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using real data how proper statistical inference in principle may be obtained.
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Abstract

Conventional statistical inference requires that a model of how the
data were generated be known before the data are analyzed. Yet in
criminology, and in the social sciences more broadly, a variety of model
selection procedures are routinely undertaken followed by statistical
tests and confidence intervals computed for a “final” model. In this
paper, we examine such practices and show how they are typically
misguided. The parameters being estimated are no longer well de-
fined, and post-model-selection sampling distributions are mixtures
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with properties that are very different from what is conventionally
assumed. Confidence intervals and statistical tests do not perform
as they should. We examine in some detail the specific mechanisms
responsible. We also offer some suggestions for better practice and
show though a criminal justice example using real data how proper
statistical inference in principle may be obtained.

1 Introduction

In textbook treatments of regression analysis, a model is a theory of how the
data on hand were generated. Regressors are canonically treated as fixed,
and the model specifies how the realized distribution of the response variable
came to be, given the values of the regressors (Freedman, 2005: 42). Causal
interpretations can be introduced from information external to the model
(Berk, 2003: Chapter 5). Statistical tests and confidence intervals can be
constructed.

This basic framework subsumes a variety of special cases. Popular in-
stances are included under the generalized linear model and its extensions
(McCullagh and Nelder, 1989). Logistic regression is common example. Mod-
els with more than one regression equation (Greene, 2003: Chapters 14 and
15) are for purposes of this paper also special cases.

The ubiquitous application of regression models in criminology, and in
the social sciences more generally, has been criticized from a variety of per-
spectives for well over a generation (Box, 1976; Leamer, 1978; Rubin, 1986;
Freedman, 1987; 2004; Manski, 1990; Breiman, 2001; Berk, 2003; Morgan
and Winship, 2007). Despite the real merits of this literature, we assume
in this paper that the idea of a “correct model” makes sense and consider
statistical inference when the correct model is not known before the data are
analyzed. We proceed, therefore, consistent with much common practice.

Statistical inference for regression assumes that there is a correct model
that accurately characterizes the data generation process. This model is
known, except for the values of certain parameters, before the data are ex-
amined (Freedman, 2005: 64-65). The same holds for statistical inference
more generally (Barnett, 1982: Section 5.1).! Consequently, arriving at one

L“Thus sample data, z, are assumed to arise from observing a random variable X
defined on a sample space, ®. The random variable X has a probability distribution
po(x) which is assumed known except for the value of the parameter ©. The parameter ©



or more regression models through data analysis would seem to make sub-
sequent statistical inference problematic. Yet, model selection is a routine
activity and is taught in any number of respected textbooks (Cook and Weis-
berg, 1999, Greene, 2003). This practice and pedagogy, therefore, would seem
to warrant some scrutiny. Is there a problem? If so, is it important? And if
so, what can be done about it? What are the consequences, for instance, of
deleting “insignificant” predictors from a regression equation, re-estimating
the model’s parameter values, and applying statistical tests to the “final”
model?

In the pages ahead, we show that when data used to arrive at one or
more regression models are also used to estimate the values of model pa-
rameters and to conduct statistical tests or construct confidence intervals,
the sampling distributions on which proper estimates, statistical tests and
confidence intervals depend can be badly compromised. It follows that the
parameters estimates, statistical tests and confidence intervals can be badly
compromised a well. Moreover, because the compromised sampling distri-
butions depend on complex interactions between a suite of possible models
and the data to be analyzed, inferential errors are typically very difficult to
identify and correct. It is far better, therefore, to avoid the problems to begin
with. We suggest several ways by which this can be done.

In section 2, the difficulties with “post-model-selection” statistical infer-
ence are introduced. Section 3 considers the particular mechanisms by which
model selection can undermine statistical inference. To our knowledge, this
discussion is novel. Section 4 illustrates through simulations the kinds of
distortions that can result. Section 5 discusses some potential remedies and
shows with real data one example of appropriate practice. Section 6 draws
some overall conclusions.

2 Framing the Problem of Post-Model-Selection
Statistical Inference

When in a regression analysis the correct model is unknown before the data
are introduced, researchers will often proceed in four steps.

is some member of a specified parameter space 2; x (and the random variable X) and
© may have one or many components” (Barnett, 1982: 121). Emphasis in the original.
Some minor changes in notation have been made.



1. A set of models is constructed.

2. The data are examined, and a “final” model is selected.

3. The parameters of that model are estimated.

4. Statistical inference is applied to the parameter estimates.

Criminologists are certainly no exception. Davies and Dedel (2006), for in-
stance, develop a violence risk screening instrument to be used in community
corrections settings by reducing a logistic regression model with nine regres-
sors to a logistic regression model with three regressors. Wald tests are
applied to regression coefficients of the three-regressor model.

In many crime and justice analyses, some of the steps can be combined
and are typically more complicated when there is more than one “final”
model. For example, Ousey, Wilcox and Brummel (2008), consider whether
a criminal victimization changes the likelihood of subsequent victimizations.
Several competing models are developed. Some are discarded because of un-
satisfactory statistical and interpretative properties. A variety of statistical
tests are applied to each model, including the preferred ones. Lalond and
Cho (2008), undertake a similar exercise for the impact of incarcerations on
female inmates’ employment prospects. There are both statistical and sub-
stantive considerations that lead the authors to favor some of their models
over others, and there is a liberal use of statistical tests. Schroeder, Gior-
dano, and Cernkovich (2007) consider the relative impact of drug and alcohol
use on crime desistance by constructing a large number of competing models,
some of which are deemed more instructive than others. Again, there is a
liberal use of statistical tests, including for the models taken to be most in-
structive. Sampson and Raudenbush (2004) examine the causes of perceived
neighborhood disorder through several different models, some of which are
discarded for spurious associations. Conventional t-tests are used for all of
the models including the subset of preferable models on which the substan-
tive conclusions rest. In short, post-model-selection statistical inference is a
routine activity in crime and justice research.

Each of the four steps can individually be legitimate. The problems ad-
dressed in this paper occur when all four steps are undertaken with the same
data set. Perhaps the most apparent difficulty is that the model selection
process in the first step is a form of data snooping. Standard errors conven-
tionally estimated under such circumstances are well know to be incorrect;



they are likely to too small (Freedman et al., 1988). False statistical power
can result. In effect, there is an opportunity to look at all the face-down cards
before a bet is placed.? For most thoughtful crime and justice researchers,
this is old news.

The problems addressed here are more fundamental. It has long been
recognized by some that when any parameter estimates are discarded, the
sampling distribution of the remaining parameter estimates can be distorted.
(Brown, 1967; Olshen, 1973). The rules by which some parameters are dis-
carded do not even have to exploit information from the data being analyzed.
The rules may be “ancillary” in the sense that they are constructed indepen-
dently of the parameters responsible for the realized data (Brown, 1990:
489).3

For example, suppose the model a researcher selects depends on the day
of the week. On Mondays it’s model A, on Tuesdays it’s model B, and so on
up to seven different models on seven different days. Each model, therefore,
is the “final” model with a probability of 1/7th that has nothing to do with
the values of the regression parameters. Then, if the data analysis happens to
be done on a Thursday, say, it is the results from model D that are reported.
All of the other model results that could have been reported are not. Those
parameter estimates are summarily discarded.

Distorted sampling distributions of the sort discussed in the pages ahead
can materialize under ancillary selection rules. It is the exclusion of certain
estimates by itself that does the damage. In practice, however, the selection
rule will not likely be ancillary; it will be dependent on regression parame-
ters. For example, the selection rule may favor models with smaller residual
variances.

Recent work has rediscovered and extended these insights while focussing
particularly on the regression case. Leeb and Pdtscher (2006; 2008) show
that the sampling distributions of post-model-selection parameter estimates
are likely to be unknown, and probably unknowable, even asymptotically.
Moreover, it does not seem to matter what kind of model selection approach

2There are also the well-known difficulties that can follow from undertaking a large
number of statistical tests. With every 20 statistical tests a researcher undertakes, for
example, one null hypothesis will on the average be rejected at the .05 level even if all
the null hypothesis are true. Remedies for the multiplicity problem are currently a lively
research area in statistics (e.g., Benjamini and Yekutieli, 2001; Efron, 2007).

3The context in which Brown is working is rather different from the present context.
But the same basic principles apply.



is used. Informal data exploration and tinkering produces the same kinds
of difficulties as automated procedures in which the researcher does not par-
ticipate except at the very beginning and the very end. Judgment-based
model selection is in this sense no different from nested testing, stepwise
regression, all subsets regression, shrinkage estimators (Efron et al., 2007),
the Dantzig Selector (Candes and Tao, 2007), and all other model selection
methods considered to date (Leeb and Potscher, 2005). Likewise, the par-
ticular screening statistic applied is immaterial: an adjusted R?, AIC, BIC,
Mallows’” Cp, cross-validiation, p-values or others (Leeb and Pétscher, 2005).

3 A More Formal Treatment

The conceptual apparatus in which frequentist statistical inference is placed
imagines a limitless number of independent probability samples drawn from
a well-defined population. From each sample, one or more sample statistics
are computed. The distribution of each sample statistic, over samples, is
the sampling distribution for that sample statistic. Statistical inference is
undertaken from these sampling distributions. To take a common textbook
illustration, the sample statistic is a mean. A sampling distribution for the
mean is the basis for any confidence intervals or a statistical test that fol-
low. The same framework applies to the parameters of a regression equation
when the structure of the regression equation is known before the data are
analyzed.?

3.1 Definitional Problems

Past discussions of post-model-selection statistical inference have apparently
not recognized that when the regression model is not fully specified before the
data are examined, important definitional ambiguities are introduced. Any

4There is an alternative formulation that mathematically amounts to the same thing.
In the real world, nature generates the data through a stochastic process characterized
by a regression model. Inferences are made to the parameters of this model, not to the
parameters of a regression in a well-defined population. Data on hand are not a random
sample from that population, but are a random realization of a stochastic process, and
there can be a limitless number of independent realizations. These two formulations and
others are discussed in far more detail elsewhere (Berk, 2004: 39-58). The material to
follow is effectively the same under either account, but the random sampling approach is
less abstract and easier build upon.



definition of regression parameters depends on an assumed model. With
different models come different definitions of what one is trying to estimate.
In the absence of a model, the estimation enterprise is unclear. This follows
even if attention is centered in the role of a given regressor.

Suppose, for example, that for a response variable Y, there are two po-
tential regressors, X and Z. There is interest in the relationship between Y
and X holding Z constant. A linear regression model is imposed with the
corresponding population regression coefficient of 3,,... Then,

pyz - pzzpyz Uy
S LA e 1
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where in the population p is a correlation coefficient, ¢ is a standard de-
viation, and the subscripts denote the variables involved. Unless the two
regressors X and Z happen to be uncorrelated (i.e., p,, = 0), an extremely
unlikely occurrence in most observational studies, the value of the popula-
tion parameter [3,,.. will depend on whether Z is included in the regression
model. If 7 is excluded, all of the correlations involving Z are equivalent to
zero, and one is left with 8,, = py.(0,/0;). Bye is not the same as 3,,.., so
the definition of regression parameter for X depends on the model in which
X is placed. Similar issues can arise with any modeling enterprise, not just
linear regression.

Thus, when a single model is not specified before the analysis begins, it
is not clear what population parameter is the subject of study. And without
this clarity, the reasoning behind statistical inference becomes obscure. For
example, unbiased estimates are desirable, but unbiased estimates of what?
In practice, there will typically be a suite of possible models and a large
number of population regression coefficients, even for a single regressor. In
Section 4, simulations are presented to illustrate and help fix these ideas.

The response may be that a model selection procedure will be applied to
find an appropriate model. Once that model is determined, it will be appar-
ent what features of the population are being estimated. This argument can
have merit if for a given population, model selection is undertaken on one
random sample, while parameter estimation and statistical inference is un-
dertaken on another random sample. When the entire process is undertaken
on a single random sample, the argument stumbles badly, as we will now see.
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Figure 1: The Model Selection Thought Experiment

3.2 Estimation Problems

Estimates of the regression parameters always depend on the composition
of realized random sample, but now also on the regression model selected.
There is, therefore, a new source of uncertainty. How regressors perform
can vary with the model in which they are placed, and the regression model
selected can vary from sample to sample.

Figure 1 illustrates the implications of model selection for sampling dis-
tributions. Estimates are shown with the conventional hats, and the dif-
ferent models are denoted by subscripts. For example, Ml, denotes Model
1 selected in a given sample, and O represents that model’s estimated pa-
rameters. There are nine random samples standing in for the usual limitless
number.

One begins with a well-defined population. In that population, there is a
process that generates values of the response variable conditional on a set of
regressors. This process can be represented by a particular model that some
may characterize as the “correct” model. But the form the model takes
is unknown, and in the population there are many candidate models that



in principle could be called correct. For example, the model consistent with
how the data were generated might contain eight regressors, and a competitor
might contain five regressors, some of which are not in the larger model at
all.

A random sample is drawn. For that sample, the preferred model selection
procedure is applied, and a winning model determined. The model chosen
is sample dependent, and in that sense is an estimate. It is an informed
guess of the correct model, given the random sample and the model selection
procedure. The parameters of the selected model are estimated.

A critical assumption is that all of the regressors in the correct model are
present in the sample. There can be, and usually are, other regressors as well.
Some model selection procedures seek the correct model only. Other model
selection procedures seek a model that includes the correct regressors and
perhaps includes some regressors that actually do not belong in the model.
For purposes of this paper, the same difficulties arise under either approach.

One imagines repeating the entire process — drawing a random sample,
undertaking model selection, parameter estimation, and statistical inference
— a limitless number of times. In this cartoon version with nine samples,
Model 2 (Ms) in red is the unknown correct model, and from sample to
sample other models are chosen as well. For these nine samples, the correct
model happens to be chosen most frequently among the candidate models,
but not the majority of the time. The same basic reasoning applies when
from a suite of possible models several winners are chosen, although the
exposition becomes rather more clumsy. There are now several final models,
each with its own regression estimates, associated with each random sample.

The fundamental point is this: model selection intervenes between the
realized sample and estimates of the regression parameters. Therefore, a
sampling distribution consistent with how the regression estimates were gen-
erated must take the model selection step into account. Moreover, because
there is only one correct model, the sampling distribution of the estimated
regression parameters can include estimates made from incorrect models as
well as the correct one. The result is a sampling distribution that is a mixture
of distributions.

Drawing on the exposition of Leeb and P&tscher (2005: 24-26), and for our
purposes with no important loss in generality, consider a regression analysis
in which there are two candidate models, one of which some would call the
correct model. The researcher does not know which model is the correct one.
Call the two models M; and M,. To take a very simple example, M; could
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be
Yi = Bo + Bz + Bazi + €4, (2)

and M, could be
Yi = Bo + Brxi + & (3)

These are just conventional regression equations consistent with the discus-
sion surrounding equation 1. They imply different conditional distributions
for y;. M, differs from Ms by whether z; is in the model, or equivalently,
whether 3, # 0.° A model selection procedure is employed to make that
determination.

Suppose interest centers on a least squares estimate of (31, the regression
coefficient associated with the regressor x; present in both models.® There
is also interest in a t-test undertaken for the null hypothesis that 5; = 0
There are two constants: Cy associated with M; and Cs assoc/igted with Ms.
Likewise, there are two estimates of the standard error of Bl. SE; denotes the
estimated standard error under M, and @2 denotes the estimated standard
error under M,;. When Bl /gﬁl > (1, the p-value for the test is equal to or
less than .05, and the null hypothesis is rejected. C5 serves the same function
for M,." Then,

~ ~

P |(M, and ,ﬁ\ > () or (M, and ,ﬁ\ >Cy)| =
SEI SE2

5Setting some regression coefficients to 0 is perhaps the most common kind of restriction
imposed on regression coefficients, but others can also lead to interesting models (e.g.,
81 = P2, which would mean that y; = By + B1[x; + 2] + &;). Also, in the interest of
simplicity, we are being a little sloppy with notation. We should be using different symbols
for the regression coefficients in the two equations because they are in different models
and are, therefore, defined differently. But the added notional complexity is probably not
worth it.

SThe problems that follow can materialize regardless of the estimation procedure ap-
plied: least squares, maximum likelihood, generalized method of moments, and so on.
Likewise, the problems can result from any of the usual model selection procedures.

"There are two constants because the constants are model dependent. For example,
they can depend on the number of regressors in the model and which ones they are. There
are two values for the mean squared error, because the fit of the two models will likely
differ. To make this more concrete, 51 / SE1 > ('] may be nothing more than a conventional
t-test. Written this way, the random variation is isolated on the left hand side and the
fixed variation is isolated in the right hand side. It is how the random variables behave
that is the focus of this paper.

10
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where Ml denotes that model 1 is selected, and Mz denotes that model 2 is
selected. Equation 4 means that the probability that the null hypothesis for
(1 is rejected is a linear combination of two weighted conditional probabili-
ties: (1) the probability of rejecting the null hypothesis given that model 1
is selected multiplied by the probability that model 1 is selected and (2) the
probability of rejecting the null hypothesis given that model 2 is selected,
multiplied by the probability that model 2 is selected. Thus, the sampling
distribution for (; is a mixture to two distributions, and such mixtures can
depart dramatically from the distributions that conventional statistical in-
ference assumes.

To help fix these ideas, we turn to a demonstration of how a simple mix-
ture of normal distributions can behave in a non-normal manner. Normality
is the focus because it can play so central a role in statistical inference. The
demonstration sets the stage for when we later consider more realistic and
complex situations like those represented in equations 2 and 3. We will see
then that the results from our demonstration have important parallels in a
linear regression setting but that simulations of actual model selection pro-
cedures produce a number of additional and unexpected results.

Figure 2 draws on equation 4. As before, there is a correct but unknown
model. To simplify matters, and with no important loss of generality for
this demonstration, the mean squared errors for both regression models are
assumed to be approximately 1.0. Then, the sampling distribution for [,
conditional on M; being selected, is taken to be normal with a mean of 12.0
and a standard deviation of 2.0. The sampling distribution for (3, condi-
tional on M, being selected, is taken to be normal with a mean of 4.0 and a
standard deviation of 1. To minimize the complications, an ancilliary selec-
tion procedure is applied such that P(M;) = .2 and P(M,) = .8; the model
selection procedure chooses M; four times more often than M;. Figure 2 is
constructed by making 10,000 draws from the first normal distribution and
40,000 draws from the second normal distribution. The line overlaid is the
true combined distribution, which the simulation is meant to approximate.
The combined distribution has a mean of approximately 5.6 and a standard
deviation of approximately 3.4.

The two sampling distributions, conditional on M; or M,, are by design
normal, but the simulated sampling distribution after model selection is de-

11
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cidedly non-normal. The distribution is bimodal and skewed to the right.
Moreover, if M; is the correct model, Bl from the combined distribution is
biased downward from 12.0 to 5.6. If M, is the correct model, Bl is biased
upward from 4.0 to 5.6. In either case, the estimate will be systematically
in error. The standard deviation of the combined distribution is substan-
tially larger than the standard deviations of its constituent distributions: 3.4
compared to 2.0 or 1.0. Again, the error is systematic.

Biased estimates of both regression coefficients and their standard errors
are to be anticipated in post-model-selection mixture distributions. More-
over, the biases are unaffected by sample size; larger samples cannot be
expected to reduce the biases. Before one even gets to confidence intervals
and statistical tests, the estimation process can be badly compromised.®

In summary, model selection is a procedure by which some models are
chosen over others. But model selection is subject to uncertainty. Because
regression parameter estimates depend on the model in which they are em-
bedded, there is in post-model-selection estimates additional uncertainty not
present when a model is specified in advance. The uncertainty translates
into sampling distributions that are a mixture of distributions, whose prop-
erties can differ dramatically from those required for convention statistical
inference.

3.3 Underlying Mechanisms

Although mixed sampling distributions are the core problem, the particular
forms a mixed distribution can take determine its practical consequences.
It is necessary, therefore, to look under the hood. We need to consider the
factors that shape the mixed sampling distributions that can result from
model selection. The specific mechanisms underlying post-model-selection
statistical inference has apparently not been addressed in past work.

First, model selection implies that some regression coefficients values are
censored. If sufficiently close to zero, they are treated as equal to zero, and
their associated regressors are dropped from the model. Consequently, a post-
selection sampling distribution can be truncated or contain gaps in regions
that are near 0.0. These effects are a direct result of the model selection.
For example, Figure 2, might have censored at values Bl less than 2.0. There

8Simulations much like those in Section 4 can be used to produce virtually identical
results starting with appropriate raw data and equations 2 and 3.
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would have been no simulated values below that threshold.”

Second, there can be indirect effects. When for a given model a regressor
is excluded, the performance of other regressors can be affected. For ease
of exposition, as before suppose there are only two regressors, X and Z, as
candidate explanatory variables. Then, the sample regression coefficient for
X holding Z constant can be written as,

BW _ Tyr T ey Sy (5)

where 7 is a sample correlation coefficient, s is a sample standard deviation,
and for both, the subscripts denote the regressors involved. Equation 5 is
the sample analogue of equation 1. If Z is dropped from the equation, all of
the correlations involving Z are equivalent to 0.0. One is then left with the
bivariate correlation between Y and X and the ratio of their two standard
deviations. Insofar as r,. and r,, are large in absolute value, the value of b,,..
can change dramatically when Z is dropped from the model. Conversely, if
the regressors are orthogonal (here, r,, = 0), regression coefficient estimates
will not be model dependent, and their sampling distributions will be unaf-
fected by these indirect processes. These results generalize to models with
more than two candidate regressors.”

Third, sampling distributions can vary in their dispersion alone, although
this will typically be far less important than the direct or indirect effects of
model selection. One can see how the dispersion can be affected through
an equation for the standard error of a conventional regression coefficient
estimate, not subject to model selection, say, Bym. For the two regressors X

and 7,
. 5 1
SE(Bys..) = = 6
o) = =T\ 1= 02, ©

where 6. is an estimate of the residual standard deviation, s, is the sam-
ple standard deviation of z, and r2, is the square of the sample correlation
between x and z.'' From this equation, one learns that the sampling distri-
bution will be more dispersed if there is more residual variance, less variance

9The selection mechanism would then not have been ancillary.

10The correlations in the numerator are replaced by partial correlations controlling for
all other predictors, and the correlation in the denominator is replaced by the multiple
correlation of the predictor in question with all other predictors.

HBecause in regression x and z are usually treated as fixed, s, and 72, are not random
variables and not treated as estimates.

14



in regressor x, more linear dependence between regressors, and a smaller sam-
ple size. All except the sample size can be affected by the particular model
selected. In addition, 6. is affected directly by random sampling error.!?

The three underlying selection mechanisms — direct censoring, indirect
censoring, alterations in the dispersions of regression parameter estimates —
can interact in complex ways that depend on the models considered and the
data being analyzed. There are, therefore, no general expressions through
which the impact of model selection may be summarized. However, simula-
tions can provide some insight into what can happen. Because in simulations
one knows the model responsible for the data, there is a benchmark to which
the post-model-selection results can be compared. When working with real
data, there is no known standard of absolute truth to which the empirical
results can be held.'?

4 Simulations of Model-Selection

We now turn to simulations of model selection effects. The form the selection
takes is not a primary concern because in broad brush strokes at least, the
implications are the same regardless of how the selection is accomplished.
For an initial simulation, selection is implemented through forward stepwise
regression using the AIC as a fit criterion. At each step, the term is added
that leads to the model with the smallest AIC. The procedure stops when
no remaining regressor improves the AIC.
For this simulation, the full regression model takes the form of

Yi = Bo + Brw; + Box; + P32 + €5, (7)

where Gy = 3.0, 1 = 0.0, B, = 1.0, and 3 = 2.0. Because the parameter
£ = 0 in equation 7, many would refer to a submodel that excluded W as
the “correct” model. But equation 7 is also correct as long at 5, = 0 is
allowed. Therefore, we will use the adjective “preferred” for the model with
w excluded. The full model and the preferred model will generate the same
conditional expectations for the response. The smaller model is preferred
because it is simpler and uses up one less degree of freedom.

12When there are more than two regressors, the only change in equation 6 is that r2_ is
replaced by the square of the multiple correlation coefficient between the given regressor
and all other regressors.

131f there were, there would be no need to do the research.
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All three predictors are drawn at random from a multivariate normal
distribution, although with fixed regressors, this is of no importance. The
variances and covariance are set as follows: o2 = 10.0, 02 = 5.0, 02 = 6.0,
ag =170,04, =40, 04.=5.0,and o, , = 5.0. The sample size is 200. The
intent is to construct a data set broadly like data sets used in practice. The
data were not constructed to illustrate a best case or worst case scenario.

10,000 samples were drawn, stepwise regression applied to each, and sam-
pling distributions were constructed from the final models selected. Rather
than plotting estimated regression coefficients, conventional t-values are plot-
ted. The usual null hypothesis was assumed; each regression coefficient has
a population value 0.0. A distribution of t-values is more informative than
a distribution of regression coefficients because it takes the regression co-
efficients and their standard errors into account. The R2s varied over the
simulations between about .3 and .4.

4.1 Simulation Results

With three regressors, there are eight possible models, including a model in
which none of the regressors is chosen. The distribution shown in Table 1
indicates that the preferred model (i.e., with regressors X and Z) is selected
about 66% of the time. The next most common model, chosen about 17% of
the time, includes only regressor Z. The full model with regressors W, X,
and Z is chosen 11% of the time. In short, for this simulation a practitioner
has a little less than a two-thirds chance of selecting the preferred model.

None | W X Z WX | WZ X7Z | WXZ
0% | 0% | .0001% | 17.4% | 1.0% | 4.9% | 65.7% | 10.8%

Table 1: Distribution of Models Selected in 10,000 Draws

Figure 3 shows two simulated t-value distributions for regressor X. The
solid black line represents the distribution that would result if the perferred
model were known and its parameter values estimated; there is no model
selection. The broken line represents the post-model-selection sampling dis-
tribution. Both lines are the product of a kernel density smoother applied
to the histograms from the simulation. The distribution assuming that the
preferred model was known was constructed from all the 10,000 samples. For

16



Figure 3: Stepwise Regression Sampling Distributions of the Regression Co-
efficient t-values for Regressor X (The Solid Line is Conditional on the Pre-
ferred Model Being Known. The Broken Line is Conditional on X Being
Included in a Model.)

the post-model-selection t-values were available only if x was in a final model.
That happened 7355 times out of 10,000 over four of the eight models (i.e.,
X alone, X with either W or Z, and X with W and Z). So, the broken line
in Figure 3 is the result conditional on X being in the model.

It is apparent that the two distributions in Figure 3 are quite differ-
ent. The post-model-selection distribution has a greater mean (2.6 to 2.2), a
smaller standard deviation (.79 to 1.0) and is skewed to the right. Figure 4
is based on the same procedures as Figure 3, but now z is the regressor of
interest. The results are even more dramatic. The post-model-selection dis-
tribution is bimodal and strongly skewed to the right. Both the mean and
the standard deviation are biased substantially upward: from 4.9 to 5.5 for
the mean and from 1.0 to 2.3 for the standard deviation. Statistical inference
assuming the solid black line would be very misleading insofar as the broken
line captured what was really going on. This illustrates a fundamental point
made in the Leeb and Potscher papers cited.

Figures 3 and 4 demonstrate well the consequences for statistical infer-
ence that can follow from model selection. They show post-model-selection
sampling distributions over the full set models in which the regressors are
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Figure 4: Stepwise Regression Sampling Distributions of the Regression Co-
efficient t-values for Regressor Z (The Solid Line is Conditional on the Pre-
ferred Model Being Known. The Broken Line is Conditional on Z Being
Included in a Model.)

included. However, in practice researchers commonly settle on a final model,
or a small number of final model candidates. Therefore, it is instructive to
consider the distributions of t-values conditional on a given model; a model
is chosen and tests are applied to that model only.

It is especially telling to condition on the preferred model even though in
practice the preferred model would not be known a priori. One might hope
that at least when the preferred model is selected, conventional statistical
inference would be on sound footing. However, selecting the preferred model
only guarantees that the proper regressors are included. It does not guarantee
any of the desirable properties of the regression coefficient estimates.

Figures 5 shows that statistical inference remains problematic even when
the statistical inference is conditional on arriving at the preferred model. In
fact, Figure 5 and Figure 3 are very similar because for this simulation, x
is usually selected as part of the chosen model. In effect, therefore, con-
ditioning on the preferred model is already taking place much of the time.
However, this is not a general result and is peripheral to our discussion in
any case. The point is that the biases noted for Figures 3 remain. Thus,
for the preferred model the null hypothesis that F2 = 0 should be rejected
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Figure 5: Stepwise Regression Sampling Distributions of the Regression Co-
efficient t-values for Regressor X. (The Solid Line is Conditional on the
Preferred Model Being Known. The Broken Line is Conditional on the Pre-
ferred Model Being Selected.)

at the .05 level with a probability of approximately .60. But after model
selection, that probability is about .76. This represents an increase of about
27% driven substantially by bias in the estimated regression coefficient. It
is not a legitimate increase in power. False power seems to be a common
occurrence for post-model-selection sampling distributions.

Figure 6 is constructed from the same simulation as Figure 5 except that
the true value for 3y is now .5 not 1.0. The post-selection t-distribution,
even when conditioning on the preferred model, is now strongly bimodal
and nothing like the assumed normal distribution. The general point is that
the post-model-selection sampling distribution can take on a wide variety of
shapes, none much like the normal, even when the researcher happens to have
selected the model accurately representing how the data were generated.

Figure 7 shows two distributions for Z, one based on the preferred model
being known (i.e., the solid line) and one conditioning on the selected pre-
ferred model (i.e., the broken line). Figure 7 is very different from Figure 4.
In this instance, conditioning on the selected preferred model brings the
proper and post-model-selection distributions of t-values into a rough cor-
respondence, and for both, the probability of rejecting at the .05 level the
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Figure 6: Stepwise Regression Sampling Distributions of the Regression Co-
efficient t-values for Regressor X, 3 = .5. (The Solid Line is Conditional on
the Preferred Model Being Known. The Broken Line is Conditional on the
Preferred Model Being selected.)

Figure 7: Stepwise Regression Sampling Distributions of the Regression Co-
efficient t-values for Regressor Z. (The Solid Line is Conditional on the
Preferred Model Being Known. The Broken Line is Conditional on the Pre-
ferred Model Being Selected.)
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Figure 8: All Subsets Regression Sampling Distributions of the Regression
Coefficient t-values for Regressor X. (The Solid Line is Conditional on the
Preferred Model Being Known. The Broken Line is Conditional on the Pre-
ferred Model Being Selected.)

null hypothesis that $3 = 0 is about .99. This underscores that post-model-
selection sampling distributions are not automatically misleading. Sometimes
the correct sampling distribution and the post-model-selection sampling dis-
tribution will be very similar.

Figures 8 and 9 are a recapitulation but when selection is by all subsets
regression using Mallow’s Cp as the selection criterion. Much like the earlier
stepwise regression, the correct model is chosen 64% of the time. Compared
to Figures 5 and 7, very little changes. As noted earlier, for purposes of this
paper the particular selection procedure used does not materially matter.
The kinds of distortions introduced can vary with the selection procedure,
but the overall message is unchanged. In this case, the distortions were
about the same whether selection was by stepwise regression or all subsets
regression.

5 Potential Solutions

Post-model-selection sampling distributions can be highly non-normal, very
complex, and with unknown finite sample properties even when the model
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Figure 9: All Subsets Regression Sampling Distributions of the Regression
Coefficient t-values for Regressor Z. (The Solid Line is Conditional on the
Preferred Model Being Known. The Broken Line is Conditional on the Pre-
ferred Model Being Selected.)

responsible for the data happens to be selected. There can be substantial bias
in the regression estimates, and conventional tests and confidence intervals
are undertaken at some peril. At this point, there seems to be no way to
anticipate the nature of the problems or their magnitude except in a few very
special cases. The three mechanisms described in Section 3.3 by which the
difficulties are introduced interact in complicated ways that are highly data
and model dependent.

As already noted, however, there can be situations in which the conse-
quences of model selection are not necessarily problematic. When a sample is
very large relative to the number of regression parameters being estimated,
and there are regression coefficients with true values sufficiently different
from zero, many procedures will select the very same model over and over.
In effect, one model has a probability of selection near 1.0, and all other
models have probabilities of selection near 0.0. The sampling distributions
are not combinations of sampling distributions. In practice, one could not
know for certain whether such a situation exists, but power analyses could
provide information from which such a case might be made.

If the post-model-selection sampling distributions may be problematic,
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probably the most effective solution is to have two random samples from the
population of interest: a training sample and a test sample. The training
sample is used to arrive at a preferred model. The test sample is used to es-
timate the parameters of the chosen model and to apply statistical inference.
For the test sample, the model is known in advance. The requisite struc-
ture for proper statistical inference is in place, and problems resulting from
post-model-selection statistical inference are prevented. The dual-sample ap-
proach is easy to implement once there are two samples.

When there is one sample, an option is to randomly partition that sample
into two subsets. We call this the split-sample approach. One can then pro-
ceed as if there were two samples to begin with. Whether this will work in
practice depends on the size each sample needs to be. Sample size determi-
nations can be addressed by appropriate power analyses for each partition.

For example, suppose a researcher is prepared to assume, as required,
that all of the necessary regressors in their appropriate functional forms are
included in the data.'* The researcher also assumes that the regression coef-
ficients associated with at least some of the regressors are actually 0.0. This
is known as the assumption of “sparsity.” Then, the researcher assumes that
in the data the regressors belonging in the preferred model will have large re-
gression coefficients relative to their standard errors and that regressors that
do not belong in the preferred model will have small regression coefficients
relative to their standard errors. It follows that a relatively small sample will
be able to find reliably the preferred model. The remaining data can serve
as the test sample.

If the number of observations in the available data is too small to imple-
ment a split-sample approach, one can fall back on a traditional textbook
strategy. Before the data are examined, a best guess is made about what
the appropriate model should be. Parameter values can be estimated and
statistical inference applied just as the textbooks describe. If this confirma-
tory step works out well, one can report the results with no concerns about
post-model-selection inference.!® One can then follow up with an exploratory
data analysis. A range of other models can be constructed and evaluated as
long as any statistical inference for selected models is not taken seriously.
The exploratory results may well be very helpful for future research with

14This would include all necessary interaction effects.

15 A1l of the usual caveats would still apply. For example, if the model specified does not
properly represent how the data were generated, the regression estimates will be biased,
and statistical tests will be not have their assumed properties.
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new data. In short, there can be a confirmatory data analysis followed by an
exploratory data analysis, each undertaken by its own inferential rules.

In the longer term, there are prospects for developing useful post-model-
selection inference. A key will be to adjust properly for the additional uncer-
tainty resulting from model selection. We are working on that problem and
have some initial promising results. Unfortunately, the implications may be
disappointing. It will probably turn out that when model uncertainty is prop-
erly taken into account, confidence intervals will be far larger and statistical
tests will have substantially reduced power.

5.1 A Split-Sample Example

To help make the discussion of potential remedies more concrete, we turn
briefly to an empirical illustration using data on sentencing. Determinants
of post-conviction sentences have long been of interest to criminologists and
to researchers from other disciplines who study sanctions (Blumstein et al.,
1983; Wooldredge, 2005; Johnson, 2006). Probation decisions have received
considerable attention (Morris and Tonry, 1980; Petersilia, 1997). When a
decision is made to place an individual on probation, one might be interested
in the factors that could affect the length of the suspended incarceration sen-
tence. Suspended sentence length can be important. It can be an ongoing
threat with which law-abiding behavior is shaped. It can also help to de-
termine the length of the probation period and the probation conditions
imposed. Therefore, the factors that might help to explain the length of
suspended sentences are important too.

We use real data and a split-sample approach. The data are a random
sample of 500 individuals sentenced to probation in a large American city.
The length of the suspended sentence in months is the outcome of interest.
For these data, mean sentence length is a little less than 28 months. The
distribution is skewed to the right so that the median is only 18 months. 75%
of the probationers have a suspended sentence of about 38 months or less.
Because of the long right tail, it can make good sense to work with the log of
sentence length as the response variable. Using the log of sentence length is
also consistent with a theory that judges think in proportional terms when
they determine sentence length. For instance, a sentence could be made 25%
longer if an offender has a prior felony conviction.

The intent, therefore, is to consider how various features of the convicted
individual and the crimes for which the individual was convicted may be
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related to log of sentence length.'® The follow regressors were available.

1. Assault as the conviction offense
2. Drug possession as the conviction offense
3. Burglary as the conviction offense
4. Gun-related crime as the conviction offense
5. Number of juvenile arrests
6. Number of prior arrests
7. Age at first contact with the adult courts
8. Age at conviction
9. Race black

10. Not married

11. High school degree

12. Referred for drug treatment

There were other conviction crimes in the data. But given the nature of
this population, these crimes were never reported, or were reported so rarely
that they could not be used in the analysis. For example, if individuals
were convicted of armed robbery, murder or rape, they were not placed on
probation. A substantial majority of the conviction offenses were for drug-
related offenses, burglaries and assaults.

The regression model was not known before the data were analyzed. Con-
sequently, the sample of 500 was partitioned at random into 250 training
observations and 250 test observations. All subsets regression was applied to
the training data with the BIC as the screening statistic.!” The parameters
of the model selected were then estimated separately for the training and

16The logarithm of zero is undefined. So, a value of .5 (i.e., about two weeks) was used
instead. Other reasonable strategies led to results that for purposes of this paper were
effectively the same. A suspended sentence of zero months can occur, for instance, if a
sentencing judge gives sufficient credit for time served awaiting trial.

1"The model selection was done with the procedure regsubsets in R.
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the test data. Statistical tests were undertaken in both cases. The results
from the test data do not suffer from the problems we have been considering
because the model was determined with another data set. But do the results
for the test data differ materially from the results for the training data? Was
there a problem to be fixed?

There were three models that had very similar BIC values and very similar
structures. Table 2 shows the results for the model selected. Output from
the other two models was much the same. The overall conclusions were as
well.

Four regressors were included: whether the conviction was for an assault,
whether the conviction was for a drug offense, whether the conviction was for
a gun-related offense, and the number of prior arrests. For each estimated
regression coefficient, we separately tested the null hypothesis that the pop-
ulation regression coefficient was zero. A two-tailed tests was applied using
.05 as the critical value.

For the training data used to do the model selection, the null hypothesis
was easily rejected for each regressor, and the associations were all strong.
Consistent with a theory that judges determine sentences proportionally, all
of the regression coefficients were exponentiated so that they became multi-
plicative constants. The baseline conviction offense is essentially burglary.'®
Then in Table 2, the average burglary sentence is multiplied by 2.97 if the
conviction offense is assault, by 2.07 if the conviction offense is for drugs,
and by 3.15 if for a gun related offense. For each additional prior arrest, the
sentence length is multiplied by 1.02. Thus, an offender with 10 prior ar-
rests would have a sentence that is about 1.22 times longer than an offender
with no prior arrests. In short, what matters is the conviction offense and
prior record, with the multipliers that are substantial in practical terms. Few
criminologists would find this surprising.

Table 3 shows the result when the same model is used with the test data.
The results are rather different. Conviction for an assault or for a gun-related
offense are no longer statistically significant. Very small p-values in Table 2
are greater the .05 in Table 3. The standard errors for the two regression
coefficients are essentially unchanged, but the sizes of the regression coeffi-
cients are substantially reduced. The other two regressors also show smaller
associations with the response in Table 3, but still have p-values less than
.05. Thus, given the nature of the crimes for which one can receive probation,

8There is a scattering of a few other minor crimes are in the baseline.
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Estimate | Multiplier | Standard Error | p-value

Intercept 1.686 — 0.19 0.0000

Assault Conviction 1.089 2.97 0.29 0.0002

Drug Conviction 0.729 2.07 0.19 0.0001

Gun Conviction 1.147 3.15 0.49 0.0196

Number of Priors 0.024 1.02 0.005 0.00001
Table 2: Results from Training Data

Estimate | Multiplier | Standard Error | p-value

Intercept 2.010 — 0.20 0.0000

Assault Conviction 0.425 1.52 0.28 0.1322

Drug Conviction 0.584 1.77 0.19 0.0022

Gun Conviction 0.763 2.14 0.47 0.1059

Number of Priors 0.019 1.02 0.006 0.0011

Table 3: Results from Test Data

what matters for the length of the suspended sentence is only whether the
conviction is for a drug offense and the offender’s prior record.

Because of the large number of possible models and the three mechanisms
by which model selection effects are produced, it is effectively impossible to
know exactly why the two tables differ. Matters are further complicated by
random sampling variation in the training sample and the test sample. But,
insofar as the usual requirements for credible models are met, the results in
Table 3 should be the results reported. With no test data, one would be left
with Table 2.

In summary, dual-sample or split-sample procedures are easy to imple-
ment. Model selection is undertaken with the training data. Estimation
and statistical inference is undertaken with the test data. The model selec-
tion procedure does not matter, and can range from exhaustive searches of
the sort just illustrated to informal approaches that drop predictors from a
“full model” for any reason whatsoever. When dual-sample or split-sample
procedures are not practical, one is best off making a very clear distinction
between analyses that are confirmatory and analyses that are exploratory.
Statistical inference can be justified only for confirmatory analyses. Finally,
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model selection by itself implies little about the ultimate credibility of the
model chosen. Conventional assumption still have to be reasonable well met.

6 Conclusions

There is no doubt that post-model-selection statistical inference can lead
to biased regression parameter estimates and seriously misleading statistical
tests and confidence intervals. The approaches by which the selection is done
are for the issues raised in this paper unimportant. Informal data snooping
is as dangerous as state-of-the-art model selection procedures.

Currently, there are five possible responses. If a case can be made for
an appropriate model before the data are analyzed, one can proceed as the
textbooks describe. Alternatively, the problem can be ignored if one can
credibly argue that the model selection procedures will select a single model
with a probability of near 1.0. If there are two random samples from the
same population, or if it is possible to construct the equivalent from the data
on hand, appropriate statistical inference may be undertaken even if there
are substantial post-model-selection difficulties. When neither approach is
practical, one can make a clear distinction between data analyses that are
confirmatory and analyses that are exploratory. Statistical inference is ap-
propriate only for the former. Finally, should all else fail, one can simply
forego formal statistical inference altogether.

If after model selection, there remains more than one candidate model,
new complications are introduced. The underlying inferential logic is flawed.
If there are several candidate models, at best only one can correctly represent
how the data were generated. The confidence intervals and statistical tests
for all models but one will not perform as required, and the one model for
which statistical inference can be appropriate is unknown. There is also the
real possibility that all of the models are suspect in which case, all of the tests
and confidence intervals can be compromised. In short, post-model-selection
statistical inference can be further jeopardized when more than one model is
selected.
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