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the treatment of depression among depressed elderly patients in primary care practices.
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SUMMARY

Causal approaches based on the potential outcome framework provide a useful tool for

addressing noncompliance problems in randomized trials. We propose a new estimator of

causal treatment effects in randomized clinical trials with noncompliance. We use the empir-

ical likelihood approach to construct a profile random sieve likelihood and take into account

the mixture structure in outcome distributions, so that our estimator is robust to paramet-

ric distribution assumptions and provides substantial finite-sample efficiency gains over the

standard instrumental variable estimator. Our estimator is asymptotically equivalent to the

standard instrumental variable estimator, and it can be applied to outcome variables with a

continuous, ordinal or binary scale. We apply our method to data from a randomized trial

of an intervention to improve the treatment of depression among depressed elderly patients

in primary care practices.

Some key words: Causal effect; Efficient nonparametric estimation; Empirical likelihood;

Noncompliance; Randomized trials.

1. Introduction

When there is noncompliance in randomized trials, there is often interest in estimat-

ing the causal effect of actually receiving the treatment compared to receiving the control.

Knowledge of this effect is useful for predicting the impact of the treatment in a setting for

which compliance patterns might differ from the randomized trial and for scientific under-

standing of the treatment (Sommer & Zeger, 1991; Sheiner & Rubin, 1995; Small et al.,

2006; Cheng & Small, 2006).

Note that intention-to-treat analysis is not suitable for estimating the causal effect of

actually receiving the treatment when there is noncompliance because it estimates the effect

of assignment to the treatment group. An as-treated analysis seeks to estimate the causal

effect of receiving the treatment but is biased if compliers are not comparable to noncom-

pliers. Imbens & Angrist (1994) and Angrist et al. (1996) show that the causal effect of

actually receiving the treatment for the subgroup of subjects who would receive the treat-

ment if assigned to the treatment group and would receive the control if assigned to the
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control group, called the complier average causal effect or the local average treatment ef-

fect in the econometrics literature (Imbens & Angrist, 1994), is nonparametrically identified

under certain, often plausible, assumptions that do not require compliers and noncompliers

to be comparable. These assumptions, henceforth referred to as the instrumental variable

assumptions, are discussed in §2. The complier average causal effect can be consistently esti-

mated under the instrumental variable assumptions by the standard two-stage least-squares

instrumental variables estimator. Imbens & Rubin (1997a, b) demonstrate that, under the

assumptions, the standard instrumental variable estimator is an inefficient estimator of the

complier average causal effect because it does not make full use of the mixture structure of

the outcome distributions of the four observed groups defined by the cross classification of

the randomization and treatment received; see §2.4 for further discussion. Imbens & Rubin

(1997b) present three new alternatives to the standard IV estimator. One is based on a

normal approximation and two are based on multinomial approximations to the outcome

distributions in the four groups. In a simulation study with normally distributed outcomes,

Imbens & Rubin (1997b) show that all three alternative estimators are more efficient than

the standard IV estimator. However, the estimator that is based on a normal approximation

to the outcome distributions can have substantial bias when the outcomes are not normal;

this is demonstrated in §4. The estimators based on multinomial approximations to the

outcome distributions are in principle nonparametric. However, a systematic approach for

choosing the multinomial approximations is needed.

Multinomial approximations to the outcome distributions are a type of sieve. A sieve is a

sequence of approximations {Fn} to a space F of distributions such that Fn → F as n →∞
(Grenander, 1981). Maximizing the likelihood over a sieve rather than the whole parameter

space often leads to desirable statistical properties, especially when the underlying parameter

space is large (Shen & Wong, 1994). However, the construction of sieves is not an easy task.

One approach to constructing sieves is to use a random approximation F̂n that depends on

the data, a random sieve. The empirical likelihood approach (Owen, 1991) is based on an

easily constructed random sieve (Shen et al., 1999). In this paper, we use the empirical
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likelihood approach to construct an efficient estimator for the complier average causal effect.

2. Notation, Assumptions and Review of Established Estimators

2.1 Notation

We consider a two-arm randomized trial with N subjects, n0 of whom are randomly

assigned to the control group. We use letters with and without star to denote vectors

and scalars respectively. Let R∗ be the N -dimensional vector of randomization assignments

for all subjects, with individual element Ri = r ∈ {0, 1} according to whether subject i

is assigned active treatment, Ri = 1, or control, Ri = 0. We let Ar∗∗ be the N-dimensional

vector of potential treatment receiveds under the vector of randomization assignment r∗ with

individual element Ar∗
i = a ∈ {0, 1} according to whether subject i would take the control

or treatment under randomization assignment r∗. We let Y r∗,a∗∗ be the vector of potential

responses under randomization assignment r∗ and treatment receiveds a∗, with individual

element Y r∗,a∗
i being the potential response for subject i with the vectors of randomization

assignments r∗ and treatment receiveds a∗. The sets of {Y r∗,a∗
i |r∗ ∈ {0, 1}N , a∗ ∈ {0, 1}N}

and {Ar∗
i |r∗ ∈ {0, 1}N} are ‘potential’ responses and treatment receiveds in the sense that

we can only observe one member of each set. The observed outcome and treatment received

variables for subject i are Y R∗,AR∗∗
i ≡ Yi and AR∗

i ≡ Ai respectively.

2.2. Assumptions

We make similar assumptions to those in Angrist et al. (1996).

Assumption 1: Stable unit treatment value assumption (Rubin, 1980). (i). If r = r′, then

Ar∗
i = A

r′∗
i for subject i. (ii). If r = r′ and a = a′, then Y r∗,a∗

i = Y
r′∗,a′∗
i for subject i. This

assumption allows us to write Y r∗,a∗
i , Ar∗

i as Y r,a
i , Ar

i .

Assumption 2: Random assignment. This assumption implies independence between

assignment and pretreatment variables including potential outcomes and treatment receiveds.

Assumption 3: Random sampling. We assume that the N subjects in the trial are

independent and identically distributed draws from a superpopulation; that is, Y r,a
i and Ar

i ,

i = 1, . . . , N , are independent and identically distributed with the same distribution as the

random vector consisting of Y r,a and Ar.
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Assumption 4: Mean exclusion restriction. We assume that E(Y r,a) = E(Y r′,a) for all

r, r′, a; that is, the randomization assignment affects the mean of the observed outcome

only through its effect on treatment received. Note that the mean exclusion restriction is

weaker than the unit level exclusion restriction of Angrist et al. (1996), who assume that

Y r,a
i = Y r′,a

i for all r, r′, a. However, we think that in most applications in which the weaker

mean exclusion restriction is plausible, the stronger unit-level exclusion restriction is also

plausible and so we primarily use the weaker mean exclusion restriction because it is easier

to work with this assumption.

Assumption 5: Nonzero average causal effect of R on A.

Assumption 6: Monotonicity. We assume that pr(A1 ≥ A0) = 1. This assumption says

that there is no one who would receive the opposite treatment of his or her assignment under

both assignment to treatment and to control.

2.3 Compliance classes

A subject in a two-arm trial can be classified into one of four compliance classes:

Ci =





0 (never-taker) if (A0
i , A

1
i ) = (0, 0)

1 (complier) if (A0
i , A

1
i ) = (0, 1)

2 (always-taker) if (A0
i , A

1
i ) = (1, 1)

3 (defier) if (A0
i , A

1
i ) = (1, 0).

In practice, we can observe only one of A0
i and A1

i , so that a subject’s compliance status is not

observed directly in a trial, but it can be partially identified based on treatment assignment

and observed treatment-received; see Table 1. Note that the monotonicity assumption rules

out the existence of defiers. For single consent design trials (Zelen, 1979), which have the

property that the control group cannot access the treatment, that is, pr(A0 = 0) = 1, the

presence of always-takers and defiers is ruled out.

2.4 Major established estimators

Under Assumptions 1 − 6, the compliers are the only subgroup for which a randomized

trial provides information about the causal effect of receiving treatment (Angrist et al., 1996).
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For always-takers and never-takers, assignment to treatment has no effect on treatment

received. The complier average causal effect, E(Y 1 − Y 0|C = 1), can be thought of as the

causal effect of receiving treatment for the subpopulation of compliers because, for compliers,

assignment of treatment agrees with receipt of treatment. Angrist et al. (1996) show that,

under Assumptions 1-6, the complier average causal effect is

CACE =
E(Y |R = 1)− E(Y |R = 0)

E(A|R = 1)− E(A|R = 0)
, (1)

which is the intention-to-treat effect divided by the proportion of compliers. The standard

instrumental variable estimator is the sample analogue of (1),

ˆCACES =
Ê(Y |R = 1)− Ê(Y |R = 0)

Ê(A|R = 1)− Ê(A|R = 0)
, (2)

where the Ê’s denote sample means; (2) is sometimes called the Wald estimator.

The standard instrumental variable estimator does not take full advantage of the mixture

structure of the outcomes of the four observed groups in Table 1, as we will discuss in §3.1.

Imbens & Rubin (1997a,b) present two approaches of using mixture modeling to estimate

the complier average causal effect. One approach assumes a parametric distribution, such

as normal, for the outcomes for each compliance class group under each randomization

assignment. The complier average causal effect is then estimated by maximum likelihood

for this model using the EM algorithm. This estimator provides considerable efficiency gains

over the standard instrumental variable estimator when the parametric assumptions hold;

see Table 4. However, when the parametric assumptions are wrong, this estimator can be

inconsistent whereas the standard instrumental variable estimator is consistent; see Table 4

for finite-sample results.

Imbens and Rubin’s other approach to using mixture modeling to estimate the complier

average causal effect is to approximate the density of the outcome distribution for each

compliance class under each randomization group as a piecewise constant function, and

then estimate the complier average causal effect by maximum likelihood. This approach is
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in principle nonparametric as the number of constant pieces in each density function can

be increased with the sample size. However, Imbens & Rubin (1997b) do not provide a

systematic approach for choosing the number of and locations of the pieces. We develop

a systematic easily implementable approach for doing this using empirical likelihood in the

next section.

3. Estimation through Empirical Likelihood Approach

3.1 Motivation and description of empirical likelihood approach

We first motivate and describe our method for single consent design trials, where the

presence of always-takers and defiers is ruled out. Table 2 shows the relationship between

observed (R, A) groups and latent compliance classes for a single consent design trial. The

complier average causal effect can be re-expressed under Assumptions 1-6 as follows:

CACE = µc1 − µc0 = µc1 − µR=0 − (1− πc)µ
n

πc

=

E(Y |R = 1, A = 1)− E(Y |R = 0)− {1− pr(A = 1|R = 1)}E(Y |R = 1, A = 0)

pr(A = 1|R = 1)
(3)

where µc1, µc0, µn and µR=0 denote the mean potential outcomes of the compliers under treat-

ment, compliers under control, never takers and the whole population of subjects when as-

signed to the control respectively; and πc denotes the proportion of compliers. The standard

instrumental variable estimator estimates the complier average causal effect by substituting

the method of moments estimates from the sample for E(Y |R = 1, A = 1), E(Y |R = 0),

pr(A = 1|R = 1) and E(Y |R = 1, A = 0) into (3). However, as noted by Imbens & Rubin

(1997b), there are restrictions on the joint density of (Y, R, A) that are not taken into account

by the method of moments that can be useful for estimating E(Y |R = 0), pr(A = 1|R = 1)

and E(Y |R = 1, A = 0). To be specific, Assumptions 1-6 imply the following restrictions.

Restriction 1. The distribution of Y |R = 0 is a mixture of the outcome distribution of

the never-takers under R = 0 and the outcome distribution of the compliers under R = 0.

Restriction 2. The mixing proportion πc for Y |R = 0 equals pr(A = 1|R = 1) as a

consequence of Assumption 2.
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Restriction 3. The mean of the never-takers under R = 0 is equal to the mean of the

never-takers under R = 1, which equals E(Y |R = 1, A = 0), as a consequence of Assumption

4.

The sample mean of Y |R = 0 uses only the information in those of Y1, . . . , YN for which

Ri = 0 to estimate E(Y |R = 0), but Restrictions 1-3 imply that there is additional in-

formation in those of Y1, . . . , YN for which Ri = 1. Similarly, the sample proportion of

A = 1|R = 1 uses only the information in those of A1, . . . , AN for which Ri = 1 to estimate

pr(A = 1|R = 1) but Restrictions 1-3 imply that there is additional information in those

of A1, . . . , AN for which Ri = 0. A body of work has shown that supplementing a sample

from a distribution that is a mixture of two components with samples from one or both of

the components alone provides additional information for estimating aspects of the mixture

distribution; see for example Hall & Titterington (1984), Lancaster & Imbens (1996) and

Qin (1999). Here, the sample of Y1, . . . , YN for which Ri = 1, Ai = 0 provides information

about the never-taker component of the mixture Y |R = 0 and the sample of A1, . . . , AN for

which Ri = 1 provides information about the mixing proportion in the mixture Y |R = 0.

We now illustrate how this information is useful in a setting with a binary outcome in which

πc = 0.5, µn = 0.2, µc1 = 0.8, µc0 = 0.9, N = 40, n0 = 20. (4)

The following is a plausible sample in this setting: #(Yi = 1, Ai = 1, Ri = 1) = 8, #(Yi =

0, Ai = 1, Ri = 1) = 2, #(Yi = 1, Ai = 0, Ri = 1) = 2, #(Yi = 0, Ai = 0, Ri = 1) = 8,

#(Yi = 1, Ai = 0, Ri = 0) = 13 and #(Yi = 0, Ai = 0, Ri = 0) = 7; the p-value for a χ2 test of

whether or not this sample comes from the distribution (4) is 0.37. Note that, for this sample,

the method of moments estimates of the quantities in (3), namely Ê(Y |R = 1, A = 1) = 0.8,

Ê(Y |R = 0) = 0.65, p̂r(A = 1|R = 1) = 0.5, Ê(Y |R = 1, A = 0) = 0.2, violate Restrictions

1-3. Figure 1 plots the profile log-likelihood for this sample under the probability model

given by Assumptions 1-6 with binary outcomes. The maximum likelihood estimator of

CACE, which takes into account the mixture structure of the outcomes given by Restrictions
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1-3, has a noticeably higher likelihood than the standard instrumental variable estimator,

which ignores some of the restrictions. The maximum likelihood estimator’s property of

taking into full account the mixture structure leads to substantially better estimates; in 1000

simulations from model (4), the mean squared error of the maximum likelihood estimator

was 0.048 compared to 0.156 for standard instrumental variable estimator.

To take account of the mixture structure of the outcomes given by Restrictions 1-3

for more general distributions of outcomes in a nonparametric way, we use the empirical

likelihood approach. The empirical likelihood for a parameter such as the complier average

causal effect is the nonparametric profile likelihood for the parameter. Maximum empirical

likelihood estimators have good properties for a wide class of semiparametric problems; see

Owen (2001) and Qin & Lawless (1994) for discussion.

Without loss of generality, we arrange the subjects so that R1 = . . . = Rn0 = 0 and

Rn0+1 = . . . = RN = 1; thus, (Y1, A1), . . . , (Yn0 , An0) is a random sample from the population

of Y r=0,a=Ar=0
, Ar=0 and (Yn0+1, An0+1), . . . , (YN , AN) is a random sample from the population

of Y r=1,a=Ar=1
, Ar=1. The empirical likelihood LE of the parameters (πc, µ

n, µc1, µc0) is:

LE(πc, µ
n, µc1, µc0) = max

(
n0∏
i=1

qi

)(
N∏

i=n0+1

qi

)
, (5)

subject to
n0∑
i=1

qi = 1,
N∑

i=n0+1

qi = 1, qi ≥ 0, i = 1, . . . N, (6)

N∑
i=n0+1

qiAi = πc,

N∑
i=n0+1

qiYiAi = µc1πc,

N∑
i=n0+1

qiYi(1− Ai) = µn(1− πc), (7)

There exist pc0
i , pn

i , i = 1, . . . , n0 such that

πcp
c0
i + (1− πc)p

n
i = qi, (8)

n0∑
i=1

pc0
i =

n0∑
i=1

pn
i = 1, pc0

i , pn
i ≥ 0, i = 1, . . . , n0, (9)

n0∑
i=1

pn
i (Yi − µn) = 0, (10)

n0∑
i=1

pc0
i (Yi − µc0) = 0. (11)
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Note that throughout our paper, we will follow Owen (2001, Ch. 2.3) and regard tied

data values Yi, Yj as representing distinct outcomes in the empirical likelihood as this sim-

plifies calculations and does not affect inferences. The pc0
i and pn

i in (8)-(11) represent

the population probabilities that a complier assigned to the control and a never-taker as-

signed to the control have the same outcome as subject i respectively. The conditions

(8)-(11) involving the pc0
i and pn

i encode the restrictions on the distribution of Y |R = 0

that come from it being a mixture of the compliers and never-takers under Assumptions

1-6, see Restrictions 1-3. The maximum empirical likelihood estimate of (πc, µ
n, µc1, µc0)

is arg maxπc,µn,µc1,µc0 LE(πc, µ
n, µc1, µc0). To ease the computational burden of computing

the maximum empirical likelihood estimate, we do not maximize over µn, but instead use

the method of moments estimator µ̂n =
∑N

i=1 YiRi(1 − Ai)/
∑N

i=1 Ri(1 − Ai) and maximize

LE(πc, µ̂
n, µc1, µc0) over (πc, µ

c1, µc0). In model (4), this approximate maximum empirical

likelihood estimator of the complier average causal effect performed almost as well as the

maximum empirical likelihood estimator; its mean squared error was 0.051 compared to

0.048 for the maximum empirical likelihood estimator. We now present an algorithm for

finding the approximate maximum empirical likelihood estimate.

3.2 Computation for empirical likelihood approach

To find the approximate maximum empirical likelihood estimate, we conduct a grid search

over πc, finding maxµc1,µc0 LE(π̃c, µ̂
n, µc1, µc0) over a grid of π̃c from 0 to 1. As we will see be-

low, arg maxµc1 LE(π̃c, µ̂
n, µc1, µc0) does not depend on µc0 and arg maxµc0 LE(π̃c, µ̂

n, µc1, µc0)

does not depend on µc1, so finding the maximizing µc1 and µc0 can be done separately. For

finding the maximizing µc1, we note that arg maxµc1 LE(π̃c, µ̂
n, µc1, µc0) equals arg maxµc1

∏
i:Ri=Ai=1 qi

subject to (i)
∑

i:Ri=Ai=1 qi = π̃c, (ii) qi ≥ 0, i = 1, . . . , N and (iii)
∑

i:Ri=Ai=1 qiYi = π̃cµ
c1.

By multiplying the qi’s by 1/π̃c, we see that finding arg maxµc1 LE(π̃c, µ̂
n, µc1, µc0) is equiv-

alent to finding the maximum empirical likelihood estimator of the mean of the popula-

tion of Y 1,1|C = 1 based on the random sample Y1, . . . , Yn|Ai = 1, Ri = 1; consequently,

arg maxµc1 LE(π̃c, µ̂
n, µc1, µc0) is the mean of Y1, . . . , Yn|Ai = 1, Ri = 1; see Theorem 2.1 of

Owen (2001). Thus, our estimate of µc1 is µ̂c1 =
(∑N

i=1 RiAi

)−1 ∑N
i=1 YiRiAi. For finding
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our estimate of µc0, let (q∗1, . . . , q
∗
n0

) = arg maxq1,...,qn0

∏n0

i=1 qi subject to (6) and (8)-(10) with

µn = µ̂n, πc = π̃c. We have that

arg max
µc0

LE(π̃c, µ̂
n, µc1, µc0) =

∑n0

i=1 q∗i Yi − (1− π̃c)µ̂
n

π̃c

, (12)

where we use the fact that, for the µc0 that satisfies
∑n0

i=1 q∗i Yi = π̃cµ
c0 +(1− π̃c)µ̂

n, the con-

straints (8)-(11) are satisfied for q1 = q∗1, . . . , qn0 = q∗n0
. Thus, to find arg maxµc0 LE(π̃c, µ̂

n, µc1, µc0),

we just need to find q∗1, . . . , q
∗
n0

. To do this, we note that we can view (q∗1, . . . , q
∗
n0

) as the

maximum likelihood estimate of the category probabilities for the sample Y1, . . . , Yn0 from

an independent and identically distributed multinomial model with categories Y1, . . . , Yn0 ,

corresponding category probabilities q1, . . . , qn0 and parameter restrictions given by (6) and

(8)-(10) with µn = µ̂n, πc = π̃c. Finding the maximum likelihood estimate directly is chal-

lenging because of the complex parameter restrictions in (8)-(10). However, consider using

the EM algorithm, where we regard each subject’s compliance class as ‘missing data.’ We can

reexpress the observed data likelihood
∏n0

i=1 qi and the parameter restrictions (6) and (8)-(10)

in terms of pc0
i and pn

i ; see Appendix 1 for details. We can then use the EM algorithm to find

the pc0
i and pn

i to maximize the observed data likelihood and then find the corresponding max-

imizing qi’s by (8). The complete-data likelihood is
∏

i:Ri=0,Ci=1 pc0
i

∏
i:Ri=0,Ci=0 pn

i . Since the

complete data follows an exponential family distribution, the E-step has a closed form expres-

sion. The M -step involves a calculation analogous to finding the empirical likelihood for the

mean (Owen, 1988); convex duality enables us to avoid maximizing over pc0
i , pn

i , i = 1, . . . , n0,

and instead we maximize over a single variable. The tractability of both the E- and M - steps

makes the EM algorithm with each subject’s compliance class as missing data easy to use

for finding q∗1, . . . , q
∗
n0

and hence finding arg maxµc0 LE(π̃c, µ̂
n, µc1, µc0) by (12).

Note that, given qi, i = 1, . . . , n0, there are typically more than one set of pc0
i , pn

i , i =

1, . . . , n0, that satisfy the constraints (8)-(10). Numerical experiments, not shown here,

verify that although the EM algorithm converges to different values of pc0
i and pn

i for different

sets of starting values for the pc0
i and pn

i , the corresponding qi’s to which the EM algorithm

10



converges are the same, as Lemma 1 shows more formally.

Lemma 1. Regardless of the starting values for the pc0
i , pn

i , i = 1, . . . , n0, the sequence of

estimates of qi from the EM algorithm converges to the global maximum of the likelihood
∏n0

i=1 qi subject to the restrictions (6) and (8)-(10) with µn = µ̂n, πc = π̃c.

The proof of Lemma 1 is outlined in Appendix 2.

In summary, we estimate πc, µ
n, µc1, µc0 as follows; a program is available from the authors.

Step 1. We obtain µ̂n as the sample mean of Y |R = 1, A = 0.

Step 2. We obtain µ̂c1 as the sample mean of Y |R = 1, A = 1.

Step 3. For a grid of π̃c, we find the maximum empirical likelihood estimate of µc0

given πc = π̃c, µn = µ̂n, µc1 = µ̂c1 using the EM algorithm described above. Then π̂c =

arg maxπ̃c maxµc0 LE(π̃c, µ̂
n, µ̂c1, µc0) and µ̂c0 = arg maxµc0 LE(π̂c, µ̂

n, µ̂c1, µc0).

Step 4. Our approximate maximum empirical likelihood estimate of the complier average

causal effect is ˆCACEA = µ̂c1 − µ̂c0.

3.3 Estimation in trials in which the assigned to control group can access the

treatment

Our method illustrated in §3.1 can be directly applied to more general trials under As-

sumptions 1-6 in which the control group can access the treatment. For such trials, we have

one more compliance class, the always-takers, in addition to the compliers and never-takers,

see Table 3; we denote the proportion of always takers and the mean of always takers’ po-

tential outcomes by πa and µa respectively. The empirical likelihood LE of the parameters

(πc, πa, µ
n, µa, µc1, µc0) is the maximum likelihood for multinomial distributions (q1, . . . , qn0)

on (Y1, A1), . . . (Yn0 , An0) and (qn0+1, . . . , qN) on (Yn0+1, An0+1), . . . , (YN , AN) that are con-

sistent with (πc, πa, µ
n, µa, µc1, µc0) and the restrictions on the parameter space specified by

Assumptions 1-6, namely LE(πc, πa, µ
n, µa, µc1, µc0) = max (

∏n0

i=1 qi)
(∏N

i=n0+1 qi

)
subject to

(i)
∑n0

i=1 qi = 1,
∑N

i=n0+1 qi = 1; (ii) qi ≥ 0, i = 1, . . . , N ; (iii)
∑

i:Ri=1,Ai=0 qi = 1 − πa − πc;

(iv)
∑

i:Ri=0,Ai=1 qi = πa; (v)
∑

i:Ri=1,Ai=0 qiYi = µn(1−πa−πc); (vi)
∑

i:Ri=0,Ai=1 qiYi = µaπa;

(vii) There exist pc0
i , pn

i for the i with Ri = 0, Ai = 0 such that (viia) {πc/(1−πa)}pc0
i +{(1−
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πa−πc)/(1−πa)}pn
i = qi, (viib)

∑
pc0

i =
∑

pn
i = 1, (viic) pc0

i , pn
i ≥ 0, (viid)

∑
pn

i (yi−µn) = 0

and (viie)
∑

pc0
i (Yi − µc0) = 0; and (viii) There exist pc1

i , pa
i for the i with Ri = 1, Ai = 1

such that (viiia) {πc/(πc + πa)}pc1
i + {πa/(πc + πa)}pa

i = qi, (viiib)
∑

pc1
i =

∑
pa

i = 1;

(viiic) pc1
i , pa

i ≥ 0; (viiid)
∑

pa
i (Yi − µa) = 0 and (viiie)

∑
pc1

i (Yi − µc1) = 0. As with

the single consent design, rather than finding the maximum empirical likelihood estimate

of (πc, πa, µ
n, µa, µc1, µc0), we find the approximate maximum empirical likelihood estimate

by setting µn equal to the sample mean of Y |R = 1, A = 0, corresponding to the known

never-takers in the sample, and µa equal to the sample mean of Y |R = 0, A = 1, correspond-

ing to the known always-takers in the sample, and then maximizing the empirical likelihood

over (πc, πa, µ
c1, µc0). This can be done by using the EM algorithm for estimating µc0 in the

Y |R = 0, A = 0 sample as in §3.2, and an analogous EM algorithm for estimating µc1 in the

Y |R = 1, A = 1 sample. The details are provided in a technical report available from the

authors.

4 Simulation Studies

We compare our approximate maximum empirical likelihood estimator with the standard

instrumental variable estimator and Imbens and Rubin’s parametric estimator, considering

single consent design trials as discussed in §3.1. We set πc = 0.5 and compare the three

estimators under different outcome distributions and under sample sizes of N = 100 and

N = 500 with pr(R = 1) = 0.5. The outcome distributions we consider are Normal, gamma,

and lognormal distributions. For each outcome distribution, we set µc1 = 2, µc0 = 1, so that

the CACE = µc1 − µc0 = 1. The variances are fixed at 1.

Before explaining our settings for µn, we discuss the impact of the distance between µn

and µc0 on the efficiency of the approximate maximum empirical likelihood estimator relative

to standard instrumental variable estimator. The distance between µn and µc0 is a measure of

the separation between the distributions of the compliers and never-takers under the control.

To see the impact of the distance between µn and µc0, we consider under what conditions the

approximate maximum empirical likelihood and standard instrumental variable estimators

are equal. Standard instrumental variable estimator estimates the complier average causal

12



effect by substituting method of moments estimates into (3). The approximate maximum

empirical likelihood estimator estimates the complier average causal effect by substituting

maximum empirical likelihood estimates into (3) conditional on E(Y |R = 1, A = 0) being set

equal to its method of moments estimate. The approximate maximum empirical likelihood

estimator equals the standard instrumental variable estimator if the method of moments

estimates of pr(A = 1|R = 1) and E(Y |R = 1, A = 0), denoted by p̂r(A = 1|R = 1) and

µ̂n respectively, satisfy (8)-(10) with qi = 1/n0 for i = 1, . . . , n0. This will happen if and

only if µ̂n is between the trimmed mean of Y |R = 0 over the 0 to {1 − p̂r(A = 1|R = 1)}
quantiles and the trimmed mean of Y |R = 0 over the p̂r(A = 1|R = 1) to 1 quantiles. It

is more likely that µ̂n will escape these bounds when the distributions of the compliers and

the never-takers are more separated. When µ̂n does escape these bounds, we expect that

the approximate maximum empirical likelihood estimator will provide a better estimate

than standard instrumental variable estimator because the approximate maximum empirical

likelihood estimator is taking better account of the mixture structure of outcomes implied

by Assumptions 1-6. Thus, we expect that the approximate maximum empirical likelihood

estimator will gain more efficiency over standard instrumental variable estimator when the

distance between µn and µc0 is greater, because then the distributions of the compliers and

never-takers under the control are more separated.

To see the effect of the separation between the compliers and never-takers under the

control, we chose two sets of values for µc0 and µn such that the distributions of the compliers

and never-takers under the control are well separated under one set of values but are close

to each other under another set of values. In setting N1, the distributions of Y 1,1
i |Ci =

1, Y 0,0
i |Ci = 1 and Y 0,0

i = Y 1,0
i |Ci = 0 are Normal with (mean, variance) combinations

(2, 1), (1, 1) and (3, 1), respectively. In setting G1 and LN1, the distributions are gamma

and lognormal, respectively. Settings N2, G2 and LN2 differ only in that the (mean, variance)

combination of Y 0,0
i = Y 1,0

i |Ci = 0 is (1.5, 1).

For each setting, we present summary results over 1000 replications with sample sizes

of 100 and 500. Table 4 shows the bias and mean squared error from the three different

13



estimators for the complier average causal effect for the different settings considered. Table

4 shows the following features.

First, the parametric estimator based on the normality assumption is unbiased and more

efficient than standard instrumental variable and approximate maximum empirical likelihood

estimators under the true normal distributions, but shows biases of 23% − 40% and is less

efficient than other two estimators under nonnormal distributions.

Secondly, both the approximate maximum empirical likelihood and standard instrumental

variable estimators have low bias for all settings considered. The approximate maximum

empirical likelihood estimator has bias below 5% when the distributions of the never-takers

and the compliers under the control are close to each other. When the distributions of the

never-takers and compliers under the control are well separated and the sample size is 100,

the approximate maximum empirical likelihood estimator has a bias of about 10% but this

bias drops to below 5% when the sample size increases to 500.

Thirdly, the approximate maximum empirical likelihood estimator is more efficient than

standard instrumental variable estimator for all settings considered. The gain in mean

squared error is more substantial when the distributions of never-takers and compliers under

the control are well separated, as expected from the discussion above. The gain in mean

squared error is as large as 56%. The gain is generally smaller with a sample size of 500

rather than 100. In additional simulations not presented in Table 4, we found that there

is still a gain in mean squared error with the approximate maximum empirical likelihood

estimator over standard instrumental variable estimator with a sample size of 1000.

We also did a simulation study for the setting of §3.3 in which the assigned to control

group can access the treatment. The results are not presented, but are available from the

authors. The pattern of results is similar to that for the single consent design trials.

5 Asymptotic Properties

In §4, we showed that the approximate maximum empirical likelihood estimator gains

over standard instrumental variable estimator in a range of finite-sample situations, with

larger gains when the compliers and never-takers’ outcome distributions under the control

14



are more separated. The standard instrumental variable estimator is based on estimating the

distribution of (Y,A, R) by the empirical distribution of (Y, A,R); the method of moments

estimators on which standard instrumental variable estimator is based are the moments

of the empirical distribution. The source of the approximate maximum empirical likeli-

hood estimator’s gain over standard instrumental variable estimator is that the empirical

distribution of (Y, A, R) might not satisfy the restrictions given by Assumptions 1-6. The

approximate maximum empirical likelihood estimator takes these restrictions into account

to provide a better estimate of the distribution of (Y, A,R) than the empirical distribution.

However, unless the distribution of (Y,A, R) is ‘at the boundary’ of the restrictions given

by Assumptions 1-6, the empirical distribution of (Y,A, R) should satisfy the restrictions

with probability converging to 1 as the sample size N →∞. Consequently, the approximate

maximum empirical likelihood estimator will be asymptotically equivalent to the standard

instrumental variable estimator. We establish this result in Theorem 1 under condition (13)

below. Condition (13) specifies that the distribution of (Y, A, R) is not ‘at the boundary’

of the restriction that the Y |R = 0 is a mixture of the compliers and never-takers under

the control in the sense that the distributions of the compliers and never-takers under the

control overlap at least minimally. In condition (13) below, we let F c0 and F n0 denote

the cumulative distribution functions of potential outcomes under the control for compliers

and never-takers respectively, and we let G = πcF
c0 + (1 − πc)F

n0 denote the cumulative

distribution function of potential outcomes under the control. The condition is

1

1− πc

∫ G−1(1−πc)

−∞
zdG(z) <

∫∞
−∞ zdF n0(z) = µn,

µn =

∫ ∞

−∞
zdF n0(z) < 1

1−πc

∫∞
G−1(πc)

zdG(z). (13)

Condition (13) says that the trimmed mean of the πn-smallest part of the mixture of never-

takers and compliers is strictly less than the mean of the never-takers and that the trimmed

mean of the πn-largest part of the mixture of never-takers and compliers is strictly greater

than the mean of the never-takers. Under condition (13), we have
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Theorem 1. Consider a single consent design. Suppose (i) (13) holds, (ii) 0 < πc < 1 and

(iii) n0/N = d, 0 < d < 1. Then, pr( ˆCACEA = ˆCACES) → 1 as N →∞.

The proof of Theorem 1 is in Appendix 2.

In spite of the asymptotic equivalence result in Theorem 1, the simulation study in §4
showed that the approximate maximum empirical likelihood estimator can provide substan-

tial gains in practical situations. The gains provided by the approximate maximum empirical

likelihood estimator are analogous to the gains provided in estimating a population mean in

the knowledge of restrictions on the range of the mean. For example, consider estimating

the mean µ of a normal distribution N(µ, σ2) based on a random sample Y1, . . . , YN when

it is known that µ is less than or equal to an upper bound µU . If µ is reasonably close to

µU , then the maximum likelihood estimate will gain substantially over the sample mean, the

maximum likelihood estimate if µ is unrestricted, for many sample sizes. However, as long

as µ is less than µU by any amount, the estimators are equivalent asymptotically because,

for large enough N , the sample mean is less than µU with high probability.

6 Application to Depression Study

In this section, we apply our method to analyze a randomized trial of an intervention to

improve treatment of depression among depressed elderly patients in primary care practices

(Bruce et al., 2004). The encouragement intervention was that a depression care specialist

collaborated with the patient’s primary care physician to facilitate adherence to a depression

treatment strategy and provide education and assessment to the patient. The control was

usual care. The study involved 539 depressed patients in 20 primary care practices at

three sites followed for six visits: baseline, 4, 8, 12, 18 and 24 months. Each practice

was randomized to either intervention, treatment, or usual care, control. For illustrative

purposes, we ignore the fact that the trial was a group randomized trial and treat it as

a completely randomized trial; for analyses that account for the group randomization, see

Small et al. (2007). Compliance with the intervention was categorized as a binary variable,

whether or not a patient had seen a depression care specialist in the prior four months of
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follow-up. Patients in practices randomized to the usual-care group did not have access to

the depression specialist, so there are only compliers and never-takers in this trial. To see the

effects of estimators under different situations, we analyze two outcomes. One is the patients’

Hamilton depression scores measured at 4 months, which take integer values between 0 and

50. A lower value of the outcome means less depression. Another outcome of analysis is the

composite anti-depression scores among males at one site measured at 12 months. This is

an integer-valued score from 0 to 4 that indicates how much the patient is being treated for

depression. A score of 3 or 4 is considered adequate treatment for depression while 1 or 2

means the patient is being treated in some way, but not a what is considered an adequate

dose.

Table 5 shows the three estimates of the complier average causal effect for the Hamilton

and composite anti-depression scores described above. The percentile bootstrap with 1000

resamples was used to compute approximate 95% confidence intervals. We first consider the

Hamilton score at 4 months; see the second column of Table 5. The scores were observed

for 517 subjects and 92.7% of these subjects that were assigned to treatment complied with

the treatment. All the complier average causal effect estimates are negative and the 95%

confidence intervals do not include zero, indicating that the intervention has a significant ben-

eficial effect on depression compared to usual care. Comparing the three estimation methods,

we first note from the histograms of the Hamilton outcome in Fig. 2 (a)-(c) that the Hamil-

ton scores for the never-takers and compliers under the treatment are far from normally

distributed, suggesting that the parametric estimator based on the normality assumption

is probably a biased estimator. The standard instrumental variable estimator and the ap-

proximate maximum empirical likelihood estimator provide very similar point estimates and

similar 95% confidence intervals; see below for more explanation of this similarity. We now

consider the outcome of the composite anti-depression scores among males at the site at 12

months, given in the third column of Table 5. The scores were observed for 37 subjects

and 75% of these subjects who were assigned to treatment complied with the treatment.

The approximate maximum empirical likelihood and standard instrumental variable com-
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plier average causal effect estimates show a significant beneficial effect of the intervention on

treating depression while the parametric normal estimate does not show a significant effect.

As for the Hamilton score, the histograms of the composite anti-depression outcomes in Fig.

2 (d)-(f) show that the composite anti-depression scores from the never-takers and compliers

under the control are far from normally distributed, suggesting that the parametric estima-

tor based on the normality assumption is a biased estimator. Unlike for the Hamilton score,

for the complier average causal effect of the intervention on the composite anti-depression

score, the approximate maximum empirical likelihood estimate has a substantially narrower

95% confidence interval than standard instrumental variable estimate.

The greater gain in efficiency of the approximate maximum empirical likelihood estimate

compared to standard instrumental variable estimate for the composite anti-depression study

rather than the Hamilton study is related to three factors. First, the sample size in the R = 0

group is smaller for the composite anti-depression study, making it more likely that the em-

pirical distribution of (Y, A,R) will deviate from the restrictions implied by Assumptions

1-6. Secondly, the compliance rate among the subjects assigned to treatment is higher for

the Hamilton study, 93%, than the composite anti-depression study, 75%, providing less

scope in the Hamilton study for the extra information about Assumptions 1-6 used by the

approximate maximum empirical likelihood estimator to have an impact. Thirdly, the sep-

aration between the never-takers’ and compliers’ outcome distributions in the control group

is greater for the composite anti-depression than for the Hamilton; if we use the estimates of

µn and µc0 obtained by substituting method of moments estimates into the population ex-

pressions for these quantities in (3), the estimated absolute standardized difference between

the never-takers’ and compliers’ means in the control group is 2.34 for the composite anti-

depression compared to 0.72 for the Hamilton. As we have shown in our simulation studies,

the approximate maximum empirical likelihood estimator will have a larger gain in efficiency

over standard instrumental variable estimator when the distributions of the never-takers and

compliers in the control group are more separated.

7 Discussion
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Our method can be extended to observational studies in which a variable R which en-

courages, R = 1, or does not encourage, R = 0, a subject to take the treatment is not

randomly assigned but is ‘as good as randomly assigned’, that is, ignorable, conditional

on some covariates; such studies are discussed in Abadie (2003) and examples are given in

Table 1 of Angrist & Krueger (2001). Suppose we replace Assumption 2 with Assumption

2′ that the encouragment variable R is independent of Y 1,1, Y 1,0, Y 0,1, Y 0,0, A0, A1 condi-

tional on a subject’s covariate vector X and that the encouragement variables of different

subjects are independent. Also, suppose we expand Assumption 3 to Assumption 3′ that

Xi, Y
1,1
i , Y 1,0

i , Y 0,1
i , Y 0,0

i , A0
i , A

1
i are independent and identically distributed draws from a su-

perpopulation and expand Assumption 4 to condition on covariates, i.e, let Assumption 4′

be that E(Y r,a|X) = E(Y r′,a|X) for all r, r′, a, X. Furthermore, for a single consent de-

sign, suppose we consider linear models for the expected potential outcomes in a compliance

class given the covariates and a logistic model for compliance given the covariates, i.e.,

E(Y 1,1|C = 1, X) = X ′βc1, E(Y 0,0|C = 1, X) = X ′βc0, E(Y 1,0|C = 0, X) = E(Y 0,0|C =

0, X) = X ′βn and pr(C = 1|X) = expit(X ′α), where expit(z) = ez/(1 + ez). We in-

clude an intercept in the covariate vector X and let p denote the dimension of X. Un-

der this model, the complier average causal effect for compliers with covariate vector X

is X ′βc1 − X ′βc0. Under Assumptions 1, 2′, 3′, 4′, 5 and 6 and the above models for the

outcomes and compliance probabilities, we have that the empirical likelihood of α, βc1, βc0

and βn is LE(α, βn, βc1, βc0) = maxq1,...,qN

∏N
i=1 qi subject to (i)

∑n0

i=1 qi = 1,
∑N

i=n0+1 qi = 1;

(ii) qi ≥ 0, i = 1, . . . , N ; (iii)
∑N

i=n0+1 qiXij{Ai − expit(X ′
iα)} = 0, j = 1, . . . , p; (iv)

∑N
i=n0+1 qiAiXij(Yi − X ′

iβ
c1) = 0, j = 1, . . . , p; (v)

∑N
i=n0+1 qi(1 − Ai)Xij(Yi − X ′

iβ
n) = 0,

j = 1, . . . , p; (vi) there exist tc0i , tni , i = 1, . . . , n0 such that (via) tc0i +tni = qi; (vib) tc0i , tni ≥ 0;

(vic)
∑n0

i=1 tc0i +
∑n0

i=1 tni = 1; (vid)
∑n0

i=1 tc0i Xij{1−expit(X ′
iα)}+∑n0

i=1 tni Xij{−expit(X ′
iα)} =

0; (vie)
∑n0

i=1 tni Xij(Yi − X ′
iβ

n) = 0, j = 1, . . . , p; and (vif)
∑n0

i=1 tc0i Xij(Yi − X ′
iβ

c0) = 0,

j = 1, . . . , p. Here the tc0i , tni , respectively represent the population probabilities that a

subject assigned to the control has the same outcome and covariates as subject i and is a

complier, never-taker respectively. The above expression for the empirical likelihood builds
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on Owen’s (2001, Ch. 4) discussion of empirical likelihood for regression models. As in our

method of §3, we can compute the approximate maximum empirical likelihood estimate by

estimating βn using the R = 1, A = 0 sample and maximizing the empirical likelihood over

α, βc1 and βc0 given βn = β̂n.

When deriving the approximate maximum empirical likelihood estimator, we have as-

sumed the weak exclusion restriction that the never-takers’, always takers’, respectively,

mean is the same under assignment to treatment and control, rather than the strong exclu-

sion restriction that the never-takers’, always- takers’, respectively entire outcome distribu-

tion is the same under assignment to treatment and control. In most situations in which

the weak exclusion restriction is plausible, we think that the strong exclusion restriction will

also be plausible. We are currently adapting our approach to situations in which the strong

exclusion restriction is plausible by enabling the empirical likelihood approach to use more

equality constraints for aspects of the never-takers and always-takers under R = 0 and R = 1

distributions respectively than just equality of means.
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APPENDIX 1

Details of the EM algorithm

Reexpressing the observed data likelihood
∏n0

i=1 qi and the parameter restrictions (6) and

(8)-(10) in terms of pc0
i , pn

i , we have that the observed data likelihood, with πc = π̃c, µn = µ̂n,

is
∏n0

i=1{π̃cp
c0
i + (1− π̃c)p

n
i }, with parameter restrictions

n0∑
i=1

pc0
i =

n0∑
i=1

pn
i = 1, pc0

i ≥ 0, pn
i ≥ 0, i = 1, . . . , n0,

n0∑
i=1

pn
i (Yi − µ̂n) = 0. (A1)

where qi = π̃cp
c0
i + (1 − π̃c)p

n
i and µc0 =

∑n0

i=1 pc0
i Yi. Note that, if µ̂n is such that there is

no pc0
i , pn

i that satisfies (A1), then our approximate maximum empirical likelihood estimator

does not exist; in this case we can modify the approximate maximum empirical likelihood
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estimator to use µ̂n as the closest point to
∑

i:Ri=1,Ai=0 Yi/#{Ri = 1, Ai = 0}, the usual

estimate of µn for the approximate maximum empirical likelihood estimator, such that there

exists pc0
i , pn

i , i = 1, . . . , n0, that satisfy (A1). If we view each subject’s compliance class as

missing data, the complete data likelihood is
∏

i:Ri=0,Ci=1 pc0
i

∏
i:Ri=0,Ci=0 pn

i .

E-step. The expectation of the complete data log-likelihood conditional on the observed

data and the parameter estimates pc0(k−1)

i and pn(k−1)

i at the (k − 1)th step is

Q(k) = E(

n0∑
i=1

[Ci(log pc0
i + log π̃c) + (1− Ci){log pn

i + log(1− π̃c)}|Y1, . . . , Yn0 , p
c0(k−1)

i , pn(k−1)

i ]

=

n0∑
i=1

[W
(k)
i (log pc0

i + log π̃c) + (1−W
(k)
i ){log pn

i + log(1− π̃c)}]

where W
(k)
i = pr(k−1)(Ci = 1|Yi, Ri = 0, Ai = 0) = π̃cp

c0(k−1)

i /{π̃cp
c0(k−1)

i + (1− π̃c)p
n(k−1)

i }.
M-step. We wish to maximize Q(k) over pc0

i , pn
i subject to (A1) with µn = µ̂n, πc = π̃c.

We do this by conducting a grid search over µc0 =
∑n0

i=1 pc0
i Yi. We now discuss maximizing

Q(k) given µc0 = µ̃c0. We will denote the maximizing values of pc0
i , pn

i for µc0 = µ̃c0 by p̃c0
i , p̃n

i .

Note that µ̃c0 is a possible value of µc0 if and only if

{pc0
i , i = 1, . . . , n0|

∑
i

pc0
i = 1, pc0

i ≥ 0,
∑

i

pc0
i (Yi − µc0) = 0} is not empty. (A2)

For such a µ̃c0, maximizing Q(k) via Lagrange multipliers subject to (A1) and µc0 = µ̃c0 gives

p̃c0
i =

W
(k)
i

(
∑

i W
(k)
i ){1 + t̃c(Yi − µ̃c0)}

, p̃n
i =

1−W
(k)
i

{∑i(1−W
(k)
i )}{1 + t̃n(Yi − µ̂n)}

where t̃c and t̃n can be determined in terms of µ̃c0 and µ̂n by

0 =
∑

i

p̃c0
i (Yi − µ̃c0) =

∑
i

W
(k)
i (Yi − µ̃c0)

(
∑

i W
(k)
i ){1 + t̃c(Yi − µ̃c0)}

(A3)

0 =
∑

i

p̃n
i (Yi − µ̂n) =

∑
i

(1−W
(k)
i )(Yi − µ̂n)

{∑i(1−W
(k)
i )}{1 + t̃n(Yi − µ̂n)}

(A4)

The rightmost expressions in (A3) and (A4) are monotonically decreasing in t̃c and t̃n re-
21



spectively, so that a safeguarded zero-finding algorithm, such as Brent’s method, can be

used. Starting points for the zero finding algorithm can be found by noting that, since

0 ≤ p̃c0
i , p̃n

i ≤ 1,

t̃c ∈ (
1− W

(k)
iP

i W
(k)
i

µ̃c0 − Y(n0)

,
1− W

(k)
iP

i W
(k)
i

µ̃c0 − Y(1)

) , t̃n ∈ (
1− (1−W

(k)
i )

P
i(1−W

(k)
i )

µ̂n − Y(n0)

,
1− (1−W

(k)
i )

P
i(1−W

(k)
i )

µ̂n − Y(1)

)

where Y(n0) = max(Yi|Ri = 0) and Y(1) = min(Yi|Ri = 0). The kth-step parameter estimates

pc0(k)

i , pn(k)

i , i = 1, . . . , n0, are the p̃c0
i , p̃n

i that correspond to the µ̃c0 that maximizes Q(k) over

the grid of µ̃c0 considered. Note that we can avoid the need to consider the constraint (A2)

by replacing the logarithm function with the pseudo-logarithm function of Owen (2001, p.

62) in the definition of Q(k).

Appendix 2

Proofs

Outline proof of Lemma 1. The complete proof is provided in a technical report available

from the authors. Here we outline the steps in the proof.

Step 1. We show that maximizing
∏n0

i=1 qi subject to (6) and (8)-(10) with µn = µ̂n, πc =

π̃c is a convex optimization problem so that there is a unique global maximum.

Step 2. Our problem involves maximization over a constrained parameter space. Nettle-

ton (1999) shows that, under regularity assumptions, the EM algorithm converges to either

(a) a stationary point or (b) a boundary point of the constrained parameter space at which

the likelihood function can be increased only by moving in a direction outside the param-

eter space. For an unconstrained parameter space, under regularity assumptions, the EM

algorithm converges only to points of type (a) (Wu, 1983). We show that, even though our

parameter space is constrained, under regularity assumptions, the EM algorithm converges

only to points of type (a) for our problem.

Step 3. We combine the results in Steps 1 and 2 with results about EM for unconstrained

problems of Wu (1983) and Dempster et al. (1977) to prove the lemma.
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Proof of Theorem 1. Let Z1, . . . , Zn0 denote the Y |R = 0 sample, and let π̂R=1
c equal the

method of moments estimate of πc based on the R = 1 sample, π̂R=1
c = #{Ri = 1, Ai =

1}/(N−n0). Note that, if there exist pc0
i , pn

i that satisfy (i) π̂R=1
c pc0

i +(1−π̂R=1
c )pn

i = 1/n0, (ii)
∑n0

i=1 pn
i (Zi−µ̂n) = 0, (iii)

∑n0

i=1 pc0
i =

∑n0

i=1 pn
i = 1 and (iv) pc0

i , pn
i ≥ 0, then the approximate

maximum empirical likelihood estimator equals the standard instrumental variable estimator

and the maximizing values of qi are qi = 1/n0, i = 1, . . . , n0. By considering the minimum

and maximum values of
∑n0

i=1 pn
i Zi subject to (i), (iii) and (iv) above, we have that there

exist pc0
i , pn

i that satisfy (i)-(iv) if and only if µ̂n ∈ [µl(N), µu(N)], where

µl(N) =

bkn0c∑
i=1

Z(i)
1

kn0

+ Z(bkn0c+1)
kn0 − bkn0c

kn0

,

µu(N) =

n0∑

i=n0−bkn0c+1

Z(i)
1

kn0

+ Z(n0−bkn0c)
kn0 − bkn0c

kn0

,

kn0 = n0(1 − π̂R=1
c ) and bkc is the greatest integer less than or equal to k. Let µ̃l(N) and

µ̃u(N) be the trimmed sample means of Z1, . . . , Zn0 trimmed to the [0, 1− πc] quantiles and

[πc, 1] quantiles respectively; that is,

µ̃l(N) =

bn0(1−πc)c∑
i=1

Z(i)
1

1− πc

+ Z(bn0(1−πc)c+1)
n0(1− πc)− bn0(1− πc)c

n0(1− πc)
.

Then, letting G denote the cumulative distribution function of the potential outcomes under

the control, we have that, as N →∞, in probability,

µ̃l(N) → 1

1− πc

∫ G−1(1−πc)

−∞
zdG(z) = µ∞l ,

µ̃u(N) →
∫ ∞

G−1(πc)

zdG(z) = µ∞u ,

by the properties of trimmed means (Shao, 2003, Ch. 5). Now we show that µl(N) → µ∞l

in probability and µu(N) → µ∞u in probability by showing that |µl(N) − µ̃l(N)| → 0 in

probability and |µu(N)− µ̃u(N)| → 0 in probability as N →∞. We have
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|µl(N)− µ̃l(N)| ≤ |s|max
(|Z(dn0(1−πc)+n0s+1e)|, |Z(bn0(1−πc)−n0s−1c)|

)
(A5)

where s = |(1− π̂R=1
c )−1− (1− πc)

−1| and dke is the least integer greater than or equal to k.

The first term on the right hand side of (A5) converges in probability to 0 as N → ∞ and

the second term converges in probability to a number less than or equal to max(|G−1(1 −
πc + a)|, |G−1(1 − πc − a)|) for any number a > 0, for this, note that n0 = dN → ∞ as

N → ∞ since d > 0. This shows that the right-hand side, and hence the left hand side, of

(A5) converges in probability to 0 as N →∞. Similarly,

|µu(N)− µ̃u(N)| ≤ |s|max
(|Z(dn0πc+n0s+1e)|, |Z(bn0πc−n0s−1c)|

) → 0 in probability.

Thus, we conclude that µl(N) → µ∞l in probability and µu(N) → µ∞u in probability. By

assumption (13) that the distributions of compliers and never-takers overlap, we have that

µ∞l < µn and µ∞u > µn. Combining the facts that µ∞l < µn < µ∞u , µl(N) → µ∞l in

probability and µu(N) → µ∞u in probability with the fact that µ̂n → µn in probability, by

the law of large numbers, because N − n0 = (1 − d)N → ∞ as N → ∞, we conclude that

pr{µl(N) < µ̂n < µu(N)} → 1 as N →∞. Thus, pr( ˆCACEA = ˆCACES) → 1 as N →∞.
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Table 1: The relationship between observed groups and latent compliance classes

Ri Ai Ci

1 1 1 (Complier) or 2 (Always-taker)

1 0 0 (Never-taker) or 3 (Defier)

0 0 0 (Never-taker) or 1 (Complier)

0 1 2 (Always-taker) or 3 (Defier)

Table 2: The relationship between observed groups and latent compliance classes in single
consent design trials

Ri Ai Ci

1 1 1 (Complier)

1 0 0 (Never-taker)

0 0 1 (Complier) or 0 (Never-taker)

Table 3: The relationship between observed groups and latent compliance classes under
Assumptions 1− 6

Ri Ai Ci

1 1 1 (Complier) or 2 (Always-taker)

1 0 0 (Never-taker)

0 0 1 (Complier) or 0 (Never-taker)

0 1 2 (Always-taker)



Table 4: Estimates of the CACE with true value 1 in single-consent treatment trials

Distn. N Bias Mean squared error
Std. IV AMELE Parametric Std. IV AMELE Parametric

N1 100 0.0178 −0.1141 −0.0240 0.3482 0.2003 0.1649

500 0.0202 −0.0016 −0.0054 0.0679 0.0515 0.0294

N2 100 0.0150 0.0105 −0.0053 0.1682 0.1604 0.1311

500 0.0019 0.0020 −0.0062 0.0214 0.0211 0.0186

G1 100 0.0429 −0.0981 0.2851 0.3697 0.1945 0.2424

500 −0.0060 −0.0212 0.3963 0.0637 0.0529 0.1907

G2 100 0.0088 −0.0048 0.3390 0.1957 0.1726 0.2311

500 0.0235 0.0232 0.3765 0.0454 0.0450 0.1561

LN1 100 0.0173 −0.1364 0.2299 0.2277 0.1008 0.1897

500 0.0177 −0.0266 0.3666 0.0411 0.0235 0.1568

LN2 100 −0.0007 −0.0137 0.2813 0.0670 0.0563 0.1593

500 0.0126 0.0129 0.2627 0.0120 0.0117 0.0814

Distn., distributions; Std. IV, standard instrumental variable estimate;
AMELE, approximate maximum empirical likelihood estimate

Table 5: Results from the depression study

Hamilton score Composite anti-depression score
Estimator estimate (95% CI) estimate (95% CI)
Std. IV −2.55(−4.13,−0.97) 1.86(0.76, 3.14)

AMELE −2.54(−4.12,−0.97) 1.60(0.73, 2.40)

Parametric −2.82(−4.39,−1.16) 1.41(−0.66, 2.47)

CI, confidence interval; standard IV, standard instrumental variable estimate;
AMELE, approximate maximum empirical likelihood estimate
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Figure 1: Profile log-likelihood for the maximum likelihood estimator and standard instru-
mental variable estimator of the complier average causal effect for the sample described in
§3.1
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Figure 2: Depression study. Histograms of (a)-(c) the Hamilton score and (d)-(f) the com-
posite anti-depression score for (a),(d) the R = 1, A = 1 group; (b), (e) the R = 1, A = 0
group; (c), (f) the R = 0 group
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