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Abstract

The standard methods of diagnosing disease based on antibody microtiter plates are

quite crude. Few methods create a rigorous underlying model for the antibody levels of

populations consisting of a mixture of positive and negative subjects, and fewer make

full use of the entirety of the available data for diagnoses. In this paper, we propose a

Bayesian hierarchical model that provides a systematic way of pooling data across dif-

ferent plates, and accounts for the subtle sources of variations that occur in the optical

densities of typical microtiter data. In addition to our Bayesian method having good

frequentist properties, we find that our method outperforms one of the standard crude

approaches (the ”3SD Rule”) under reasonable assumptions, and provides more accurate

disease diagnoses in terms of both sensitivity and specificity.

1 Introduction

The diagnosis of a large number of infectious diseases relies on the detection of antibod-

ies in the sera or saliva of patients. The presence of a high amount of antibodies specific
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to a disease agent is a strong indicator of the presence of the disease, as these antibodies

are evidence that the body is trying to fight off an infection, or has fought off an infection

in the recent past. Though these antibody levels are hard to measure directly, one can

measure the optical density of a sample through enzyme linked immunosorbent assays

(ELISA). Comparing these optical densities with those calibrated to antibody concentra-

tions of known samples (i.e. controls) allows one to estimate the antibody level of those

unknown samples.

ELISAs are typically run on a series of microtiter plates, each containing 96 wells. On

each plate, the majority of wells contain samples from the population of interest, some of

whom may be infected with the disease and others who are not. A portion of the wells on

each plate are filled with negative controls (samples from patients known to be negative),

while another portion of the wells contains samples from positive controls.

When analyzing data from microtiter plates, the standard procedures used to classify

samples as positive or negative are surprisingly crude. One such example is what we in-

formally call ”The 3SD Rule.” For each microtiter plate, the negative control samples are

used to compute an empirical average and standard deviation that is taken to represent

the population of uninfected individuals. For each plate, a cutoff value is assigned as

three SDs above the mean of these negative controls. All of the unknown samples on that

plate are classified as positive if their measurements exceed this cutoff, and are diagnosed

as negative otherwise (Irion et al., 2002). This is an example of an unpooled procedure, as

each plate has its own cutoff, determined only by measurements that are on that specific

plate, and makes no use of the data from any of the other plates in the dataset. Even more

sophisticated methods, which utilize serial dilution curves to better capture nonlinear

relationships between optical densities and antibody concentrations, are unpooled pro-

cedures as each plate’s dilution curve is derived only from measurements on that plate

(Higgins et al., 1998; Gelman et al., 2004).

A more sophisticated method for diagnosis is by directly modeling the antibody levels

of a population through a two-component mixture model, where each component corre-

sponds to the negative and positive sub-populations, with an unknown fraction of people

belonging to each group. Two-component mixture models have been used in previous
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bioassay analyses (Moulton et al., 2002).

Our goal in this paper is to make more accurate diagnoses by making use of the data

across all the plates simultaneously. If all of the plates used for diagnostics were identical,

one could fit a single two-component mixture model across all wells and plates. However,

even under highly controlled conditions, the plates are likely to have small, but noticeable

differences that systematically skew the antibody levels of positive and negative subjects

upward or downward. A second option would be to fit a separate mixture model for each

plate. Such analysis would have limited power due to a relatively small sample size on

each plate. Rather, we propose a compromise between these two extremes. Namely, we

develop a hierarchical Bayesian approach, in which we consider the effects of the plates

to come from a common distribution. This allows us to have distinct models for each

plate, but also lets us “share” information across the plates regarding expected variation

of within-plate antibody levels.

2 An Example of Microtiter Plate Data

To motivate the incorporation of plate effects into our model, we first look at a series of

microtiter plates from a lab in Peru. Sera tested on these plates were previously found

to react relatively weakly to a commercially-available ELISA test for Chagas disease (Ve-

rani et al., 2009; Levy et al., 2009). Researchers are therefore developing an ELISA test

which derives antigens from a local strain of T. cruzi. In our exploratory data analysis,

we denote the optical measurements of the Chagas data by Yij , where i indexes plates,

and j indexes wells within plates. We focus for now on differences in the logarithm of Yij

across plates i. In the first set of boxplots (Figure 1, top), we plot log(Yij) for all of our

non-control subjects. There are substantial differences in the average response across the

18 plates. However, this is not necessarily due to plate effects because some plates will

likely have more positive subjects than others (even though we do not have definitive

positive/negative diagnostic results for these subjects), and the difference between den-

sity levels of these two groups is expected to be large (even on the log scale). However,

when we look at the plot of the optical levels for the same 7 negative controls on each
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Figure 1: Boxplots of Logarithms of Optical Densities for Patients (above) and Negative

Controls (below).

plate, the disparity in the readings from plate-to-plate is also stark. The bottom plot of

Figure 1 suggests that the plate effects are substantial.

3 The Model

We consider a model in which the optical densities of the population come from a mix-

ture of log-normal distributions (one component for people infected with the disease, one

component for those not infected), but scaled by a factor corresponding to the contami-
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nation of a particular plate. Again, as introduced before, let Yij be the optical density for

an observation in the i-th plate and j-th well. βi is the multiplicative effect from plate i

upon the optical densities in its corresponding wells. α is the mixture plate parameter

that indicates the fraction of subjects in the population who are infected. We augment our

data with the latent variables Iij where Iij = 1 if Yij comes from an infected subject, and 0

otherwise. That is, Iij comes from a Bernoulli with parameter α.

Our model for the unknown data is Yij = βi(X
neg
ij )1−Iij(Xpos

ij )Iij , where

log(Xneg
ij ) ∼ N(µneg, σ

2
neg)

log(Xpos
ij ) ∼ N(µpos, σ

2
pos)

On the log scale, our model can be reexpressed as follows:

log(Yij) = log(βi) + (1− Iij)(log(Xneg
ij )) + Iij(log(Xpos

ij ))

If in conjunction to these unlabeled observations, we include some labeled data, namely

the optical densities of a predetermined number of negative control wells, one can in the-

ory obtain much better estimates for the parameters of this mixture model. In the par-

ticular dataset we will examine in Section 5, the negative control subjects are simply a

team of scientists in the lab who are assumed to be free of Chagas disease. Each plate

has seven wells, each corresponding to one of these negative controls. Thus we observe

variability both between controls, as indicated by the variation across these seven optical

densities on a given plate, and also variability within the control subjects, measured by

the variation of readings of each individual across the plates. To fully reflect the nature of

these replications, our model should be able to capture both of these forms of variations.

We let Y c
ij be the optical density for the i-th control subject on the j-th plate (or the j-th

replication).

For the negative control data, we have Y c
ij = βi(X

c
ij), and to distinguish the two types

of variation, we use the following construction.

log(Xc
ij) ∼ N(τj, κ

2)

τj ∼ N(µneg, λ2)
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Here, κ2 represents the plate-to-plate variation of a control’s replicated samples, and λ2

captures the variation between labeled control subjects. The advantage of this formula-

tion is that the unconditional distribution of log(Xc
ij) is itself normal, with mean µneg and

variance κ2 + λ2, where we naturally set σ2
neg = κ2 + λ2.

Next, since we would like the plate effects to be strictly positive and centered around

1 (corresponding to “neutral” plate effect), we let βi come from a lognormal distribu-

tion, and log(βi) ∼ N(−ν2

2
, ν2). (Since the mean of a log-normal distribution is given by

eµ+
σ2

2 , this parametrization ensures that the mean of βi is 1). Another reasonable approach

would be to have log(βi) ∼ N(0, ν2), thereby forcing the median of βi to be 1. However,

we prefer our current approach as we find it easier to interpret on scales of means rather

than medians.

Finally, we impose the following uninformative prior distributions on our parameters:

µneg, µpos ∼ Unif(−∞,∞)

σ2
pos ∼ Gamma(0, 0)

λ2, κ2 ∼ Unif(0,∞)

α ∼ Unif(0, 1)

1

ν2
∼ Gamma(5, 5)

.

To approximate the posterior distribution our unknown parameters, we would like to

simulate draws from the posterior distribution

P (µneg, µpos, σ
2
neg, σ

2
pos, α, β, ν

2|Y).

To simplify our notation, let us define yij = log(Yij), ycij = log(Y c
ij) bi = log(βi), and let

θ = (µneg, µpos, σ
2
pos, κ

2, λ2), so that θ represents the set of parameters with improper flat

prior distributions. Taking advantage of the conditional independence of y and yc, we

write out the joint posterior as:

P (I,~b, ~τ , ν2, α, θ|Y) ∝
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P (y|I,~b, θ)P (yc|I,~b, ~τ , θ)P (I|α)P (~b|ν2)P (~τ |θ)P (ν2)P (α, θ)

The components of this posterior distribution are:

P (y|I,b, θ) ∝
∏
i,j

(
1

σneg
e
−(yij−bi−µneg)

2

2σ2neg

)1−Iij (
1

σpos
e
−(yij−bi−µpos)

2

2σ2pos

)Iij

P (yc|I,b, ~τ , θ) ∝
∏
i,j

(
1

κ
e
−(ycij−bi−τj)

2

2κ2

)
P (I|α) ∝ α

∑
i,j Iij(1− α)

∑
i,j(1−Iij)

P (b|ν2) ∝
∏
i

1

ν
e
−(bi+

ν2

2 )2

2ν2

P (~τ |θ) ∝
∏
j

1

λ
e
−(τj−µneg)

2

2λ2

P (ν2) ∝ 1

(ν)6
e
−5

ν2

P (α, θ) ∝ 1

where Y = (y,yc). We obtain samples from the posterior distribution via a Markov Chain

Monte Carlo (MCMC) scheme, consisting of Gibbs Sampling and Metropolis-Hastings

steps (Hastings, 1970; Gelfand and Smith, 1990; Casella and George, 1992).

For each iteration of our MCMC implementation, we obtain a vector of parameters

sampled from the joint posterior distribution. Combined with the optical density read-

ings, we can calculate the posterior probability that a particular sample comes from the

infected group. We then average these posterior probabilities (on a well-by-well basis)

over all the iterations within that chain. Our classification rule is based on cutoff val-

ues for these posterior probabilities. If a sample’s average posterior probability is less

than the predetermined cutoff, we classify the sample as negative. If the probability of

being positive exceeds the cutoff, we classify that sample as positive. We then compute

usual measure of sensitivity and specificity of our procedure by determining how many

of our classified negatives/positives match up with the actual negative/positive state of

the sample (since the data is simulated, we definitively know the true diagnosis of each
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subject). A higher probability cutoff will naturally lead to fewer true positives (and hence

a lower sensitivity), and also lead to more true negatives (and thus higher specificity).

To choose this probability cutoff, a practitioner would choose a cutoff that best re-

flected their utility with respect to the balance between false positives and false nega-

tives. A higher cut-off would reduce false positives (increased specificity) at the expense

of more false negatives (decreased sensitivity). A lower cut-off would give preference

to sensitivity over specificity. Reassuringly, our simulation results reviewed below sug-

gest that our method has generally improved sensitivity and specificity over the 3SD rule

regardless of the cutoff that is used.

4 Details of MCMC Implementation

Due to the conjugacy of our prior distributions with the joint-likelihood function, many of

conditional posterior distributions come from standard distributions, and we can sample

them directly.

Sampling the Well Indicators

The positive/negative labels for each well come from Bernoulli distributions.

Iij|yij, bi, ν2, α, θ ∼ Bin(1, pij)

pij =
αφ(zposij )

αφ(zposij ) + (1− α)φ(znegij )

where φ is the pdf for a standard normal, zposij =
yij−bi−µpos

σpos
, and znegij =

yij−bi−µneg
σneg

.

Sampling the Normal-Normal Mixture Parameters

Letting nC be the number of controls on each plate, n0 =
∑

(1 − Iij) and n1 =
∑
Iij , the

conditional posterior distribution for the disease prevalence α is a beta distribution:

α|y, I,~b, ν2, θ ∼ Beta(1 + n1, 1 + n0)

8



Letting dij = yij − bi, the conditional densities of the two means of the mixture model

are the following normal distributions.

µneg|y, I,~b, ~τ , ν2, α, µpos, σ2
pos, κ

2, λ2 ∼ N


∑
dij1{Iij=0}

σ2
neg

+
∑
τj

λ2

n0

σ2
neg

+ nC
λ2

,
1

n0

σ2
neg

+ nC
λ2


µpos|y, I,~b, ~τ , ν2, α, µneg, σ2

pos, κ
2, λ2 ∼ N(

∑
dij1{Iij=1}

n1

,
σ2
pos

n1

)

Since the inverse-gamma prior distribution for σ2
pos is conjugate to the normal likeli-

hood, its posterior distribution is also inverse-gamma. Letting SSpos =
∑

(zposij − µpos)2,

the conditional posterior distribution of the variance of the positive group is given by:

σ2
pos|y, I,~b, ~τ , ν2, α, µneg, µpos, κ2, λ2 ∼ InvGamma(

n1

2
,
SSpos

2
)

Sampling the Plate Effect Parameters

Next, we sample the (log) plate effect parameters, b. If we let zβij = yij − µij , then

zβij ∼ N(bi, σ
2
ij) where µij and σ2

ij correspond to the positive/negative assignment of ob-

servation yij, y
c
ij . This implies that the corresponding conditional posterior distribution

for bi is:

bi|yij, Iij, ν2, α, θ ∼ N(mi, s
2
i ) where

mi =

∑
j

zβij
σ2
ij

+ 1
2∑

j
1
σ2
ij

+ 1
τ2

s2i =
1∑

j
1
σ2
ij

+ 1
τ2

Sampling the variance ν2 of the log of the plate effects b is trickier. Since the distribu-

tion of b is constrained so that β has mean 1, the modeled distribution of bi has the form

bi ∼ N(−ν2

2
, ν2), which is no longer conjugate to the InvGamma(5, 5) prior distribution

imposed on ν2. Thus, the posterior conditional distribution ν2|yij, Iij, bi, α, θ is sampled

indirectly using a Metropolis-Hastings step.
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Sampling the Means of the Negative Controls, ~τ

Letting nP be the total number of plates (and hence number of replications for each neg-

ative control subject), and dcij = ycij − bi, the posterior conditional distributions for each τj

are normal.

τj|y, I,~b, ν2, α, θ ∼ N

(
µneg
λ2

+
∑
i d
c
ij

κ2

1
λ2

+ nP
κ2

,
1

1
λ2

+ nP
κ2

)

Sampling the Two Variance Components of σ2neg

Finally, we need to sample the two components of σ2
neg, κ2 and λ2. The conditional poste-

rior distribution for the negative control parameters (conditioned on µneg and b), where

nC is the number of control subjects, and nP is number of plates, is now:

P (τ, κ2, λ2|yc,yneg) ∝ P (τ |λ2)P (yc|τ, κ2)P (yneg|λ2, κ2)

∝ 1

(λ2)
nC
2

e

(
−

∑
i(τj−µneg)

2

2λ2

)
1

(κ2)
nC∗nP

2

e

(
−

∑
i,j(y

c
ij−bi−τj)

2

2κ2

)
1

(λ2 + κ2)
n0
2

e

(
−

∑
i,j(y

neg
ij
−bi−µneg)

2

2(κ2+λ2)

)

Since the resulting conditional distributions for λ2 and κ2 are non-standard, we incor-

porate another Metropolis step to sample from λ2 and then κ2 (Alternatively, one could

also sample these two parameters jointly (Hastings, 1970)).

Implementation

The entire MCMC procedure above can be implemented in R using the ImmunoassayMix-

ture() function, whose output is a matrix containing the iterations for all the key parame-

ters in the model. This function also allows one to monitor the chains carefully to ensure

that the sampler is converging to non-degenerate parameters. In particular, when the two

components of the mixture model have too much overlap, the MCMC can lead to parame-

ter estimates that are poorly identified (Lindsay and Roeder, 1993). ImmunoassayMixture()

and the corresponding documentation file can be found in the supplemental materials.
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5 Simulation Study

In Bayesian models based on noninformative priors, we want the model to produce re-

sults that are consistent with classical frequentist interpretations (Hobert et al., 2011; Mor-

ris, 1983; Rubin, 1984). To assess the frequentist performance of our methodology, we will

consider the following:

1. The overall coverage rate of our posterior distributions. Do our 95% Bayesian poste-

rior intervals in fact cover their respective “true” parameter values 95% of the time

(sample-to-sample variation)?

2. Do the posterior means of our parameter estimates accurately capture the true pa-

rameter values, or are they biased upward or downward?

3. Does adding a substantial number of negative controls greatly increase the accuracy

of our procedures?

In testing this, we first generated 100 distinct simulated datasets, setting “true values”

for α, µneg, µpos, κ2,λ2, σ2
pos, and ν2. These values were chosen to approximately reflect

the typical optical measurements in our data. Using these parameters, we then sampled

values for b and τ . For simplicity, we assumed there were 20 plates, and 40 unlabeled

wells on each plate, and that there were 10 negative controls replicated on each plate. For

each dataset, we ran our MCMC sampler for 6500 iterations (the first 2000 of which were

discarded, after checking that our sampler has converged to the correct joint distribution)

and recorded the 95% posterior intervals for each of these parameters, as well as the

posterior means. After running this procedure for all 100 datasets, we examined each

parameter and observed both the fraction of times that the parameter’s posterior interval

contained its true value, and also the average squared deviation between the posterior

mean and the true value.

Table 1 shows our results for simulated datasets with 20 plates, and 10 negative con-

trols per plate. For the parameters of interest, we observed seemingly good coverage

rates. Namely, the fraction of datasets that resulted in intervals that contained each of the
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“true” values for these parameters ranged between 90 and 98%, close to the desired 95%

coverage.

Another check as to the accuracy of our procedure is to see how the posterior means

differ from the true underlying parameter. Here, we define bias as the simple mean of

(θ̂ − θ) across the 100 simulations, where θ̂ are the posterior means of the respective pa-

rameters. Here, the biases of these parameters are all positive. However, the magnitudes

of these biases are generally pretty small compared to the true values, and thus should

not be of too much concern.

Though the root-mean-squared deviation of a posterior mean and a fixed parameter is

a bit of an awkward metric, it does represent the overall accuracy of this procedure. These

RMSE values seem quite low. Most encouraging are the small errors in estimating κ2, λ2,

and σ2
neg, as this is the most subtle part of our model, and most complicated to implement.

The only possible concern is the relatively large bias and RMSE for ν2. This probably just

reflects the uncertainty of measuring an effect where we only have 20 plates from which

to infer the between-plate variation.

Parameter True Value Coverage Rate RMSE Bias

µneg -1.88 0.94 0.198 0.0332

µpos 0.20 0.95 0.219 0.0246

σ2
neg 0.27 0.96 0.017 0.0027

σ2
pos 0.36 0.94 0.102 0.0259

α 0.125 0.94 0.017 0.0052

λ2 0.17 0.93 0.020 0.0012

κ2 0.10 0.91 0.010 0.0015

ν2 0.49 0.97 0.253 0.1285

Table 1: Simulation Results for 20 plates, 10 Negative Controls per plate

To get a sense as to the effect of number of plates in the accuracy of our results, we per-

formed another simulation with just 5 plates instead of 20 (each plate still consisted of 10

negative controls and 40 unknown subjects). The coverage rates for these parameters are

12



only slightly lower than they were above, except for ν2, which has dropped to 87% (Table

2). However, we begin to see drastic differences in the RMSE’s and biases, which are now

an order of magnitude larger than they were when we used more plates. This suggests

that our Bayesian procedure is quite sensitive to the number of plates we incorporate into

our model.

Parameter True Value Coverage Rate RMSE Bias

µneg -1.88 0.90 0.661 0.3518

µpos 0.20 0.92 0.656 0.2888

σ2
neg 0.27 0.94 0.037 0.0109

σ2
pos 0.36 0.95 0.237 0.0747

α 0.125 0.96 0.037 0.0164

λ2 0.17 0.97 0.036 0.0027

κ2 0.10 0.96 0.022 0.0082

ν2 0.49 0.87 1.122 0.7318

Table 2: Simulation Results for 5 plates, 10 Negative Controls per plate

Lastly, we assess the performance of our model when we reduce the number of con-

trols on each plate. Here, we use 20 plates, but now use just 3 controls (replicated on each

plate) instead of 10. Compared with the 10-control simulation, our biases and RMSE’s

seem more extreme. Our coverage rates though are pretty good, except for µneg, whose

coverage rate drops to 89% (Table 3). This could simply be a consequence of the fact that

when we have fewer controls, we have fewer negative data points, so our estimates for

the parameters of the subgroup of negative patients would likely be less precise.

We also evaluated our classification of positive vs. negative samples via a simulation

study. For the first analysis, we look carefully at the model with 20 plates, but only 3

negative controls. In Figure 2, we plot the sensitivity and specificity of our criterion as

a function of the posterior probability cutoff. For our procedure, the sensitivity remains

fairly high for cutoff probabilities as high as 0.8 (with sensitivity of 0.8), before dropping

off for more stringent tests. The specificity for our procedure is extremely high for prob-

13



Parameter True Value Coverage Rate RMSE “Bias”

µneg -1.88 0.89 0.4605 0.2187

µpos 0.20 0.94 0.4817 0.1787

σ2
neg 0.27 0.98 0.0245 -0.0006

σ2
pos 0.36 0.96 0.1486 0.0362

α 0.125 0.96 0.0283 0.0079

λ2 0.17 0.95 0.0412 -0.0193

κ2 0.10 0.91 0.0361 0.0187

ν2 0.49 0.91 0.7417 0.4301

Table 3: Simulation Results for 20 Plates, 3 Negative Controls per Plate

ability cutoffs as low as 0.1. Thus, nearly all true negative samples have tiny posterior

probabilities of being in the positive group. These extremely high sensitivity and speci-

ficity characteristics for our procedure are a consequence of the fact that the lognormal

mixture distribution for the optical densities leads to fairly high separation between pos-

itive and negative values.
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Figure 2: Sensitivity and Specificity for 20 Plates, 3 Negative Controls. Green curves

represent individual simulations, the black line reflects the average rates for all 1000 sim-

ulations.
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Next, we look at the Receiver Operating Characteristic (ROC) for our method, and

compare it to the classification rates using the 3 SD Rule (Figure 3) (Opsteegh et al.,

2010; Greiner et al., 2000). Though this type of analysis was originally developed as a

frequentist technique (Kurkjian et al., 2005), it extends nicely to the Bayesian framework

(Choi et al., 2006; Wang et al., 2007), and has been used previously in Bayesian analysis

of ELISA tests (Limmathurotsakul et al., 2011; Nielsen et al., 2002). Our method clearly

outperforms the 3 SD rule, as the blue X (denoting the average ROC values of the 3 SD

rule across 1000 datasets) and the majority of the red circles (corresponding to individual

simulations) lie to the lower right of the black line (our procedure). The 3 SD rule results

in roughly a 0.94 and 0.89 sensitivity and specificity respectively. Using our method, if

we required 0.94 sensitivity, we could improve specificity to 0.98. If instead we require a

specificity of 0.89, we could improve our specificity to nearly 0.99. Thus, one could say

that when using just 3 controls, our method dominates the industry standard in terms of

classification rates.
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Figure 3: Plot of Sensitivity vs. 1-Specificity for the two methods (3 controls). Green

curves represent simulated posterior ROC curves under our method. Black line reflects

the average ROC curve across all 1000 simulations. Red dots correspond to the sensi-

tivity/specificities of the individual simulations under the 3SD rule. The blue ”X” is the

average sens./spec. of the 3SD rule under all 1000 simulations.
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We perform a similar analysis for a series of microtiter plates with 7 controls, instead of

3, to more mimic our real optical density data. In Figure 4,the sensitivity and specificity

curves are more ideal including the additional 4 controls. The same probability cutoffs

lead to slightly higher sensitivity and specificity rates than before.
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Figure 4: Sensitivity and Specificity for 20 Plates, 7 Negative Controls. Green curves

represent individual simulations, the black line reflects the average rates for all 1000 sim-

ulations.

Looking at the ROC curves (Figure 5), we see that the 3SD rule performs much better,

as the red dots hover much closer to the black line. This makes sense, as the 3 standard

deviation cutoff for each plate is now computed using 7 controls, as opposed to just 3.

However, while better than before, the 3SD classification procedure is still dominated by

our method.

6 Analysis of Chagas Disease Data

Applying our model to the 18 microtiter plates introduced in Section 2, we obtain the

posterior estimates for our parameters given in Table 4.

Next, we examine the magnitude of the estimated plate effects, as determined by the

median log(β) (Figure 6). Given how we constructed the model for the plate effects, it

is not surprising that the 18 parameters are centered around 0. The magnitudes of these
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Figure 5: Plot of Sensitivity vs. 1-Specificity for the two methods (7 controls). Green

curves represent simulated posterior ROC curves under our method. Black line reflects

the average ROC curve across all 1000 simulations. Red dots correspond to the sensi-

tivity/specificities of the individual simulations under the 3SD rule. The blue ”X” is the

average sens./spec. of the 3SD rule under all 1000 simulations.

effects is surprisingly strong. These values suggest that if we take a sample from one

plate, and transfer it over to another, the log of the measured optical density can easily

increase by 1.0 units. This is consistent with the parameter values above, where ν2 is

noticeably larger than σ2
neg and σ2

pos, suggesting that a larger amount of the variation in

the optical densities can be attributed to the plate effect than to the heterogeneity of the

actual test subjects. Also somewhat surprising is the nature in which the magnitudes of

the plate effects cluster together, in particular for those around -0.5.

For this particular application, our method ends up being far more conservative in

terms of classifying patients as having the disease. In Figure 7, we look at 4 represen-

tative plates, where we overlay our mixture density onto the histogram of the log of

the measurements (using the posterior mean of our parameters to generate the density

curves). The vertical lines represent the plates’ respective cutoffs under the 3SD rule. For

every one of our plates, the 3SD classification threshold is to the left of the mode of the

positive population density in our mixture. Thus, for any posterior probability cutoff we

choose in our method, our procedure will be far more conservative than the one based on
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Parameter 2.5% Quantile 50% Quantile 97.5% Quantile

µneg -1.614 -1.364 -0.989

µpos 0.019 0.602 0.979

σ2
neg 0.189 0.229 0.261

σ2
pos 0.026 0.064 0.378

α 0.027 0.042 0.086

λ2 0.066 0.110 0.157

κ2 0.089 0.116 0.151

ν2 0.125 0.256 0.609

Table 4: Posterior Intervals for Parameters

the 3SD rule, for each of the plates in our data.

When we use these two procedures to compare the classifications, there are four pos-

sible regimes;

1. Observations classified as positive under both methods.

2. Observations classified as negative under both methods.

3. Observations classified as positive under the 3SD rule, but negative under our Bayesian

model.

4. Observations classified as negative under the 3SD rule, but positive under our Bayesian

model.

Due to the stark differences in the sensitivity of these two tests, there were no indi-

vidual subjects that fell into this last regime (negative under 3SD, but positive under our

model). Figure 8 shows how often observations fell into one of these three regimes as a

function of the posterior probability cutoff in our method.

Under our Bayesian model, the estimated posterior probabilities for particular obser-

vations belonging to the positive group are highly polarized. Small optical densities lead

to posterior probabilities that are often less than 0.001, while those samples with high
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Figure 6: (above) Dot plot of the magnitudes of the 18 estimated plate effects, sorted in

increasing order. The lowest dashed line corresponds to the plate with the most negative

effect, the highest dashed line to the most positive of the 18 plates, and so on. (below)

Log measurements of unknowns. Same as Figure 1 but sorted in ascending order of plate

effect.

antibody concentrations often have posterior probabilities higher than 0.99. Since there

are very few observations whose probabilities are between 0.1 and 0.9, the curves for the
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Figure 7: Histogram of the log of the optical densities, overlayed with a mixture den-

sity derived from our procedure. For each plate, the leftmost bell curve is the estimated

Gaussian density curve for the negative subjects, the smaller rightmost bell curve is the

density for the positives. The vertical line represents the (plate-specific) cutoff values

derived from the 3SD rule (log(Ȳ + 3sY ))
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three regimes remain mostly flat in this region.

7 Discussion

Our goal has been to develop a robust model that allows one to perform more accurate

diagnoses for diseases when testing samples on a series to series of different microtiter

plates. Our classification method, based on computing posterior probabilities from a

Bayesian mixture model, works quite well in simulation settings. In particular, it pro-

vides more plausible results than the conventional 3SD rule, and has improved sensitivity

and specificity. Furthermore, the Bayesian approach has excellent frequentist properties.

One can further improve the utility of this model by increasing the number of negative

controls that are replicated on each plate.

While our procedure is designed for measurements that arise from a two-component

mixture model, simulations suggest that this approach is robust to certain deviations from

this model. In particular, when we applied our approach to datasets that arose either

from an all-negative population, or from a three-component normal mixture model (in

which the distribution of the positive subgroup was itself bimodal), we obtained accurate

frequentist coverage of the relevant parameters, and in the latter case, encouraging ROC

characteristics. Results of these simulations can be found in the supplemental materials.

It would be of future research interest to extend our model to allow for the distribution of

the positive subgroup to itself be a mixture of several components.

The model makes the crucial assumption that each unknown sample is randomly al-

located to one of the microtiter plates. If unknown samples are put into the plates in

sequential order (that is, filling up plate 1 before adding samples to plate 2, and so on),

then the β parameters might not be valid measures of the underlying plate-effect, but

rather be a measure of the overall antibody levels for that particular batch of samples,

which may all share some confounding factor that systematically affects their measured

optical densities. For instance, the samples of a particular batch could all come from a

community with a high prevalence of T. cruzi infection, or could all be prepared in the

same laboratory. In the presence of such confounding factors, application of our model
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may lead to too many false negatives on plates with patients from highly infected villages,

and too many false positives for samples placed on plates that come from fairly healthy

regions. Randomizing samples to plates has the benefit of enabling us to make unbiased

estimates of the plate effects, which in turn, lets us pool information across plates to make

better classifications using our model.

In future research, it would be worth considering different priors for the plate-effect

variation parameter, as the prior distribution we have chosen for 1
ν2

may be somewhat

informative. Plausible alternatives include uniform or half-Cauchy priors on ν (Gelman,

2006). However, in our simulation studies, our uniform prior on 1
ν2

led to good frequentist

properties.
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