate. That is, if Σ is the covariance

matrix of a Gaussian measure on Sq, then the Bayes estimator T̂ of f(x0) = a′θ must have

lim
n→∞

sup
θ∈Sq(B)

n
2q−1
2q R(T̂ , a′θ) = ∞. (13)

Before we prove the above theorem let us derive some basic facts as lemmas.

Lemma 3.1 Let D, W be positive definite m×m matrices and b an m dimensional vector.

Then

sup
ξ′Dξ�1

(b′Wξ)2 = b′WD−1Wb

Proof: This standard result is the matrix generalization of (9). We omit the proof. �

Lemma 3.2 Let Pm ={P : P is an m×m positive definite matrix with maximum eigenvalue

< 1 } and �u be a unit vector. Then

inf
P∈Pm

{
�u′P 2�u + Tr(P−1 − I)

}
> 0.889 . (14)

Proof: Write P = OΛO′, with O some orthonormal matrix and Λ = Diag(λi). Here {λi}
are the eigenvalues of P . Let �v = O′�u. Then �v is also a unit vector, i.e.

∑
vi

2 = 1. Then,

�u′P 2�u + Tr(P−1 − I)

= �v′Λ2�v +
∑ 1

λi

− m

=
∑

λi
2vi

2 +
∑ 1

λi

− m.
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Hence

inf
P∈Pm

�u′P 2�u + Tr(P−1 − I) ≥ inf
0<λi≤1

∑
vi

2=1
{
∑

λi
2vi

2 +
∑ 1

λi

− m}. (15)

If 1/2 < v2 ≤ 1 the function λ2v2+1/λ attains its minimum over 0 ≤ λ ≤ 1 at λ = 1/(2v2)1/3.

If 0 ≤ v2 ≤ 1/2 then this function attains its minimum on this region at λ = 1. At most one

vj
2 can satisfy vj

2 > 1/2 since
∑

vj
2 = 1. Suppose there is one such vj. Then

inf
0<λi≤1

∑
vi

2=1
{
∑

λi
2vi

2 +
∑ 1

λi

− m}

≥ inf
1/2≤vj

2≤1
(2−2/3 + 21/3)vj

2/3 − vj
2

≥ inf
1/2≤vj

2≤1
(2−2/3 + 21/3)vj

2/3 − vj
2

= .88988.

On the other hand, if all vj
2 ≤ 1/2 then

inf
0<λi≤1

∑
vi

2=1
{
∑

λi
2vi

2 +
∑ 1

λi

− m}

≥
∑

vj
2 + m − m = 1.

�

Proof: 1. It suffices to consider prior having mean 0. Since f(x0) = a′θ the Bayes

estimator will be T̂ = a′θ̂ with

θ̂ = a′ ∑(
I

n
+ Σ)−1Y.

Now,

R(T̂ , a′θ) � Bias2(T̂ , a′θ) (16)

=

[
a′(

∑
(
I

n
+ Σ)−1 − I)θ

]2

= (a′(I + nΣ)−1θ)2

= (a′V θ)2

with V defined as

V = (I + nΣ)−1. (17)

Notice that all eigenvalues of V are between 0 and 1 and

Σ = n−1(V −1 − I). (18)
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Given an integer m let D denote the (m × m) diagonal matrix with diagonal entries

(m+ i)2q, i = 1, . . . ,m. Let W denote the (m×m) matrix composed of the (m+1)th, ....2mth

rows and columns of V and let b consist of the corresponding coordinates of a. Note that

D,W, b all depend on m, but the dependence is suppressed in the notation. From (16) and

(17),

sup∑
i2qθ2

i �1

Bias2(T̂ , a′θ) � sup∑2m
i=m+1 i2qθ2

i �1: θi=0 if i�∈[m+1,2m]

Bias2(T̂ , a′θ) (19)

= sup
ξ′Dξ�1

(b′Wξ)2

where ξ corresponds to the vector in the previous expression having coordinates (θm+1, . . . , θ2m).

Hence, by Lemma 3.1

R(T̂ , a′θ) � b′WD−1Wb. (20)

2. Recall that a2
2k−1 + a2

2k = 1, k = 1, . . .. Hence in (20) ||b|| ∼ m/2. More precisely, for

all m > 100

||b||2 � .49m. (21)

Suppose that the assertion of the theorem is false. Then by (20) there is a c < ∞ such

that

n
2q−1
2q b′WD−1Wb � c. (22)

Note that D−1 − (2m)−2qI is positive semi-definite. Hence (21) and (22) imply

n
2q−1
2q (.49m)

1

(2m)2q
�u′W 2�u � c (23)

where �u = b/||b|| is a unit vector.

Now take

m = [n
1
2q (

22q

.4 × .49
c)

1
1−2q ]. (24)

Then from (23)

�u′W 2�u � .4. (25)

3. Now, for m as in (24)

2m∑
i=m+1

i2qΣii =
1

n

2m∑
i=m+1

i2q((V −1)ii − 1) (26)
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� 1

n
m2q

2m∑
i=m+1

((V −1)ii − 1)

� c1Tr(W−1 − Im) for (V −1)diag > (Vdiag)
−1

with c1 > 0, independent of m. Apply Lemma 3.2 and (25) to get

Tr(W−1 − Im) � .48.

Hence
2m∑

i=m+1

i2qΣii � .48c1. (27)

As n → ∞ there is an infinite sequence of arbitrarily large corresponding values of m

given by (24). Thus (27) yields
∞∑
i=1

i2qΣii = ∞.

This establishes that the Gaussian prior is not supported on Sq. �

Remark: Note that the preceding proof establishes a slightly stronger fact than claimed

in (13). Namely, for any Gaussian prior on Sq the squared bias does not converge at the

optimal rate.

Remark: The preceding results explicitly concern one special formulation of Sq. However

the same general results can be shown to apply to the more general problem of estimating

f at a point with parameter space {f =
∑

θiφi(x) :
∑

ciθ
2
i < ∞}, where ci ∼ ci2q. Only

minor modifications of the preceding proof are needed.
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