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Perils and Prospects of Using Aggregate Area Level Socioeconomic
Information as a Proxy for Individual Level Socioeconomic Confounders
in Instrumental Variables Regression

Abstract
A frequent concern in making statistical inference for causal effects of a policy or treatment based on
observational studies is that there are unmeasured confounding variables. The instrumental variable method is
an approach to estimating a causal relationship in the presence of unmeasured confounding variables. A valid
instrumental variable needs to be independent of the unmeasured confounding variables. It is important to
control for the confounding variable if it is correlated with the instrument. In health services research,
socioeconomic status variables are often considered as confounding variables. In recent studies, distance to a
specialty care center has been used as an instrument for the effect of specialty care vs. general care. Because the
instrument may be correlated with socioeconomic status variables, it is important that socioeconomic status
variables are controlled for in the instrumental variables regression. However, health data sets often lack
individual socioeconomic information but contain area average socioeconomic information from the US
Census, e.g., average income or education level in a county. We study the effects on the bias of the two stage
least squares estimates in instrumental variables regression when using an area-level variable as a controlled
confounding variable that may be correlated with the instrument. We propose the aggregated instrumental
variables regression using the concept of Wald’s method of grouping, provided the assumption that the
grouping is independent of the errors. We present simulation results and an application to a study of perinatal
care for premature infants.
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Abstract A frequent concern in making statistical inference for causal effects of a policy or treatment based on observational

studies is that there are unmeasured confounding variables. The instrumental variable method is an approach to estimating a

causal relationship in the presence of unmeasured confounding variables. A valid instrumental variable needs to be indepen-

dent of the unmeasured confounding variables. It is important to control for the confounding variable if it is correlated with

the instrument. In health services research, socioeconomic status variables are often considered as confounding variables.

In recent studies, distance to a specialty care center has been used as an instrument for the effect of specialty care vs. gen-

eral care. Because the instrument may be correlated with socioeconomic status variables, it is important that socioeconomic

status variables are controlled for in the instrumental variables regression. However, health data sets often lack individual

J. Y. Hsu (�) · D. S. Small

Department of Statistics, Wharton School, University of Pennsylvania,

400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6302

Tel.: (215) 746-8565 / Fax: (215) 898-1280

E-mail: hsu9@wharton.upenn.edu

J. Y. Hsu · S. A. Lorch

Center for Outcomes Research, The Children’s Hospital of Philadelphia

S. A. Lorch

Department of Pediatrics, School of Medicine, University of Pennsylvania,

Division of Neonatology, The Children’s Hospital of Philadelphia,

E-mail: LORCH@email.chop.edu

D. S. Small

E-mail: dsmall@wharton.upenn.edu



2 J. Y. Hsu et al.

socioeconomic information but contain area average socioeconomic information from the US Census, e.g., average income

or education level in a county. We study the effects on the bias of the two stage least squares estimates in instrumental

variables regression when using an area-level variable as a controlled confounding variable that may be correlated with the

instrument. We propose the aggregated instrumental variables regression using the concept of Wald’s method of grouping,

provided the assumption that the grouping is independent of the errors. We present simulation results and an application to a

study of perinatal care for premature infants.

Keywords Aggregation · Causal inference · Instrumental variables · Proxy variables ·Wald’s grouping method

1 Introduction

In health science, researchers and policy makers are often interested in the causal effects of a treatment or a policy on a health

outcome. In a randomized trial — coin flipping decides whether the next subject is assigned to treatment or not, the causal

effects of a treatment can be correctly estimated from a simple comparison between the treated group and control group.

However, a randomized trial is not always feasible or ethical to conduct in most circumstances. Instead, researchers can only

obtain data from an observational study; i.e., treatment assignment is not decided by experimental control. In an observational

study, the causal relationship between treatment and outcome is usually confounded by a set of covariates called confounding

variables. Controlling for all the confounding variables in a conventional analysis such as ordinary least squares regression

would provide a valid estimation for the causal effect of treatment. With the presence of unmeasured confounding variables,

the ordinary least squares regression of the outcome on the treatment controlling for measured confounding variables cannot

provide correct estimation for the causal effects of the treatment. To obtain the correct estimation from an observational

study with the presence of unmeasured confounding variables, an alternative method is needed; e.g. instrumental variables

regression.

1.1 Instrumental variables and confounding

The instrumental variables (IV) regression is an approach to overcoming the problem of unmeasured confounding variables

in observational studies. A valid IV is a variable that (1) is associated with the received treatment; (2) has no direct effect on

the outcome of interest other than through its effect on the received treatment; and (3) is independent of unmeasured con-

founding variables given measured confounding variables. The idea of the IV method is to extract variation in the treatment
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that is independent of the unmeasured confounding variables and use this bias-free variation to estimate the effect of the

treatment on the outcome. As compared to the conventional analysis that requires researchers to control for all confounding

variables, the IV method allows researchers to obtain consistent estimates for the causal parameters after only controlling

for the confounding variables that are correlated with the instrumental variable. In the presence of unmeasured confound-

ing variables that are not correlated with IV, the IV method provides consistent estimation for the causal parameters. For

more discussions of IV, see Angrist, Imbens and Rubin (1996), Angrist and Krueger (2001), Abadie (2003), and Hernán and

Robins (2006).

Suppose we have an IV regression that would meet all the assumptions; specifically, we have controlled for all variables

that are correlated with both the IV and the outcome, i.e., confounding variables for the IV-outcome relationship. There

may be confounding variables for the treatment-outcome relationship that we have not controlled for. The question we

consider in this paper is the following. Suppose that an individual measurement of a confounding variable that is supposed

to be controlled for in the IV regression is not available but an aggregated form of the variable is available, can we use

its aggregate form in the IV regression and still obtain consistent estimates for the causal parameters? We will show that

using the aggregated confounding variable in the usual IV regression would violate the IV criteria (3) that the IV must be

independent of unmeasured confounding variables. On the contrary, we will show that a consistent estimate of the causal

parameters can be obtained by using an aggregated IV regression with aggregate variables completely replacing all individual

level variables. More importantly, the estimate of the causal parameters obtained from the aggregated IV regression will have

the same interpretation as in the individual IV regression (without aggregation), provided the aggregation/grouping does not

depend on errors.

1.2 A regionalization of perinatal care study

In studies of perinatal health and outcomes, hospitals vary in their ability to care for premature infants. ‘Regionalization

of perinatal care’ is the concept of transferring a mother or infant within a geographic area or region based on an infant’s

potential illness, the need for resuscitation immediately after delivery, and the capabilities of the hospital to manage the

expected needs of the mother and infant. The system tends to transfer higher-risk mothers and babies to specialized perinatal

centers to optimize the outcome of these infants. Because these infants have a higher baseline risk of poor outcomes, there are

differences in the casemix between hosepitals with greater capabilities to manage sick mothers and infants and those hospitals

with fewer capabilities. The difference in outcomes between delivering in a facility with greater capabilities compared to
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one with lesser capabilities determines the value of perinatal care for a given geographic area [Lorch et al., 2010]. A crude

comparison of health outcomes by levels of hospital does not provide clear evidence whether regionalization is effective or

not, because populations, or casemix, are not comparable among hospitals with different levels of capability [Pearl, 2000].

A recent study suggested that the protective effect of delivering at a high-level hospital on rates of mortality were under-

reported in studies that failed to control for unmeasured differences in casemix [Lorch et al., 2012]. Controlling for this

difference in casemix is important to obtain accurate estimates of the value of perinatal care in a given area.

Our motivating neonatology study contains the data that describe all premature births in the State of Missouri in the

years 1993–2003. The data combine information from birth and death certificates, which include information on the mother’s

sociodemographic factors such as education and age and the infant’s birth weight and gestational age, and the UB-92 form,

which hospitals provide when submitting bills to Medicare or third-party payers for reimbursement for health services

provided. The UB-92 form contains information on the diagnoses and procedures experienced by the infant or mother

during the hospital stay and are used to define many of the complications of pregnancy used as confounding variables

in this study, as well as the neonatal diagnoses used as outcomes in this study. According to the American Academy of

Pediatrics [American Academy of Pediatrics, Committee on Fetus and Newborn, 2004], hospitals are classified by six levels

of neonatal intensive care units (NICUs) of increasing technical expertise and capability: 1, 2, 3A, 3B, 3C, and 3D. For

example, level 1 hospitals can only provide basic neonatal care and level 3D hospitals can provide all surgeries without

restrictions. Following Rogowski et al. (2004), we define a NICU as high-level if it delivers an average of at least 50 preterm

babies per year and if the NICU has a level of 3A–3D, while a low-level NICU is any unit that fails to meet both criteria.

The outcomes of infants were assigned to their delivery hospital, regardless of future transfer of care to other hospitals as in

other previous research [Phibbs et al., 2007,Cifuentes et al., 2002]. While data exist on the effect of delivering at a high-level

NICU on lowering the risk of mortality for premature infants, we are particularly interested in studying the causal effect on

the number of complications of a premature baby being delivered at a high-level NICU compared to a low-level NICU. A

major difficulty in studying the effect of being delivered at a high-level NICU on infants’ health outcome is that infants

with higher risk of poor outcomes are most likely to be sent to high-level NICUs; i.e., being delivered at a high-level NICU

is not a random assignment. There are variables that physicians use to determine where mothers deliver their babies, and

these variables are likely to affect infants’ health outcome as well. These variables that occur before birth or at the time of

birth include sociodemographic factors, such as mothers age, race, insurance status, and educational status; complications of

pregnancy, including diabetes and hypertension; congenital anomalies diagnosed prior to birth; and the infants birth weight
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and gestational age. Although some variables describing the infants’ health prior to being delivered are measured in the data,

we are still missing other important variables that are known to the physicians caring for the expectant mother such as fetal

heart tracing results, the severity of specific comorbidities such as mother’s hypertension, the compliance of the mother to

medical treatment and mother’s medical history with the physicians. Because we are unable to adjust for these variables

and physicians likely use these variables in determining whether to suggest to a mother that she delivers at a high-level

NICU (i.e., there exists unmeasured confounding variables), even if high-level NICUs are saving lives, the number of infant

complications at these hospitals might be higher (not lower) than that at low-level NICUs because their patient populations

are sicker.

Instrumental variable regression with a valid IV provides consistent estimation for the causal effects of being delivered

at a high-level NICU on the number of infant complications. In IV regression, controlling for individual level confounding

variables that are correlated with the IV is important to ensure that the extracted variation in the treatment is independent of

unmeasured confounding variables. We believe that a mother’s socioeconomic status (SES) variables are confounding vari-

ables for the effects of being delivered at a high-level NICU on an infant’s health outcome, and we also believe that a mother’s

SES variables are correlated with the infant’s risk of a complication. For example, lower educational status may be associated

with how well a complication of pregnancy such as diabetes is controlled, which may result in a sicker infant at higher risk

of a complication after delivery. Meanwhile, SES variables are often considered as confounding variables that are correlated

with the IV when the IV is based on where the person lives or obtains medical services [Brookhart and Schneeweiss, 2007].

Therefore, it is necessary to control for SES variables in using IV regression. Often, SES variables, such as family income,

education, occupation, etc., at individual level are not available in hospital records or medical charts, or it is difficult to collect

these variables from individuals. One commonly used strategy is to replace individual SES variables with aggregate census-

based SES variables using a person’s residential zip code or county. Using aggregate proxies to replace unavailable individual

data is frequently adapted by economists and education researchers [Card and Krueger, 1992]. There is a growing tendency

of health researchers to use this approach [Geronimus and Bound, 1998,Krieger et al., 2003a,Krieger et al., 2003b].

For our neonatology example, we used excess travel time that the difference in travel times from a mother’s res-

idential zip code to the nearest high-level NICU and the mother’s residence to the nearest low-level NICU as an IV

[Phibbs and Robinson, 1993,McClellan et al., 1994,Baiocchi et al., 2010]. Excess travel time is negative if the closest hos-

pital has a high-level NICU. For excess travel time to be a valid IV conditional on the measured confounding variables,

it must (1) be correlated with whether a mother delivers at a high-level NICU, which because a mother typically obtains
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prenatal care from and would prefer to deliver at a close by hospital [Phibbs et al., 1993]; (2) not have a direct effect on the

outcome through ways other than the pathway between level of the NICU and the outcome, which is reasonable because

a nearby high-level NICU presumably only affects a baby’s outcome if the baby receives the care and is delivered at that

hospital; and (3) be independent of unmeasured confounding variables, which is plausible after controlling for measured

characteristics that predict where people live.

1.3 Perils and Prospects

In this paper, we raise the concern of aggregating a measured confounding variable that is also correlated with IV in making

inference about the causal effect of a treatment in an observational study using IV regression. Suppose there are two kinds of

confounding variables: one is associated with IV; the other is not. It is important to control for all those confounding variables

that are correlated with IV. For example, in our motivating neonatology study, a mother’s SES variable is an example of a

confounding variable that is correlated with IV (e.g., X in Figure 1). The SES variable needs to be controlled in IV regression

because of its correlation with IV. When the SES variable is aggregated or its aggregate form is used, it creates an error term

— aggregation error (not observed). If the individual SES variable is correlated with IV, most likely, both the aggregate SES

variable and the aggregation error would be correlated with the IV. When we use the aggregate variable in IV regression, we

leave the aggregation error unobserved. This aggregation error is unmeasured and is correlated with the IV. Thus, we may fail

to control for all confounding variables that are correlated with the IV. Therefore, the use of aggregate confounding variables

violates the IV assumption that the IV must be uncorrelated with unmeasured confounding variables. The IV method will

result in inconsistent estimation for the causal parameters in the presence of such aggregation error; specifically, a violation

of the IV assumption that an IV must be independent of unmeasured confounding variables given measured confounding

variables.

We propose the use of Wald’s method of grouping [Wald, 1940] to obtain consistent estimates for the causal parameters

in IV regression when a confounding variable is only available in aggregate form. Wald’s method involves dividing the

observations into groups, averaging the outcomes and covariates within the groups, and conducting the analysis on the group

averages. In the regionalization of perinatal care study, for example, zip code or county could be used for grouping. When

only the aggregate confounding variable is available (note that we specifically focus on the confounding variable that is

correlated with the IV), we can replace both those variables where individual patient level data are available and those

variables where only aggregate data are available with mean values from geographic group, and fit an IV regression using
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these mean values. The grouped-data estimators are consistent in the presence of aggregation errors [Angrist, 1991]. The

variance of the grouped estimators are greater than (or equal to) the variance of the estimators obtained from ungrouped

data, because grouping will not gain any information about parameters [Prais and Aitchison, 1954].

This paper is organized as follows. In Section 2, using potential outcomes, we introduce a model framework for IV and

its inference. We closely examine the problem of aggregation in IV regression in Section 3, when the aggregate variable

is a confounding variable in an observational study. In Section 4, we present our idea of using Wald’s method of grouping

to solve the problem of aggregation in IV regression in observational studies. We investigate the effect of aggregation in

IV regression using simulations in Section 5, and illustrate our method using a study of regionalization of perinatal care in

Section 6. Section 7 concludes with the discussion of our findings.

2 Framework

In this section we introduce notation and assumptions used in this paper and describe how a valid IV enables identification

of the model.

2.1 Notation

To define the causal effect of a policy/treatment, we use the potential outcomes approach [Neyman, 1990,Rubin, 1974]. A

potential outcome is the outcome that would have been observed had a subject been assigned to a treatment action; e.g., for a

binary treatment, treated or not treated, a subject has two potential outcomes even though only one would be observed. Let Y

denote an outcome of interest and D denote a policy/treatment variable. For instance in the regionalization of perinatal care

study, Y is the infant’s number of complications and D a binary variable for whether (1) or not (0) the baby was delivered

at a high-level NICU. Let y(d
∗)

i j denote the outcome that would be observed for unit i in area j if such unit’s level of D was

set to d∗. This notation explicitly assumes the restriction that will be described in Section 2.2, Assumption 3 below. Let

yobs
i j := yi j and dobs

i j := di j be the observed values of Y and D for unit i in area j. Each unit has a vector of potential outcomes,

{y(1)i j ,y(0)i j }, but we observe only one potential outcome, yi j = y
(di j)
i j .

Ordinary least squares (OLS) regression provides a way to estimate β1 by regressing yi j on di j. The estimator β̂ OLS
1 is

consistent if di j were randomly assigned. This is usually not true in an observational study, and β̂ OLS
1 is not a consistent

estimator for β1. One strategy to overcome this is to collect data on all confounding variables X and regress yi j on di j

controlling for all confounding variables. However, it is not guaranteed that all confounding variables will be available in
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hospital records or medical charts; i.e., there exists unmeasured confounding variablesU that are associated with both D and

Y . Another strategy is to use IV regression. Let Z denote the IV and zi j be the observed IV for unit i in area j. The idea of IV

regression is to use instrument Z to extract variation in treatment D that is independent of unmeasured confounding U and to

use only this part of the variation in D to estimate the causal relationship between D and Y . In the next section, we provide

assumptions that enable a valid IV to provide a consistent estimator of β1.

2.2 Assumptions

In this paper, we use some of the assumptions in Angrist, Imbens and Rubin (1996) and Holland (1988). To describe the

assumptions, we introduce the following additional potential variables: y(d,z)i j which is the outcome unit i in area j would

experience if she were assigned level d for the treatment and level z for the instrument, and d(z)
i j is the level of d that unit i in

area j would have if he/she were assigned level z of the instrument.

Assumption 1 Stable Unit Treatment Value Assumption (SUTVA) by Rubin (1986).

The SUTVA assumption states that the potential outcomes for unit i in area j depend only on the level of D for unit i in area

j and not on the levels of D for other units.

Assumption 2 Ignorability of the Instrument.

Conditional on the measured confounding variables xi j, the observed value of the instrument Z is independent of the set of

all potential variables {y(1,z)i j ,y(0,z)i j ,d(z)
i j }, z ∈ Z where Z denotes the set of all possible values of the instrument Z. This

assumption means that the instrument is “as good as randomly assigned” once we condition on the measured confounding

variables X and will be satisfied if the instrument is independent of all unmeasured confounding variables given the measured

confounding variables X .

Assumption 3 Exclusion Restriction.

This assumption is that y(1,z)i j = y(1,z
′)

i j and y(0,z)i j = y(0,z
′)

i j for all z,z′. The assumption allows us to write y(d,z)i j as y(d)i j . In words

the exclusion restriction assumes that any effect of Z on Y must be through an effect of Z on D; i.e., no direct effect on the

outcome of interest other than through its effect on the received treatment.

Assumption 4 Nonzero Average Causal Effect of Z on D.



Aggregation in Instrumental Variables Regression 9

This assumption requires Z to have some effect on the average probability of treatment. In other words, the instrument Z is

associated with the treatment D.

Assumption 5 An Additive, Linear Constant-Effect Causal Model for Potential Outcomes [Holland, 1988]

This model assumption we make implies that y(d
∗)

i j = y(0)i j + β1d∗. Therefore, the causal effect of the treatment D — our

parameter of interest — is β1 = y(1)i j − y(0)i j .

In Section 3, we will examine the effect of violation of Assumption 2 due to aggregation, provided Assumptions 1, 3, 4

and 5 hold.

2.3 Instrumental variables regression models

In an observational study of the regionalization of perinatal care, let X denote an observed confounding variable; e.g.,

mother’s family income, and U denote an unmeasured confounding variable that a physician used to determine if a mother

would deliver her baby at a high-level NICU but is not available in the hospital records; e.g., a variable describing a baby’s

health prior to being delivered such as fetal heart tracing results. Let Z be a valid IV; e.g., the excess travel time given by the

difference in travel times from a mother’s residential zip code to the nearest high-level NICU and the mother’s residence to

the nearest low-level NICU. Figure 1 depicts the idea of causal diagram in the context of regionalization of perinatal care

study. We consider a linear model as follows

Y: outcome 

(number of infant’s complications) 

D: treatment 

(levels of NICU, high vs. low) 

X: measured confounder 

(family income) 

U: unmeasured confounder 

(fetal heart tracing)  

Z: instrument 

(excess travel time) 

Fig. 1 Causal diagram in regionalization of perinatal care study

y(d
∗)

i j = β1d∗+β2xi j + εi j, and E(εi j | xi j,zi j) = 0, (1)
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where i indexes subjects and j indexes areas. The error term εi j can be considered as a composite of random disturbance and

unmeasured confounding U . The model for the observed data is

yi j = β1di j +β2xi j + εi j, (2)

where E(εi j | xi j,zi j) = 0 and Var(εi j | xi j,zi j) = σ 2
ε . Random variable εi j is independently and identically distributed (i.i.d.)

for ith subject in jth area. As we mentioned earlier, an OLS estimator β̂ OLS
1 obtained from (2) will not be consistent in the

presence of unmeasured confounding U in an observational study. In other words, the treatment di j is endogenous in (2), or

di j is correlated with εi j (i.e., E(di jεi j) 6= 0). One solution for the problem of unmeasured confounding variables is to use

the IV method.

In our motivating neonatology study in Section 1.2, a mother’s choice of delivering her baby at a high-level or low-level

NICU is not randomly assigned. Researchers are aware of missing important variables that describe the risk of the baby;

these are major confounding variables. To overcome the problem of unmeasured sickness of the baby, we could use IV

regression with excess travel time as an IV. To assure that excess travel time is a valid IV, we assume that (1) excess travel

time is correlated with whether a mother delivers at a high-level NICU (i.e., a mother who lives closer to a high-level NICU

will have higher chance to deliver her baby there); (2) excess travel time does not have direct effect on outcome (i.e., no effect

other than through the pathway between the level of the NICU and the outcome); and (3) excess travel time is independent

of unmeasured confounding variables.

A valid IV Z provides a way to extract exogeneity in treatment D when unmeasured confounding U exists. The two stage

least squares (TSLS) method [Theil, 1971] is a common approach to making inference about the treatment effect β1 in (2)

using IV. In TSLS, we first regress di j on (zi j,xi j) using OLS to obtain Ê(di j | zi j,xi j) = d̂i j, and then regress yi j on (d̂i j,xi j)

using OLS to estimate β1. From (2), we can write

yi j = β1di j +β2xi j + εi j

= β1d̂i j −β1d̂i j +β2xi j +β1di j + εi j

= β1d̂i j +β2xi j + ε∗
i j, where ε∗

i j = εi j +β1(di j − d̂i j). (3)

Thus, by regressing di j on zi j and xi j first, we can create a regressor d̂i j that is exogenous to ε∗
i j in (3), or

E(d̂i jε∗
i j) = E{E(d̂i jε∗

i j | xi j,zi j)}= E{d̂i jE(ε∗
i j | xi j,zi j)}= 0.

We can also obtain an equivalent estimator for the causal effect β1 through the estimating equation based on E(zi jεi j)= 0 that

is implied by zi j being a valid IV. Let Y = (y11, . . . ,yn j j)
T , X = (x11, . . . ,xn j j)

T , D = (d11, . . . ,dn j j)
T , Z = (z11, . . . ,zn j j)

T ,
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ε = (ε11, . . . ,εn j j)
T , W = [D,X],A = [Z,X], and β = (β1,β2)T . Model (3) can be written as Y = Ŵβ +ε∗, where Ŵ= [D̂,X]

and ε∗ = (ε∗
11, . . . ,ε∗

n j j)
T . TSLS estimators β̂ from (3), therefore, are equivalent to the solution of the following estimating

equations,

AT (Y−Wβ̂ ) = 0. (4)

The estimator β̂ = (AT W)−1AT Y from (4) will be a consistent estimator as long as Z is a valid instrument, and

β̂ = (AT W)−1AT Y

= (AT W)−1AT (Wβ + ε)

= β +(AT W)−1AT ε . (5)

The consistency of β̂ follows the fact that the term AT ε in (5) converges in probability to zero, since A is uncorrelated

(exogenous) with unmeasured error ε . The asymptotic variance of β̂ is σ 2
ε (A

T W)−1AT A(WT A)−1.

3 Problem with aggregation

In observational studies, it is important that the confounding variable is measured and controlled for. Often, SES variables

(e.g., family income, education, occupation, etc.) play an important role as measured confounding variables in public health

research, such as X in Figure 1. However, one of the biggest challenges is that most health related databases lack individual

level SES data. The census-based SES data from the US census are suggested to overcome this difficulty [Krieger, 1992,

Krieger et al., 2003a,Krieger et al., 2003b]. The validity of using census-based SES data to proxy individual SES data has

been discussed in literature [Geronimus et al., 1996,Geronimus and Bound, 1998]. In this section, we discuss the bias that

arises from using aggregate SES variables as controlled confounding variables in IV regression when the interest is on

estimating the causal effect of a treatment. In Section 4, we propose a analytical method that could reduce the bias due to

aggregation and provide consistent estimation for the causal effect of a treatment.

Following the notation used in Section 2, let xagg
j be an aggregate measurement of the observed confounding variable xi j

in the jth area; e.g., average family income within a county. Let hi j be the aggregation error, where hi j = xagg
j − xi j ; i.e., the

difference between subject i j’s income and aggregated income in the jth county. To illustrate the problem of aggregating
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measured confounding variable X into Xagg, we can rewrite model (2) as

yi j = β1di j +β2xi j + εi j

= β1d̂′
i j +β2(xagg

j +hi j)+β1(di j − d̂′
i j)+ εi j

= β1d̂′
i j +β2xagg

j + ε ′
i j, where ε ′

i j = εi j +β2hi j +β1(di j − d̂′
i j). (6)

When the aggregated confounding variable xagg
j is used, β̂ ′

1, the TSLS estimator for the causal effect β1, is obtained by (6),

where d̂′
i j is obtained by regressing di j on zi j and xagg

j using OLS. This TSLS estimator could give misleading inferences

when the aggregated variable is a confounding variable of the IV-outcome relationship. The TSLS method uses part of

the variability in treatment that is uncorrelated with unmeasured confounding to consistently estimate the treatment effect.

When X is aggregated into Xagg, the part that we use in the second stage of the TSLS method is no longer uncorrelated with

unmeasured confounding U because of the existence of aggregation error H. Figure 2 shows the problem of aggregation

graphically. The correlation between instrument Z and aggregation error H violates the assumption that an instrument has to

be uncorrelated with unmeasured confounding. The problem of aggregation can also be shown through estimating equations.

U: unmeasured confounder 

(fetal heart tracing)  

Z: instrument 

(excess travel time) 

H: unmeasured error 

(aggregation error) 

Y: outcome 

(number of infant’s complications) 

D: treatment 

(levels of NICU, high vs. low) 

Xagg: measured confounder 

(aggregate family income) 

Fig. 2 Causal diagram in regionalization of perinatal care study when only aggregate confounding variable is available

Let Wagg = [D,Xagg] and Aagg = [Z,Xagg] be W and A but replacing xi j with xagg
j , and W = Wagg +H (also, A = Aagg +H),

where H = [0,(X−Xagg)] is a matrix for aggregation error due to the replacement of xi j with xagg
j . The estimator β̂

′
— the
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solution of AaggT
(Y−WaggT β̂

′
) = 0 — is then

β̂
′
= (AaggT

Wagg)−1AaggT
Y

= (AaggT
Wagg)−1AaggT

(Waggβ +Hβ + ε)

= β +(AaggT
Wagg)−1AaggT

Hβ +(AaggT
Wagg)−1AaggT

ε. (7)

We will refer to the method of obtaining estimators from (7) as the naı̈ve method in the rest of the paper. The exogeneity

between A and ε implies that AaggT ε will converge in probability to zero. The other term AaggT
H, however, will not be zero

or converge in probability to zero, because

AaggT
H = AaggT

(A−Aagg) =




ZT

Xagg



[

0 (X−Xagg)

]
=




0 ZT (X−Xagg)

0 XaggT
(X−Xagg)




p
−→




0 plimZT (X−Xagg)

0 0


 ,

where ZT (X−Xagg) will not converge in probability to zero unless Z and X are uncorrelated in each area. In other words,

aggregation of measured confounding variable X makes IV invalid.

In this section, we have shown that if a confounding variable is correlated with the IV, it is necessary to control for this

confounding variable when estimating the causal effect of a treatment in IV regression using the TSLS method. In the next

section, we provide an analytical method based on Wald’s method of grouping and its corresponding assumptions that allows

us to obtain consistent estimates for the causal parameters from IV regression using the TSLS method when the confounding

variable is correlated with the IV and is only available in aggregate form.

4 Proposed method

We introduce Wald’s method of grouping [Wald, 1940] to overcome the problem of aggregation discussed in Section 3. We

first explain Wald’s original method of grouping.

4.1 Wald’s method of grouping

The problem Wald originally addressed is that we would like to fit a simple linear regression but there is measurement

error in the explanatory variable X . Suppose we have two variables, Y and X , and they are connected by a linear model,

Y = α +βX + ε , where E(ε) = 0. Among n i.i.d. observation pairs (yi,xi), we divide them into two groups such that one

group will have larger x-values than the other. Then, we compute the means of the two groups, which are (ȳ1, x̄1) and (ȳ2, x̄2).
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Wald’s estimator for β is b=(ȳ2− ȳ1)/(x̄2− x̄1). This is equivalent to calculating the slope of the straight line from the means

of these two groups. Wald has shown that the estimator b is a consistent estimator for β , even there exists an unmeasured

error that may deteriorate the estimation of β , provided the method of grouping is not affected by the error. One advantage of

Wald’s method is simplicity. The only thing we have to do is to make sure the method of grouping does not depend on errors.

Next, we introduce the concept of Wald’s method of grouping to solve the problem of aggregation to obtain a consistent

estimator for the causal effect of a treatment in IV regression using the TSLS method.

4.2 Grouped two-stage least squares

In Section 3, we have pointed out that aggregating a confounding variable that is correlated with the instrument in IV

regression will result in creating an unmeasured error that makes IV invalid. In the regionalization of perinatal care study,

we use excess travel time to a high-level NICU (Z) as an IV to estimate the effect of being delivered at a high-level NICU

to a low-level NICU (D) in the infant’s number of complications (Y ), controlling for measured confounding variables (X);

e.g., mother’s family income. Because we assume that mother’s family income (X) is correlated with excess travel time (Z),

it is necessary to control for mother’s family income in IV regression using the TSLS method. For each mother i in county j,

the ideal observed data are (yi j,di j,zi j,xi j) that all variables are measured at individual level. In hospital records, however,

mother’s family income is not available to us. The only data available are the aggregate family income in counties linked

from the US census database; therefore, we only have xagg
j , not xi j.

We use the concept of Wald’s method of grouping to overcome the problem of unmeasured error due to aggregation,

provided the assumption that the grouping is independent of the errors ε . Suppose we have ∑J
j=1 n j mothers from J counties.

We divide mothers into J groups based on their residential address (e.g., county), and calculate means of all variables —

aggregate all variables — within each county. Each mother’s observed data are then (yagg
j ,dagg

j ,zagg
j ,xagg

j ). For mothers from

the same county, they share the same values of the observed data. These aggregated values are used in IV regression. Note

that our proposed method — fitting at individual level with aggregate values replacing all individual values — is different

from the ecological regression model, which is fitted at the aggregate level (e.g., the county level with one observation per

county). The estimators β̂
agg

will be a consistent estimator for β . The derivation of the consistent estimator for β and its

variance estimate is provided in Appendix A.
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5 Simulation studies

In this section, we conducted Monte Carlo simulations to investigate the problem of aggregation in observational studies.

We simulated 2K groups based on a simple exponential growth hierarchical structure inspired by the U.S. Census Bureau

geographic hierarchy (see Figure 3). We randomly drew n j subjects from the jth group for a total of n = ∑2K

j=1 n j subjects.

We followed the casual diagram we defined in Section 2 (see Figure 1) to create the observed confounding variable xi j, the

unmeasured confounding variable ui j, the IV zi j, and the binary treatment assignment di j as follows. For the ith subject in

the jth group, we defined

xi j =

(
10+90×

j−1
2K −1

)
+

(
1+9×

j−1
2K −1

)
× e1,i j for j ∈ {1, . . . ,2K}

ui j = 2× e2,i j ,

zi j = πZ × xi j +5+1.5× e3,i j

di j = I(xi j + zi j +ui j + e4,i j > ∆),

where ei j = (e1,i j,e2,i j,e3,i j,e4,i j)
T ∼ MVN4(0,I4) and I(·) is an indicator function, such that I(·) = 1 if the expression is

true; I(·) = 0 if otherwise. The parameter πZ was used to determine ρZ,X ; that is the correlation between zi j and xi j. The

choices of πZ = (0.02,0.03,0.06,0.1,0.5) created approximate values of correlation ρZ,X = (0.34,0.5,0.75,0.87,0.99). A

constant ∆ was chosen, such that the treatment allocation was 50/50; i.e., the value of ∆ depended on the choice of πZ . For

each subject, we generated two potential outcomes y(d
∗)

i j for d∗ ∈ {0,1}, such that y(d
∗)

i j = β1×d∗+β2×xi j +0.5×ui j +ei j,

where ei j ∼ N(0,1). The observed outcome was yi j = di jy
(1)
i j +(1−di j)y

(0)
i j .

Two thousand Monte Carlo samples were generated from the above population for each scenario. We considered ten

scenarios with two sizes of samples (n = 128,000 for K = 7 and n j = 1,000, and n = 102,400 for K = 10 and n j = 100)

and five different values of correlation ρZ,X . In the presence of unmeasured confounding variable ui j , we used IV regression

using the TSLS method to estimate parameters of interest β = (β1,β2)T = (−2,−0.5)T , especially β1, the causal effect

of the treatment. We first obtained estimated d̂i j = γ̂0 + γ̂1zi j + γ̂2xi j using OLS, and then regressed yi j on d̂i j and xi j to

obtain estimators for β . Table 1 shows the results of IV regression using the TSLS method when the confounding variable

xi j is available for each observation. The estimators are consistent and the coverage probabilities for 95% Wald confidence

intervals are close to 95%, regardless of the sizes of samples and ρZ,X .

In Table 2 (n = 128,000), we compare results of estimating β1 — the causal effect of the treatment — controlling for

the aggregate confounding variable xagg
j by using the naı̈ve and the proposed methods. In general, the estimators obtained by
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Fig. 3 U.S. Census Bureau geographic hierarchy (Source from www.census.gov)

the naı̈ve method, β̂ ′
1, are biased in all scenarios. The bias increases as ρZ,X increases given the number of aggregate groups.

The bias increases as the number of aggregate groups decreases given ρZ,X . For our proposed method, the estimators, β̂ agg
1 ,

are consistent, regardless of the number of aggregate groups and ρZ,X . In terms of estimating the standard deviation of our

proposed estimator, the mean sandwich estimator based on (11) is similar to the Monte Carlo standard deviation when the

number of aggregate groups is 128. When the numbers of aggregate groups are 32 and 64, the mean sandwich estimator

based on (11) still provides reasonable estimated standard error for the estimator. However, when the number of aggregate

groups is 2, 4, 8, or 16, the standard error based on (11) underestimates the standard deviation substantially. This is not

surprising because the standard error base on (11) is a sandwich variance estimator, and sandwich variance estimator can
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perform poorly from a small number of groups [Lipsitz and Fitzmaurice, 2009]; i.e., the robustness property of the sandwich

variance estimator is an asymptotic property as the number of groups goes to infinity. The 95% Wald confidence intervals

are close to nominal level of 95% for 32, 64, and 128 aggregate groups. The intervals drop below 95% when the number of

aggregate groups is less than 32. For scenarios with n = 102,400 for K = 10 and n j = 100, we have found the similar results

as scenarios with n = 128,000 for K = 7 and n j = 1,000 (data not shown).

Table 1 Simulation results of estimating β (β1 = −2 and β2 = −0.5) based on 2000 Monte Carlo samples ({β̂1, β̂2}: mean of the Monte Carlo

estimates; SD(·): standard deviation of the Monte Carlo estimates; SE(·): mean of the standard error of the Monte Carlo estimates; CP%: coverage

probabilities for 95% Wald confidence intervals)

n (= ∑2K

j=1 n j) ρZ,X β̂1 SD(β̂1) SE(β̂1) CP% β̂2 SD(β̂2) SE(β̂2) CP%

128,000 (K = 7,n j = 1,000) 0.34 -2.0010 0.0234 0.0236 95.3 -0.5000 0.0002 0.0003 95.2

0.50 -2.0000 0.0233 0.0236 95.8 -0.5000 0.0003 0.0003 95.4

0.75 -2.0006 0.0238 0.0236 95.2 -0.5000 0.0003 0.0003 95.6

0.87 -2.0004 0.0244 0.0236 94.0 -0.5000 0.0003 0.0003 93.9

0.99 -1.9993 0.0237 0.0236 94.8 -0.5000 0.0003 0.0003 95.8

102,400 (K = 10,n j = 100) 0.34 -2.0001 0.0256 0.0262 95.2 -0.5000 0.0003 0.0003 95.5

0.50 -1.9995 0.0263 0.0262 95.4 -0.5000 0.0003 0.0003 95.4

0.75 -1.9996 0.0263 0.0262 95.4 -0.5000 0.0003 0.0003 95.2

0.87 -1.9992 0.0265 0.0261 94.2 -0.5000 0.0003 0.0003 94.3

0.99 -2.0014 0.0265 0.0261 95.0 -0.5000 0.0003 0.0003 94.5

6 An empirical example: A regionalization of perinatal care study

As an illustrative example, we consider an IV regression model for modeling the causal effect of being delivered at a high-

level NICU compared to a low-level NICU on the infant health outcome controlling for measured confounding variables in

a study of regionalization of perinatal care.

6.1 Data

The data describe all premature infants born within 23–37 weeks gestational age in the State of Missouri in the years 1993–

2003; that is 150,532 births, excluding fetal and infant deaths. The health outcome of interest is the infant’s number of

complications during the premature delivery. Nine complications of prematurity collected from birth to the time of discharge
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Table 2 Comparisons of simulation results of estimating the causal effect of the treatment, β1 = −2, obtained by the naı̈ve and the proposed

methods based on 2000 Monte Carlo samples of size 128,000 ({β̂ ′
1, β̂

agg
1 }: mean of the Monte Carlo estimates; SD(·): standard deviation of the

Monte Carlo estimates; SE(·): mean of the standard error of the Monte Carlo estimates; CP%: coverage probabilities for 95% Wald confidence

intervals)

Naı̈ve method Proposed method

ρZ,X Groups β̂ ′
1 SD(β̂ ′

1) SE(β̂ ′
1) CP% β̂ agg

1 SD(β̂ agg
1 ) SE(β̂ agg

1 ) CP%

0.34 2 -2.9105 0.0329 0.0900 0 -2.0005 0.0176 0.0000 0
4 -2.4346 0.0290 0.0727 0 -2.0005 0.0191 0.0141 74.2
8 -2.2398 0.0261 0.0600 0 -2.0006 0.0215 0.0189 87.7
16 -2.1911 0.0254 0.0558 0 -2.0007 0.0221 0.0211 92.0
32 -2.1794 0.0253 0.0547 0.3 -2.0008 0.0225 0.0221 93.6
64 -2.1765 0.0253 0.0544 0.4 -2.0007 0.0227 0.0226 94.4
128 -2.1757 0.0253 0.0543 0.4 -2.0008 0.0228 0.0229 94.6

0.50 2 -3.7777 0.0446 0.0885 0 -2.0001 0.0174 0.0000 0
4 -2.8192 0.0333 0.0719 0 -2.0003 0.0190 0.0142 73.4
8 -2.4337 0.0272 0.0597 0 -2.0000 0.0212 0.0188 86.8
16 -2.3395 0.0259 0.0556 0 -2.0000 0.0220 0.0210 92.1
32 -2.3170 0.0256 0.0545 0 -2.0000 0.0224 0.0219 94.2
64 -2.3114 0.0255 0.0542 0 -2.0001 0.0226 0.0225 94.9
128 -2.3098 0.0255 0.0541 0 -2.0000 0.0227 0.0229 95.9

0.75 2 -6.3288 0.0700 0.0853 0 -2.0000 0.0178 0.0000 0
4 -4.0845 0.0470 0.0700 0 -1.9998 0.0193 0.0143 75.6
8 -3.0713 0.0349 0.0588 0 -2.0004 0.0217 0.0187 87.0
16 -2.8200 0.0319 0.0550 0 -2.0006 0.0226 0.0211 91.6
32 -2.7608 0.0312 0.0539 0 -2.0005 0.0230 0.0221 92.4
64 -2.7461 0.0311 0.0537 0 -2.0005 0.0232 0.0226 93.8
128 -2.7420 0.0310 0.0536 0 -2.0005 0.0233 0.0229 94.0

0.87 2 -8.8155 0.0897 0.0833 0 -2.0002 0.0179 0.0000 0
4 -5.7097 0.0595 0.0684 0 -2.0003 0.0197 0.0144 73.5
8 -3.9565 0.0434 0.0579 0 -2.0003 0.0222 0.0192 87.5
16 -3.4930 0.0391 0.0543 0 -2.0003 0.0231 0.0212 92.2
32 -3.3830 0.0380 0.0534 0 -2.0004 0.0234 0.0222 92.3
64 -3.3556 0.0378 0.0531 0 -2.0004 0.0236 0.0227 93.3
128 -3.3478 0.0377 0.0530 0 -2.0004 0.0237 0.0229 93.6

0.99 2 -12.9530 0.1215 0.0824 0 -1.9990 0.0175 0.0000 0
4 -11.0521 0.0844 0.0695 0 -1.9990 0.0193 0.0142 73.5
8 -8.2100 0.0617 0.0585 0 -1.9988 0.0214 0.0189 86.8
16 -7.1364 0.0570 0.0547 0 -1.9988 0.0221 0.0211 91.9
32 -6.8575 0.0561 0.0537 0 -1.9990 0.0227 0.0219 93.2
64 -6.7861 0.0558 0.0535 0 -1.9991 0.0228 0.0225 94.3
128 -6.7664 0.0556 0.0534 0 -1.9991 0.0229 0.0228 95.2

are pneumothorax, bronchopulmonary dysplasis (BPD), intraventricular hemorrhage (IVH), neonatal seizures, necrotizing

enterocolitis (NEC), fungal sepsis, bacterial sepsis, urinary tract infection, and surgery retinopathy of prematurity (ROP).

None of these complications are expected to occur after discharge from the neonatal intensive care. Complications were

derived from ICD-9CM codes contained in the UB-92 forms of infants submitted to the state. Table 3 depicts the raw
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comparison of outcome (the infant’s number of complications) and covariates (mother’s age, mother’s education, months

when prenatal care began, number of prenatal visits and infant’s birth weight and gestational age) between high-level and

low-level NICUs in the sample. High-level NICUs have higher number of complications per infant than low-level NICUs

(standardized difference = 0.19). However, this does not necessarily mean high-level NICUs cause more complications as

babies delivered at high-level NICUs may be at higher risk for complications: their mothers are less educated and started

prenatal care later, and the babies have lighter birth weight and shorter gestational age.

We next examined the association between excess travel time and the measured confounding variables. Travel time was

determined using ArcView software (ESRI) as the time from the centroid of mother’s zip code to the closest low- and high-

level NICUs. Excess travel time is the additional travel time that a mother needs to the nearest high-level NICU compared

to the travel time to the nearest low-level NICU. Excess travel time is negative if the closest hospital has a high-level NICU,

and is positive if otherwise. Excess travel time is used as an IV to account for unmeasured confounding variables in IV

regression using the TSLS method. Measured confounding variables used in this example are mother’s education; month

prenatal care began; and mother’s age. Table 4 provides the evidence that excess travel time is correlated with measured

confounding variables. Mothers whose travel time is less to a high-level NICU (e.g., those women whose excess travel time

to a high-level NICU was less than 30 minutes) are elder, less educated, having more prenatal care visits, begin prenatal care

later and deliver lighter babies with shorter gestational ages. A mother’s education is part of a mother’s SES. The mother’s

education is highly correlated with her excess travel time at individual and aggregate levels (i.e., the absolute standardized

difference is greater than 0.2 standard deviations in Table 4).

Table 3 Raw comparison of number of infant complications and covariates between high-level and low-level NICUs

Variable High-level NICU Low-level NICU |Std. Dif.∗|

(n=150,532) (n=42,764) (n=107,768)

Outcome

Number of complications 0.145 0.068 0.19

Covariate

Mother’s age (years) 27.2 26.1 0.17

Mother graduated from high school (proportion) 0.73 0.82 0.22

Prenatal care began (months) 2.06 2.34 0.20

Prenatal visits (times) 11.8 11.0 0.16

Birth weight (grams) 2727 2908 0.26

Gestational age (weeks) 35.0 35.5 0.22

∗ Std. Dif. (standardized difference) = mean difference
pooled standard deviation
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Table 4 Standardized differences between babies delivered at near to and far from high-level NICUs

Excess travel time

Variable Below 30 minutes Above 30 minutes |Std. Dif.∗|

Individual

Mother’s age (years) 26.8 25.3 0.24

Mother graduated from high school (proportion) 0.77 0.86 0.24

Prenatal visits (times) 11.4 10.8 0.11

Prenatal care began (months) 2.19 2.48 0.20

Birth weight (grams) 2850 2873 0.03

Gestational age (weeks) 35.3 35.5 0.06

Aggregate

Mother graduated from high school (proportion) 0.48 0.81 0.67

∗ Std. Dif. (standardized difference) = mean difference
pooled standard deviation

6.2 Results

Recall that we defined a naı̈ve method in Section 3 as using an aggregate area-level confounding variable to replace individual

confounding variable in an IV regression. The aggregate confounding variable is calculated from each county; there are 116

counties in the data. We compare estimators for the causal effect of being delivered at a high-level NICU obtained from

the naı̈ve method to those obtained from the proposed method. Additionally, estimators obtained from a model with all

individual level variables are referenced in comparisons.

For the purpose of illustration, we consider a linear model:

y(d
∗)

i j = β0+β1d∗+β2x1,i j +β3x2,i j +β4x3,i j +ui j for d∗ ∈ {0,1}, (8)

where {y(0)i j ,y(1)i j } is a vector of potential infant’s numbers of complications that would be observed whether an infant i in

county j is delivered at a high-level NICU, x1,i j is a SES variable — mother’s education, x2,i j is the month prenatal care

began, x3,i j is mother’s age, and ui j can be viewed as a composite of unmeasured confounding variables such as fetal heart
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tracing and the severity of mother’s comorbidities. The model for observed data is

yi j = β0+β1di j +β2x1,i j +β3x2,i j +β4x3,i j +ui j , E(ui j | x1,i j,x2,i j,x3,i j,zi j) = 0, (9)

where di j is indicator for observed treatment — being delivered at a high-level NICU and zi j is excess travel time.

To illustrate the problem of aggregation and our proposed method, we fit three different settings of models based on (9)

as follows: (i) reference model: using individual mother’s education, x1,i j; (ii) naı̈ve method: assuming individual mother’s

education, x1,i j , is not available, and replacing it with aggregate mean value of mother’s education from each county, xagg
1, j ;

(iii) proposed method: replacing all variables (yi j,di j,x1,i j,x2,i j,x3,i j,zi j) with aggregate mean values from each county,

(yagg
j ,dagg

j ,xagg
1, j ,x

agg
2, j ,x

agg
3, j ,z

agg
j ). Table 5 depicts the results of comparisons from three IV regressions using TSLS described

previously. In the first-stage regression, the significant partial correlation coefficient between being delivered at a high-level

NICU and excess travel time controlling for mother’s education, month prenatal care began and mother’s age confirms that

the IV is correlated with the treatment after controlling for confounding variables. In addition, a large first-stage partial

F statistic for excess travel time indicates that excess travel time is a strong enough instrument that TSLS method will

produce reliable inferences. The partial F statistics in three models are 6633, 4699 and 22915, respectively, which are

relatively larger than a usual critical value of F exceeding 10 for a reliable result from IV regression using the TSLS

method [Stock et al., 2002]. In the second-stage regression, we focus on comparing estimators for β1, the causal effect of

being delivered at a high-level NICU, controlling for mother’s education, month prenatal care began and mother’s age.

Estimated from reference model, the causal effect is approximately 0.0213 reduction in infant’s number of complications.

Assuming that individual mother’s education is not available and replacing it with aggregate mean value at the county level,

the estimated causal effect from the naı̈ve method model is approximately 0.0276 reduction — a 30% difference from the

reference model. For the proposed method model, the estimated causal effect is about 0.0212 reduction which is similar to

the results from the reference model.

7 Discussion

In this paper, we have developed a method of IV regression for estimating the causal effect of a treatment in observational

studies when the individual level confounding variable — the one that is also correlated with the IV — is not available in the

data. Our proposed method can provide consistent causal estimators compared to the commonly used analytical strategy in

practice that replaces the unavailable confounding variable with its aggregate form in the model. Instead of analyzing data
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Table 5 Comparisons of IV regression estimators among three settings of models: (i) reference model — individual mother’s education is available;

(ii) naı̈ve method model — individual mother’s education is not available and replace it with aggregate mother’s education at the county level; (iii)

proposed method model — aggregate all other variables along with mother’s education at the county level

Reference model Naı̈ve method model Proposed method model

First-stage regression

Partial correlation for the IV -0.21 -0.17 -0.36

Partial F statistic∗ for the IV 6633 4699 22915

Second-stage regression

Covariates Estimates SE Estimates SE Estimates SE

Intercept (β0) 0.1507 0.0057 0.1342 0.0122 0.0957 0.1070

Being delivered at a high-level NICU† (β1) -0.0213 0.0112 -0.0276 0.0133 -0.0212 0.0604

Mother’s education‡ (β2) -0.0066 0.0019 0.0065 0.0069 0.0254 0.0496

Month prenatal care began‡ (β3) -0.0084 0.0008 -0.0080 0.0008 0.0053 0.0144

Mother’s age‡ (β4) -0.0009 0.0002 -0.0012 0.0002 -0.0023 0.0048

∗ the first-stage F statistic must be evidently large, typically exceeding 10, for TSLS inference to be reliable
† causal effect of interest
‡ measured confounding variables

with the aggregate confounding variable, we propose an analytical strategy that is to aggregate all variables involved in the

analysis at the level of the aggregate confounding variable.

In simulation studies, we have shown that the proposed method can provide good estimation for the parameters of the

causal effect in IV regression. Our proposed method can also provide consistent estimators for the variance of estimators

as long as the numbers of aggregate groups is large. We not only can estimate the causal effect consistently, but also can

calculate confidence intervals and perform statistical inference for the causal effect as long as the number of aggregate groups

is large.

An observational study of the regionalization of perinatal care is used as a motivating example to raise the concern of

aggregating measured confounding variables in IV regression, when the confounding variable may be correlated with the

IV. We have found that the estimated causal effects of the treatment from the reference model (no aggregation) and the

naı̈ve method model (aggregating confounding variable that is correlated with the IV) are different whereas results from our

proposed method (aggregating all variables) are close to that from the reference model. The standard errors for the aggregate

variables are higher than those for the individual variables, because aggregation makes the standard errors larger; i.e., a

trade-off between consistency and efficiency. Figure 4 shows the mean squared error (MSE) for both the individual model
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with aggregate confounding variable and the aggregate model using one scenario from Section 5 (K = 7, β1 = 2, ρZ,X = 0.5)

for different number of samples per group (n j). As number of samples increases, the MSE from the individual model with

aggregate confounding variable converges to 0.1, and the MSE from the aggregate model converges to 0. When number

of samples per group is greater than 50, most of the MSE of the individual model with aggregate confounding variable is

contributed by bias, because the variance of the estimator has asymptotic property such that it goes toward zero when sample

size goes toward infinity. However, the bias of the estimator does not have such asymptotic property.
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Fig. 4 Plot of the mean squared errors on number of samples in each group for a total of 128 groups

For the purpose of illustration in this paper, we assume that the aggregate confounding variable is calculated from the

individual confounding variable in the samples. In practice, the individual confounding variable is not available and the US

census database could be a source for the aggregate variable as long as the population of interest is the general population.

Even though the population of interest is not the general population, our proposed method still provides consistent esti-

mates if the samples in each group can be assumed to be random samples from the general population of that group and
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the number of groups becomes large. In the cases that random samples assumption is not plausible, there is ‘inconsistent

aggregation’, meaning that the aggregate variable is obtained from the population that is different from the population of

interest [Rosenbaum and Rubin, 1985]. In Rosenbaum and Rubin (1985), they raised the problems that consistent estimates

of regression coefficients may not be obtained from inconsistently aggregated data in linear regression models. In our mo-

tivating neonatology study, the population of interest is mothers. Mothers in a county may differ in their socioeconomic

characteristics from the general population in the same county. We are currently developing a method of sensitivity analysis

for IV regression when there is inconsistent aggregation.

In this paper, we have maintained the exclusion restriction assumption (Assumption 3 in Section 2.2) that the IV has

no direct effect on the outcome except through treatment. One way in which the exclusion restriction could be violated is

that there is a neighborhood effect, meaning for example that one’s neighborhood SES directly influence one’s outcomes

even after controlling for one’s own SES because of within-neighborhood social interactions [Mayer and Jencks, 1989]. If

the exclusion restriction is violated because of a neighborhood effect, then the aggregation IV method presented in this

paper would produce biased estimates. It would be of future research interest to examine whether the aggregation IV method

in this paper could be combined with the extended IV method discussed in Joffe et al. (2008) to address the problem of

neighborhood effects.

This paper warns of the possibility of aggregation error in observational studies using IV regression and provides a

solution to the problem. Note that the proposed solution requires sufficient size of samples and certain assumptions such

as SUTVA, ignorability of the instrument, the exclusion restriction, nonzero average causal effect of the instrument on the

treatment, independence of grouping and errors.
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A Consistency of the TSLS Estimator from the Aggregate IV Regression and Its Variance Estimate

In this section, we will show the show the consistency of β̂
agg

obtained from the aggregate IV regression in Section 4. We will provide an estimate

for the variance of β̂
agg

.

Let (Yagg,Xagg,Dagg,Zagg) denote vectors of aggregated (Y,X,D,Z), and Wagg = [Dagg,Xagg] and Aagg = [Zagg,Xagg]. We use (Wagg,Aagg) to

distinguish (Wagg,Aagg) used in Section 3 in which Wagg = [D,Xagg] and Aagg = [Z,Xagg]. Let (HY ,HA,HW ) be aggregation errors for (Y,A,W),
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where HY = Y−Yagg, HA = A−Aagg, and HW = W−Wagg. The TSLS estimator β̂
agg

obtained from all aggregate variables is

β̂
agg

= (AaggT
Wagg)−1AaggT

Yagg

= (AaggT
Wagg)−1AaggT

{(Wagg +HW )β −HY + ε}

= β +(AaggT
Wagg)−1AaggT

(HW β −HY + ε) (10)

If we can show that AaggT
(HW β − HY + ε) p

−→ 0 in (10), then β̂
agg

is a consistent estimator for β . We could write the aggregate matrices

(Yagg,Aagg,Wagg) as (GY,GA,GW). The matrix G is a diagonal grouping matrix, where

G =




G1 0 · · · 0

0 G2 · · · 0

...
...

. . .
...

0 0 · · · G j




and G j =




1/n j · · · 1/n j

...
. . .

...

1/n j · · · 1/n j



.

Thus,AaggT
(HW β −HY +ε) can be written as AT GT{(W−GW)β −(Y−GY)+ε}. Since G is a symmetric and idempotent matrix, GT (W−GW)

and GT (Y−GY) are zero. Also,AT GT ε converges in probability to zero because of the assumption of independence between G and ε . The variance

of β̂
agg

is

Var
(

β̂
agg

)
= Var

{
(AaggT

Wagg)−1AaggT
(HW β −HY + ε)

}

= (AT GW)−1AT G×Var{(W−GW)β − (Y−GY)+ ε}×GA(WT GA)−1

= (AT GW)−1AT G×Var{(GY−GWβ )}×GA(WT GA)−1

= (AT GW)−1AT G×Var(Gε)×GA(WT GA)−1, (11)

where Var(Gε) can be estimated by

V̂ar(Gε) =




Σ̂ 1 0 · · · 0

0 Σ̂ 2 · · · 0

...
...

. . .
...

0 0 · · · Σ̂ j




and

Σ̂ j =




(n j −1)−1∑
n j
i=1(y

agg
j − [zagg

j ,xagg
j ]β̂

agg
)2 · · · (n j −1)−1∑

n j
i=1(y

agg
j − [zagg

j ,xagg
j ]β̂

agg
)2

...
. . .

...

(n j −1)−1∑
n j
i=1(y

agg
j − [zagg

j ,xagg
j ]β̂

agg
)2 · · · (n j −1)−1∑

n j
i=1(y

agg
j − [zagg

j ,xagg
j ]β̂

agg
)2



.
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