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Abstract

This paper considers minimax and adaptive prediction with functional predictors in the

framework of functional linear model and reproducing kernel Hilbert space. Minimax rate of

convergence for the excess prediction risk is established. It is shown that the optimal rate is

determined jointly by the reproducing kernel and the covariance kernel. In particular, the align-

ment of these two kernels can significantly affect the difficulty of the prediction problem. In

contrast, the existing literature has so far focused only on the setting where the two kernels

are nearly perfectly aligned. This motivates us to propose an easily implementable data-driven

roughness regularization predictor that is shown to attain the optimal rate of convergence adap-

tively without the need of knowing the covariance kernel. Simulation studies are carried out to

illustrate the merits of the adaptive predictor and to demonstrate the theoretical results.

Keywords: Adaptive prediction, functional linear model, minimax rate of convergence, principal

components analysis, reproducing kernel Hilbert space, spectral decomposition.
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1 Introduction

Prediction is an important problem in functional data analysis with a wide range of applications

including chemometrics, econometrics, and biomedical studies. See, for example, Ramsay and

Silverman (2002; 2005), Ferraty and Vieu (2006), and Ramsay, Hooker and Graves (2009). Consider

the functional linear model

Y = α0 +

∫

T
X(t)β0(t)dt+ ǫ, (1)

where Y is a scalar response, X : T → R is a square integrable functional predictor defined over

a compact domain T ⊂ R, α0 is the intercept, β0 : T → R is the slope function, and ǫ is random

noise with mean 0 and finite variance σ2. In this paper we focus on the random design where X is

a path of a square integrable stochastic process defined over T and is independent of ǫ . The goal

of prediction is to recover the functional η0:

η0(X) = α0 +

∫

T
X(t)β0(t)dt,

based on a training sample {(Xi, Yi) : i = 1, . . . , n} consisting of n independent copies of (X,Y ).

Let η̂n be a prediction rule constructed from the training data. Then its accuracy can be naturally

measured by the excess risk:

E(η̂n) := E
∗ [Y ∗ − η̂n(X

∗)]2 − E
∗ [Y ∗ − η0(X

∗)]2 = E
∗ [η̂n(X

∗)− η0(X
∗)]2 ,

where (X∗, Y ∗) is a copy of (X,Y ) independent of the training data, and E
∗ represents expectations

taken over X∗ and Y ∗ only. In particular, the rate of convergence of E(η̂n) as the sample size n

increases reflects the difficulty of the prediction problem. A closely related but different problem

is that of estimating the intercept α0 and the slope function β0.

Many commonly used approaches to the prediction and estimation problems under the func-

tional linear model (1) are based upon the functional principal component analysis (FPCA) (see,

e.g., Ramsay and Silverman, 2005; Yao, Müller and Wang, 2005; Cai and Hall, 2006; Hall and

Horowitz, 2007). The functional principal components are determined solely by the observed func-

tional predictors Xi. A crucial condition for the success of the FPCA-based methods is that the

slope function β0 is efficiently represented in terms of the leading functional principal components.

This condition, however, may not always be true. In many applications it is not realistic to assume

that the functional principal components form an efficient basis for the slope function β0 because

the two are typically unrelated. When this condition fails to hold, the low-variance components

of the predictor X have non-negligible predictive power and the FPCA-based methods may not
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perform well. Similar phenomenon has also been observed in the performance of principle compo-

nent regression (see, e.g., Jolliffe, 1982) or singular value decomposition methods for linear inverse

problems (see, e.g., Donoho, 1995).

For illustration purpose, take the Canadian weather data as an example. It is one of the classical

examples in functional linear regression and the goal is to predict the log annual precipitation at

35 different stations based on the average daily temperature. More detailed discussion of the data

and analysis can be found in Ramsay and Silverman (2005) and Section 4 of the present paper.

The Fourier coefficients of the slope function with respect to the eigenfunctions of the sample

covariance are estimated using the FPCA approach. The eigenvalues of the sample covariance and

the estimated Fourier coefficients are shown in Figure 1. It is clear that, although the eigenvalues

decay nicely, the estimated Fourier coefficients do not decay at all. This is a typical example for

the case when the slope function is not well represented by the leading principal components.
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Figure 1: Canadian Weather Data: The eigenvalues of the sample covariance function is given in

the left panel. Note that both axes in the left panel are in log scale. The right panel shows the

estimated Fourier coefficients of the slope function with respect to the eigenfunctions of the sample

covariance function.

In this paper we study the minimax and adaptive prediction problems in the reproducing kernel

Hilbert space (RKHS) framework under which the unknown slope function β0 is assumed to reside

in a reproducing kernel Hilbert space H(K) with a reproducing kernel K. The minimax rate of

convergence of the excess prediction risk is established in a general setting with no constraint on
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the relationship between the reproducing kernel K and the covariance function C of the random

predictor X. It is shown that, under the functional linear model (1), the difficulty of the prediction

problem as measured by the minimax rate of convergence depends on both kernels K and C.

In particular, the alignment of K and C can significantly affect the optimal rate of convergence.

The FPCA-based methods mentioned earlier correspond to the special setting where K and C are

assumed to be perfectly aligned, i.e., K and C share a common ordered set of eigenfunctions. The

optimal rate of convergence of E(η̂n) in this case is determined by the rate of decay of the product

of the corresponding eigenvalues of K and C (Cai and Hall, 2006). When K and C are not well

aligned, as in the Canadian weather data example, the FPCA-based methods may not perform

well.

The optimal rate of convergence for the prediction problem is established in two steps. First,

a minimax lower bound is derived for the prediction problem. Then a roughness regularization

predictor is introduced and is shown to attain the rate of convergence given in the lower bound,

when the tuning parameter is appropriately chosen. This estimator is thus rate-optimal. The

optimal choice of the tuning parameter depends however on the unknown covariance structure of

the predictors Xi. A data-driven procedure for choosing the tuning parameter is then introduced.

It is shown that the resulting procedure automatically achieves the optimal rate of convergence for

a large collection of covariance functions. The adaptive procedure is easy to implement. Simulation

studies are carried out to illustrate the merits of the adaptive predictor and to demonstrate the

theoretical results.

The rest of the paper is organized as follows. In Section 2, after basic notation and definitions

are reviewed, we establish the optimal rate of convergence for the prediction problem by deriving

both minimax lower and upper bounds. A roughness regularization predictor is shown to be

rate-optimal when the tuning parameter is appropriately chosen. Section 3 proposes a data-driven

method for choosing the tuning parameter and the resulting predictor is shown to adaptively achieve

the optimal rate of convergence. Numerical experiments are reported in Section 4 to demonstrate

the practical implications of the theoretical developments using both simulated and real data sets.

The proofs are given in Section 6. We conclude with some discussions in Section 5.

2 Optimal Rate of Convergence

In this section we establish the minimax rate of convergence of the excess prediction risk. The

optimal rate is jointly determined by the reproducing kernel K and the covariance function C and

the alignment between K and C plays an important role. We begin by reviewing basic notation
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and properties regarding the reproducing kernel K and the covariance function C.

2.1 Notation and definitions

Let T ⊂ R be a compact set. A reproducing kernel K : T × T → R is a real, symmetric, square

integrable, and nonnegative definite function. There is a one-to-one correspondence between a

reproducing kernel K and a reproducing kernel Hilbert space H(K) which is a linear functional

space endowed with an inner product 〈·, ·〉H(K) such that for any t ∈ T , K(t, ·) ∈ H(K), and

f(t) = 〈K(t, ·), f〉H(K), for any f ∈ H(K).

See, e.g., Wahba (1990). Let X(·) be a square integrable stochastic process defined over T . The

covariance function of X is also a real, symmetric, and nonnegative definite function defined as

C(s, t) = E ([X(s) − E(X(s))][X(t) − E(X(t))]) , ∀s, t ∈ T .

The covariance function C is square integrable if E‖X‖2L2
<∞ where

‖f‖2L2
= 〈f, f〉L2 , and 〈f, g〉L2 =

∫

T
f(t)g(t)dt.

For a real, symmetric, square integrable, and nonnegative definite function R : T × T → R, let

LR : L2 → L2 denote an integral operator defined by

LR(f)(·) = 〈R(s, ·), f〉L2 =

∫

T
R(s, ·)f(s)ds.

By the Riesz representation theorem, LR can also be equivalently defined through

〈f, LR(g)〉H(R) = 〈f, g〉L2 .

The spectral theorem implies that there exist a set of orthonormalized eigenfunctions {ψR
k : k ≥ 1}

and a sequence of eigenvalues θR1 ≥ θR2 ≥ . . . > 0 such that

R(s, t) =
∑

k≥1

θRk ψ
R
k (s)ψ

R
k (t), ∀s, t ∈ T ,

and

LR(ψ
R
k ) = θRk ψ

R
k , k = 1, 2, . . . .

Throughout the paper we shall say that {(θRk , ψR
k ) : k ≥ 1} are the eigenvalue-eigenfunction pairs of

the operator R, with the understanding that the pairs are ordered according to the eigenvalues in

descending order, θR1 ≥ θR2 ≥ . . .. We say two linear operators (or their corresponding kernels) are
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perfectly aligned if they share the same ordered set of eigenfunctions (according to their eigenvalues

in descending order).

Let LR1/2 be a linear operator defined by

LR1/2(ψR
k ) =

√

θRk ψ
R
k ,

where

R1/2(s, t) =
∑

k≥1

√

θRk ψ
R
k (s)ψ

R
k (t), ∀s, t ∈ T .

It is clear that LR1/2 = L1/2R. Moreover, define

(R1R2)(s, t) =

∫

T
R1(s, u)R2(u, t)dt.

Then LR1R2 = LR1 ◦ LR2 .

For a given reproducing kernel K and a covariance function C, define the linear operator

LK1/2CK1/2 by LK1/2CK1/2 = LK1/2 ◦ LC ◦ LK1/2 , i.e.,

LK1/2CK1/2(f) = LK1/2 (LC (LK1/2(f))) .

If both LK1/2 and LC are bounded linear operators, so is LK1/2CK1/2 . By the spectral theorem,

there exist a sequence of positive eigenvalues s1 ≥ s2 ≥ . . . > 0 and a set of orthonormalized

eigenfunctions {ϕk : k ≥ 1} such that

K1/2CK1/2(s, t) =
∑

k≥1

skϕk(s)ϕk(t), ∀s, t ∈ T ,

and

LK1/2CK1/2(ϕk) = skϕk, k = 1, 2, . . . .

It is easy to see that the eigenvalues {sk : k ≥ 1} of the linear operator LK1/2CK1/2 depend on

the eigenvalues of both the reproducing kernel K and the covariance function C as well as the

alignment between K and C. We shall show in Sections 2.2 and 2.3 that the difficulty of the

prediction problem as measured by the minimax rate of convergence of the excess prediction risk

is determined by the decay rate of the eigenvalues {sk : k ≥ 1}.
For two sequences {ak : k ≥ 1} and {bk : k ≥ 1} of positive real numbers, we write ak ≍ bk if

there are positive constants c and C independent of k such that c ≤ ak/bk ≤ C for all k ≥ 1.
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2.2 Minimax lower bound

The optimal rate of convergence of the excess prediction risk will be established in two steps. We

first derive a minimax lower bound in this section and then show in Section 2.3 the convergence

rate of the lower bound is in fact optimal by constructing a predictor that attains this rate of

convergence. The minimax lower bound is given in the following theorem.

Theorem 1 Suppose the eigenvalues {sk : k ≥ 1} of the linear operator LK1/2CK1/2 satisfy sk ≍
k−2r for some constant 0 < r <∞, then the excess prediction risk satisfies

lim
a→0

lim
n→∞

inf
η̃

sup
β0∈H(K)

P

{

E(η̃) ≥ an−
2r

2r+1

}

= 1, (2)

where the infimum is taken over all possible predictors η̃ based on the training data {(Xi, Yi) : i =

1, ..., n}.

It is interesting to compare Theorem 1 with some of the known results in the literature in

which the reproducing kernel K and the covariance function C are assumed to be perfectly aligned,

i.e., they share the same ordered set of eigenfunctions. The minimax lower bound obtained here

generalizes the earlier results for this special case. Let

X(t) =

∞
∑

k=1

Zkψk(t)

be the Karhunen-Loève decomposition of X where {Zk : k ≥ 1} are uncorrelated random variables

and {ψk : k ≥ 1} is an orthonormal basis of L2(T ). Set θCk = Var(Zk). We shall assume that θCk

are indexed in descending order, θC1 ≥ θC2 ≥ . . . . Then it is clear that {(θCk , ψk) : k ≥ 1} also

constitutes the eigenvalue-eigenfunction pairs of the covariance function C, i.e.,

C(s, t) =
∞
∑

k=1

θCk ψk(s)ψk(t), for s, t ∈ T .

Consider the case where the reproducing kernel K is perfectly aligned with C, i.e.,

K(s, t) =
∞
∑

k=1

θKk ψk(s)ψk(t), for s, t ∈ T ,

with θK1 ≥ θK2 ≥ . . . ≥ 0 being the eigenvalues of K. In this case it is easy to see that

LK1/2CK1/2(ψk) = θKk θ
C
k ψk, k = 1, 2, . . . ,

indicating that the eigenvalues sk = θKk θ
C
k , k = 1, 2, . . ., and s1 ≥ s2 ≥ . . .. If θKk ≍ k−2r1 and

θCk ≍ k−2r2 , then sk decays at the rate k−2(r1+r2) and by Theorem 1,

lim
a→0

lim
n→∞

inf
η̃

sup
β0∈H(K)

P

{

E(η̃) ≥ an
−

2(r1+r2)

2(r1+r2)+1

}

= 1.
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This special setting coincides with those considered in Cai and Hall (2006) and Yuan and Cai

(2010). Similar results have been established earlier in these papers for this special setting.

In general, however, the eigenvalues of K and C alone cannot determine the decay rate of

the eigenvalues of LK1/2CK1/2 . For example, when θKk ≍ k−2r1 , θCk ≍ k−2r2 and ψC
k = ψK

k2 for

k = 1, 2, . . ., then sk ≍ k−(4r1+2r2).

2.3 Minimax upper bound

Section 2.2 developed a minimax lower bound for the excess prediction risk. We shall now consider

the minimax upper bound and show that the lower bound established in Theorem 1 can in fact be

achieved. We shall construct a predictor using a roughness regularization method and show that

the predictor is asymptotically rate-optimal.

One of the most commonly used methods in nonparametric function estimation is the roughness

regularization method (see, e.g., Ramsay and Silverman, 2005) where the intercept α0 and the slope

function β0 are estimated by

(

α̂nλ, β̂nλ

)

= argmin
a∈R,b∈H(K)

{

n
∑

i=1

(

Yi − a−
∫

T
Xi(t)b(t)dt

)2

+ λ‖b‖2H(K)

}

. (3)

Here λ > 0 is a tuning parameter that balances the tradeoff between the fidelity to the data

measured by the sum of squares and the smoothness of the estimate measured by the squared

reproducing kernel Hilbert space norm. The estimate β̂λ is readily computable even though the

minimization in (3) is taken over an infinitely dimensional function space H(K). More specifically,

β̂nλ can be expressed as

β̂nλ(·) =
n
∑

i=1

ci

∫

T
K(t, ·)Xi(t)dt (4)

for some c1, . . . , cn ∈ R, and they can be computed together with α̂nλ by plugging (4) back to (3).

The readers are referred to Yuan and Cai (2010) for more details on the implementation.

Given the estimates α̂nλ and β̂nλ, the predictor η̂nλ is obtained by

η̂nλ(X) = α̂nλ +

∫

T
X(t)β̂nλ(t)dt.

The following theorem states that with an appropriately chosen λ, the predictor η̂nλ attains the

convergence rate of the lower bound given by Theorem 1 and is therefore rate optimal.

Theorem 2 Assume that there exists a constant c > 0 such that for any square integrable function

f defined over the domain T ,

E

(∫

T
X(t)f(t)dt

)4

≤ c

(

E

(∫

T
X(t)f(t)dt

)2
)2

. (5)
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Suppose the eigenvalues {sk : k ≥ 1} satisfy sk ≍ k−2r for some constant 0 < r <∞, then

lim
A→∞

lim
n→∞

sup
β0∈H(K)

P

{

E(η̂nλ) ≥ An−
2r

2r+1

}

= 0, (6)

provided that λ ≍ n−2r/(2r+1).

Condition (5) states that linear functionals of X have bounded kurtosis, which is satisfied in

particular with c = 3 when X follows a Gaussian process.

Theorems 1 and 2 together show that the minimax rate of convergence for the excess prediction

risk is

n−2r/(2r+1)

which is determined by the rate of decay of the eigenvalues of the operator LK1/2CK1/2 . The

optimal rate of convergence depends not only on the eigenvalues of K and C but also on how their

eigenfunctions align with each other.

3 Adaptive Prediction

Section 2 established the minimax rate of convergence for the excess prediction risk. As shown in

Theorem 2, the optimal rate can be attained by the roughness regularization predictor η̂nλ when the

tuning parameter λ is chosen appropriately. However, the proper choice of λ depends on r, which

is unknown since it is determined by the linear operator LK1/2CK1/2 and the covariance function

C is not known apriori. It is important to develop a data-driven choice of λ that does not require

the knowledge of C. In this section, we introduce such an adaptive method for choosing λ.

To motivate our procedure, recall that r represents the decay rate of the eigenvalues of LK1/2CK1/2 ,

which can be naturally approximated by LK1/2CnK1/2 where

Cn(s, t) =
1

n

n
∑

i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t)).

Observe that

〈f, LK1/2CnK1/2g〉L2 = 〈LK1/2f, LCnLK1/2g〉L2

=
1

n

n
∑

i=1

〈LK1/2f,Xi − X̄〉L2〈LK1/2g,Xi − X̄〉L2

=
1

n

n
∑

i=1

〈f, LK1/2Xi − X̄〉L2〈g, LK1/2Xi − X̄〉L2

= 〈f, LHng〉L2 ,
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where

Hn(s, t) =
1

n

n
∑

i=1

(LK1/2(Xi − X̄))(s)(LK1/2(Xi − X̄))(t).

By duality, the eigenvalues of Hn are also the eigenvalues of the Gram matrix G = (Gij)1≤i,j≤n

where

Gij =
1

n
〈LK1/2(Xi − X̄), LK1/2(Xi − X̄)〉L2 =

1

n

∫

T 2

(Xi − X̄)(s)K(s, t)(Xj − X̄)(t)dsdt.

Information on r can thus be recovered from the eigenvalues of G.

Write

γn(δ) =





1

n

∑

k≥1

min{sk, δ2}





1/2

and define

ρ(C,K) := inf
{

ρ ≥ n−1 log n : γn(δ) ≤ ρ1/2δ + ρ, ∀δ ∈ [0, 1]
}

.

It is not hard to see that ρ ≍ n−2r/(2r+1) if sk ≍ k−2r (see, e.g., Mendelson, 2002). Therefore, we

can use an estimate of ρ as our choice of the tuning parameter in defining η̂λ. To this end, we

consider the sample analogue of ρ. Denote by ŝ1 ≥ ŝ2 ≥ . . . ≥ ŝn the eigenvalues of G. Write

ρ̂(G) := inf
{

ρ ≥ n−1 log n : γ̂n(δ) ≤ ρ1/2δ + ρ, ∀δ ∈ [0, 1]
}

,

where

γ̂n(δ) =

(

1

n

n
∑

k=1

min{ŝk, δ2}
)1/2

.

Theorem 3 shows that with high probability ρ̂ is of the same order as ρ whenever ‖LK1/2X‖L2

has exponential tails.

Theorem 3 Assume that there exist some constants c1, c2 > 0 such that

P {‖LK1/2X‖L2 ≥ x} ≤ c1 exp(−c2x2), for x ≥ 0. (7)

Then there are constants 0 < c3 < c4 <∞ such that

P

{

c3 ≤
ρ̂

ρ
≤ c4

}

→ 1

as n→ ∞.

We note that the tail condition (7) for ‖LK1/2X‖L2 can also be replaced by

P {‖X‖L2 ≥ x} ≤ c1 exp(−c2x2), for x ≥ 0,
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because ‖LK1/2X‖L2 ≤ θK1 ‖X‖L2 . It holds true, in particular, if X is a Gaussian process.

The following result shows that the predictor η̂nλ with the data-driven choice of the tuning

parameter λ indeed adaptively achieves the optimal rate of convergence.

Theorem 4 Assume that there exist constants c1, c2 > 0 such that

P {‖LK1/2X‖L2 ≥ x} ≤ c1 exp(−c2x2), for x ≥ 0,

and for any f ∈ L2

E

(∫

T
X(t)f(t)dt

)4

≤ c

(

E

(∫

T
X(t)f(t)dt

)2
)2

. (8)

Suppose the eigenvalues {sk : k ≥ 1} satisfy sk ≍ k−2r for some constant 0 < r <∞, then

lim
A→∞

lim
n→∞

sup
β0∈H(K)

P

{

E(η̂nλ) ≥ An−
2r

2r+1

}

= 0. (9)

for any λ ≍ ρ̂.

In light of Theorem 4, we can choose λ = λ̂ := cρ̂ for some constant c > 0 to ensure that the

tuning parameter is of the appropriate order. In practice, the constant c can be further fine tuned

to ensure enhanced performance. For example, our experience suggests that λ̂ = ρ̂/ŝ21 usually leads

to satisfactory performance.

4 Numerical Experiments

We turn in this section to the numerical performance of the proposed adaptive predictor and

demonstrate the practical implications of the theoretical results developed in the last two sections.

We shall begin with simulation results, and then return to the analysis of the Canadian weather

data mentioned in the introduction.

4.1 Simulation Study

To fix ideas, we shall focus on the case where T = [0, 1] and H(K) consists of functions in the

linear span of the cosine basis,

f(t) =
√
2
∑

k≥1

fk cos(kπt), t ∈ [0, 1],

such that
∑

k≥1

k4f2k <∞.

11



When endowed with norm

‖f‖2H(K) =

∫

(f ′′)2 =

∫ 1

0





√
2
∑

k≥1

(kπ)2fk cos(kπt)





2

=
∑

k≥1

(kπ)4f2k ,

H(K) forms a reproducing kernel Hilbert space with the reproducing kernel

K(s, t) =
∑

k≥1

2

(kπ)4
cos(kπs) cos(kπt)

=
∑

k≥1

1

(kπ)4
cos(kπ(s− t)) +

∑

k≥1

1

(kπ)4
cos(kπ(s+ t))

= −1

3
(B4(|s− t|/2) +B4((s + t)/2)) ,

where Bk is the kth Bernoulli polynomial. Here the following fact (Abramowitz and Stegun, 1965)

is used:

B2m(x) = (−1)m−12(2m)!
∑

k≥1

cos(2πkx)

(2πk)2m
, ∀x ∈ [0, 1].

In this setting, the roughness regularization estimate defined by (3) is given by

(

α̂nλ, β̂nλ

)

= argmin
a∈R,b∈H(K)

{

n
∑

i=1

(

Yi − a−
∫

T
Xi(t)b(t)dt

)2

+ λ

∫

(b′′)2

}

.

For brevity, we shall also assume that there is no intercept in the functional linear model (1).

The roughness regularization estimate then becomes

β̂nλ = argmin
b∈H(K)

{

n
∑

i=1

(

Yi −
∫

T
Xi(t)b(t)dt

)2

+ λ

∫

(b′′)2

}

.

To investigate the effect of varying covariance function, the true slope function is taken to be

β0(t) =
∑

k≥1

4
√
2(−1)k−1k−2 cos(kπt).

We first consider the effect of varying smoothness of the covariance function. More specifically, set

C(s, t) =
∑

k≥1

2k−2r2 cos(kπs) cos(kπt).

The parameter r2 controls how fast the eigenvalues of the covariance function C decay and therefore

by Theorem 1 determines the optimal rates of convergence. We let the value of r2 vary between 1

and 3. The functional predictors were simulated from a centered Gaussian process with covariance

function C. To comprehend the trend as the sample size increases, the sample size n is chosen to

be n = 32, 64, 128, 256, 512 and 1024. For each sample size and each value of r2, we simulate data

12



from the functional linear model with σ = 0.5. Both the roughness regularization and functional

principal component estimates were computed and the tuning parameters, λ for the former and the

number of principal components for latter, were chosen to yield the smallest excess risk so that it

reflects the optimal rate achieved by both methods. The experiment was repeated for two hundreds

times and the results are summarized in Figure 2.

In this example, both the reproducing kernel and the covariance function share a common

ordered set of eigenfunctions. In this case, as shown previously by Cai and Hall (2006) and Yuan

and Cai (2010), both methods can attain the optimal rate of convergence. The similarity between

the two methods as observed in Figure 2 simply confirms these earlier findings.

One of the key messages from Theorem 1 is that in addition to the decay of the eigenvalues

of the reproducing kernel and covariance function, the alignment of the eigenfunctions of the two

kernels also plays a crucial role in determining the optimal rate of convergence. To demonstrate

the effect of such an alignment, we now consider a slightly different covariance function:

C(s, t) =
∑

k≥1

2θk cos(kπs) cos(kπt)

where

θk = (|k − k0|+ 1)−2.

In this setting, the leading eigenfunctions of C are located around the k0th eigenfunction of the

reproducing kernel and in a certain sense controls the misalignment between the covariance function

and the reproducing kernel. We consider k0 = 5, 10, 15 and 20 to appreciate the effect of the

alignment. The simulation was carried out in a similar fashion as before and the results are

reported in the top panels of Figure 3.

As expected, for larger values of k0, the functional principal component based approach performs

rather poorly when the sample size is small. However, as one can observe from Figure 3, both

method appears to converge at similar rates as the sample size increases although the roughness

regularization method performs better. The top right panel displays the median relative efficiency

of the roughness regularization over the functional principal component based method defined as

E(η̂FPCA)/E(η̂REG) where η̂REG and η̂FPCA represent the two estimates respectively. It is evident

that the efficiency of the roughness regularization increases with k0 which reflects how poorly the

eigenfunctions of K and C align. In most cases, the roughness regularization estimate outperforms

the functional principal component based method by an order of magnitude. It is noteworthy

that the performance of FPCA based approach quickly deteriorates as k0 increases. In particular,

when k0 is greater than the sample size, FPCA approach will fail since the true slope function is

13



50 100 200 500 1000

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
2e

−
02

Roughness Regularization

n

E
xc

es
s 

R
is

k

r2=1
r2=1.5
r2=2
r2=2.5

50 100 200 500 1000

5e
−

04
1e

−
03

2e
−

03
5e

−
03

1e
−

02
2e

−
02

Functional PCA

n

E
xc

es
s 

R
is

k

Figure 2: Effect of smoothness of the covariance function: 200 datasets were simulated for each

combination of sample size n = 32, 64, 128, 256, 512 or 1024 and r2 = 1, 1.5, 2, 2.5 or 3. Both

roughness regularization estimate and the functional principal components estimate were computed

with tuning parameter chosen to minimize the integrated squared error. The circle corresponds to

the excess risk averaged over 200 datasets and error bars correspond to the mean ± one standard

error. Both axes are in log scale.
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Figure 3: Effect of alignment of eigenfunctions between the reproducing kernel and the covariance

function: For the top panels, 200 datasets were simulated for each combination of sample size

n = 32, 64, 128, 256, 512 or 1024 and the location of the first principal component k0 = 5, 10, 15

or 20. For the bottom panels, 200 datasets were simulated for each combination of sample size

n = 32, 64, 128, 256, 512 or 1024 and the decay rate of the eigenvalues of C, r2 = 1, 1.5, 2, 2.5. In

the left and middle panels, the circle corresponds to the excess risk averaged over 200 datasets and

error bars correspond to the mean ± one standard error. In the rightmost panels, median relative

efficiency of the roughness regularization method over functional principal component based method

is given for the two simulation settings. Both axes are in log scale.
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orthogonal to the leading functional principal components. In this example, we have chosen the

largest value of k0 to be 20 to ensure that k0 is always smaller than the sample size n, and to give

a better contrast of the two methods.

To further demonstrate the effect of alignment between the eigenfunctions of K and C, we also

considered a different set of covariance functions. In particular,

C(s, t) =
∑

k≥1

2k−2r2hk(s)hk(t)

where hks are the Haar functions, i.e.,

h2k+l−1(t) =















2k/2 t ∈ [ l−1
2k
, l−1/2

2k
)

−2k/2 t ∈ [ l−1/2
2k

, l
2k
]

0 otherwise

for k = 0, 1, 2, . . . and l = 1, . . .. Different from the previous two simulation settings, the eigen-

functions of C are the Haar basis of L2 that are different from those of K. We again apply both

the roughness regularization and functional principal component based methods to each simulated

dataset and summarize the findings in the lower panels of Figure 3. Similar to before, the results are

averaged over two hundred simulated datasets for each value of r2. We observe similar comparison

as in the last example with the roughness regularization significantly outperform the functional

principal component based method.

We now turn to the choice of the tuning parameter λn. The adaptive prediction procedure

is applied to the simulated data. For brevity, we focus on the first two simulation settings. For

each simulated dataset, the tuning parameter λ is chosen as λ = ρ̂/ŝ21. As mentioned earlier, this

particular scaling usually yields fairly reasonable results, although it is plausible that it can be

further improved by using other data-driven choice of scaling factors. Figure 4 summarizes the

excess risk for all settings. The behavior of the resulting estimate closely resembles those reported

earlier, indicating that the adaptive procedure proposed earlier is indeed capable of achieving the

optimal rate of convergence.

4.2 Canadian Weather Data

Finally, we revisit the Canadian weather data example. The data set, one of the most popular

examples in functional linear regression, contains daily temperature and precipitation at 35 different

locations in Canada averaged over 1960 to 1994. The goal is to predict the log annual precipitation

based on the average daily temperature. As shown in Figure 1, the application of functional PCA

based methods could be problematic since the estimated slope function does not seem to allow for a
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Figure 4: Excess risk of the adaptive prediction: each model used before was considered and the

tuning parameter is chosen to be ρ̂/ŝ21. The left panel shows the result for different combinations

of n and k0 whereas the right panel corresponds to the result for different combinations of n and

r0. The errors bars correspond to the mean ± one standard error. Both axes are in log scale.
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compact representation with respect to the eigenfunctions of the covariance function. Alternatively,

we applied the regularization approach discussed earlier to the data. The data were collected on the

basis of calendar year. The nature of the data suggests that the predictor function X be periodic

on [0, 1] (year), and so is the slop function β0. Let Wper
2 be the second order Sobolev space of

periodic functions on [0, 1], we estimate α0 and β0 by

(α̂, β̂) = argmin
a∈R,b∈Wper

2

{

[

Yi − a−
∫ 1

0
Xi(t)b(t)dt

]2

+ λ

∫ 1

0

[

b′′(t)
]2
dt

}

(10)

The space Wper
2 , endowed with the norm

‖b‖2Wper
2

=

[
∫ 1

0
b(t)dt

]2

+

∫ 1

0

[

b′′(t)
]2
dt,

has a reproducing kernel:

K(s, t) = 1− 1

24
B4(|s − t|), ∀s, t ∈ [0, 1],

where B4 is the fourth Bernoulli polynomial (see, e.g., Wahba, 1990). As shown in Yuan and Cai

(2010), the solution of (10) can be expressed as

α̂ = Ȳ −
∫ 1

0
X̄(t)β̂(t)dt

and

β̂(·) = c0 +

n
∑

i=1

ci

∫ 1

0
(Xi − X̄)(s)K1(s, ·)ds,

where

K1(s, t) = − 1

24
B4(|s − t|)

is the reproducing kernel of the orthogonal complement of constant functions in Wper
2 . With this

representation, the objective function of (10) becomes quadratic in terms of c0, c1, . . . , cn and they

can solved through

(c0, (c1, . . . , cn)
T) = argmin

a0∈R,a∈Rn

{

‖Y − Σa− a0u‖2 + λaTΣa
}

,

where Y = (Y1, . . . , Yn)
T, Σ is a n× n matrix whose (i, j) entry is

Σij =

∫ 1

0
(Xi − X̄)(s)K1(s, t)(Xj − X̄)(t)dsdt

and u is a n dimensional vector with the ith entry given by

ui =

∫ 1

0
(Xi − X̄)(s)ds.
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The integrals in defining Σij and ui can be approximated by summations for practical purposes.

We also used the proposed adaptive procedure to choose the tuning parameter. The estimated slope

function is given in left panel of Figure 5. The right panel provides the normal Q-Q plot of the

residuals, which suggests a fairly good fit of the data. The plot suggests that the precipitation at

Kamloops station, corresponding to the rightmost point in the Q-Q plot, may be overestimated

using the functional linear model. This can be attributed to the fact that Kamloops lies deep in

the Thompson River Valley. These findings are similar to those reported in Ramsay and Silverman

(2005) in which a restricted basis function based, instead of reproducing kernel based, roughness

penalization approach was used.
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Figure 5: Canadian Weather Data: Smoothness regularization estimate of the slope function with

adaptive choice of the tuning parameter. The left panel gives the estimated slope function whereas

the right panel shows the Q-Q plot of the residuals.

Note that both the functional PCA based approach and the smoothness regularization approach

assume that the slope function comes from a certain class of smooth functions where smoothness is

characterized through the decay of the Fourier coefficients under a certain basis. More specifically,

the functional PCA takes the Karhunen-Loève basis of X whereas the smoothness regularization

approach takes the eigenfunctions of the reproducing kernel K as the basis functions. As seen

before, the assumption made by the functional PCA approach might be questionable for the current

data example. To further demonstrate the this and validate the appropriateness of the smoothness
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regularization approach, we computed the Fourier coefficients of our estimated slope function with

respect to both the eigenfunctions of K and Cn. The squared coefficients are given in Figure 6.

It again confirms that the assumption made by the smoothness regularization approach regarding

the slope function is more reasonable.
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Figure 6: Canadian Weather Data: Squared Fourier coefficients of smoothness regularization esti-

mate of the slope function with respect to the eigenfunctions of the reproducing kernel K or Cn.

Both axes are in log scale.

5 Discussions

In the present paper we establish the minimax rate of convergence for prediction with functional

predictors in a general setting where the reproducing kernel K and the covariance function C are

not necessarily well aligned. The results show that the optimal prediction rate depends not only on

the eigenvalues of K and C, but also on the alignment of the eigenfunctions of the two kernels. The

prediction problem is more difficult if the eigenfunctions of the two kernels are not appropriately

aligned. In contrast, the existing literature typically assumes the two kernels are perfectly or nearly

perfectly aligned.

We also show that the method of regularization can achieve the optimal prediction if appropri-

ately tuned. This is to be contrast with existing work in two ways. First, it is worth pointing out

that the optimality established here for the method of regularization needs to be contrast with the
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functional principal component analysis based approaches. Because the success of these methods

hinges upon the assumption that the leading principal components, although entirely determined

by the predictor itself, are the most predictive of the response, it is not immediately clear to us

if they can also achieve the optimal rate in general when the eigenfunctions of the reproducing

kernel and covariance function differ. In addition, earlier work on method of regularization for

functional linear regression has assumed that the eigenfunctions of the the reproducing kernel and

covariance function are either identical or close to being identical. We show here the optimality of

this estimator extends much more generally.

To fix ideas, we have focused in this paper univariate functions, that is, the domain of the slope

function and the functional predictors T ⊂ R; and used the usual Sobolev space on T = [0, 1] as

an working example. Our results, however, apply to the more general reproducing kernel Hilbert

spaces when T is a compact set in an arbitrary Euclidean space. In particular, the optimal rate

of convergence and adaptivity hold true for Sobolev spaces on T = [0, 1]2 with the rate of decay r

determined by the corresponding reproducing kernel and covariance operator. Such a setting can

have useful applications in spatial statistics and image analysis.

6 Proofs

6.1 Proof of Theorem 1

Note that any lower bound for a specific case yields immediately a lower bound for the general

case. It therefore suffices to consider the case when ǫ ∼ N(0, σ2). Denote byM the smallest integer

greater than c0n
1/(2r+1) for some constant c0 > 0 to be specified later. For a θ = (θM+1, . . . , θ2M ) ∈

{0, 1}M , let

fθ =
2M
∑

k=M+1

θkM
−1/2LK1/2ϕk.

First observe that fθ ∈ H(K) since

‖fθ‖2H(K) =

∥

∥

∥

∥

∥

2M
∑

k=M+1

θkM
−1/2LK1/2ϕk

∥

∥

∥

∥

∥

2

H(K)

=
2M
∑

k=M+1

θ2kM
−1 ‖LK1/2ϕk‖2H(K)

≤
2M
∑

k=M+1

M−1 ‖LK1/2ϕk‖2H(K) = 1,

21



where we used the fact that

〈LK1/2ϕj , LK1/2ϕk〉H(K) = 〈ϕj , LK1/2LK1/2ϕk〉H(K)

= 〈ϕj , LKϕk〉H(K)

= 〈ϕj , ϕk〉L2 = δjk.

The Varshamov-Gilbert bound shows that for anyM ≥ 8, there exists a set Θ = {θ(0), θ(1), . . . , θ(N)} ⊂
{0, 1}M such that

(a) θ(0) = (0, . . . , 0)′;

(b) H(θ, θ′) > M/8 for any θ 6= θ′ ∈ Θ, where H(·, ·) is the Hamming distance;

(c) N ≥ 2M/8.

We now invoke the results from Tsybakov (2009) to establish the lower bound which is based

upon testing multiple hypotheses. To this end, denote by Pθ the joint distribution of {(Xi, Yi) :

i ≥ 1} with β0 = fθ. First observe that for any θ, θ′ ∈ Θ,

log (Pθ′/Pθ) =
1

σ2

n
∑

i=1

(

Yi −
∫

Xifθ

)
∫

Xi (fθ − fθ′)−
1

2σ2

n
∑

i=1

[
∫

Xi (fθ − fθ′)

]2

.

Therefore the Kullback-Leibler distance between Pθ and Pθ′ can be given by

K(Pθ′ |Pθ) =
n

2σ2
‖LC1/2 (fθ − fθ′)‖2L2

=
n

2σ2

∥

∥

∥

∥

∥

2M
∑

k=M+1

(θk − θ′k)M
−1/2LC1/2LK1/2ϕk

∥

∥

∥

∥

∥

2

L2

.

Note that

〈LC1/2LK1/2ϕk, LC1/2LK1/2ϕj〉L2 = 〈ϕk, LK1/2LCLK1/2ϕj〉L2 = 〈ϕk, sjϕj〉L2 = sjδkj.

Hence,

K(Pθ′ |Pθ) =
n

2σ2

2M
∑

k=M+1

M−1(θk − θ′k)
2sk

≤ nsM
2Mσ2

2M
∑

k=M+1

(θk − θ′k)
2

=
2nsM
Mσ2

H(θ, θ′)

≤ 2nsM/σ
2

≤ 2c2nM
−2r/σ2.
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This implies that for any 0 < α < 1/8,

1

N

N
∑

j=1

K(Pθ(j) |Pθ(0)) ≤ 2c2nM
−2r/σ2 ≤ α log 2M/8 ≤ α logN (11)

by taking c0 = cα−1/(2r+1) with a large enough numerical constant c > 0.

On the other hand, for any θ, θ′ ∈ Θ

‖LC1/2(fθ′ − fθ)‖2L2
=

∥

∥

∥

∥

∥

2M
∑

k=M+1

(θk − θ′k)M
−1/2LC1/2LK1/2ϕk

∥

∥

∥

∥

∥

2

L2

=

2M
∑

k=M+1

M−1(θk − θ′k)
2 ‖LC1/2LK1/2ϕk‖2L2

=

2M
∑

k=M+1

M−1(θk − θ′k)
2sk

≥ M−1s2M

2M
∑

k=M+1

(θk − θ′k)
2

= 4M−1s2MH(θ, θ′)

≥ s2M/2

≥ c12
−(2r+1)M−2r

≥ 2cα2r/(2r+1)n−
2r

2r+1 ,

for some numerical constant c > 0. As shown by Tsybakov (2009), this, together with (11), implies

that

inf
f̃

sup
θ∈Θ

Pθ

{

∥

∥

∥LC1/2(f̃ − fθ)
∥

∥

∥

2

L2

≥ cα2r/(2r+1)n−
2r

2r+1

}

≥
√
N

1 +
√
N

(

1− 2α−
√

2α

logN

)

.

Therefore,

lim
n→∞

inf
f̃

sup
θ∈Θ

Pθ

{

∥

∥

∥
LC1/2(f̃ − fθ)

∥

∥

∥

2

L2

≥ cα2r/(2r+1)n−
2r

2r+1

}

≥ 1− 2α,

which yields that

lim
a→0

lim
n→∞

inf
f̃

sup
θ∈Θ

Pθ

{

∥

∥

∥LC1/2(f̃ − fθ)
∥

∥

∥

2

L2

≥ an−
2r

2r+1

}

= 1.

Now the desired claim follows from the facts that {fθ : θ ∈ Θ} ⊂ H(K), and under Pθ,

E(η̃) =
∥

∥

∥
LC1/2(f̃ − fθ)

∥

∥

∥

2

L2

,

where

η̃ =

∫

T
X(t)f̃(t)dt.
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6.2 Proof of Theorem 2

Recall that LK1/2(L2) = H(K). Therefore, there exist f0, f̂ ∈ L2 such that β0 = LK1/2f0 and

β̂λ = LK1/2 f̂λ. For brevity, we shall assume that H(K) is dense in L2, which ensures that f0 and f̂λ

are uniquely defined, in what follows. The proof in the general case proceeds in exactly the same

fashion by restricting ourselves to L2/ker(LK1/2).

For brevity, we shall write T = LK1/2CK1/2 in what follows. We shall denote by T ν a linear

operator from L2 to L2 such that T νϕk = sνkϕk. It is not hard to see that

E(η̂) = ‖T 1/2(f̂λ − f0)‖2L2
.

It is also clear that

f̂λ = argmin
f∈L2

[

1

n

n
∑

i=1

(Yi − 〈Xi, LK1/2f〉L2)
2 + λ‖f‖2L2

]

.

Recall that

Yi = 〈Xi, LK1/2f0〉L2 + ǫi.

Write

Cn(s, t) =
1

n

n
∑

i=1

Xi(s)Xi(t)

and Tn = LK1/2LCnLK1/2 where LCn is an integral operator such that for any h ∈ L2,

LCnh(·) =
∫

T
Cn(s, ·)h(s)ds.

Therefore,

f̂λ = (Tn + λ1)−1(Tnf0 + gn)

where 1 is the identity operator and

gn =
1

n

n
∑

i=1

ǫiLK1/2Xi.

Define

fλ = (T + λ1)−1Tf0.

By triangular inequality,

∥

∥

∥T 1/2(f̂λ − f0)
∥

∥

∥

L2

=
∥

∥

∥T 1/2(fλ − f0)
∥

∥

∥

L2

+
∥

∥

∥T 1/2(f̂λ − fλ)
∥

∥

∥

L2

. (12)

The first term on the right hand side can be easily bounded. We appeal to the following lemma.
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Lemma 1 For any 0 < ν < 1,

‖T ν(fλ − f0)‖L2
≤ (1− ν)1−νννλν‖f0‖L2 . (13)

Taking ν = 1/2 in Lemma 1 gives
∥

∥

∥T 1/2(fλ − f0)
∥

∥

∥

2

L2

≤ 1

4
λ‖f0‖2L2

.

We now turn to the second term on the right hand side of (12). Observe that

fλ − f̂λ = (T + λ1)−1(Tn + λ1)(fλ − f̂λ) + (T + λ1)−1(T − Tn)(fλ − f̂λ)

Recall that

(Tn + λ1)f̂λ = Tnf0 − gn.

Therefore,

fλ − f̂λ = (T + λ1)−1Tn(fλ − f0) + λ(T + λ1)−1fλ + (T + λ1)−1gn

+(T + λ1)−1(T − Tn)(fλ − f̂λ)

= (T + λ1)−1Tn(fλ − f0) + λTf0 + (T + λ1)−1gn

+(T + λ1)−1(T − Tn)(fλ − f̂λ)

= (T + λ1)−1T (fλ − f0) + (T + λ1)−1(Tn − T )(fλ − f0) + λTf0

+(T + λ1)−1gn + (T + λ1)−1(T − Tn)(fλ − f̂λ)

We first consider bounding ‖T ν(fλ − f̂λ)‖L2 for some 0 < ν < 1/2 − 1/(4r). By triangular

inequality,

‖T ν(fλ − f̂λ)‖L2 ≤ ‖T ν(T + λ1)−1T (fλ − f0)‖L2 + ‖T ν(T + λ1)−1(Tn − T )(fλ − f0)‖L2

+λ‖T 1+νf0‖L2 + ‖T ν(T + λ1)−1gn‖L2

+‖T ν(T + λ1)−1(T − Tn)(fλ − f̂λ)‖L2 .

Next we make use of another auxiliary lemma.

Lemma 2 Assume that there exists a constant c3 > 0 such that for any f ∈ L2

E〈X, f〉4L2
≤ c3

(

E〈X, f〉2L2

)2
. (14)

Then for any ν > 0 such that 2r(1− 2ν) > 1,

∥

∥T ν(T + λ1)−1(Tn − T )T−ν
∥

∥

op
= Op

(

(

nλ1−2ν+1/(2r)
)−1/2

)

,

where ‖ · ‖op stands for the usual operator norm, i.e., ‖U‖op = suph:‖h‖L2
=1 ‖Uh‖L2 for an operator

U : L2 7→ L2.
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An application of Lemma 2 yields that

‖T ν(T + λ1)−1(T − Tn)(fλ − f̂λ)‖L2 ≤ ‖T ν(T + λ1)−1(T − Tn)T
−ν‖op‖T ν(fλ − f̂λ)‖L2

≤ op(1)‖T ν(fλ − f̂λ)‖L2

whenever λ ≥ cn−2r/(2r+1) for some constant c > 0. Similarly,

‖T ν(T + λ1)−1(Tn − T )(fλ − f0)‖L2 ≤ ‖T ν(T + λ1)−1(Tn − T )T−ν‖op‖T ν(fλ − f0)‖L2

≤ op(1)‖T ν(fλ − f0)‖L2

Therefore,

‖T ν(fλ − f̂λ)‖L2 = Op

(

‖T ν(T + λ1)−1T (fλ − f0)‖L2

+λ‖T 1+νf0‖+ ‖T ν(T + λ1)−1gn‖L2

)

.

By Lemma 1,

‖T ν(T + λ1)−1T (fλ − f0)‖L2 ≤ ‖T ν(T + λ1)−1T 1−ν‖op‖T ν(fλ − f0)‖L2

≤ ‖T ν(fλ − f0)‖L2

≤ (1− ν)1−νννλν‖f0‖L2 .

Together with Lemma 3 stated below, we conclude that

‖T ν(fλ − f̂λ)‖L2 = Op

(

λν +
(

nλ1−2ν+1/(2r)
)−1/2

)

= Op(λ
ν)

provided that c1n
−2r/(2r+1) ≤ λ ≤ c2n

−2r/(2r+1) for some constants 0 < c1 < c2 <∞.

Lemma 3 For any 0 ≤ ν ≤ 1/2,

∥

∥T ν(T + λ1)−1gn
∥

∥

L2
= Op

(

(

nλ1−2ν+1/(2r)
)−1/2

)

We are now in position to bound ‖T 1/2(fλ − f̂λ)‖. Recall that

‖T 1/2(fλ − f̂λ)‖L2 ≤ ‖T 1/2(T + λ1)−1T (fλ − f0)‖L2 + ‖T 1/2(T + λ1)−1(Tn − T )(fλ − f0)‖L2

+λ‖T 1+1/2f0‖+ ‖T 1/2(T + λ1)−1gn‖L2

+‖T 1/2(T + λ1)−1(T − Tn)(fλ − f̂λ)‖L2 .

We now bound the five terms on the right hand side separately. By Lemma 1,

‖T 1/2(T + λ1)−1T (fλ − f0)‖L2 ≤ ‖T 1/2(T + λ1)−1T 1/2‖op‖T 1/2(fλ − f0)‖L2

≤ 1

2
λ1/2‖f0‖L2 .

We appeal to the following result.
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Lemma 4 Under the conditions of Lemma 2,

∥

∥

∥T 1/2(T + λ1)−1(Tn − T )T−ν
∥

∥

∥

op
= Op

(

(

nλ1/(2r)
)−1/2

)

.

By Lemmas 1 and 4,

‖T 1/2(T + λ1)−1(Tn − T )(fλ − f0)‖L2

≤ ‖T 1/2(T + λ1)−1(Tn − T )T−ν‖op‖T ν(fλ − f0)‖L2

≤ Op

(

(nλ1/(2r))−1/2λν
)

= op

(

(nλ1/(2r))−1/2
)

.

Similarly,

‖T 1/2(T + λ1)−1(Tn − T )(fλ − f̂λ)‖L2

≤ ‖T 1/2(T + λ1)−1(Tn − T )T−ν‖op‖T ν(fλ − f̂λ)‖L2

≤ Op

(

(nλ1/(2r))−1/2λν
)

= op

(

(nλ1/(2r))−1/2
)

.

By Lemma 3,

‖T 1/2(T + λ1)−1gn‖L2 = Op

(

(nλ1/(2r))−1/2
)

.

Together with the fact that λ‖T 1+1/2f0‖ = O(λ), we conclude that

‖T 1/2(fλ − f̂λ)‖L2 = Op

(

n−
2r

2r+1

)

.

6.3 Proof of Theorem 3

Consider the following Rademacher type of process:

Rn(b) =
1

n

n
∑

i=1

wi〈Xi, b〉L2 ,

where w′
is are iid Rademacher random variables, i.e., P(wi = 1) = P(wi = −1) = 1/2. Define

‖Rn‖B(δ) = sup
b∈B(δ)

|Rn(b)|,

where

B(δ) =
{

β ∈ H(K) : ‖b‖H(K) ≤ 1 and ‖LC1/2b‖L2 ≤ δ
}

.

Define

ρ1 = inf
{

ρ ≥ n−1 log n : E‖Rn‖B(δ) ≤ ρ1/2δ + ρ, ∀δ ∈ [0, 1]
}

.
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Similarly, write

ρ̂1 = inf
{

ρ ≥ n−1 log n : Ew‖Rn‖B(δ) ≤ ρ1/2δ + ρ, ∀δ ∈ [0, 1]
}

,

where Ew stands for expectation taken over Rademacher random variables w′
is only. We first note

the following result.

Lemma 5 Under the condition of Theorem 3, there exist constants c1, c2, c3 > 0 such that

c1γn(δ) − c2n
−1(log n) ≤ E‖Rn‖B ≤ c3γn(δ).

It is clear from Lemma 5 that 0 < inf ρ1/ρ ≤ sup ρ1/ρ < ∞. Following the same argument, it

can be shown that 0 < inf ρ̂/ρ̂1 ≤ sup ρ̂/ρ̂1 <∞. It now suffices to show that ρ̂1/ρ1 is also bounded

away from 0 and +∞.

For b ∈ B(δ), let f = LK−1/2b. Then

|Rn(b)| =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

wi〈Xi, b〉L2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

wi〈LK1/2Xi, f〉L2

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

|〈LK1/2Xi, f〉L2 | .

By Cauchy-Schwartz inequality, this can be further bounded.

|Rn(b)| ≤ 1

n

n
∑

i=1

‖LK1/2Xi‖L2
‖f‖L2

≤ 1

n

n
∑

i=1

‖LK1/2Xi‖L2
,

where the second inequality follows from the fact that ‖f‖L2 = ‖b‖H(K) ≤ 1. Note that the

rightmost hand side converges almost surely to E ‖LK1/2X‖L2
<∞ by strong law of large numbers.

On the other hand,

E‖Rn(b)‖2 =
1

n
E (wi〈Xi, b〉L2)

2 = ‖LC1/2b‖2L2
≤ δ2.

The rest of the proof follows in the same fashion as that of Koltchinskii and Yuan (2010; Section

3.2) and is therefore omitted.
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Appendix – Auxiliary Results

Proof of Lemma 1

Write

f0 =
∑

k≥1

akϕk.

Then

fλ =
∑

k≥1

skak
λ+ sk

ϕk.

Therefore,

‖T ν(fλ − f0)‖2L2
=
∑

k≥1

s2νk

(

λak
λ+ sk

)2

≤ max
k≥1

λ2s2νk
(λ+ sk)

2

∑

k≥1

a2k.

By Young’s inequality, λ+ sk ≥ (1− ν)−(1−ν)ν−νλ1−νsνk. Hence,

‖T ν(fλ − f0)‖2L2
≤ (1− ν)2(1−ν)ν2νλ2ν‖f0‖2L2

.

Proof of Lemma 2

Recall that

∥

∥T ν(T + λ1)−1(Tn − T )T−ν
∥

∥

op
= sup

h:‖h‖L2
=1

∣

∣〈h, T ν(T + λ1)−1(Tn − T )T−νh〉L2

∣

∣

Write

h =
∑

k≥1

hkϕk.

Then

〈h, T ν(T + λ1)−1(Tn − T )T−νh〉L2 = 〈T ν(T + λ1)−1h, (Tn − T )T−νh〉L2

=

〈

∑

j≥1

sνjhj

sj + λ
ϕj ,
∑

k≥1

s−ν
k hk(Tn − T )ϕk

〉

L2

=
∑

j,k≥1

sνj s
−ν
k hjhk

sj + λ
〈ϕj , (Tn − T )ϕk〉L2 .

An application of Cauchy-Schwartz inequality yields that
∣

∣

∣

∣

∣

∣

∑

j,k≥1

sνj s
−ν
k hjhk

sj + λ
〈ϕj , (Tn − T )ϕk〉L2

∣

∣

∣

∣

∣

∣

≤





∑

j,k≥1

h2jh
2
k





1/2



∑

j,k≥1

s2νj s
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2
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Hence,

∥

∥T ν(T + λ1)−1(Tn − T )T−ν
∥

∥

op
≤





∑

j,k≥1

s2νj s
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2

. (15)

Now consider the expectation of the right hand side. By Jensen’s inequality,

E





∑

j,k≥1

s2νj s
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2

≤





∑

j,k≥1

s2νj s
−2ν
k

(sj + λ)2
E〈ϕj , (Tn − T )ϕk〉2L2





1/2

.

Note that

E〈ϕj , (Tn − T )ϕk〉2L2
= E〈LK1/2ϕj , (LCn − LC)LK1/2ϕk〉2L2

E〈LK1/2ϕj , (LCn − LC)LK1/2ϕk〉2L2

= E

(∫

T 2

(LK1/2ϕj)(s)(Cn(s, t)−C(s, t))(LK1/2ϕk)(t)

)2

= E

(

1

n

n
∑

i=1

∫

T 2

(LK1/2ϕj)(s)(Xi(s)Xi(t)− EXi(s)Xi(t))(LK1/2ϕk)(t)

)2

=
1

n
E

(∫

T 2

(LK1/2ϕj)(s)(X(s)X(t) − EX(s)X(t))(LK1/2ϕk)(t)

)2

≤ 1

n
E

(∫

T 2

(LK1/2ϕj)(s)X(s)X(t)(LK1/2ϕk)(t)

)2

.

An application of Cauchy-Schwartz inequality yields

E〈LK1/2ϕj , (LCn − LC)LK1/2ϕk〉2L2

≤ 1

n
E
1/2

(∫

T
(LK1/2ϕj)(t)X(t)dt

)4

E
1/2

(∫

T
(LK1/2ϕk)(t)X(t)dt

)4

≤ c3n
−1

E

(
∫

T
(LK1/2ϕj)(t)X(t)dt

)2

E

(
∫

T
(LK1/2ϕk)(t)X(t)dt

)2

= c3n
−1‖T 1/2ϕj‖2L2

‖T 1/2ϕk‖2L2
= c3n

−1sjsk.

Therefore,

E





∑

j,k≥1

s2νj s
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2

≤





1

n

∑

j,k≥1

s1+2ν
j s1−2ν

k

(sj + λ)2





1/2

(16)

Note that s1−2ν
k is summable because (1− 2ν)(2r) > 1. We now appeal to the following lemma.
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Lemma 6 If there exist constants 0 < c1 < c2 < ∞ such that c1k
−2r < sk < c2k

−2r, then there

exist constants c3, c4 > 0 depending only on c1, c2 such that

c4λ
−1/(2r) ≤

∑

j≥1

s1+2ν
j

(λ+ sj)1+2ν
≤ c3(1 + λ−1/(2r)).

Thus, by Lemma 6,

∥

∥T ν(T + λ1)−1(Tn − T )T−ν
∥

∥

op
≤ c

(

nλ1−2ν
)−1/2





∑

j≥1

s1+2ν
j

(λ+ sj)1+2ν





1/2

≤ c
(

nλ1−2ν+1/(2r)
)−1/2

.

The proof is now completed by Markov inequality.

Proof of Lemma 3

Recall that

gn =
1

n

n
∑

i=1

ǫiLK1/2Xi.

Therefore,

∥

∥T ν(T + λ1)−1gn
∥

∥

2

L2
=

∑

k≥1

〈T ν(T + λ1)−1gn, ϕk〉2L2

=
∑

k≥1

〈gn, (T + λ1)−1T νϕk〉2L2

=
∑

k≥1

〈

1

n

n
∑

i=1

ǫiLK1/2Xi,
sνk

λ+ sk
ϕk

〉2

L2

=
∑

k≥1

s2νk
(λ+ sk)2

(

1

n

n
∑

i=1

ǫi〈Xi, LK1/2ϕk〉L2

)2

.

Note that

E (ǫi〈Xi, LK1/2ϕk〉L2) = E (ǫi〈Xi, LK1/2ϕk〉L2 |Xi) = 0.
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Hence,

E
∥

∥T ν(T + λ1)−1gn
∥

∥

2

L2
=

∑

k≥1

s2νk
(λ+ sk)2

E

(

1

n

n
∑

i=1

ǫi〈Xi, LK1/2ϕk〉L2

)2

=
1

n

∑

k≥1

s2νk
(λ+ sk)2

E (ǫi〈Xi, LK1/2ϕk〉L2)
2

=
σ2

n

∑

k≥1

s2νk
(λ+ sk)2

E〈Xi, LK1/2ϕk〉2L2

=
σ2

n

∑

k≥1

s1+2ν
k

(λ+ sk)2

≤ σ2

nλ1−2ν

∑

k≥1

s1+2ν
k

(λ+ sk)1+2ν

≤ cσ2

nλ1−2ν+1/(2r)
.

The proof can now be completed by Markov inequality.

Proof of Lemma 4

Similar to (15), by Cauchy-Schwartz inequality,

∥

∥

∥
T 1/2(T + λ1)−1(Tn − T )T−ν

∥

∥

∥

op

= sup
h:‖h‖L2

=1

∣

∣

∣

∣

∣

∣

∑

j,k≥1

sjs
−ν
k hjhk
sj + λ

〈ϕj , (Tn − T )ϕk〉L2

∣

∣

∣

∣

∣

∣

≤





∑

j,k≥1

sjs
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2

Following a similar argument as that of (16),

E





∑

j,k≥1

sjs
−2ν
k

(sj + λ)2
〈ϕj , (Tn − T )ϕk〉2L2





1/2

≤





1

n

∑

j,k≥1

s2js
1−2ν
k

(sj + λ)2





1/2

≤ c(nλ1/(2r))−1/2.

The proof is now completed by Markov inequality.

Proof of Lemma 5

It is clear that B(δ) = LK1/2(F(δ)) where

F(δ) =
{

f ∈ L2 : ‖f‖L2 ≤ 1 and ‖T 1/2f‖2L2
≤ δ2

}

.
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Denote

G =







∑

k≥1

fkϕk :
∑

k≥1

(

fk
min{1, δ/√sk}

)2

≤ 1







It can be easily checked that G ⊂ F ⊂
√
2G. Therefore,

sup
f∈G

|Rn (LK1/2f)| ≤ ‖Rn‖B ≤
√
2 sup
f∈G

|Rn (LK1/2f)| .

By Jensen’s inequality,

E sup
f∈G

|Rn (LK1/2f)| ≤
(

E sup
f∈G

|Rn (LK1/2f)|2
)1/2

.

By Cauchy-Schwartz inequality,

|Rn (LK1/2f)|2 =

∣

∣

∣

∣

∣

∣

∑

k≥1

fkRn (LK1/2ϕk)

∣

∣

∣

∣

∣

∣

2

≤





∑

k≥1

f2k
min{1, δ2/sk}









∑

k≥1

min{1, δ2/sk}R2
n(LK1/2ϕk)





Therefore,

sup
f∈G

|Rn (LK1/2f)|2 ≤





∑

k≥1

min{1, δ2/sk}R2
n(LK1/2ϕk)



 .

Observe that

ER2
n(LK1/2ϕk) = E

(

1

n

n
∑

i=1

wi〈Xi, LK1/2ϕk〉L2

)2

=
1

n
E〈Xi, LK1/2ϕk〉2L2

= n−1sk.

Thus,

E

(

sup
f∈G

|Rn (LK1/2f)|2
)

≤





∑

k≥1

min{1, δ2/sk}ER2
n(LK1/2ϕk)



 = γ2n(δ),

which implies that

E‖Rn‖B ≤
√
2γn(δ).

To prove the lower bound, we appeal to Hoffman-Jørgensen inequality which suggests that

E
1/2‖Rn‖2B ≤ c

(

E‖Rn‖B +
1

n
E
1/2 max

1≤i≤n
sup
β∈F

〈Xi, β〉2L2

)

.
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Observe that

E
1/2 max

1≤i≤n
sup
β∈F

〈Xi, β〉2L2
= E

1/2 max
1≤i≤n

sup
f∈G

〈LK1/2Xi, f〉2L2

≤ E
1/2 max

1≤i≤n
‖LK1/2Xi‖2L2

.

Because ‖LK1/2X‖L2 has exponential tails, it can be further bounded by c log n for some constant

c > 0.

Hence,

E‖Rn‖B ≥ c1E
1/2‖Rn‖2B − c2n

−1(log n)

≥ c1E
1/2

(

sup
f∈G

|Rn (LK1/2f)|2
)

− c2n
−1(log n)

≥ c1γn(δ)− c2n
−1(log n).

Proof of Lemma 6

Note that

∑

k≥1

s1+2ν
k

(λ+ sk)1+2ν
≤

∑

k≥1

(c1k
−2r)1+2ν

(λ+ c2k−2r)1+2ν

= c
−2r(1+2ν)
1

∑

k≥1

1

(c2 + λk2r)1+2ν

≤ c
−2r(1+2ν)
1

(

1

c2
+

∫ ∞

1

dx

(c2 + λx2r)1+2ν

)

= c
−2r(1+2ν)
1

(

1

c2
+ λ−

1
2r

∫ ∞

λ1/(2r)

dy

(c2 + y2r)1+2ν

)

≤ c3(1 + λ−1/(2r)).

Similarly,

∑

k≥1

s1+2ν
k

(λ+ sk)1+2ν
≥ c

−2r(1+2ν)
2

∑

k≥1

1

(c1 + λk2r)1+2ν

≥ c
−2r(1+2ν)
2

∫ ∞

1

dx

(c1 + λx2r)1+2ν

= c
−2r(1+2ν)
2 λ−

1
2r

∫ ∞

λ1/(2r)

dy

(c1 + y2r)1+2ν

≥ c4λ
−1/(2r).
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