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The Root-Unroot Algorithm for Density Estimation as Implemented

via Wavelet Block Thresholding

Lawrence Brown, Tony Cai, Ren Zhang, Linda Zhao and Harrison Zhou

Abstract

We propose and implement a density estimation procedure which begins by turning

density estimation into a nonparametric regression problem. This regression problem

is created by binning the original observations into many small size bins, and by then

applying a suitable form of root transformation to the binned data counts. In principle

many common nonparametric regression estimators could then be applied to the trans-

formed data. We propose use of a wavelet block thresholding estimator in this paper.

Finally, the estimated regression function is un-rooted by squaring and normalizing.

The density estimation procedure achieves simultaneously three objectives: com-

putational efficiency, adaptivity, and spatial adaptivity. A numerical example and a

practical data example are discussed to illustrate and explain the use of this procedure.

Theoretically it is shown that the estimator simultaneously attains the optimal rate

of convergence over a wide range of the Besov classes. The estimator also automati-

cally adapts to the local smoothness of the underlying function, and attains the local

adaptive minimax rate for estimating functions at a point.

There are three key steps in the technical argument: Poissonization, quantile cou-

pling, and oracle risk bound for block thresholding in the non-Gaussian setting. Some

of the technical results may be of independent interest.

Keywords: Adaptation; Block thresholding; Coupling inequality; Density estimation;

Nonparametric regression; Root-unroot transform; Wavelets.

AMS 2000 Subject Classification: Primary: 62G99; Secondary: 62F12, 62F35, 62M99.

1 Introduction

Density estimation and nonparametric regression are two fundamental nonparametric prob-

lems and have traditionally been treated separately in the literature. In this paper we de-

scribe a simple algorithm that allows density estimation to be treated as a nonparametric
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regression problem. We then show in detail how this algorithm can be used along with a

wavelet regression estimator. The resulting procedure yields a convenient, effective density

estimator that is adaptive and rate-optimal over a broad range of function classes.

Our basic algorithm can be termed a “root-unroot” procedure. It can easily be shown in

special settings that the resulting density estimator shares analogous asymptotic optimality

properties with the nonparametric regression estimator used in the algorithm. It is more

complex to show this in broad adaptive settings. The current paper provides a complete

proof of this in such a broad setting, and hence validates the root-unroot algorithm in

this setting and provides strong evidence for the generality of the heuristic motivation

underlying the algorithm.

As we describe in Section 3, the root-unroot procedure involves binning the observa-

tions and using a “mean-matching” square root of the bin counts. Virtually any reliable

nonparametric regression estimator can be applied to these square rooted bin counts. The

resulting regression estimator is then un-rooted and normalized in order to provide the final

density estimator. Two key steps are the choice of bin-size and the use of the asymptotically

“mean-matching” square root transformation. The algorithm is particularly convenient for

the use of wavelet methods because with no difficulty it can provide the binary number of

equally spaced regression observations for which a wavelet method is most suited.

There are two separate, though related, motivations for the root-unroot algorithm.

First, recent results in asymptotic equivalence theory have shown that, under very mild

regularity conditions, density estimation is asymptotically equivalent to nonparametric re-

gression. For such equivalence results see Nussbaum (1996) and Brown, et al. (2004).

Binning and taking the square-root of the bin counts lies at the heuristic heart of these

equivalence results. It turns out that mean-matching allows simple and effective use of

transformed bin-counts for the specific goal of density estimation without the necessity of

implementing the much more complex equivalence mappings described in these papers.

A second motivation for the method involves the ideas of Poissonization and variance

stabilization. Poissonization is discussed in several sources. See for example Le Cam (1974)

and Low and Zhou (2007). The bin counts have a multinomial distribution and here Pois-

sonization allows one to treat the bin counts as if they were independent Poisson variables.

The variance stabilizing transformation for Poisson variables is any member of a family of

square-root transformations. This family was discussed in Bartlett (1936) and Anscombe

(1948). Anscombe described a particular member of this family that provides the greatest

asymptotic control over the variance of the resulting transformed variables. However, for

the present purposes it is more important (and often essential) to have better asymptotic
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control over the bias of the transformed variables, whereas optimal control of the vari-

ance term is not essential. The mean-matching transformation that we use provides the

necessary degree of control over the bias of our resulting estimator.

The root transform turns the density estimation problem into a standard nonparametric

regression problem. Virtually any good nonparametric regression procedure can then be

applied. In this paper we shall use a wavelet estimator. Wavelet methodology has demon-

strated considerable success in nonparametric regression in terms of spatial adaptivity and

asymptotic optimality. In particular, block thresholding rules have been shown to possess

impressive properties. The estimators make simultaneous decisions to retain or to discard

all the coefficients within a block and increase estimation accuracy by utilizing informa-

tion about neighboring coefficients. In the context of nonparametric regression local block

thresholding has been studied, for example, in Hall, Kerkyacharian, and Picard (1998), Cai

(1999, 2002) and Cai and Silverman (2001).

The wavelet regression estimator used in our implementation of the root-unroot algo-

rithm is one such block thresholding procedure. It first divides the empirical coefficients

at each resolution level into non-overlapping blocks and then simultaneously keeps or kills

all the coefficients within a block, based on the sum of the squared empirical coefficients

within that block. Motivated by the analysis of block thresholding rules for nonparametric

regression in Cai (1999), the block size is chosen to be asymptotically log n. It is shown

that the estimator has a high degree of adaptivity. The root-unroot and block thresholding

procedure is easy to implement and the procedure performs well for modest, realistic sam-

ple sizes and not only for sample sizes approaching infinity as is promised by asymptotic

theory.

Theoretically we show that our density estimator possesses several desirable properties.

It is shown that the estimator simultaneously attains the optimal rate of convergence under

both the squared Hellinger distance loss and the integrated squared error over a wide range

of the Besov classes. The estimator is also spatially adaptive: it attains the local adaptive

minimax rate for estimating functions at a point. Implementation of our procedure is

relatively straightforward, but the proof of the main theoretical results requires several

steps. The first step is Poissonization. It is shown that the fixed sample size density

problem is not essentially different from the density problem where the sample size is a

Poisson random variable. The second step is the use of an appropriate version of the

quantile coupling inequality of Komlós, Major and Tusnády (1975) to approximate the

binned and root transformed data by independent normal variables. The third step is

the derivation of a risk bound for block thresholding in the case where the noise is not
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necessarily Gaussian. Some of these technical results may be of independent interest.

It should be noted that density estimation has a long history and an extensive literature.

See, e.g., Silverman (1986). The traditional estimators are typically linear and thus not

spatially adaptive. A wavelet density estimator was first introduced by Donoho, et al.

(1996). Minimax convergence rates over Besov classes were derived. It was shown that

nonlinear thresholding approach can have significant advantage over the traditional linear

methods. However, the wavelet density estimator introduced in that paper is not practical

as the thresholds are not fully specified. The resulting density estimator is also not fully

adaptive. In the case of term-by-term wavelet thresholding estimators, analysis of mean

integrated squared error of single functions is also available. See Hall and Patil (1995).

We should also note that wavelet block thresholding has been used for density estima-

tion in the literature. A local block thresholding density estimator was introduced in Hall,

Kerkyacharian and Picard (1998). The estimator was shown to be globally rate optimal

over a range of function classes of inhomogeneous smoothness under integrated squared

error. However the estimator does not achieve the optimal local adaptivity under pointwise

squared error. Chicken and Cai (2005) proposed a block thresholding density estimator

which is adaptive under both the global and pointwise risk measures. However these es-

timators are not very practical as they are not easily implementable and require tuning

parameters.

The paper is organized as follows. Section 2 discusses the mean-matching variance

stabilizing root transform for a Poisson variable. We first discuss the general ideas for the

root-unroot transform approach in Section 3 and then consider our specific wavelet block

thresholding implementation of the general approach in Section 4. Theoretical properties of

the root-unroot block thresholding density estimator are discussed in Section 5. In Section

6 we discuss the implementation of the estimator and application of the procedure to a call

center data set. Technical proofs are given in Section 7.

2 Root transform

Variance stabilizing transformations, and closely related transformations to approximate

normality, have been used in many statistical contexts. See Hoyle (1973) for a review of the

extensive literature. See also Efron (1982) and Bar-Lev and Enis (1990). For Poisson distri-

butions Bartlett (1936) was the first to propose the root transform
√

X in a homoscedastic

linear model where X ∼ Poisson(λ). Anscombe (1948) proposed improving the variance

stabilizing properties by instead using
√

X + 3
8 . The constant 3

8 is chosen to optimally
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stabilize the variance using the Taylor expansion. Anscombe’s variance stabilizing trans-

formation has also been briefly discussed in Donoho (1993) for density estimation.

In the context of nonparametric density estimation considered in the present paper, in

comparison to variance stabilization, mean matching is more important. A mean-matching

root transform is needed for minimizing the bias as well as stabilizing the variance. The

goal of mean matching is to choose a constant c so that the mean of
√

X + c is “closest” to√
λ. The following lemma gives the expansions of the mean and variance of root transform

of the form
√

X + c where c is a constant. It can be seen easily that c = 1
4 is the optimal

choice for minimizing the bias E(
√

X + c)−
√

λ in the first order.

Lemma 1 Let X ∼ Poisson(λ) with λ > 0 and let c ≥ 0 be a constant. Then

E(
√

X + c) = λ
1
2 +

4c− 1
8

· λ− 1
2 − 16c2 − 24c + 7

128
· λ− 3

2 + O(λ−
5
2 ) (1)

Var(
√

X + c) =
1
4

+
3− 8c

32
· λ−1 +

32c2 − 52c + 17
128

λ−2 + O(λ−3). (2)

In particular, for c = 1
4

E

(√
X +

1
4

)
= λ

1
2 − 1

64
λ−

3
2 + O(λ−

5
2 ) (3)

Var

(√
X +

1
4

)
=

1
4

+
1
32

λ−1 +
3
64

λ−2 + O(λ−3). (4)

Lemma 1 shows that with c = 1
4 the root transformed variable

√
X + c has vanishing

first order bias and almost constant variance. Lemma 1 follows from Taylor expansion and

straightforward algebra. See also Anscombe (1948).

Figure 1 compares the mean and variance of three root transforms with c = 0, c = 1
4

and c = 3
8 . The left panel plots the bias Eλ(

√
X + c) −

√
λ as a function of λ for c = 0,

c = 1
4 and c = 3

8 . It is clear from the plot that c = 1
4 is the best choice among the three for

matching the mean. For this value of c the bias is negligible for λ as small as 2. On the

other hand, the root transform with c = 0 yields significant negative bias and the transform

with c = 3
8 produces noticeable positive bias. The right panel plots the variance of

√
X + c

for c = 0, c = 1
4 and c = 3

8 . For variance c = 3
8 is the best choice among the three when λ

is not too small. The root transform with c = 1
4 is slightly worse than but comparable to

the case with c = 3
8 and clearly c = 0 is the worst choice of the three.
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Figure 1: Comparison of the mean (left panel) and variance (right panel) of root transforms with

c = 0 (solid line), c = 1
4 (+ line) and c = 3

8 (dashed line).

3 Density estimation through regression

We now consider density estimation, the main problem of interest in this paper. We shall

discuss the general ideas for the root-unroot transform approach in this section and consider

a specific wavelet block thresholding implementation of the general approach in Section 4.

Suppose that {X1, ..., Xn} is a random sample from a distribution with the density

function f . We assume that the density function f is compactly supported on an interval,

say the unit interval [0, 1]. Divide the interval into T equi-length subintervals and let Qi be

the number of observations on the i-th subinterval Ii = [ i−1
T , i

T ), i = 1, 2, . . . T . Set m = n
T .

The counts {Qi} can be treated as observations for a nonparametric regression directly, but

this then becomes a heteroscedastic problem since the variance of Qi is mpi(1−pi/T ) where

pi = T
∫ i

T
i−1
T

f(x)dx. Instead, we first apply the root transform discussed in Section 2, and

treat {
√

Qi + 1
4} as new regression observations. The constant 1

4 is chosen to stabilize the

variance and at the same time match the mean as discussed in Section 2. We will estimate
√

f first, then square it back and normalize to get an estimator of f . After the density

estimation problem is transferred into a regression problem, any nonparametric regression

method can be applied. The general ideas for the root-unroot transform approach can be

more formally explained as follows.

The first step of the procedure is binning. Let T be some positive integer (The choice of
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T will be discussed later.) Divide {Xi} into T equal length subintervals between 0 and 1.

Let Q1, ..., QT be the number of observations in each of the subintervals. The Qi’s jointly

have a multinomial distribution. Note that if the sample size is Poissonized, that is, it is

not fixed but a Poisson random variable with mean n and independent of the Xi’s, then

the counts {Qi : i = 1, ..., T} are independent Poisson random variables with

Qi ∼ Poisson(mpi) where pi = T

∫ i
T

i−1
T

f(x)dx.

We then apply the mean-matching root transform discussed in Section 2. Set

Yi =

√
Qi +

1
4
, where Qi = Card({k : Xk ∈ Ii}), i = 1, · · · , T, (5)

and treat Y = (Y1, Y2, . . . , YT ) as the new equi-spaced sample for a nonparametric regression

problem. Through binning and the root transform the density estimation problem has

now been transferred to an equi-spaced, nearly constant variance nonparametric regression

problem. Any good nonparametric regression procedure, such as a kernel, spline or wavelet

procedure, can be applied to yield an estimator
√̂

f of
√

f . The final density estimator

can be obtained by normalizing the square of
√̂

f . Algorithmically, the root-unroot density

estimation procedure can be summarized as follows.

1. Binning: Divide {Xi} into T equal length intervals between 0 and 1. Let Q1, Q2, ..., QT

be the number of observations in each of the intervals.

2. Root Transform: Let Yi =
√

Qi + 1
4 , i = 1, · · · , T , and treat Y = (Y1, Y2, . . . , YT )

as the new equi-spaced sample for a nonparametric regression problem.

3. Nonparametric Regression: Apply your favorite nonparametric regression proce-

dure to the binned and root transformed data Y to obtain an estimate
√̂

f of
√

f .

4. Unroot: The density function f is estimated by f̂ = (
√̂

f)2.

5. Normalization: The estimator f̂ given in Step 4 may not integrate to 1. Set

f̃(t) = f̂(t)/
∫ 1

0
f̂(t)dt

and use f̃ as the final estimator.

In this paper we combine the formal Root-Unroot procedure with the wavelet block

thresholding method BlockJS given in Cai (1999). We will describe the BlockJS procedure
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in the next section and show in Section 5 that the resulting density estimator enjoys a high

degree of adaptivity over a wide range of Besov classes. The numerical performance of

this type of root-unroot procedure was investigated in Zhang (2002), using the VisuShrink

wavelet estimator at Step 3.

Remark 1 An advantage of the root-unroot methodology is that it turns the density

estimation problem to a standard homoscedastic nonparametric regression in which better-

understood tools can then be used to construct confidence sets for the density, in addition

to estimates. For the construction of confidence sets in regression setting, see, for example,

Genovese and Wasserman (2005) and Cai and Low (2006).

4 Wavelets and block thresholding

Let {φ, ψ} be a pair of compactly supported father and mother wavelets with
∫

φ = 1.

Dilation and translation of φ and ψ generate an orthonormal wavelet basis. For simplicity

in exposition, we work with periodized wavelet bases on [0, 1]. Let

φp
j,k(x) =

∞∑

l=−∞
φj,k(x− l), ψp

j,k(x) =
∞∑

l=−∞
ψj,k(x− l), for x ∈ [0, 1]

where φj,k(x) = 2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1], provided

j0 is large enough to ensure that the support of the wavelets at level j0 is not the whole

of [0, 1]. The superscript “p” will be suppressed from the notation for convenience. A

square-integrable function f on [0, 1] can be expanded into a wavelet series,

f(x) =
2j0∑

k=1

ξj0,kφj0,k(x) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(x), (6)

where ξj0,k = 〈f, φj0,k〉 are the coefficients of the father wavelets at the coarsest level

which represent the gross structure of the function f , and θj,k = 〈f, ψj,k〉 are the wavelet

coefficients which represent finer and finer structures as the resolution level j increases.

An orthonormal wavelet basis has an associated orthogonal Discrete Wavelet Transform

(DWT) which transforms sampled data into the wavelet coefficients. See Daubechies (1992)

and Strang (1992) for further details about the wavelets and discrete wavelet transform.

Note that one can also use boundary corrected wavelet bases, instead of periodized wavelet

bases. See Cohen, et. al (1993) and Daubechies (1994) for more on boundary corrected

wavelet bases.
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4.1 Root-unroot and block thresholding for density estimation

We now return to the density estimation problem. Set J = Jn =
⌊
log2 n3/4

⌋
and let

T = 2J . Divide {Xi} into T equal length subintervals between 0 and 1, Ii = [ i−1
T , i

T ) for

i = 1, ..., T . Apply the discrete wavelet transform to the binned and root transformed data

Y = (Y1, . . . , YT ) where Yi are given as in (5), and let U = n−
1
2 WY be the empirical wavelet

coefficients, where W is the discrete wavelet transformation matrix. Write

U = (ũj0,1, · · · , ũj0,2j0 , uj0,1, · · · , uj0,2j0 , · · · , uJ−1,1, · · · , uJ−1,2J−1)′. (7)

Here ũj0,k are the gross structure terms at the lowest resolution level, and uj,k (j =

j0, · · · , J − 1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent

detail structure at scale 2j . It is important to note that the empirical wavelet coefficients

can be written as

uj,k = θj,k + εj,k +
1

2
√

n
zj,k + ξj,k (8)

where θjk are the true wavelet coefficients of
√

f , εj,k are “small” deterministic approx-

imation errors, zj,k are i.i.d. N(0, 1), and ξj,k are some “small” stochastic errors. The

theoretical calculations given in Section 7 will show that both the approximation errors εj,k

and the stochastic errors ξj,k are negligible in certain sense. If these negligible errors are

ignored then we have an idealized sequence model with noise level σ = 1
2
√

n
,

uj,k ≈ θj,k +
1

2
√

n
zj,k, where zj,k

iid∼ N(0, 1). (9)

The BlockJS procedure was proposed in Cai (1999) for nonparametric regression and

was shown to achieve simultaneously three objectives: adaptivity, spatial adaptivity, and

computational efficiency. We now apply the BlockJS procedure to the empirical coefficients

uj,k as if they are observed as in (9). More specifically, at each resolution level j, the

empirical wavelet coefficients uj,k are grouped into nonoverlapping blocks of length L = log n

(in the numerical implementation we use L = 2blog2(log n)c). Let Bi
j denote the set of indices

of the coefficients in the i-th block at level j, i.e.

Bi
j = {(j, k) : (i− 1)L + 1 ≤ k ≤ iL}.

Let S2
j,i ≡

∑
(j,k)∈Bi

j
u2

j,k denote the sum of squared empirical wavelet coefficients in the

block Bi
j . The James-Stein shrinkage rule is then applied to each block Bi

j . For (j, k) ∈ Bi
j ,

θ̂j,k = (1− λ∗L
4nS2

j,i

)+ uj,k (10)

9



where, as in Section 4, λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3 and

4n in the shrinkage factor of (10) is due to the fact that the noise level in (9) is σ = 1
2
√

n
.

The block size L = log n and the threshold λ∗ = 4.50524 are selected according to a block

thresholding oracle inequality and a minimax criterion. See Cai (1999) for further details.

For the gross structure terms at the lowest resolution level j0, we set ˆ̃
θj0,k = ũj0,k. The

estimate of
√

f at the equi-spaced sample points { i
T : i = 1, · · · , T} is then obtained by

applying the inverse discrete wavelet transform (IDWT) to the denoised wavelet coefficients.

That is, {√f( i
T ) : i = 1, · · · , T} is estimated by

√̂
f = {√̂f( i

T ) : i = 1, · · · , T} with
√̂

f = T
1
2 W−1 · θ̂. The estimate of the whole function

√
f is given by

√̂
f(t) =

2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t) (11)

and the estimator of the density function f is given by the square of
√̂

f :

f̂(t) =




2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t)




2

. (12)

By normalizing f̂ we obtain the final density estimator f̃ where

f̃(t) = f̂(t)/
∫ 1

0
f̂(t)dt. (13)

This density estimation procedure is easily implementable and possesses desirable proper-

ties.

5 Theoretical properties

We turn in this section to the theoretical properties of the root-unroot BlockJS density

estimators introduced in Sections 3 and 4. The asymptotic results show that the procedure

enjoys a high degree of adaptivity and spatial adaptivity. Specifically, we consider adaptivity

of the estimator over a wide range of Besov spaces under both the squared Hellinger distance

loss lH(g, f) = ‖√g−√f‖2
2 and the usual integrated squared error l2(g, f) = ‖g− f‖2

2. We

also consider spatial adaptivity under pointwise squared error.

Besov spaces contain a number of traditional smoothness spaces such as Hölder and

Sobolev spaces as special cases and arise naturally in many fields of analysis. See Donoho

and Johnstone (1998) for a discussion on the relevance of Besov spaces to scientific problems.

A Besov space Bα
p,q has three parameters: α measures degree of smoothness, p and q specify

10



the type of norm used to measure the smoothness. Besov spaces can be defined in several

ways. For the present paper, we will use the Besov sequence norm based on the wavelet

coefficients. Let (φ, ψ) be a pair of compactly supported father and mother wavelets.

A mother wavelet ψ is called r-regular if ψ has r vanishing moments and r continuous

derivatives. For a given r-regular mother wavelet ψ with r > α and a fixed primary

resolution level j0, the Besov sequence norm ‖ · ‖bα
p,q

of a function g is then defined by

‖g‖bα
p,q

= ‖ξj0,k‖`p +




∞∑

j=j0


2js

(∑

k

|θj,k|p
)1/p




q


1/q

(14)

where s = α + 1/2 − 1/p, ξjk =
∫ 1
0 g(t)φjk(t) dt and θjk =

∫ 1
0 g(t)ψjk(t) dt. The standard

modification applies for the cases p, q = ∞. See Triebel (1992) and Meyer (1992) for further

details on Besov spaces. We define Bα
p,q (M) =

{
f ; ‖f‖bα

p,q
≤ M

}
.

In the present paper we consider the risk of estimating the density function f over Besov

balls,

Fα
p,q(M, ε) =

{
f : f ∈ Bα

p,q(M),
∫ 1

0
f(x)dx = 1, f(x) ≥ ε for all x ∈ [0, 1]

}
.

Note that when f is bounded below from 0 and above from a constant, the condition

f ∈ Bα
p,q(M) is equivalent to that there exists M ′ > 0 such that

√
f ∈ Bα

p,q (M ′). See Runst

(1986).

Remark 2 The assumption f(x) ≥ ε implies that the number of observations Qi in each

bin is large so that Yi defined in equation (5) can be treated as if it were a normal random

variable. See Lemmas 2 and 3 for more details. This assumption can be relaxed. For

instance, the main results in this paper can be extended to the case that the density f is 0

at a fixed number of points so long as f ′ is not 0 at those points.

The two density estimators, f̂ in (12) and the normalized version f̃ in (13), share the

same asymptotic properties. To save space we shall use f∗ to denote either f̂ or f̃ in the

theoretical results given below. The following results show that the estimators enjoy a high

degree of adaptivity under the squared Hellinger distance loss.

Theorem 1 Let x1, x2, . . . , xn be a random sample from a distribution with density func-

tion f . Suppose the wavelet ψ is r-regular. Let f∗ be either f̂ given in (12) or f̃ given in

(13) with m = Cn
1
4 . Then for p ≥ 2, α ≤ r and 2α2−α/3

1+2α − 1
p > 0

sup
f∈F α

p,q(M,ε)
E‖

√
f∗ −

√
f‖2

2 ≤ Cn−
2α

1+2α , (15)

11



and for 1 ≤ p < 2, α ≤ r and 2α2−α/3
1+2α − 1

p > 0

sup
f∈F α

p,q(M,ε)
E‖

√
f∗ −

√
f‖2

2 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) . (16)

Remark 3 Note that the two density estimators depend on the number of bins T or

equivalently the bin size m. Lemma 1 implies that the mean-matching variance stabilization

transformation leads to a bias term of order m−3/2. The cumulative contribution of the

biases in the mean squared error of all T bins is then at a level of 1
nT

(
m−3/2

)2
= m−4. To

make this term negligible for all α, we set m−4 = O(n−1), i.e., m = Cn1/4, or equivalently

T = C−1n3/4. In practice, we define T = 2dlog2 n3/4e, where dae denotes the smallest integer

greater than or equal to a, and consequently the average bin size m is n/T = n2−dlog2 n3/4e.

Theorem 1 together with the lower bound given in Theorem 2 below show that the

estimators f̂ and f̃ are adaptively minimax rate optimal over Besov balls with p ≥ 2 for a

large range of α, and at the same time is within a logarithmic factor of the minimax risk

over Besov balls with 1 ≤ p < 2 for a range of α.

Theorem 1 states the adaptivity results in the squared Hellinger distance error. Same

results hold for the conventional integrated squared error.

Corollary 1 Under the conditions of Theorem 1,

sup
f∈F α

p,q(M,ε)
E‖f∗− f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2 and 2α2−α/3
1+2α − 1

p > 0

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2 and 2α2−α/3
1+2α − 1

p > 0.
(17)

The following theorem gives lower bound for the minimax risk under the squared

Hellinger distance loss.

Theorem 2 Let x1, x2, . . . , xn be a random sample from a distribution with the density

function f . Then for p ≥ 1 and α + 1
2 − 1

p > 0 there exists constants c1, c2 > 0 such that

inf
f̂

sup
f∈F α

p,q(M,ε)
E‖

√
f̂ −

√
f‖2

2 ≥ c1n
− 2α

1+2α and inf
f̂

sup
f∈F α

p,q(M,ε)
E‖f̂ − f‖2

2 ≥ c2n
− 2α

1+2α .

Theorem 2 follows from similar arguments used in the proof of Theorem 2 of Donoho,

et al. (1996).

The upper bounds and the lower bounds given above together show that the density

estimator enjoys a high degree of adaptivity over a wide range of the Besov classes under

both the squared Hellinger distance loss and the integrated squared error. However, for

functions of spatial inhomogeneity, the local smoothness of the functions varies significantly

12



from point to point and global risk given in Theorem 1 cannot wholly reflect the performance

of estimators at a point. We thus consider spatial adaptivity as measured by the local risk

R(f̂(t0), f(t0)) = E(f̂(t0)− f(t0))2 (18)

where t0 ∈ (0, 1) is any given point. The local smoothness of a function can be measured

by its local Hölder smoothness index. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define

the local Hölder class Λα(M, t0, δ) as follows:

Λα(M, t0, δ) = {f : |f(t)− f(t0)| ≤ M |t− t0|α, for t ∈ (t0 − δ, t0 + δ)}.

If α > 1, then

Λα(M, t0, δ) = {f : |f (bαc)(t)− f (bαc)(t0)| ≤ M |t− t0|α′ for t ∈ (t0 − δ, t0 + δ)}

where bαc is the largest integer less than α and α′ = α − bαc. In Gaussian nonpara-

metric regression setting, it is well known that for local estimation, one must pay a price

for adaptation. The optimal rate of convergence for estimating f(t0) over function class

Λα(M, t0, δ) with α completely known is n−2α/(1+2α). Lepski (1990) and Brown and Low

(1996) showed that one has to pay a price for adaptation of at least a logarithmic fac-

tor. It is shown that the local adaptive minimax rate over the Hölder class Λα(M, t0, δ) is

(log n/n)2α/(1+2α). The following theorem shows that our density estimator automatically

attains the local adaptive minimax rate for estimation at a point, without prior knowledge

of the smoothness of the underlying functions.

Theorem 3 Suppose the wavelet ψ is r-regular with r ≥ α > 1/6. Let t0 ∈ (0, 1) be fixed.

Then the estimator f̂n defined in (12) satisfies

sup
f∈Λα(M,t0,δ)

E(f̂n(t0)− f(t0))2 ≤ C · ( log n

n
)

2α
1+2α . (19)

5.1 A brief outline for the proof of Theorem 1

The proof of Theorem 1 is somewhat involved. There are three key steps in the proof.

The first step is Poissonization. It is shown that the fixed sample size density problem

is not essentially different from the density problem where the sample size is a Poisson

random variable. This step enables us to treat the counts on subintervals as independent

Poisson variables as discussed briefly in Section 3.

The second step is the use of the quantile coupling inequality of Komlós, Major and

Tusnády (1975) to approximate the binned and root transformed data by independent

13



normal variables. In this step we shall give tight bounds for both the deterministic ap-

proximation errors εj,k and the stochastic errors ξj,k in the decomposition of the empirical

wavelet coefficients given in (8).

The third step is the derivation of a risk bound for block thresholding in the case where

the noise is not necessarily Gaussian. This risk bound is useful in turning the analysis

of the density estimator into the bias-variance trade-off calculation which is often used in

more standard Gaussian nonparametric regression.

6 Numerical implementation and examples

The root-unroot approach is easy to implement if the nonparametric regression procedure

in Step 3 is computationally efficient. In Section 4 we discuss in detail a wavelet block

thresholding implementation of the root-unroot approach which is fast to compute. We

implement the procedure in Splus. The following plot illustrates the steps in the root-unroot

BlockJS procedure. A random sample is generated from a distribution with a multi-modal

density function. The histogram of the data is given in the upper left panel and the binned

and root transformed data is plotted in the upper right panel. The empirical wavelet

coefficients and the BlockJS denoised coefficients are plotted respectively in the middle left

and right panels. The estimate of the square root of the density function (solid line) is

given in the lower left panel and the estimate of the density function is plotted in the lower

right panel. The dotted lines in the lower panels are the true functions.

The following example taken from a practical data set illustrates the application of our

root-unroot wavelet method. The data are the arrival times of calls to agents at an Israeli

financial call-center. This data is a portion of that described in much more detail and

analyzed from several related perspectives in Brown, et al. (2005). The values recorded

are the times (in second) at which telephone calls seeking service from agents arrive to be

served by the agent pool. In this example we only use calls received throughout the year

on non-holiday Sundays. (Sunday is the first day of the regular work-week in Israel.) The

data for current analysis contains about 55,000 call arrival times.

Features of arrival densities are of practical interest. The left panel of Figure 3 shows the

histogram of this arrival time data. The right panel shows the density estimate produced by

the root-unroot, wavelet block thresholding methodology. In this example we use T = 512,

symmelet “s16” and the primary level j0 = 4. Note the three modes in the density plot.

These occur at roughly 10-11 am, 2-3 pm and approximately 10pm. The morning buildup

and afternoon fall-off in call density is otherwise a fairly smooth curve. The dip in arrival

14
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Figure 2: An example of the root-unroot BlockJS density estimator.

density between the first two modes is presumably connected to the time of lunch break,

when Israelis seem less inclined to call their bank. The noticeable mode at around 10pm

may be related to societal TV or bedtime habits or to phone rates in Israel, which change

at 10pm. See Weinberg, Brown and Stroud (2007) for a more sophisticated analysis of a

similar set of data from an American financial call center.

7 Proofs

We shall only give a complete proof for Theorem 1. Theorem 2 can be proved by using

similar arguments given in the proof of Theorem 2 of Donoho, et al. (1996) and the proof

of Theorem 3 is similar to that of Theorem 4 of Brown, Cai and Zhou (2008).

As outlined in Section 5.1, the proof of Theorem 1 contains three key steps: Poissoniza-
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Figure 3: The histogram (left panel) and the density estimate (right panel)of the call center data.

tion, coupling, and bounding the risk of block thresholding estimators. We shall proceed

according to these three steps. We first prove a Poissonized version of Theorem 1. The

proof for squared Hellinger distance loss is given in Section 7.4 and the proof for integrated

squared error is given in Section 7.5. Section 7.6 shows that the normalized estimator

f̃ shares the same properties as the estimator f̂ . Finally we complete the proof of The-

orem 1 in Section 7.7 by showing that the Poissonized version of Theorem 1 yields the

corresponding results for density estimation.

7.1 Poissonized density estimation

We begin by introducing a Poissonized version of the density estimation problem. Let

N ∼ Poisson(n) and let x1, x2, . . . , xN be a random sample from a distribution with density

function f . Suppose that xi’s and N are independent and that the density f is supported on

the unit interval [0, 1]. Let Qi be the number of observations on the interval [(i−1)/T, i/T ),

i = 1, 2, . . . T . Set m = n/T . Then Qi ∼ Poisson(mpi) where pi = T
∫ i

T
i−1
T

f(x)dx. Set

Yi =

√
Qi +

1
4
, i = 1, 2, . . . , T (20)

and let f̂ be given as in (12) and f̃ given in (13). We shall first prove a Poissonized version

of Theorem 1 which shows that f̂ has the same rate of convergence when the sample size

is a Poisson variable as when the sample size is fixed.

Theorem 4 Let x1, x2, . . . , xN
i.i.d.∼ f, N ∼ Poisson(n). Suppose the wavelet ψ is r-regular
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and α ≤ r. Let f∗ be either f̂ given in (12) or f̃ given in (13) with m = Cn
1
4 . Then

sup
f∈F α

p,q(M,ε)
E‖

√̂
f∗ −

√
f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2 , 2α2−α/3
1+2α − 1

p > 0

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2, 2α2−α/3
1+2α − 1

p > 0.

Corollary 2 Under the conditions of Theorem 4,

sup
f∈F α

p,q(M,ε)
E‖f∗ − f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2 and 2α2−α/3
1+2α − 1

p > 0

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2 and 2α2−α/3
1+2α − 1

p > 0.

We should note that the result in Theorem 4 holds in more general setting where one

is interested in estimating the intensity function of an inhomogeneous Poisson process. A

similar result has been used for this purpose in Zhang (2002) and Brown, et al. (2005).

The proof of Theorem 4 requires analysis of both the deterministic part (the mean) and

the stochastic part of Yi given in (20). We shall first collect in the next section technical

lemmas that are needed for the proof of Theorem 4. In section 7.6, we show the risk

difference between f̂ and f̃ is negligible.

7.2 Coupling and preparatory results

We shall use the quantile coupling inequality of Komlós, Major and Tusnády (1975) to

approximate the binned and root transformed data by independent normal variables. The

following lemma is a direct consequence of the results given in Komlós, Major and Tusnády

(1975) and Zhou (2006).

Lemma 2 Let λ > 0 and let X ∼ Poisson(λ). There exists a standard normal random

variable Z ∼ N(0, 1) and constants c1, c2, c3 > 0 not depending on λ such that whenever

the event A = {|X − λ| ≤ c1λ} occurs,

|X − λ−
√

λZ| < c2Z
2 + c3. (21)

We shall develop tight bounds for both the deterministic approximation errors εj,k and

the stochastic errors ξj,k in the decomposition of the empirical wavelet coefficients given in

(8). Let X ∼ Poisson(λ) and let Y =
√

X + 1
4 and ε = EY −

√
λ. Let Z be a standard

normal variable satisfying (21). Then Y can be written as Y =
√

λ + ε + 1
2Z + ξ where

ξ =
X − λ√

X + 1
4 +

√
λ + 1

4

− 1
2
Z − E


 X − λ√

X + 1
4 +

√
λ + 1

4


 . (22)

It follows from Lemma 1 that when λ is large, ε is “small”, |ε| ≤ 1
64λ−

3
2 (1 + o(1)). We shall

show, using Lemma 2, that the random variable ξ is “stochastically small”.
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Lemma 3 Let X ∼ Poisson(λ) and let the standard normal variable Z be given as in

Lemma 2. Let ξ be given as in (22). Then for any integer i ≥ 1 there exists a constant

Ci > 0 such that for all λ ≥ 1 and all a > 0,

E|ξ|i ≤ Ciλ
− i

2 and P (|ξ| > a) ≤ Ci(a2λ)−
i
2 . (23)

Proof: First note that Eξ = 0. Set δ = E( X−λ√
X+ 1

4
+

√
λ+ 1

4

). Then

ξ =
X − λ√

X + 1
4 +

√
λ + 1

4

− 1
2
Z − δ = ξ1 + ξ2 + ξ3

where

ξ1 = − (X − λ)2

2
(√

X + 1
4 +

√
λ + 1

4

)2 √
λ + 1

4

− δ (24)

ξ2 =
X − λ−

√
λZ

2
√

λ + 1
4

(25)

ξ3 = − 1

8λ
√

1 + 1
4λ(1 +

√
1 + 1

4λ)
Z. (26)

Note that Eξl = 0, l = 1, 2, 3 and |ξ2| ≤ λ−
1
2 (C2Z

2 + C3) and |ξ3| ≤ 1
16λ−1|Z| on A =

{|X − λ| ≤ c1λ} with P (Ac) ≤ exp (−cλ) for some c > 0. Hence for any integer i ≥ 1 the

Cauchy-Schwarz inequality implies, for some constant di > 0,

E|ξ2|i ≤ diλ
− i

2 and E|ξ3|i ≤ diλ
− i

2 . (27)

Note also that (24) yields δ = E( X−λ√
X+ 1

4
+

√
λ+ 1

4

) = −E

(
(X−λ)2

2
(√

X+ 1
4
+

√
λ+ 1

4

)2√
λ+ 1

4

)
. Hence

|δ| ≤ E(X−λ)2

2λ
3
2

= 1
2λ−

1
2 . On the other hand, it follows directly from Lemma 4 below that for

any integer i ≥ 1 there exists a constant ci > 0 such that E(X − λ)2i ≤ ciλ
i. Note that for

i ≥ 1, (a + b)i ≤ 2i−1(|a|i + |b|i). It then follows that

E|ξ1|i ≤ 2i−1

[
E(X − λ)2i

2iλ
3i
2

+ |δ|i
]
≤ 2i−1(

ciλ
i

2iλ
3i
2

+ 2−iλ−
i
2 ) = (

1
2
ci +

1
2
)λ−

i
2 . (28)

The first bound in (23) now follows by combining (27) and (28). The second bound in (23)

is a direct consequence of the first one and Markov inequality.

Lemmas 1, 2 and 3 together yield the following result.
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Proposition 1 Let Yi =
√

Qi + 1
4 be given as in (20). Then Yi can be written as

Yi =
√

mpi + εi +
1
2
Zi + ξi, i = 1, 2, . . . , T, (29)

where Zi
i.i.d.∼ N(0, 1), εi are constants satisfying |εi| ≤ 1

64(mpi)−
3
2 (1+o(1)) and consequently

for some constant C > 0
1
n

T∑

i=1

ε2i ≤ C ·m−4, (30)

and ξi are independent and “stochastically small” random variables satisfying

E|ξi|l ≤ Cl(mpi)−
l
2 and P (|ξi| > a) ≤ Cl(a2mpi)−

l
2 (31)

where l > 0, a > 0 and Cl > 0 is a constant depending on l only.

We need the following moment bounds for an orthogonal transform of independent

variables.

Lemma 4 Let X1, . . . , Xn be independent variables with E(Xi) = 0 for i = 1, . . . , n. Sup-

pose that E|Xi|k < Mk for all i and all k > 0 with Mk > 0 some constant not depending

on n. Let Y = WX be an orthogonal transform of X = (X1, ..., Xn)′. Then there exist

constants M ′
k not depending on n such that E|Yi|k < M ′

k for all i = 1, . . . , n and all k > 0.

Proof: Let ai, i = 1, · · · , n be constants such that
∑n

i=1 a2
i = 1. It suffices to show that

for U =
∑n

i=1 aiXi there exist constants M ′
k not depending on n and a = (a1, . . . , an) such

that E|U |k < M ′
k for all even positive integer k.

Let k be a fixed even integer. Then, since E(Xi) = 0 for i = 1, . . . , n,

E|U |k = E(
n∑

i=1

aiXi)k =
∑

k1+···+kn=k

(
k

k1, ..., kn

)
ak1

1 · · · akn
n EXk1

1 · · ·EXkn
n

=
∑

(k1,...,kn)∈S(k)

(
k

k1, ..., kn

)
ak1

1 · · · akn
n EXk1

1 · · ·EXkn
n .

where S(k) = {(k1, . . . , kn) : ki nonnegative integers, ki 6= 1 and
∑n

i=1 ki = k}. Set

Ak = (1 + M1)(1 + M2) · · · (1 + Mk). Then, since |ai| ≤ 1,

E|U |k ≤ k!Ak

∑

(k1,...,kn)∈S(k)

|a1|k1 · · · |an|kn ≤ k!Ak

∑

(k1,...,kn)∈S(k)

|a1|2[
k1
2

] · · · |an|2[ kn
2

]

≤ k!Ak

k/2∑

k′=1

∑

(k′1,...,k′n)∈S(k′)

(a2
1)

k′1 · · · (a2
n)k′n .
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Since
∑

(k′1,...,k′n)∈S(k′)(a
2
1)

k′1 · · · (a2
n)k′n ≤ (∑n

i=1 a2
i

)k′ = 1, E|U |k ≤ k!Ak
k
4 (k

2 + 1). The

lemma is proved by taking M ′
k = k!Ak

k
4 (k

2 + 1).

From (29) in Proposition 1 we can write 1√
n
Yi =

√
pi√
T

+ εi√
n

+ Zi

2
√

n
+ ξi√

n
. Let (uj,k) =

n−
1
2 W ·Y be the discrete wavelet transform of the binned and root transformed data. Then

one may write

uj,k = θ′j,k + εj,k +
1

2
√

n
zj,k + ξj,k (32)

where θ′jk are the discrete wavelet transform of (
√

pi√
T

) which are approximately equal to the

true wavelet coefficients of
√

f , zj,k are the transform of the Zi’s and so are i.i.d. N(0, 1)

and εj,k and ξj,k are respectively the transforms of ( εi√
n
) and ( ξi√

n
). Then it follows from

Proposition 1 that ∑

j

∑

k

ε2j,k =
1
n

∑

i

ε2i ≤ Cm−4. (33)

It now follows from Lemma 4 and Proposition 1 that for all i > 0 and a > 0

E|ξj,k|i ≤ C ′
i(mn)−

i
2 and P (|ξj,k| > a) ≤ C ′

i(a
2mn)−

i
2 . (34)

7.3 Risk bound for a single block

Oracle inequalities for block thresholding estimators were derived in Cai (1999) in the case

when the noise is i.i.d. normal. In the present paper we need the following risk bound for

block thresholding estimators without the normality assumption.

Lemma 5 Suppose yi = θi + zi, i = 1, ..., L, where θi are constants and zi are random

variables. Let S2 =
∑L

i=1 y2
i and let θ̂i = (1− λL

S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (35)

Proof: It is easy to verify that ‖θ̂ − y‖2
2 ≤ λL. Hence

E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 > λL)

]
≤ 2E

[
‖θ̂ − y‖2

2I(‖z‖2
2 > λL)

]
+ 2E

[‖y − θ‖2
2I(‖z‖2

2 > λL)
]

≤ 2λLP (‖z‖2
2 > λL) + 2E

[‖z‖2
2I(‖z‖2

2 > λL)
]

≤ 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (36)

On the other hand,

E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 ≤ λL)

]
≤ E

[
(2‖θ̂ − y‖2

2 + 2‖y − θ‖2
2)I(‖z‖2

2 ≤ λL)
]
≤ 4λL. (37)
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Note that when S2 ≤ λL, θ̂ = 0 and hence ‖θ̂−θ‖2
2 = ‖θ‖2

2. When ‖z‖2
2 ≤ λL and S2 > λL,

‖θ̂ − θ‖2
2 =

∑

i

[(1− λL

S2
)yi − θi]2 = (1− λL

S2
)[S2 − λL− 2

∑

i

θiyi] + ‖θ‖2
2

= (1− λL

S2
)[

∑
(θi + zi)2 − λL− 2

∑

i

θi(θi + zi)] + ‖θ‖2
2

= (1− λL

S2
)(‖z‖2

2 − λL− ‖θ‖2
2) + ‖θ‖2

2 ≤ ‖θ‖2
2.

Hence E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 ≤ λL)

]
≤ ‖θ‖2

2 and (35) follows by combining this with (36) and

(37).

We also need the following bound on the tail probability of a central chi-square distri-

bution (see Cai (2002)).

Lemma 6 Let X ∼ χ2
L and λ > 1. Then

P (X ≥ λL) ≤ e−
L
2
(λ−log λ−1) and EXI(X ≥ λL) ≤ λLe−

L
2
(λ−log λ−1). (38)

Proposition 2 Let the empirical wavelet coefficients uj,k = θ′j,k + εj,k + 1
2
√

n
zj,k + ξj,k be

given as in (32) and let the block thresholding estimator θ̂j,k be defined as in (10). Then

for some constant C > 0

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k + CLn−2. (39)

Proof: It follows from Lemma 5 that

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ 2E

∑

(j,k)∈Bi
j

[θ̂j,k − (θ′j,k + εj,k)]2 + 2
∑

(j,k)∈Bi
j

ε2j,k

≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k

+ 2n−1E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I




∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L


 .

Define the event A by A = {|2√nξj,k| ≤ L−1 for all (j, k) ∈ Bi
j}. Then it follows from

(34) that for any i ≥ 1

P (Ac) ≤
∑

(j,k)∈Bi
j

P (|2√nξj,k| > L−1) ≤ C ′
i(L

−2m)−
i
2 . (40)
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Note that

D = E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I




∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L




= E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I


A ∩

∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L




+ E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I


Ac ∩

∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L




≡ D1 + D2.

Note that for any L > 1, (x + y)2 ≤ L
L−1x2 + Ly2 for all x and y. It then follows from

Lemma 6 and Hölder’s Inequality that

D1 = E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I


A ∩

∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L




≤ 2E
∑

(j,k)∈Bi
j

z2
j,kI




∑

(j,k)∈Bi
j

z2
j,k > λ∗L− λ∗ − 1




+ 8nE
∑

(j,k)∈Bi
j

ξ2
j,kI




∑

(j,k)∈Bi
j

z2
j,k > λ∗L− λ∗ − 1




≤ 2(λ∗L− λ∗ − 1)e−
L
2
(λ∗−(λ∗+1)L−1−log(λ∗−(λ∗+1)L−1)−1)

+ 8n
∑

(j,k)∈Bi
j

(Eξ2r
j,k)

1
r


P (

∑

(j,k)∈Bi
j

z2
j,k > λ∗L− λ∗ − 1)




1
w

where r, w > 1 and 1
r + 1

w = 1. For m = nε we take 1
w = 1− ε. Then it follows from Lemma

6 and (34) that

D1 ≤ λ∗e
λ∗+1

2 Ln−1 + CLm−1n−1−ε = CLn−1.
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On the other hand, it follows from (34) and (40) (by taking i = 10) that

D2 = E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I


Ac ∩

∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L




≤ E
∑

(j,k)∈Bi
j

(2z2
j,k + 8nξ2

j,k)I(Ac) ≤
∑

(j,k)∈Bi
j

[2(Ez4
j,k)

1
2 + 8n(Eξ4

j,k)
1
2 ] · (P (Ac))

1
2

≤ CL(L−2m)−5 ≤ n−1.

Hence, D = D1 + D2 ≤ CLn−1 and consequently, for some constant C > 0,

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k + CLn−2.

Lemma 7 Let T = 2J and d = min(α − 1
p , 1). Set pi = T

∫ i/T
(i−1)/T g2(x)dx and ḡJ(x) =

∑T
k=1

1√
T

√
pkφJ,k(x). Then for some constant C > 0

sup
g∈F α

p,q(M,ε)
‖ḡJ − g‖2

2 ≤ CT−2d. (41)

Proof: Note that it follows from embedding theorem of Besov spaces that for some constant

M ′ > 0 Bα
p,q(M) ⊆ Bd∞,∞(M ′). Hence for all g ∈ Bα

p,q(M) there exists a constant C > 0

such that |βJ,k − 1√
T

g( k
T )| ≤ C2−J(d+ 1

2
). Let g̃J(x) =

∑T
k=1

1√
T

g( k
T )φJ,k(x). Then

‖g̃J − g‖2
2 =

∑

k

(βJ,k − 1√
T

g(
k

T
))2 +

∑

j≥J

∑

k

θ2
J,k ≤ C22−2dJ + C2−2J(α∧(α+ 1

2
− 1

p
)) ≤ CT−2d.

Since ε ≤ g ≤ C0 for some C0 > 0,

|√pk − g(
k

T
)| =

|T ∫ i/T
(i−1)/T (g2(x)− g2( k

T ))dx|
√

T
∫ i/T
(i−1)/T g2(x)dx + g( k

T )
≤

2C0T
∫ i/T
(i−1)/T |g(x)− g( k

T )|dx

2ε
≤ CT−d.

Hence ‖g̃J − ḡJ‖2
2 = 1

T

∑
k(
√

pk − g( k
T ))2 ≤ CT−2d and consequently

sup
g∈F α

p,q(M,ε)
‖ḡJ − g‖2

2 ≤ sup
g∈F α

p,q(M,ε)
(2‖g̃J − g‖2

2 + 2‖g̃J − ḡJ‖2
2) ≤ CT−2d.

7.4 Proof of Theorem 4

In this section we show the result holds for f̂ given in (12). In Section 7.6, we will see the

difference of the risk between f̂ and f̃ is o
(
n−2α/(2α+1)

)
which is negligible.
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Let Y and θ̂ be given as in (20) and (10) respectively. Then,

E‖
√̂

f −
√

f‖2
2 =

∑

k

E(ˆ̃θj0,k − θ̃j,k)2 +
J−1∑

j=j0

∑

k

E(θ̂j,k − θj,k)2 +
∞∑

j=J

∑

k

θ2
j,k

≡ S1 + S2 + S3 (42)

It is easy to see that the first term S1 and the third term S3 are small.

S1 = 2j0n−1ε2 = o(n−2α/(1+2α)) (43)

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 (44)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk|p)1/p ≤ M . Now (44) yields that

S3 =
∞∑

j=J

∑

k

θ2
j,k ≤ C2−2J(α∧(α+ 1

2
− 1

p
))
. (45)

Proposition 2, Lemma 7 and Equation (33) yield that

S2 ≤ 2
J−1∑

j=j0

∑

k

E(θ̂j,k − θ′j,k)
2 + 2

J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ 6
J−1∑

j=j0

∑

k

ε2j,k + Cn−1 + 10
J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cm−4 + Cn−1 + CT−2d (46)

We now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n]. So,

2J1 ≈ n1/(1+2α). Then (46) and (44) yield

S2 ≤ 8λ∗
J1−1∑

j=j0

2j/L∑

i=1

Ln−1 + 8
J−1∑

j=J1

∑

k

θ2
j,k + Cn−1 + CT−2d ≤ Cn−2α/(1+2α) (47)

By combining (47) with (43) and (45), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for p ≥ 2.

Now let us consider the case p < 2. First we state the following lemma without proof.

Lemma 8 Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, · · · , k}. Then

supx∈S

∑k
i=1(xi ∧A) ≤ B ·A1−p for all A > 0.
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Let J2 be an integer satisfying 2J2 ³ n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑

i=1




∑

(j,k)∈Bi
j

θ2
j,k




p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 8 that

J−1∑

j=J2

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) . (48)

On the other hand,

J2−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤

J2−1∑

j=j0

∑

b

8λ∗Ln−1 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

(49)

Putting (43), (45), (48) and (49) together yields E‖θ̂ − θ‖2
2 ≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) .

Remark 4 The condition 2α2−α/3
1+2α > 1

p is purely due to approximation error over Besov

spaces. To make the other terms negligible (or at least not dominant) for all α, we need to

have m−4 = O(n−
2α

1+2α ) and T
−2((α− 1

p
)∧1) = O(n−

2α
1+2α ). This condition puts constraints on

both m and α (and p). We choose m = n
1
4 and so T = n

3
4 . Then we need 3

2(α− 1
p) > 2α

1+2α

or equivalently 2α2−α/3
1+2α > 1

p . The other condition, m ≥ n
1
4 , is needed for bounding the

stochastic error.

7.5 Asymptotic optimality under L2 Loss

Proof of Corollary 2: In this section, we only give a proof for f̂ given in (12). See the next

section for f̃ .

The L2 loss can be related to Hellinger loss as follows

E‖f̂ − f‖2
2 = E

∫ (√
f̂ −

√
f

)2 (√
f̂ +

√
f

)2

≤ 2E

∫ (√
f̂ −

√
f

)2 (
f̂ + f

)
.

Since f is bounded by a constant C0, we then have

E‖f̂ − f‖2
2 ≤ 2 (C + C0) E

∫ (√
f̂ −

√
f

)2

+ 2E

∫ (√
f̂ −

√
f

)2

f̂ I

(∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

)
.

where the constant C will be specified later. To prove the Theorem, it suffices to show the

second term is negligible for an appropriate constant C. The Cauchy-Schwarz inequality
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implies
[
E

∫ (√
f̂ −

√
f

)2

f̂ I

(∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

)]2

≤ P

(∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

)
E

∫ (√
f̂ −

√
f

)4

f̂2

≤ 2P

(∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

)
E

∫ (
f̂4 + f2f̂2

)
.

It then suffices to show that there exists a constant C such that

sup√
f∈F α

p,q(M,ε)

P

{∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

}
≤ Cln

−l,

for any l > 1, since it is easy to see that a crude bound for E
∫ (

f̂4 + f2f̂2
)

is Cn4.

Recall that we can write the discrete wavelet transform of the binned data as

uj,k = θ′j,k + εj,k +
1

2
√

n
zj,k + ξj,k

where θ′jk are the discrete wavelet transform of (
√

pi√
T

) which are approximately equal to

the true wavelet coefficients θjk of
√

f . Note that
∣∣∣θ′jk − θjk

∣∣∣ = O
(
2−j(d+1/2)

)
, for d =

min (α− 1/p, 1) . Note also that a Besov Ball Bα
p,q (M) can be embedded in Bd∞,∞ (M1) for

some M1 > 0. (See, e.g., Meyer (1992)). From the equation above, we have

2j0∑

k=1

θ̃´j0,kφj0,k(t) +
J−1∑

j=j0

2j∑

k=1

θ′j,kψj,k(t) ∈ Bd
∞,∞ (M2)

for some M2 > 0. Applying the Block thresholding approach, we have

θ̂jk = (1− λLσ2

S2
(j,i)

)+θ′j,k + (1− λLσ2

S2
(j,i)

)+εj,k + (1− λLσ2

S2
(j,i)

)+

(
1

2
√

n
zj,k + ξj,k

)

= θ̂1,jk + θ̂2,jk + θ̂3,jk , for (j, k) ∈ Bi
j , j0 ≤ j < J.

Note that
∣∣∣θ̂1,jk

∣∣∣ ≤
∣∣∣θ′j,k

∣∣∣ and so ĝ1 =
2j0∑

k=1

θ̃′j0,kφj0,k +
J−1∑

j=j0

2j∑

k=1

θ̂1,j,kψj,k ∈ Bd
∞,∞ (M2) . This

implies ĝ1 is uniformly bounded. Note that T
1
2

(∑
j,k

(
ε2j,k

))1/2
= T

1
2 · O (

m−2
)

= o (1) ,

so W−1 · T 1
2

(
θ̂2,jk

)
is a uniformly bounded vector. For 0 < β < 1/6 and a constant a > 0

we have

P
(∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
)

≤ P
(∣∣∣θ̂3,jk

∣∣∣ > aT−(β+1/2)
)

≤ P

(∣∣∣∣
1

2
√

n
zj,k

∣∣∣∣ >
1
2
aT−(β+1/2)

)
+ P

(
|ξj,k| > 1

2
aT−(β+1/2)

)

≤ Aln
−l
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for any l > 1 by Mill’s ratio inequality and Inequality (31). Let A = ∪
j,k

{∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
}

.

Then P (A) = Cln
−l. On the event Ac we have

ĝ3 (t) =
J−1∑

j=j0

2j∑

k=1

θ̂3,jkψj,k(t) ∈ Bβ
∞,∞ (M3) , for some M3 > 0

which is uniformly bounded. Combining these results we know that for C sufficiently large,

sup√
f∈F α

p,q(M,ε)

P

{∥∥∥∥
√̂

f

∥∥∥∥
∞

> C

}
≤ sup√

f∈F α
p,q(M,ε)

P (A) = Cln
−l. (50)

7.6 Normalization

We now show that the normalized estimator f̃ has the same properties as the estimator f̂ .

Theorem 5

sup√
f∈F α

p,q(M,ε)

E‖f − f̃‖2
2 ≤ (1 + o (1)) sup√

f∈F α
p,q(M,ε)

E‖f − f̂‖2
2. (51)

sup√
f∈F α

p,q(M,ε)

E‖
√

f −
√

f̃‖2
2 ≤ (1 + o (1)) sup√

f∈F α
p,q(M,ε)

E‖
√

f −
√

f̂‖2
2. (52)

Proof of Theorem 5: We will only prove (51). The Cauchy-Schwarz inequality yields

E‖f − f̃‖2
2 ≤

(√
E‖f − f̂‖2

2 +
√

E‖f̂ − f̃‖2
2

)2

.

We know sup√f∈F α
p,q(M,ε) E‖f − f̂‖2

2 ≥ cn−2α/(2α+1) in Theorem 2. It thus suffices to show

sup√
f∈F α

p,q(M,ε)

E‖f̂ − f̃‖2
2 = o

(
n−2α/(2α+1)

)
.

We write
∫ (

f̂ − f̃
)2

=
(∫

f̂ − 1
)2 ∫

f̂2/
(∫

f̂
)2

, where

∫
f̂ =

2j0∑

k=1

ũ2
j0,k +

J−1∑

j=j0

2j∑

k=1

(1− λLn−1

S2
(j,i)

)2+u2
j,k

and S2
j,i ≡

∑
(j,k)∈Bi

j
u2

j,k with Bi
j = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL}( see Section 4.1). Let

D =
{

x :
∫

f̂2 ≥ ε−1
1 or

∫
f̂ ≤ ε1

}
where ε1 will be specified later, then we have

E

∫ (
f̂ − f̃

)2
= E

[(∫
f̂ − 1

)2 ∫
f̂2/

(∫
f̂

)2

IDc

]
+ E‖f̂ − f̃‖2

2ID

≤ ε−3
1 E

(∫
f̂ − 1

)2

+ 2(E‖f̂ − f̃‖4
2)

1/2P 1/2 (D) .
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To prove the theorem, it suffices to show

(i). sup√
f∈F α

p,q(M,ε)

E‖f̂ − f̃‖4
2 ≤ Cnb for a fixed b > 0 and sup√

f∈F α
p,q(M,ε)

P (D) ≤ Cln
−l for all l > 0.

(ii). sup√
f∈F α

p,q(M,ε)

E

(∫
f̂ − 1

)2

= o (1) sup√
f∈F α

p,q(M,ε)

E‖f − f̂‖2
2.

The first part of (i) follows from the following crude bound,

∫
f̂2 ≤ Cn4




2j0∑

k=1

ũ4
j0,k +

J−1∑

j=j0

2j∑

k=1

(1− λLn−1

S2
(j,i)

)4+u4
j,k


 ≤ Cn4

(∫
f̂

)2

which implies
∫

f̃2 = O
(
n4

.

)
. To establish the second part of (i), it is enough to show

sup√f∈F α
p,q(M,ε) P

(∫
f̂ ≤ ε1

)
≤ Cln

−l for all l > 0 since P
(∫

f̂2 ≥ 1/ε1

)
decays faster than

any polynomial of n−1 from equation (50) for ε1 sufficiently small. Let

A =
2j0∑

k=1

ũ2
j0,k +

log1/2 n∑

j=j0

2j∑

k=1

(1− λLn−1

S2
(j,i)

)2+u2
j,k, B =

2j0∑

k=1

ũ2
j,k +

log1/2 n∑

j=j0

2j∑

k=1

u2
j,k

Note that
∫

f̂ ≥ A, and −2λLn−1 ≤ ∑
(j,k)∈Bi

j
[(1− λLn−1

S2
(j,i)

)2+u2
j,k−u2

j,k] ≤ 0. By the Hoeffd-

ing’s inequality we have P (|A−B −E (A−B)| ≥ t) decays faster than any polynomial of

n−1 for a fixed t > 0. It is easy to see EA = EB = 1 + o (1), i.e., A and B are both

consistent estimator of
∫

f . Write

P (A ≤ ε1) ≤ P (A−B ≤ ε1 − 1/2, B ≥ 1/2) + P (B ≤ 1/2)

≤ P (A−B ≤ ε1 − 1/2) + P (B − EB ≤ 1/2−EB) .

Since it is obvious to see P (|B − EB| ≥ 1/2− EB) decays faster than any polynomial

of n−1 and so does P (|A−B| ≥ 1/2− ε1) for ε1 sufficiently small, then P
(∫

f̂ ≤ ε1

)
≤

P (A ≤ ε1) decays faster than any polynomial of n−1 uniformly over Fα
p,q(M, ε).

We now turn to (ii). Let J−1 =
[(

1
1+2α − ε2

)
log2 n

]
and J+

1 =
[(

1
1+2α + ε2

)
log2 n

]
for

some ε2 > 0. Note that E
(∫

f̂ − 1
)2

= E

(
∫ (√

f̂

)2

− ∫ (√
f
)2

)2

. So

E

(∫
f̂ − 1

)2

= E





 ∑

j≤J−1

+
∑

J−1 <j<J+
1

+
∑

j≥J+
1


∑

k

(
θ̂2
j,k − θ2

j,k

)



2

≤ 2E





 ∑

j≤J−1

+
∑

j≥J+
1


∑

k

(
θ̂2
j,k − θ2

j,k

)



2

+ 2E


 ∑

J−1 <j<J+
1

∑

k

(
θ̂2
j,k − θ2

j,k

)



2

= R1 + R2.
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Let gP denote the projection of a function g to a subspace which only contains functions

whose coefficients vanish with resolutions between J−1 and J+
1 . We write

R1 = E

(∫ (√̂
fP

)2

−
∫ (√

fP

)2
)2

.

Similar to equation (50) we have sup√f∈F α
p,q(M,ε) P

(
x :

∥∥∥f̂P

∥∥∥
∞
≥ M1

)
≤ Cln

−l for some

M1 > 0 and any l > 1, then R1 is bounded by CE
∫ (√̂

fP −
√

fP

)2
+ C/n, where

E

∫ (√̂
fP −

√
fP

)2

≤
∑

j

2j∑

k=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cm−4 + Cn−1 + CT−2d

= o
(
n−2α/(2α+1)

)

uniformly over all f following from similar arguments for equations (46), (47) and (48) in

the section of the proof of the main theorem. Now we show R2 = o
(
n−2α/(2α+1)

)
uniformly

over all f . Write θ̂j,k = âj,kuj,k = âjk

(
θ′j,k + εj,k + 1

2
√

n
zj,k + ξj,k

)
where 0 ≤ âj,k ≤ 1 is

the shrinkage factor, then R2 is bounded by

2E


 ∑

J−1 <j<J+
1

∑

i

(
â2

j,k − 1
)
θ2
j,k




2

+ 2E


 ∑

J−1 <j<J+
1

∑

i

â2
j,k

(
u2

j,k − θ2
j,k

)



2

≤ 2E


 ∑

J−1 <j<J+
1

∑

i

θ2
ij




2

+ 2E


 ∑

J−1 <j<J+
1

∑

i

(u2
j,k − θ′2j,k + θ′2j,k − θ2

j,k)




2

= 2E


 ∑

J−1 <j<J+
1

∑

i

θ2
ij




2

+ 2J+
1 +2E

∑

J−1 <j<J+
1

∑

i

(
u2

j,k − θ′2j,k
)2 + 2


 ∑

J−1 <j<J+
1

∑

i

(θ′2j,k − θ2
j,k)




2

= R21 + R22 + R23

It is straightforward to see

R22 ≤ C
2J+

1

n


 ∑

J−1 <j<J+
1

∑

i

θ′2j,k +
1
n


 ≤ C

2J+
1

n


 ∑

J−1 <j<J+
1

∑

i

θ2
j,k + CT−2d


 ,

and by the Cauchy-Schwarz inequality we have

R23 ≤
∑

J−1 <j<J+
1

∑

i

(
θ′j,k − θj,k

)2 ·
∑

J−1 <j<J+
1

∑

i

(
θ′j,k + θj,k

)2
< CT−2d.
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From equation (45) we have
∑

J−1 <j<J+
1

∑
j θ2

j,k ≤ C
(
2J−1

)−2(α−(1/p−1/2)+)
. It is easy to

check 2
(
α− (1/p− 1/2)+

)
> α under the assumptions of Theorem 4 and so

R2 ≤ C

((
2J−1

)−4(α−(1/p−1/2)+)
+

2J+
1

n

(
2J−1

)−2(α−(1/p−1/2)+)
)

= o
(
n−2α/(1+2α)

)

uniformly over all f , when ε2 is sufficiently small. This proves (ii).

7.7 Proof of Theorem 1

We have given a complete proof of Theorem 4, which gives asymptotic risk properties of

our procedure for the Poissonized density estimation model,

Fn : N ∼ Poi(n) and given N , x1, x2, . . . , xN i.i.d. with density f.

We shall now show that corresponding results hold for the density estimation problem,

En : x1, x2, . . . , xn i.i.d. with density f .

Proof of Theorem 1: The Poisson experiment Fn can be generated from En as follows.

Generate N ∼ Poisson (n). If N > n, generate N − n i.i.d. additional observations with

density f ; otherwise, throw away N − n observations.

Recall that we use Ni to denote the number of observations in the ith bin for Fn and

Yi denotes
√

Ni + 1/4 for Fn. Similarly, let N∗
i be the number of observations in the ith

bin for En and Y ∗
i =

√
N∗

i + 1/4. Apply the root-unroot procedure for both En and Fn

and obtain two estimators of f for En and Fn respectively. Let ĥ denote the estimator of

f for Fn. Following the notations in Section 4.1
√̂

f and
√̂

h are given as follows

√̂
h =

2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t), θ̂j,k = (1− λ∗L
4nS2

j,i

)+ uj,k

√̂
f =

2j0∑

k=1

ˆ̃
θ∗j0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂∗j,kψj,k(t), θ̂∗j,k = (1− λ∗L
4nS∗2j,i

)+ u∗j,k.

where (u∗j,k) = W · (n− 1
2 Y ∗

i ), and S∗2j,i ≡
∑

(j,k)∈Bi
j
u∗2j,k with Bi

j = {(j, k) : (i − 1)L + 1 ≤
k ≤ iL}. Note that the Cauchy-Schwarz inequality yields

E‖
√̂

f −
√

f‖2
2 ≤

(√
E‖

√̂
f −

√̂
h‖2

2 +
√

E‖
√̂

h−
√

f‖2
2

)2

.
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It then suffices to show sup√
f∈F α

p,q(M,ε)

E‖
√̂

f −
√̂

h‖2
2 = O

(
n−1

)
to establish the theorem.

Note that ‖√̂f −
√̂

h‖2
2 =

∑2j0

k=1

(
ũj0,k − ũ∗j0,k

)2
+

∑J−1
j=j0

∑2j

k=1

(
θ̂j,k − θ̂∗j,k

)2
. It is easy to

check
∑

(j,k)∈Bi
j

(
θ̂j,k − θ̂∗j,k

)2
≤ 2[(1− λ∗L

4nS∗2j,i

)+]2
∑

(j,k)∈Bi
j

(
uj,k − u∗j,k

)2 + 2[(1− λ∗L
4nS2

j,i

)+ − (1− λ∗L
4nS∗2j,i

)+]2S2
j,i

≤ 6
∑

(j,k)∈Bi
j

(
uj,k − u∗j,k

)2

by applying the Cauchy-Schwarz inequality twice. Then we have

‖
√̂

f −
√̂

h‖2
2 ≤ 6[

2j0∑

k=1

(
ũj0,k − ũ∗j0,k

)2 +
J−1∑

j=j0

2j∑

k=1

(
uj,k − u∗j,k

)2] = 6
1
n

T∑

i=1

(Yi − Y ∗
i )2 . (53)

Note that Yi = Y ∗
i −

(√
N∗

i + 1/4−
√

Ni + 1/4
)

= Y ∗
i − N∗

i −Ni√
N∗

i +1/4+
√

Ni+1/4
, and given N

and Ni the distribution of |N∗
i −Ni| is Binomial(|N − n| , ∫

i
T

i−1
T

f(x)dx). It is then easy to

check E (Yi − Y ∗
i )2 ≤ Cn−3/4. Thus E‖√̂f −

√̂
h‖2

2 ≤ 6C/n and the asymptotic optimality

of f̂ under Hellinger loss is proved.

The asymptotic optimality of f̂ under L2 loss and the parallel result for f̃ can be proved

by using the upper bound in equation (53) together with similar arguments given in Sections

7.5 and 7.6.
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