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Stochastic Segmentation Models for Array-Based Comparative Genomic
Hybridization Data Analysis

Abstract
Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique
for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying
chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions
with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic
segmentation model and an associated estimation procedure that has attractive statistical and computational
properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for
posterior means, which can be used to estimate the signal directly without performing segmentation. Other
quantities relating to the posterior distribution that are useful for providing confidence assessments of any
given segmentation can also be estimated by using our method. We propose an approximation method whose
computation time is linear in sequence length which makes our method practically applicable to the new
higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of
the proposed approach.
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SUMMARY 

Array-based comparative genomic hybridization (array-CGH) is a high through

put, high resolution technique for studying the genetics of cancer. Analysis of 

array-CGH data typically involves estimation of the underlying chromosome copy 

numbers from the log fluorescence ratios and segmenting the chromosome into 

regions with the same copy number at each location. We propose for the anal

ysis of array-CGH data a new stochastic segmentation model and an associated 

estimation procedure that has attractive statistical and computational proper

ties. An important benefit of this Bayesian segmentation model is that it yields 

explicit formulas for posterior means, which can be used to estimate the signal 

directly without performing segmentation. Other quantities relating to the poste

rior distribution that are useful for providing confidence assessments of any given 

segmentation can also be estimated using our method. Simulation studies and 

applications to real array-CGH data illustrate the advantages of the proposed 

approach. 

Key words and phrases: Array-CGH; Bayesian inference; Hidden Markov models; 

Jump probabilities. 
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1. INTRODUCTION 

Array-based comparative genomic hybridization (array-CGH) has become a useful tech

nology in studying the genetics of cancer. For a given cell sample, array-CGH allows quan

titative measurement of the average genomic DNA copy number at thousands of locations 

linearly ordered along the chromosomes. Typically, a test genomic DNA pool (e.g. genomic 

DNA from tumor cell sample) and a diploid reference genomic DNA pool are differentially 

labeled with dyes. These two dye-labeled samples are mixed and hybridized to a microarray 

chip, which is spotted with genomic targets that map to known locations on a global scale 

throughout the genome. The hybridized chip is then scanned, and the ratio of the test and 

reference fluorescence intensities for each genomic target is calculated. The ratio of the in

tensities of the dyes is a surrogate for the ratio of the abundance of the DNA sample labeled 

with the dyes. The review by Pinkel and Albertson (2005) summarizes recent developments 

in this technology and its potential applications. 

The first step in the analysis of array-CGH data is the estimation of the real copy 

number at each probe location from the log intensity measurements. Note that by· "copy 

number" we actually refer to a continuous quantity that is the average copy number at a 

given location over all of the cells in the sample, which is often a heterogeneous population 

of cells with different copy numbers at any given genome location. In the last few years, 

several statistical approaches have been proposed for this problem, including hidden Markov 

models (HMM, Fridlyand et al. (2004)), recursive change-point detection (CBS, Olshen et al. 

(2004)), a Gaussian model-based approach (GLAD, Hupe et al. (2004)), hierarchical tree

style clustering (CLAC, Wang et al. (2005)), wavelet approximation (Hsu et al. (2005)), a 

Bayes regression approach (Wen et al. (2005)), and a pseudo-likelihood approach to Gaussian 

mixture models (Engler et al. (2006)). Most of these methods approach this problem through 

a segmentation perspective: they divide the genome into linearly contiguous segments with 

the same copy number. An important statistical problem in the implementation of such 

methods is determination of the number of segments, which is sometimes referred to as the 

smoothness of the segmentation. Information-based model selection (Picard et al. (2005), 

Zhang and Siegmund (2006)) has been proposed as a guideline to this issue. The reviews 

by Willenbrock and Fridlyand (2005) and by W.R. Lai et al. (2005) independently survey 

the effectiveness of existing methods on simulation and real data. Most methods produce a 

segmentation of the data but offer no way of assessing confidence in the segmentation. For 

complex aberration profiles, the different methods vary greatly on the location of breakpoints 

and the estimated signal level, which suggests that a framework for inference is crucial. 
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In this paper we propose for the analysis of array-CGH data a new stochastic seg

mentation model and an associated inference framework that has attractive statistical and 

computational properties. We view array-CGH experiments as producing, for each cell sam

ple, an ordered sequence of (t, Yt) pairs, where t represents the location in the genome and 

Yt represents the log ratio of the test versus reference spot intensities for the genomic target 

from that location. The segmentation model in Section 2 assumes that Yt = Ot+att, in which 

tt are independent standard normal random variables and Ot is an unknown step function 

whose prior distribution is given by a jump process with a baseline state and changed states. 

We assume that the baseline state is 0, since when there are no copy number changes the 

signal should be log 1 = 0. From the baseline state the process can jump to a changed state 

that has a Gaussian I?rior. From a changed state it can jump to another changed state or 

jump back to the baseline. 

Since the copy number of a homogeneous sample of normal cells should be 2 at all 

genomic locations, giving a signal of 0, the assumption of a zero baseline state is natural. 

Without making this assumption, most existing methods rely on a merging step after the 

segmentation to eliminate the small fluctuations around the baseline. The review by Wil

lenbrock and Fridlyand (2005) suggests that ideally, a merging step should be incorporated 

into the initial segmentation so that not only are the results more interpretable but the 

additional information may allow higher sensitivity. This is accomplished in our method 

through the assumption of a baseline state. Whether non-baseline states with close mean 

levels should be merged is questionable. Inhomogeneity and micro-evolution within a cell 

sample may cause the copy number changes at different locations in the genome to have 

different mixture components . 

An important benefit of our Bayesian segmentation model is that we can use the pos

terior distributions of the number and locations of the change-points to provide confidence 

assessments of a segmentation. Moreover, the posterior probability of copy number change 

can be readily computed for each genomic target, providing an easily interpretable value 

that can be used to rank or weight the genomic targets for downstream analysis. This quan

tity arises naturally from the model and is intuitively appealing and useful for probe-level 

analysis. 

The Bayesian segmentation model contains certain hyperparameters. Their estimation 

is considered in Section 3 where other implementation issues are also discussed. In Section 

4 we apply our method to several real arrayCGH-data sets and illustrate the usefulness of 

confidence assessments for different scenarios. Section 5 evaluates the performance of our 
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method on simulated data that are generated from our and other models. Some concluding 

remarks are given in Section 6, in which we also compare our approach with existing methods 

in the literature. 

2. A STOCHASTIC CHANGE-POINT MODEL WITH KNOWN BASELINE 

2.1 Model with known baseline and unknown changed states 

We assume a change-point model where the baseline state is known to be 0. When the 

signal leaves the baseline, it moves to a non-zero state; when the next jump occurs, the 

signal may move back to the baseline or jump to another non-zero state. Suppose the log 

fluorescence ratios Yt follow the model 

Et rv N(O, 1), (1) 

where Bt is a piecewise constant function of t. To describe the dynamics of Bt, we use the 

transition probability matrix 

( 

1- p ~p ~p) 
P= c a b . 

c b a 

(2) 

The matrix P specifies that, at timet, if the state Bt is in the 0 (baseline) state, then at time 

t+ 1, Ot+l stays in the 0 state with probability 1-p, or jumps to a nonzero state which follows 

N(J.L, v) with probability p. To allow the possibility of jumping from a non-zero state to a 

different non-zero state, we simply assume that the process can jump from the baseline state 

with probability p/2 to either of two nonzero states that have the same prior distribution 

N (J.L, v) . If Ot # 0, then at time t + 1, it can stay in the last state with probability a, or 

jump to another nonzero state with probability b, or jump back to the baseline state with 

probability c. 

The probability vector 7r = (cj(p +c), ~pj(p +c), ~pj(p +c)) satisfies 1rP = 7r, and 

therefore 7r corresponds to the stationary distribution associated with P. Note also that 

1r(x)P(x, y) = 7r(y)P(y, x), 

so the three-state Markov chain with transition probability matrix P and initialized at 7r 

is reversible. This implies that the Markov chain {Bt} has a stationary distribution 1r that 

assigns probability cj(p +c) to the baseline value 0 and probability pj(p +c) to a N(J.L,v) 
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random variable. Moreover, under the additional assumption that 00 is initialized at the 

stationary distribution, { Ot} is a reversible Markov chai"n.; this property provides substantial 

simplification for the smoothing formulas in Section 2.3. 

2.2 Filtering estimate of signal 

Let Kt = max { s ::; t : (} s = · · · = Ot, (} s-1 #- (} s} denote the nearest change-point at a 

location less than or equal to t. Let Yn = (Y1, . .. , Yn) and Yi,j = (yi, ... , Yj). Define 

(3) 

for 1 ::; i ::; t. Since the conditional distribution of Ot, given Yt and the event that Kt = i 

and (}Kt #- 0, is N(J.Li,t, Vi,t), where 

-(1 j-i+1)-1 Vi,j- - + 2 , 
v (J 

j 

II.·.=(!!:.+""' Yk)v·. r-t,J ~ 2 t,J 
v k=i (J 

(4) 

for j 2: i, it follows that the posterior distribution of Ot given Yt is a mixture of normal 

distributions and a point mass at 0: 

t 

Ot!Yt rv Ptc5o + L qi,tN(J.Li,t, Vi,t), (5) 
i=1 

where c5x denotes the probability distribution that assigns probability 1 to x. Let if;p.,v denote 

the density function of the N(J.L, v) distribution, i.e., if;p.,v(Y) = (27rv)-112 exp{ -! (y- J.L) 2 jv }. 

Making use of Pt+ 2:::~= 1 qi,t = 1 and Yt = 0t+U£t, we show in Appendix A that the conditional 

probabilities Pt and qi,t can be determined by the recursions 

Pt <X p; := (1 - P)Pt-1 + cqt-1> 

* ·- { (PPt-1 + bqt_l)'l/J/'1/Jt,t, 
qi,t <X qi,t .-

aqi,t-1 'l/Ji,t-1 / '1/Ji,t, 

i = t, 
i < t, 

(6) 

where qt = 2:::~= 1 qi,t = 1- Pt, '1/J = cPp.,v(O) and '1/Ji,j = cPp.;,;,v;,;(O) for i ::; j. Specifically, 

Pt = p; / [p; + 2:::~= 1 q:,t] and qi,t = qi,t/ [p; + 2:::~=1 qi,t]. By (3) and (5), 

t 

E(Ot!Yt) = L qi,tf..Li,t· 
i=1 

2.3 Smoothing estimate of signal 

5 
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As indicated at the end of Section 2.1 , {Bt} is a reversible Markov chain. Therefore we 

can reverse time and obtain a backward filter that is analogous to (5): 

n 

Bt+liYt+l,n rv Pt+lOo + L (li,t+lN(J.Lt+l,i> Vt+l ,j), 
j=t+l 

(8) 

in which the weights p8 , (iJ,s can be obtained by backward induction using the time-reversed 

counterpart of (6): 

j = s, 

j > s, 

where lis+l = L:j=s+llh,s+l = 1-Ps+l· Since P(Bt E A\Yt+l,n) = J P(Ot E A\Bt+l)dP(Bt+liYt+l,n), 

it follows from (8) and the reversibility of {Bt} that 

n 

BtiYt+l,n rv [(1- P)Pt+l + cift+l]<>o + (PPt+l + b{it+l)N(J.L, v) +a L lh,t+lN(J.Lt+l ,i > Vt+l,j)· (9) 
j=t+l 

We can use Bayes' theorem to combine the forward filter (5) with its backward variant 

(9) to derive the posterior distribution of Bt given Yn (1 :::; t :::; n), which is a mixture of 

normal distributions and a point mass at 0: 

Bt\Yn "-' O:tOo + L f3ijtN(J.Lii> Vij) · 
1:5i:5t:5j:5n 

In particular, by Bayes' theorem, 

O:t = P(Bt = 0\Yn) ex P(Bt = OIYt)P(Bt = OIYt+l,n)/11'(0) 

= Pt[(1- P)Pt+l + clft+IJ/[cj(p +c)]. 

(10) . 

(11) 

Applying a similar argument to the density function of the absolutely continuous component 

of the posterior distribution of Bt given Yn yields a formula that is proportional to f3iit · The 

details are given in Appendix A, which shows that 
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At = o:; + L f3;jt> 
1:5i:5t:5j:5n 

i :::; t = j, 
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From (10), it follows that 

E(OtiYn) = L f3ijtJl.ij· 
19$t;5j;5n 

2.4 Inference on segmentation and parameter subsequences 

(13) 

The at and f3iit in (12) are posterior probabilities that are useful for inference. As shown 

in (13), at = P(Ot = OIYn)· Moreover, the derivation of (12) in Appendix A shows that, for 

i ~ t ~ j, 

For the problem of classifying location t as 0 (no copy number change, or normal), G 

(copy number gain) or L (copy number loss) considered by Engler et al. (2006), although 

the posterior probability at = P(Ot = OIYt) seems to provide an essential ingredient for 

constructing the Bayes classification rule, in practice gain, loss and no change actually include 

a margin w beyond which the location is considered aberrant due to copy number gain or 

loss. Specifically, location tis considered as G if Ot > w, as L if Ot < -w, and as 0 if lOti ~ w. 

The choice of w is often based on statistical (e.g., w is some multiple of a) and biological 

considerations. With G, L and 0 defined in this way, the Bayes rule R is a "soft" classifier 

determined by the posterior probabilities in the following: 

(R) Classify location t as argmaxsP(siYn), where s = G on {Ot > w}, s =Lon {Ot < -w} 

and s = 0 on {lOti~ w}. 

Let [i, j] denote the segment whose beginning and ending locations are i and j, respec

tively. We can use P(CiiiYn) to provide confidence assessments of the abnormality (due to 

copy number change) of a segment [i, j] obtained by a segmentation procedure of the type 

described in the second paragraph of Section 1. Typically these segmentation procedures 

allow some fuzziness in the specified endpoints i, j of the segment, in the sense that the 

actual endpoints may not be i and j but should be somewhere around them. To make this 

more precise, suppose the endpoints i and i' (or j and j') are considered "equivalent" if 

they differ by at most k locations, where k = min(k*, l(j- i)/2J) and k* represents some 

pre-specified precision. Then we can use P(U{i' ,i'):li-i'l:5k,li-i'l:5k Ci'i'IYn) to provide a poste

rior "confidence level" of an abnormal segment [i, j] identified by a segmentation procedure, 

whose endpoints are specified up to the above equivalence. Since k ~ l (j - i) /2 J, these 
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events ci'j' are disjoint and therefore 

P( ci'j' IYn) = P( u (15) 
(i' ,j'):li-i'l~k.li-i'l~k (i' ,j') : ii-i'i~k.ii-i'i~k 

Whereas Cii relates to the prope~ty that all locations in the segment [i, j] have the same 

copy number =J 2 and that (Ji =J (Ji_1 and (Ji =J (JJ+l> one may want to make inferences on 

other properties of a genomic segment that is not identified by a segmentation procedure. 

A fundamental entity from which these inferences on genomic regions can be derived is the 

posterior distribution of the parameter sequence { (Jt : 1 ::; t :::; n} given Yn· It is shown 

in Appendix B that this posterior distribution is that of an inhomogeneous Markov chain 

whose initial distribution is 1r and whose transition probabilities are given by 

n 

(Jti(Jt-1, Yn "'at8o + Ctl{Ot- l¥0}891_ 1 + L bjtN(J.Lt,j, Vt,j), 
j=t 

n 

Bt = a; + c;1{9t-dO} + L bjt, 
j=t 

a;= ¢o,u2(Yt) [(1- p)1{9t-1=0} + c1{91_ 1;o6o}J [(1- P)Pt+l + cqt+l]jc, 

* ,!.. ( ){( - b- ) ~ - cPP.t+l,j 0Vt+1,j((Jt-1) }/ ct = a'P91_ 1,u2 Yt PPt+l + qt+l +a ~ qj,t+l ,~.. (() ) p, 
j=t+1 'Pp.,v t-1 

• [ ] ( { (PPt+l + bqt+l)'!j;j(p'lj;t,t), j = t, 
bjt = pl{ot-1=0} + bl{ot-1#0} ¢o,u2 Yt) · _ ·'· /( .J, ) 

aq,,t+1 'Pt+l,j P'Pt,j , j > t, 

using the same notation as that in (12). 

(16) 

Making use of the transition probabilities (16) of the inhomogeneous Markov chain, we 

can use the following recursive procedure to sample from the joint posterior distribution of 

the parameters (Jtu ... , (Jt2 (given Yn) in a segment [t1, t2] . Initialize at location t = t1 by 

sampling (Jt from the distribution (10) for (JtiYn· At location t1 < t:::; t2, if (Jt_ 1 = 0, sample 

(Jt from N(J.Lt,j, Vt,j) with probability bjt fort:::; j :::; n, and set (Jt = 0 with probability at. If 

(Jt_ 1 =J 0, set (Jt = (Jt_ 1 with probability Ct, set (Jt = 0 with probability ~' and sample from 

N(J.Lt,j, Vt,j) with probability bjt for t :::; j :::; n. The posterior distribution of ((Jtu ... , (Jt2 ) 

given Yn evaluated from a large number of simulated trajectoies sampled from it can be 

used for statistical inference on the segment [t1, t2]. Some specific applications are given in 

Section 4.2, in which the special case t1 = 1 and t2 = n covers an entire geonome. 
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2.5 BCMIX approximations 

Although the Bayes filter (5) uses a recursive updating formula (6) for the weights 

qi,t(1 ~ i ~ t), the number of weights increases with t, resulting in unbounded computational 

complexity and memory requirements in estimating ()t as t keeps increasing. A simple idea 

to maintain bounded complexity is to keep only a fixed number k of weights at every stage 

t (which is tantamount to setting the other weights to be 0). Following Lai et al. (2005) 

who consider the case without a baseline state, we keep the most recent m weights qi,t 

(with t- m < i ~ t) and the largest k- m of the remaining weights, where 1 ~ m < k . 

Specifically, the updating formula (6) for the weights qi,t is modified as follows to obtain a 

bounded complexity mixture (BCMIX) approximation. Let Kt_1 denote the set of indices i 

for which qi,t-1 is kept at stage t- 1; thus Kt-1 :J {t -1,, · · · , t- m} . At stage t, define qi_t 

by (6) fori E {t} U Kt-1 and let it be the index not belonging to {t, t- 1, · · · , t- m + 1} 

such that 

q;t,t = min{q7,t: j E Kt-1 and j ~ t- m}, (17) 

choosing it to be the one farthest from t if the minimizing set in (17) has more than one 

element. Define Kt = {t} U (Kt-1- {it}) and let 

Pt = p; I (p; + L q},t) ) 
jE{t}UKt-1 

For the smoothing estimate E(()t!Yn) and its associated posterior distribution, we can 

construct BCMIX approximations by combining forward and backward BCMIX filters, which 

have index sets Kt for the forward filter and Kt+l for the backward filter at stage t . The 

BCMIX approximation atOo + EiEKt,iE{t}u!Ct+l /3ijtN(J.Lii> Vij) to (10) is defined by 

a;= Pt[(1- P)Pt+l + ciitH]/c, 

/3\ = { qi,t(pPt+l + bih+1)jp, i E ICt,j = t, 
'J aqi,t'Cb,t+l'I/Ji,t 1/Jt+l.i / (p'I/J'I/Ji.i), i E Kt, j E ICt+l· 

3. ESTIMATION OF HYPERPARAMETERS AND IMPLEMENTATION 
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It is shown in Appendix A that the conditional density function of Yt given Yt-1 is 

t 

f(YtiYt-1) = (p; + L q:,t)¢o,u2(Yt), (18) 
i=1 

where p; and q;t are given by (6) and are functions of the hyperparameter vector <P 

(p, b, c, J.L, v, u2
). Given <P and the observed data Yn, the log likelihood function is 

n n t 

l(<P) = L log f(YtiYt-1) = L log { (p; + L q:,t)¢o,u2(Yt) }, (19) 
t=1 t=1 i=1 

in which f(·l·) denotes conditional density function. Maximizing (19) over <P yields the 

maximum likelihood estimate ~ . 

Since <P is a 6-dimensional vector and the functions p; ( <P) and q;,t ( <P) have to be computed 

recursively for 1 ::; t ::; n, direct maximization of (19) may be computationally expensive 

due to the curse of dimensionality. An alternative approach is to use the EM algorithm 

which exploits the much simpler structure of the log likelihood lc( <P) of the complete data 

{(yt, Ot), 1 :S t::; n}: 

1 ~ { (Yt- 11t)
2 

2 } 1 ~ { (Ot- J.L) 2 
} 

lc(<P) = -2 ~ 0"2 + log(27ru ) - 2 ~ v + log(27rv) l{O#IIt#t-1} 

t=1 t=1 

+ 2:::::;=1 { [log(1- p)]l{lh=lh-1=0} + (logp)l{lh#t-1=o}} . 

+ 2:::::;= { [log(1- b- c)]l{th=lh-dO} + (logc)l{th=O#IIt- 1} + (logb)l{o#t#t-1#0} }. 
(20) 

Since lc( <P) decomposes into normal and multinomial components, the E-step of the EM 

algorithm involves E((Ot- J.L) 21Yn), E((Ot- Yt) 21Yn) and the conditional probabilities 

CQt-10:t 
P(Ot = 0 # 11t-11Yn) = (1 ) , 

- p Pt-1 + CQt-1 

n 

P(O f Ot f Ot-1 f OIYn) = (L f3tjt)bqt-1 I {bqt-1 + PPt-1}, 
j=t 

(21) 

(22) 

. (23) 

together with P(Ot = Ot-1 f OIYn), which is determined by the property that those five 

conditional probability have to sum up to 1. The proof of (21) - (23) is given in Appendix A. 
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In view of (20), theM-step of the EM algorithm involves the closed-form updating formulas 

1 - Pnew = [L:~ P( (ft = ()t-1 = OIYn, <I> old)] I [L:~ P( ()t-1 = OjYn, <I> old)], 

anew = [L:~ P( ()t = ()t-1 -I OIYn, <I> old)] I [L:~ P( ()t-1 -I OIYn, <I> old)]' 

Cnew = [L:~P(()t = 0 # ()t-11Yn,<l>old)JI[L:~P(()t-1 # O!Yn,<I>old)J,bnew = 1-anew -Cnew, 

Jinew = [L:~ E( ()tl{O;i9t#t-d IYn, <I> old] I [L:~ P(O # ()t # ()t-1IYn, <I> old)], 

Vnew = [L:~ E{ ( ()t - Jiold) 2
l{O;i9t#t-tl IYn, <I> old}] I [L:~ P(O # ()t # ()t-1IYn, <I> old)], 

O'~ew = L:Z:l [ E((yt - Ot) 2 1Yn, <I> old)] In . 

It is shown in Appendix A that 

E( Otl{O#t#t-l} IYn) = L f3tjt/-Lt,j' 
t~j~n 

E((Ot- J.L) 2
1{o;i91#(11_ 1 }!Yn) = L f3tjt(J.L~,j + Vt,j- 2J.LJ.Lt,j + J.L2

), 

t~j~n 

(24) 

(25) 

which can be applied to compute Jinew and Vnew in (24). The iterative scheme (24) is carried 

out until convergence or until some prescribed upper bound on the number of iterations is 

reached. 

To speed up the computations involved in the preceding EM algorithm, one can use the 

BCMIX approximations in Section 2.5 instead of the full recursions to determine qi,t, 'ib,t, etc. 

Moreover, one can accelerate the EM algorithm by using a hybrid approach that combines 

EM with some classical optimization technique, e.g., quasi-Newton methods as in Lange 

(1995) . Applications to array-CGH data have shown that the EM estimates of J.L, v, a 2 and 

b typically converge quite fast. This suggests switching, after these parameter estimates 

stabilize, from the EM algorithm to global search for the optimizing p and c, which are 

particularly important as they represent relative frequencies of departures from, and returns 

to, the baseline state. The global search in this hybrid procedure uses (19) as a function 

only of p and c, with the other parameter estimates fixed at the time of switch from EM. 

4. APPLICATIONS TO REAL DATA SETS 

We now illustrate our method and examine its performance on several real array CGH 

data sets. In Section 4.1 , we consider the BAC array hybridizations of the Coriel cell lines 

from Snijders et al. (2001), which are taken from 15 primary breast tumors. Out of these 

15 cell lines, we use the 9 which have known karyotype data. These cell lines have been 
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used extensively for validation purposes in numerous methodological studies, since the true 

karyotypes are known. However, because the chromosomal aberration profile in this data 

set is relatively simple, most methods give similar segmentations and good estimates of the 

true signals. 

In Section 4.2 we use the BAC array hybridization of the BT474 cell line, taken from 

Snijders et al. (2003), to illustrate some of the inferential procedures that are possible with 

our method. The cell line is taken from tumors with more complicated aberration profiles 

than those of the Coriel cell lines, as is evident from the array-CGH plots in Figures 2 and 3. 

These more challenging data sets do not reveal obvious segmentations, and thus a framework 

for inference becomes crucial. 

4.1 Coriel breast cancer data 

The 9 cell lines that we used in our study are: GM13330, GM13031, GM07081, GM05296, 

GM03563, GM03134, GM01750, GM01535, and GM01524. From the karyotype information, 

we can estimate the true signal level ()i as follows: If a probe i lies in a region where the 

karyotype is 2, we set ()i = 0. Otherwise, the probe lies in a changed region for which the 

boundaries are known, and we set ()i to be the mean of all probes in that region. Note that 

we need to estimate the true signal from the data even when the true copy number is known, 

because of the nonlinear relationship between measured fluorescence ratio and copy number 

that may differ slightly across data sets (Pinkel and Albertson (2005)). 

To estimate the hyperparameters of our model, which will be denoted by SCP (stochastic 

change-point model) in the sequel, we note that since the Coriel cell lines have a relatively 

small number of aberrant segments, the probability p o£ jumping from the zero state to 

a nonzero state should be small and the probability b of jumping from a nonzero state 

to another nonzero state should be even substantially smaller. Therefore, we set b = 0, 

ruling out jumps from an infrequent nonzero state to another nonzero state, and use the 

hybrid procedure described in the last paragraph of Section 3, limiting the global search to 

10-4 < p < 0.005 and 10-4 < c < 0.05. 

Figure 1 plots the posterior means E(OtiYn), 1 ~ t ~ n, for the nine cell lines. Although 

we have also computed the 2.5% and 97.5% quantiles of the posterior distribution of ()t given 

Yn, they are too close to E(OtiYn) to be plotted distinctly in the figure. The qth quantile of 

the posterior distribution of ()t given Yn, which is a mixture of normal distributions and a 
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point mass at 0 given by (10), is obtained by solving the equation 

We also calculate the £ 1 distance 2:::~1 I~- Btl for the estimated signal produced by a given 

method. The methods that we choose for comparison are the HMM-based algorithm (HMM) 

of Fridlyand et al. (2004) and the CBS algorithm of Olshen et al. (2004). For HMM, we start 

with 5 states in the hidden Markov model and apply the state merging step with a merging 

threshold of 0.25 as recommended in Fridlyand et al. (2004) . For the CBS algorithm, we 

used the default parameters for the dnacopy software in Bioconductor. Table 1, which lists 

the £ 1 distances for each cell line and method, shows that by assuming a known baseline, 

our model provides a better fit to these data than previous methods. 

INSERT TABLE 1 AND FIGURE 1 ABOUT HERE 

4.2 Breast cancer cell line BT474 

For the cell line BT474, we use the EM algorithm in Section 3 to estimate the hyperpa

rameters. With initial values of (p, a, b) at (0.05, 0.995, 0.0025) and (J.L, v , a2 ) at (0.065, 0.087, 

0.020), the EM algorithm stops after 7 iterations according to a convergence criterion, yield

ing p = 0. 7196, a= 0.9147, c = 0.0662,11 = 0.3063, v = 0.5668, 0'2 = 0.0152. 

The top plots of Figures 2 and 3 show the array CGH profile for chromosomes 17 and 20, 

with the estimated mean levels and the 2.5% and 97.5% quantiles of the posterior distribution 

of true signals computed by our model. Because of the complexity of this cell line, previous 

methods disagree widely on the correct segmentation, as can be seen by comparing the 

segmentations given by CBS, HMM, and our method on these two chromosomes. Because 

of the complexity of the BT474 profile, it is important for a statistical method to be able to 

assess the confidence in a particular segmentation. 

A striking difference between our method and CBS and HMM is that our method can 

capture sawtooth patterns such as those found in the q arm of chromosomes 17 and 20 

(see Figure 2, 50-70 Mb region, and Figure 3, 40-60 Mb region) . The sawtooth patterns 

are smoothed out by CBS and HMM, primarily because these methods aim to segment the 

data, while our method estimates the true signal without imposing a segmentation. These 

sawtooth patterns are very frequently seen in highly rearranged breast tumors, and are 

generally recognized as a real phenomena and not system noise. They have generated much 
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biological interest because they may provide clues to the specific path that cells took to 

acquire them. For example, Hicks et al. (2005) discuss the possible biological mechanisms 

that generated such patterns, which they also found by ROMA CGH. 

Through our model, we provide a framework for multiple levels of inference. At the 

genome level, it is often of interest to rank the detected chromosomal aberrations by the 

confidence that it is a true aberration. This allows a prioritization of downstream studies and 

experiments so that they can be targeted to genomic regions of higher statistical significance. 

We make use of the formulas in Section 2.4 to calculate P(CiiiYn), which is the posterior 

probability of an aberration with the left boundary i and the right boundary j, for all i < j 
on the same chromosome arm. In Table 2, the aberrations detected in BT474 are ranked by 

P(CiiiYn)· Comparing Table 2 and Figures 2 and 3, we see that the aberrations that are 

visually evident in chromosomes 17 and 20 are also ranked high in the table. For example, 

the focal aberration on chromosome 17, which contain the well studied ERBB2 amplicon, is 

at the top of the ranking with a probability of 1. Other segments that top the list, mostly 

amplicons on chromosomes 11, 17, and 20, are well known, as they have been identified by 

previous studies and in other breast cancer cell lines (e.g. Pollack et al. (1999), Pinkel et al. 

(1998)). In comparison, segmental duplications and deletions, such as those on chromosomes 

9 and X, are ranked lower than the focal aberrations in the list. This is desirable if biologists 

wish to zoom in on a narrow region that has undergone strong selective pressure. 

INSERT TABLE 2 AND FIGURES 2, 3 ABOUT HERE 

Finer scale confidence assessments targeted at a specific genome region also arises nat

urally from our framework. We illustrate this with the data from Chromosome 20 in BT474 

(Figure 3). This region of the genome has been under scrutiny in many cancer studies, 

partly due to the fact that it contains several candidate oncogenes (e.g., AIB1, TFAP2C, 

and STK15) . Figure 3 shows several distinct aberrations in this region for BT474. However, 

it may be of interest to assess the relative likelihood of a sawtooth pattern consisting of at 

least one spike within the 40-50 Mb region, as compared to a flat segmentation given by 

HMM and CBS that assigns a uniform mean to this region. It is biologically meaningful 

and critical to make these distinctions, because differences in such minute details of the 

segmentation can point to differences in the history of progression of the tumor, as well as 

different arrangements of the segments in the genome. The posterior confidence level (15) , 

with k* = 2, for a single segment in 40-50 MB region proposed by the HMM procedure is 
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0.000, whereas 

P{[i,j] contains a sub-segment [i',j'J such that ()i, = ... = ()i' =j; 0, 

()i' =j; ()i'-1, Op =j; ()j'+b i' - 1 ~ i, j' + 1 ~ j} ~ ma.x.;<i'$j'<jP( ci'j' IYn), 

which exceeds 0.997, 0.999, and 1 respectively for the segments [i',j'J =A, B, C within the 

40-50 Mb region in Figure 3. Thus, the probability of a spike within the 40-50 Mb region 

far outweighs the probability of a uniform mean level in that region. 

The total number of changes in chromosome copy number is a useful indicator of genome 

instability, and has been shown to be correlated with many factors such as disease stage, 

degrees of aneuploidy, and tumor heterogeneity (Fabarius et al. (2003), Pinkel and Albertson 

(2005)). Existing segmentation algorithms are able to provide an estimate of the number 

of change-points through a hard segmentation. However, for a complex aberration profile 

such as BT474, a confidence bound for the number of change-points can be much more 

informative. For the BT474 cell line, the modified BIC (Zhang and Siegmund, 2006) peaks 

at 30 change-points. With HMMs, 103 change-points are found if the state-merging step 

proposed by Fridlyand et al. (2004) is not taken, after the merging of states, the complete 

procedure from Fridlyand et al. (2004) reports 69 change-points for this data series. 

We use the Monte Carlo procedure described in Section 2.4 to construct confidence 

bounds for the total number of change-points in the genome. Define 

n-1 

"'= L 1{9t+l~o.l9t-9t+ll>o}• 
i=1 

(26) 

in which the threshold 8 is used to exclude negligibly small jumps that can occur in our 

Gaussian jump model. The posterior distribution of "' given Yn is computed by Monte 

Carlo, using simulated sequences generated from the fitted model by using (16). Figure 4 

shows the histogram of "'• in which we set 8 = yiV in (26), calculated for 5000 simulated 

sequences; recall that our model assumes Gaussian jumps with variance v. The mean and 

95% confidence intervals of"' based on these 5000 simulations are 60.24 and [60.14, 60.35]. 

INSERT FIGURE 4 ABOUT HERE 

5. SIMULATIONS 

We also tested our method using simulation studies, in which the true signal is known 

and thus various measures of accuracy can be computed. The simulation data are generated 

from Yt = Ot + Et, 1 ~ t ~ n, where Et are i.i.d. N(O, u2 ) and one of the following three 
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models is used to generate ()t: (a) the HMM model of Fridlyand et al. (2004), in which 

{ ()t} is a finite-state Markov chain; (b) the stochastic change-point model (SCP) described 

in Section 2; (c) the frequentist model considered by Olshen et al. (2004), in which ()t is a 

fixed piecewise constant function. 

The parameters of the above models are determined by fitting the model to the BT474 

breast cancer cell line. For the HMM model, the parameters consist of the state means 

{()i}~1 , the K x K state transition matrix, and the noise variance. The number of states 

K = 7 was chosen by AIC. For the stochastic change-point model, the hyperparameters are 

p, a, b, c, v, and a defined in Section 2, with values given in Section 4.2. For the frequentist 

model, the ()t are the estimated mean levels for BT474 using the CBS algorithm. We used 

n = 2056 for all three models, which is the same length as the complete BT474 data set 

without missing values. Figure 5 shows an example of a simulation data series generated 

from each of the three models. We simulated 100 data series from each model for this 

study, and for our method, we first run the EM algorithm with 20 iterations to estimate the 

hyperparameters and then compute the posterior means for each simulated sequence. 

INSERT TABLES 3,4 AND FIGURE 5 ABOUT HERE 

Table 3 gives the £ 1 distances of the estimated and true means of HMM, CBS, and our 

method on each of the 3 simulation models. From these results, we see that our method 

outperforms CBS and HMM for both the stochastic change-point and frequentist models. 

For the HMM model, our method loses slightly to CBS, while being better than HMM. Since 

these simulation data are generated to resemble the level of difficulty in the BT474 cell line, 

they show that our method can still perform well for the more complex profiles. 

We next consider the performance of our classification procedure described in the second 

paragraph of Section 2.4. We choose the threshold w = 20' for each sequence, in which 0' is the 

estimate of a determined by our method. For the data simulated by HMM and frequentist 

models, the threshold ranges from 0.35 to 0.40; for the data simulated by our model, the 

threshold ranges from 0.20 to 0.25. These thresholds are quite small compared to the signal 

sequence, and are therefore fair parameters to use. Table 4 lists the false positive and false 

negative rates (in classifying no change versus a gain or a loss) for the three different methods 

in each of the three simulation models. For CBS and HMM, only a hard segmentation of 

the data is produced, and thus we assign a probe to a changed state if the absolute value of 

its estimated mean is above the threshold w = 20'. 

6. DISCUSSION 
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We have developed a stochastic change-point model for inference on array-CGH data 

sets. The model allows exact computation, through recursive formulas given in Section 2.2, 

of the parameters of the posterior distribution of the signal {(.It : 1 :::; t :::; n}. From the 

posterior distribution of the signal given the observations, a segmentation of the data and a 

classification of the probes can be obtained. A Monte Carlo method for sampling from the 

joint posterior distribution of { Ot} is given in Section 2.4, which allows inference on almost 

any quantity of interest to the biologist. An approximation to the exact explicit formulas , 

using the BCMIX method, allows our method to be executed almost instantaneously for 

BAC arrays. 

In Section 4, we have used the Coriel and BT474 breast cancer data sets to illustrate 

the application of our method. In particular, we have focused on illustrating the types of 

inference that are possible with our method. For example, in Section 4.1 we give a method 

for calculating pointwise marginal confidence intervals for the estimated signal. In Section 

4.2, we give a ranking of the most "interesting" aberrations in the complex data set from 

BT474. The aberrations that top this list are those found by most previous methods, while 

those that are further down the list have lent to disagreements. Instead of producing a hard 

segmentation, our method 

the biologist the option to investigate it further. 

A departure of our model from most previous models is the assumption of a baseline 

state, which yields a natural classification of genomic regions into "amplified", "deleted", and 

"normal" states. The model proposed in Engler et al. (2006) also gives such a classification 

rule. However, it does not provide explicit formulas for the posterior probability of the states 

at each time point conditioned on the entire data series for Bayesian inference as it relies 

on "smoothing" via three-probe windows. To circumvent the computational complexity for 

their model, Engler et al. (2006) have used pseudo-likelihood in lieu of the actual likelihood. 

In contrast, our model yields explicit formulas for Bayesian analysis and maximum likelihood 

estimation of the hyperparameters. 

We chose to conduct our data analysis at the genome level, rather than at the chromo

some level, because the inter-chromosome difference in baseline signal level for BT474 and 

the Coriel cell lines is negligible for our model. Also, pooling data across chromosomes allows 

a more accurate estimate of the hyperparameters. The fact that multi-chromosome analysis 

improves sensitivity has also been shown in Engler et al. (2006). Finally, genome scale anal

ysis allows the detection of copy number changes involving entire chromosome arms, which 

would be missed in chromosome-level analyses for which no actual changes-points exist. 
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The data sets used in Section 4 are from BAC arrays, which use bacterial artificial 

chromosomes as genomic targets. Other platforms for array-CGH have been designed, such 

as eDNA arrays (Pollack et al., 2002), which measure copy numbers only at transcribed 

regions of the genome. Wen et al. (2006) have pointed out the need for incorporating 

possible changes in a with Bt in the analysis of eDNA array-CGH data, and have developed 

for such analysis a Bayesian regression model that relies on Markov chain Monte Carlo for 

posterior analysis. By making use of the ideas of Lai et al. (2005) to model changes in both 

the error variance and the regression parameters, it should be possible to extend the methods 

and results of the present paper to accommodate changes in a with Bi and to incorporate 

possible correlations among the observations. Extending Lai et al. 's (2005) approach to 

multivariate regression should also enable us to combine both eDNA and BAC array-CGH 

data in estimating the underlying signal and other inferential tasks. This is a topic for future 

research. 
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APPENDIX A 

Proof of (6), (12), (14), (18), (21), (22), (23) and (25) 

where v = (v11 + v2 1
)-1 and jl = ii(t-tdv1 + t-t2/v2), as can be shown by completing the 

squares. From (5), it follows that 

(A.2) 

and the density function of the absolutely continuous component of Bt is proportional to 
t-1 

(PPt-1 + bqt-1)¢1-',v( B)¢o,u2 (Yt) +a L qi,t-1 ¢1-'i,t-t,v;,t-l ( B)¢o,u2 (Yt), (A.3) 
i=1 

with the constant of proportionality equal to the reciprocal of the conditional density function 

of Yt given Yt- 1. From (A.1), it follows that 

</J/-L,v( B)</Jo,u2 (Yt) = </JI-',v( B)</Jyt,u2 (B) = ¢1-'t,t,Vt,t (B){ </J/-L,v(O)</Jyt,u2 (0) /¢1-'t,t,Vt,t (0)} 
(A.4) 
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cp/l-i,t-t.Vi,t-1 ( (})cpfJ,u2 (Yt) = cpiJ.i,toVi,t ( (}) ( '1/Ji,t-d'1/Ji,t)¢o,u2 (Yt), 

Putting (A.4) and (A.5) into (A.2) and (A.3) then yields (6). 

(A.5) 

The formula for at in (12) has already been proved in (11) . Let ft(·IYn), ft(·IYt) and 

ft(·IYt+l,n) denote the density functions of the absolutely continuous components of (}t given 

Yn, Yt, Yt+l,n• respectively, and let ir denote the density function of the absolutely continuous 

component of 1r. Then applying Bayes' theorem as in (11), 

(A.6) 

The constant of proportionality in (11) and (A.6) is g(Yt)g.(Yt+l,n)/ g*(Yn), where g, g. and 

g* denote the respective joint density functions. As shown in Section 2.1, 

ir((}) = ¢1J.,v((})pj(p +c). (A.7) 

Simple algebra that involves completing squares as in (A.1) can be used to show that if 

v-1 < v11 + v;-1, ii = ( v11 + v;-1 - v-1 )-1 and jl = ii(J.Ldvl + J.L2/v2 - J.L/V ), then 

¢1J.1oV1 ( e)¢1J.2,V2 ( (}) = ¢;l,v( (}) {VfJ exp { ~ [~2 + J.L
2 

_ J.L~ _ J.L~] } = ¢1J.1 ,V1 (0)¢1J.2,V2 (0) ¢/J.,v( e) . 
¢1J.,v((}) v ~ 2 V V V1 V2 ¢;l,v(0)¢1J.,v(0) 

(A.8) 

Combining (A.6), (A.7) with (5) and (9), and making use of (A.8) in the case t < j, we 

obtain f3iit in (12). 

Let Kt = min { s ;:::: t : (}t = · · · = (} s =/:- (} s+l} be the counterpart of Kt (defined at the 

beginning of Section 2.2) for the time-reversed chain. In view of the preceding argument and 

(10), 

(A.9) 

From the definitions of Kt and Kt, it follows that the event in (A.9) is the same asCii defined 

in (14). Hence (14) holds. 

To prove (18), note that 

P((}t = O,yt E dtiYt-1) = P((}t = OIYt-1)¢o,u2(Yt)dt = p;¢o,u2(Yt)dt, 

P((}t =/:- 0, Yt E dtjYt-1) = J f((}t = (} =/:- OIYt-1)¢fJ,u2(Yt)d(}dt 

t-1 

= J { (PPt-1 + bqt-1)¢1J.,V( (}) + a L Qi,t-1 ¢1J.i ,t-1,Vi,t-1 ( (}) }¢fJ,u2 (Yt)d(}dt 
i=l 

t 

= L q;,t¢o,u2(Yt)dt, 
i=l 
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by (A.4), (A.5) and (6). From (A.10) and (A.ll), (18) follows. 

To prove (21), we modify (A.2) as 

Combining this with P(()t = OIYt+l,n)/rr(O) as in (11) yields (21). A similar argument applied 

to the time reverse chain yield (22). To prove (23), we use a similar argument to obtain 

P(O = Bt-l # Bt E dBIYt) oc PPt-1 ¢J.L,v( 0)¢e,u2 (Yt)dB, 

P(O :f= ()t-1 :f= ()t E dOIYt) OC bqt-l¢J.L,v(B)¢e,u2(Yt)d(). 

We obtain (23) by combining this with ft(BIYt+l,n)/ir(O) and 

P(()t-1 -1= ()t -1= OIYt) = I: P(Bt-1 -1= ()t = ... = Bj -1= 0, ()j -1= Bj+liYt) = I: f3tjt· 
t$j$n 

The first equation in (25) follows from 

E(Btl{O;f9t#t-l}IYn) = I: E(BtiKt, Kt = j, Bt :f= 0, Yn)P(Kt = t, Kt = j, Bt :f= OIYn), 
t$j$n 

noting that E(BtiKt, Kt = j, Ot :f= 0, Yn) = f..Lt,j in view of (10). The second equation also 

follows similarly since (Ot- J.L) 2 = B~- 2J.LBt + J.L2
. 

APPENDIX B 

Proof of (16) 

Applying Bayes' theorem as in (11) yields 

at =P(Bt = OIBt-1, Yn) ()( P(Bt = OIBt-1, Yt)P(Bt = OIYt+l,n) I 1!'(0) 

oc [ (1 - P) l{et-1 =0} + c1{9t-d0}] ¢o,u2 (Yt)P( Ot = OIYt+l,n) I 1!'(0), 
(B.1) 

as in (A.2). In the case ()t-l :f= 0 (and therefore, unlike 0, Bt-l is not an atom of the stationary 

distribution 7!') , a similar argument yields 

where ft(·IYt+l,n) and ir are the same as in (A.l) and (A.2). Moreover, the absolutely con

tinuous component of the conditional distribution of ()t given (Bt_1 , Yn) has density function 

proportional to 

[P1{9t-l=O} + b1{9t-l#O}] ¢J.L,v(O)¢e,u2(Yt)ft(OIYt+l,n) I ir(O) 

= [Pl{et-1=0} + b1{9t-d0}] ¢o,u2 (Yt)( 1/J /1/Jt,t)<PJ.Lt,t,Vt,t ( O)ft( BIYt+l,n) I ir( B), 
(B.3) 

20 



by (A.4). We can then apply (9) and (A.8) to derive (16) from (B.1) - (B.3). 
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Table 1. £ 1 distance between true and estimated signals for Coriel cell lines using SCP, CBS, 

and HMM. 

Cell line SCP CBS HMM 

GM03563 0.00102 0.01316 0.00449 

GM05296 0.01991 0.02892 0.02152 

GM01750 0.00166 0.01640 0.00109 

GM03134 0.00173 0.00949 0.00605 

GM13330 0.00130 0.01532 0.00446 

GM01535 0.01858 0.02668 0.02128 

GM07081 0.00271 0.00445 0.00511 

GM13031 0.00119 0.02052 0.00271 

GM01524 0.00087 0.01423 0.00205 
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Table 2. Ranking of the aberrations in BT474 cell line by the posterior probability P(CiiiYn) 

(truncated list) . The corresponding posterior means (j - i + 1)-1 2:::~=i E(OtiYn) are also 

shown. 

Chrom. AugKB Post. Post. Chrom. AugKB Post. Post. 

Number Region Pro b . Mean Number Region Pro b . Mean 

6 171756-171756 1 1.9920 4 82270-83314 0.9798 0.8046 

11 133531-133531 1 2.2708 9 21709-35926 0.9739 -1.4063 

11 134582-134582 1 2.0817 6 175263-200000 0.9695 -0.6204 

12 108526-108526 1 1.0247 17 65396-65897 0.9653 1.8895 

20 33000-33000 1 2.5181 7 18139-18139 0.9628 0.5312 

20 47981-47981 1 -0.8273 23 160000-160000 0.9535 -0.7291 

1 280672-280672 1 1.3569 9 17027-19086 0.9531 -0.8835 

17 41969-41969 1 3.3500 12 92200-103456 0.9496 0.4371 

20 4 7863-4 7863 0.9999 2.1967 5 117977-143584 0.9431 -0.5957 

11 90509-90509 0.9999 0.6110 17 53252-54381 0.9406 . 2.1483 

20 4 7986-48254 0.9993 2.4234 17 72037-72403 0.9336 0.8156 

20 51687-52266 0.9985 2.0479 11 114497-117620 0.9304 0.9544 

20 45154-45351 0.9978 1.8745 20 48941-49016 0.9230 1.7054 

7 76562-76562 0.9973 1.1229 4 202817-210000 0.9125 -0.2597 

20 56647-56647 0.9971 1.9751 11 84122-85101 0.9068 1.4208 

20 57607-57843 0.9971 2.8618 20 49365-50902 0.9035 1.2958 

8 41881-41881 0.9953 0.6502 11 82908-83238 0.9006 0.9837 

20 47321-47321 0.9939 1.2477 20 32006-32330 0.8824 0.6716 

9 80639-80639 0.9932 0.4848 20 65000-65000 0.8719 0.5970 

9 38119-38622 0.9917 1.3142 11 94150-111973 0.8629 -0.2965 

20 46643-46643 0.9894 0.4967 11 49641-49641 0.8562 0.4699 

4 194428-194428 0.9882 0.9438 3 29769-29769 0.8414 -0.5360 

20 52686-56017 0.9819 3.3421 17 60359-60633 0.8409 2.0651 
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Table 3. £ 1 distances between the estimated means and true means for simulation data 

generated using the HMM model of Fridlyand et al. (2004), the stochastic change-point 

model (SCP), and the frequentist model (CBS) of Olshen et al. (2004) . The three methods 

being compared are CBS, HMM, and SCP. 

Simulation Model CBS HMM SCP 

HMM 0.0667 0.0967 0.0688 

SCP 0.0557 0.1162 0.0334 

CBS 0.0532 0.1092 0.0431 

Table 4. Misclassification rates for CBS, HMM, and SCP compared on the simulation data 

generated by the HMM model of Fridlyand et al. (2004), the stochastic change-point model 

(SCP), and the frequentist model (CBS) of Olshen et al. (2004) . 

Simulation CBS HMM SCP 

Model FP FN FP FN FP FN 

HMM 0.0189 0.0717 0.0077 0.0518 0.0094 0.0343 

(0.0013) (0.0034) (0.0008) (0.0045) (0.0006) (0.0012) 

SCP 0.0087 0.0820 0.0297 0.3296 0.0647 0.0197 

(0 .0026) (0.0249) (0.0113) (0.0459) (0.0041) (0.0011) 

CBS 0.0235 0.0417 0.0129 0.1175 0.0180 0.0321 

(0.0014) (0.0017) (0.0010) (0.0037) (0.0010) (0.0014) 
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Figure 1. Genome-wide DNA copy-number variation for 9 Coriel breast cancer cell lines. 
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Figure 2. BAC array CGH profile for chromosome 17 in cell line BT474. The lines are the 

signal levels estimated using SCP (top plot), HMM (middle plot), and CBS (bottom plot). 

Note that SCP does not smooth out the sawtooth pattern in this region. Also shown in the 

top plot are the 2.5% and 97.5% quantiles (green lines) of the posterior distribution of Bt 

estimated by SCP. 
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Figure 3. BAC array CGH profile for chromosome 20 in cell line BT474. The lines are the 

signal levels estimated using SCP (top plot), HMM (middle plot), and CBS (bottom plot). 

Also shown in the top plot are the 2.5% and 97.5% quantiles (green lines) of the posterior 

distribution of Ot estimated by SCP, and the locations A, B, and C analyzed in Section 4.2. 
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Figure 4. Histogram of number of segments in 5000 signal sequences simulated from the 

posterior distribution for cell line BT474. 
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Figure 5. A simulation sequence generated from the HMM model (top plot), the stochastic 

change-point (SCP) model (middle plot), and the frequentist (CBS) model (bottom plot). 
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