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miR-128b and ARPP-21
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In this study, we investigate whether miRNAs located within “host” protein-coding genes may regulate the
expression of their host genes. We find that 43 of 174 miRNAs encoded within RefSeq genes are predicted to
target their host genes. Statistical analysis of this phenomenon suggests that gene auto-regulation via miRNAs
may be under positive selective pressure. Our analysis also indicates that several of the 43 miRNAs have a
much lower expectation of targeting their host genes by chance than others. Among these examples, we
identify miR-128b:ARPP-21 (cyclic AMP-regulated phosphoprotein, 21 kD) as a case in which both the
miRNA and the target site are also evolutionarily conserved. We provide experimental support for this
miRNA:target interaction via reporter silencing assays, and present evidence that this isoform-specific gene
auto-regulation has been preserved in vertebrate species in order to prevent detrimental consequences of
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ABSTRACT 

In this study, we investigate whether miRNAs located within “host” protein-coding genes may 

regulate the expression of their host genes.  We find that 43 of 174 miRNAs encoded within 

RefSeq genes are predicted to target their host genes.  Statistical analysis of this phenomenon 

suggests that gene auto-regulation via miRNAs may be under positive selective pressure.  Our 

analysis also indicates that several of the 43 miRNAs have a much lower expectation of targeting 

their host genes by chance than others.  Among these examples, we identify miR-128b:ARPP-21 

(cyclic AMP-regulated phosphoprotein, 21 kD) as a case in which both the miRNA and the target 

site are also evolutionarily conserved.  We provide experimental support for this miRNA:target 

interaction via reporter silencing assays, and present evidence that this isoform specific gene auto-

regulation has been preserved in vertebrate species in order to prevent detrimental consequences of 

ARPP-21 over-expression in brain. 
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Introduction 

MicroRNAs (miRNAs) are small non-coding RNAs, ~21 nucleotides (nt) long, which 

play a crucial role in gene regulatory networks.  Hundreds of miRNAs have been 
characterized in eukaryotic organisms ranging from plants to humans [1].  The vast 

majority of these have been found recently with the advent of sensitive small RNA 

cloning techniques [2-5].  At the time of our computational analysis, there were 474 

known human miRNA precursors.  Animal miRNA precursors are most commonly  

located either outside of protein-coding genes (“intergenic”) or within the introns of 

protein-coding genes,  and more rarely in UTR regions, coding exons,  or exons of non-

coding transcripts.  miRNAs have been shown to guide the RNA Induced Silencing 

Complex (RISC) of proteins to specific target sites predominantly within the 3’ UTR of 

mRNAs in order to induce immediate cleavage, localization to P-bodies, or translational 

repression [6].  Evidence suggests that miRNAs are predicted to regulate up to one third 

of all protein-coding genes in humans [7]. 

 

In many cases, the translation of a protein-coding gene can elicit a self-limiting process 

in which the resulting protein inhibits the transcription of the same gene through 

interaction with transcription factors [8-10].  However, it has not yet been demonstrated 

whether a gene’s transcription process can directly inhibit its own translation process, or 

whether such auto-regulation can be isoform specific.  Encouragingly, there has been a 

study which lends computational support to the idea that miRNA-mediated negative auto-

regulatory feedback loops may exist in humans, and suggests that these loops belong to a 

class of circuits which are prevalent in mammalian gene network architecture [11].  Since 

both computational and experimental evidence is accumulating in support of the idea that 

intronic miRNAs are in fact spliced out and expressed along with their host genes [12-

15], we investigated whether such miRNAs may regulate the expression of the host genes 

in which they are located.  We then examined whether these potential auto-regulatory 
cases are subject to selective pressure, and provide the first experimental evidence for an 

isoform-specific case which may be linked to neurodegenerative disease. 
 

Results 

Detecting Gene Auto-regulation via miRNAs 

Using miRNA target prediction, we identified 43 miRNAs which are predicted to target 

their own host genes.  For comparison, we also simulated the number of miRNAs which 

would target their own host genes if these miRNAs were randomly distributed among 3’ 

UTRs of protein-coding genes (see Materials and Methods).  The observed value of 43 

potential auto-regulatory cases lies at the 95th percentile of the randomization distribution 
(Supplementary Figure 1), suggesting that the phenomenon of host-gene targeting by 

miRNAs may be under positive selective pressure. 

 

We also calculated the chance that each individual miRNA would target its own host 

gene.  We find that a number of predicted auto-regulatory miRNAs have a comparatively 

low miRNA-specific chance of randomly targeting their own 3’ UTRs.  We see from 

Table 1 that among predicted auto-regulatory cases involving a conserved target site, hsa-

miR-128b is estimated to have only ~15% chance of randomly targeting the 3’ UTR of its 

host gene ARPP-21, whereas the probabilities of miR-661 or miR-488 randomly targeting 

their hosts are 31% and 51% respectively. 
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Additionally, both miR-128b and its ARPP-21 target site are conserved through many 

species, suggesting that auto-regulation may provide an evolutionarily old and beneficial 

mechanism in this case.  For these reasons, we chose the hsa-miR-128b:ARPP-21 

interaction for subsequent experimental testing. 
 

Table 1. Predicted auto-regulatory cases with conserved target site 

miRNA Refseq id 

Gene 

symbol P_random* 

miR-128b NM_016300 ARPP-21 0.148 

miR-661 

NM_201380, 

NM_201379, 

NM_201378, 

NM_000445 PLEC1 0.312 

miR-488 NM_004319 ASTN1 0.515 

 

Cases in which a miRNA located within a RefSeq gene is predicted to target the 3’ UTR of its host 

gene.  Cases with a conserved target site are shown here (all are intronic), please see 

Supplementary Table 1 for a complete display of all 43 predicted auto-regulatory cases.  

*P_random is the probability that a miRNA targets its own host gene at random, computed as 

described in the Materials and Methods section. 

 

miR-128b Targets the Long Isoform of Host gene ARPP-21 

 

To investigate this prediction in the laboratory, we used the reporter silencing assay to 

determine whether hsa-miR-128b is able to repress ARPP-21 protein production.  This 

assay is a standard in vitro experimental technique for determining whether predicted 

miRNA:target binding interactions are capable of reducing gene expression [16, 17].  In 

this experiment, two different versions of the ARPP-21 3’UTR- one with the hsa-miR-

128b target site and one with this site deleted- were inserted downstream of luciferase 

“reporter” genes.  Both of these constructs were transfected into cells that also contained 

hsa-miR-128b.  The idea behind this assay is that if the amount of protein produced by 

the luciferase reporter construct containing the miR-128b target site were significantly 

reduced in the presence of miR-128b (as compared with the amount of protein produced 

when the target site is deleted), this would provide evidence that miR-128b can induce 

repression of ARPP-21 under the conditions of the experiment.  Figure 2 shows the 

results of the assay, indicating that miR-128b can in fact repress its host gene, the longer 
of two isoforms of ARPP-21.  Supplementary Figure 2 illustrates the genomic 

configuration of miR-128b, the two isoforms of ARPP-21, and the 3’UTR of the longer 

isoform targeted by miR-128b. 
 

Discussion 

In the experimentally supported case of miR-128b:ARPP-21, we observed that miR-128b 

resides exclusively in the longer of two ARPP-21 isoforms.  It is not extremely rare for a 

miRNA to be present within an intron of one isoform and not another.  In fact, this is the 

case for 26 out of 104 known human intronic miRNAs which occur in genes that have 

multiple isoforms (Supplementary Table 2).  However, miR-128b:ARPP-21 is a 
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particularly interesting case because although miR-128b and ARPP-21 are highly 

expressed in human brain [18-20], only the longer isoform contains miR-128b target 

sites.  This suggests that miR-128b targeting of ARPP-21 may have evolved to prevent 

the accumulation of only the longer isoform in human brain. 

 

Although ARPP-21 has not been extensively studied, there is evidence that it is highly 

expressed in dopamine-innervated brain regions [21-23].  Provocatively, a recent study 

using gene expression data to show that miRNA-mediated feedback and feedforward 

circuits are recurrent in human and mouse also concludes that brain-enriched miRNAs 

tend to target brain-enriched genes in these organisms [11].  The study suggests that these 

miRNAs could be involved in neuronal homeostasis.  Furthermore, a recent patent 

suggests that the long isoform of ARPP-21 is significantly differentially expressed in the 

brains of Alzheimer’s patients as compared with those of age-matched healthy individuals 

[24].  One possible cause of this differential regulation may be the abrogation of the miR-

128b:ARPP-21 regulatory mechanism. 

 

Of course it should be noted that miR-128b is not the only miRNA which may target 

the long isoform of ARPP-21. miR-128a, miR-107, miR-103, miR-9, and miR-29a are all 

miRNAs which are predicted to target ARPP-21 and reported to be expressed in human 

brain by microarray studies, though only miR-128 and miR-9 are highly expressed [18, 

19, 25-27].  This suggests that perhaps either miR-128b acts in concert with other 

miRNAs to substantially repress ARPP-21 levels, or perhaps only miR-128b expression is 

highly specific to the brain regions where fine-tuned control of ARPP-21 expression is 

required.  In either case, the maintenance of this auto-regulatory system strongly suggests 

a mechanism which benefits vertebrate organisms by balancing the expression of these 

isoforms of ARPP-21. 
 

Methods 

Identifying Cases of Host-Gene Targeting by miRNAs 

We used the database miRGen [28] to identify all human miRNAs encoded within a 

RefSeq host protein-coding gene.  We identified exactly 174 such miRNAs, derived from 

163 precursors (some precursors yield two miRNAs).  To determine whether any of these 

miRNAs target their hosts, we applied a target prediction program [29] that predicts all 

currently known categories of miRNA target sites, including both 5'-dominant (according 

to rules from [7]) and 3'-compensatory target interactions (according to rules from [30]).  

Using this program, we predicted that 43 of the 174 miRNAs target their host genes 

(Supplementary Table 1).  35 of these are located within introns (Figure 1), three are 

located within a 5’ UTR, one is located within a 3’ UTR, and one overlaps an exon. 
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Fig. 1.  An illustration of gene auto-regulation via an intronic miRNA:  (A) Gene is transcribed, 

miRNA precursors are processed from spliced introns. (B) Pre-mRNAs are spliced into mRNAs 

and exported from the nucleus. (C) miRNA precursors are exported from the nucleus and 

processed into mature miRNAs. (D) miRNAs target some mRNAs, repressing protein translation. 

(E) Un-targeted mRNAs are translated into protein. 

 
 

To determine how many of the 43 potential human auto-regulatory cases are also 

present in other species, we used the cross-species target conservation filter implemented 

in DIANA-microT 2.0.  We found that the target sites in only three cases are conserved 

between human, chimp, mouse, rat, and dog – hsa-miR-128b:ARPP-21, hsa-miR-

661:PLEC1, and hsa-miR-488:ASTN1 (Supplementary Table 1).  Among these cases, 

only hsa-miR-128b:ARPP-21 was also predicted by other publicly available target 

prediction programs: PicTar [31] and TargetScanS [7].  The hsa-miR-488:ASTN1 and the 

hsa-miR-661:PLEC1 interactions were not included in the predictions of other programs 

because hsa-miR-488 and hsa-miR-661 were not an experimentally verified human 

miRNAs at the time of their publication and therefore were not incorporated into their 

genome-wide target searches. 

Null distribution of the Auto-regulatory miRNAs 

How many auto-regulatory miRNAs would we observe under the assumption of random 

targeting? We first computed the “expected number of target sites per base pair” for each 

miRNA.  This is the ratio of the number of predicted target sites in 3’ UTRs over the total 

length of all 3’ UTRs for that miRNA in the human genome.  

 

The miRNA-specific expected number of target sites per base pair was then used to 

repeatedly simulate a random map of target genes for each miRNA.  Each map was 

constructed by randomly adding miRNA target sites across gene 3’ UTRs.  The 
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probability of a particular miRNA target site being added was equal to the “expected 

number of target sites per base pair” for that miRNA.  For each of these simulated maps 

of target sites, we tabulated the number of auto-regulatory cases where a miRNA targeted 

its own 3’ UTR.   We repeated this simulation 10000 times, which gave us the 

distribution of the number of auto-regulatory miRNAs under the null hypothesis of 

random allocation.  This null distribution is given in Supplementary Figure 1. 

 

When compared to this randomization distribution, we found that the 43 observed 

potential auto-regulatory cases is quite high (95
th

 percentile) when compared to range of 

values that we calculated in our simulation experiment.  This may suggest that the 

phenomenon of auto-regulation is undergoing some degree of global positive selection in 

humans.  It is interesting to note that those miRNAs which are least evolutionarily 

conserved were observed to account for a larger portion of predicted auto-regulatory 

cases than highly conserved miRNAs, perhaps indicating that the mechanism of auto-

regulation confers species-specific benefits in higher organisms.  This observation is 

explored in further detail in the Supplementary Methods. 

 

In addition to this global simulation we also calculated the null probability for each 

miRNA. Under the null hypothesis of random allocation, the target site for a particular 

miRNA will appear at a specific location in the 3’ UTR of its host gene with probability 

equal to the “expected number of target sites per base pair” for this particular miRNA.  

For each miRNA separately, the binomial distribution was used to calculate the 

probability of observing one or more target sites in the host gene 3’ UTP, with the 

underlying binomial probability equal to the expected number of target sites per base pair 

and the number of trials equal to the number of base pairs in that 3’ UTR.  The underlying 

assumptions of the Binomial distribution (independence and equal probabilities between 

trials) are justified by our null hypothesis of completely random allocation. These miRNA 
specific null probabilities are given in the Table 1 column labeled “P_random”. 

Experimental Evidence that miR-128b Targets ARPP-21 

To investigate the prediction that miR-128b is capable of targeting ARPP-21 in vitro, we 

inserted two different ARPP-21 3’ UTRs downstream of luciferase reporter genes to 

create two distinct reporter constructs: (1) full length long isoform ARPP-21 3’ UTR with 

the hsa-miR-128b target site, and (2) full length ARPP-21 3’ UTR with the hsa-miR-128b 

target site deleted.  We infected HEK293 cells with viruses containing these constructs 

(see Supplementary Methods).  In the presence of hsa-miR-128b, the expression of the 

luciferase containing the wild-type ARPP-21 3’ UTR was significantly reduced (Figure 2) 

confirming the function of hsa-miR-128b on the ARPP-21 target gene. In contrast, the 

expression of the ∆hsa-miR-128b target site luciferase construct remained unchanged in 

presence or absence of hsa-miR-128b (Figure 2), implying that the target site is directly 

responsible for the repression of luciferase containing wild-type ARPP-21 3’ UTR in the 

presence of hsa-miR-128b. 
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Fig. 2.  Luciferase activity of HEK293 cells containing the combination of human miR-128 or 

control vector and luciferase reporter of the 3’ UTR of ARPP-21 or ARPP-21 mutant with miR-

128 target site deleted.  In the chart, the luminescence unit is Counts Per Second which measures 

the luciferase signal.  Three independent experiments were performed with triplicates; error bars 

represent standard deviation. 
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