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A Direct Estimation Approach to Sparse Linear Discriminant Analysis

Abstract
This article considers sparse linear discriminant analysis of high-dimensional data. In contrast to the existing
methods which are based on separate estimation of the precision matrix Ω and the difference δ of the mean
vectors, we introduce a simple and effective classifier by estimating the product Ωδ directly through
constrained ℓ1 minimization. The estimator can be implemented efficiently using linear programming and the
resulting classifier is called the linear programming discriminant (LPD) rule. The LPD rule is shown to have
desirable theoretical and numerical properties. It exploits the approximate sparsity of Ωδ and as a
consequence allows cases where it can still perform well even when Ω and/or δ cannot be estimated
consistently. Asymptotic properties of the LPD rule are investigated and consistency and rate of convergence
results are given. The LPD classifier has superior finite sample performance and significant computational
advantages over the existing methods that require separate estimation of Ω and δ. The LPD rule is also applied
to analyze real datasets from lung cancer and leukemia studies. The classifier performs favorably in comparison
to existing methods.
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A Direct Estimation Approach to Sparse Linear

Discriminant Analysis∗

Tony Cai and Weidong Liu

Abstract

This paper considers sparse linear discriminant analysis of high-dimensional

data. In contrast to the existing methods which are based on separate estimation

of the precision matrix Ω and the difference δ of the mean vectors, we introduce a

simple and effective classifier by estimating the product Ωδ directly through con-

strained ℓ1 minimization. The estimator can be implemented efficiently using linear

programming and the resulting classifier is called the linear programming discrimi-

nant (LPD) rule.

The LPD rule is shown to have desirable theoretical and numerical properties.

It exploits the approximate sparsity of Ωδ and as a consequence allows cases where

it can still perform well even when Ω and/or δ cannot be estimated consistently.

Asymptotic properties of the LPD rule are investigated and consistency and rate

of convergence results are given. The LPD classifier has superior finite sample

∗Tony Cai is Professor of Statistics in the Department of Statistics, The Wharton School, University

of Pennsylvania, Philadelphia, PA 19104 (Email: tcai@wharton.upenn.edu). Weidong Liu is Faculty

Member, Department of Mathematics and Institute of Natural Sciences, Shanghai Jiao Tong University,

China and Postdoctoral Fellow, Department of Statistics, The Wharton School, University of Pennsylva-

nia, Philadelphia, PA 19104 (Email: liuweidong99@gmail.com). The research of Tony Cai and Weidong

Liu was supported in part by NSF FRG Grant DMS-0854973.

1



performance and significant computational advantages over the existing methods

that require separate estimation of Ω and δ. The LPD rule is also applied to

analyze real datasets from lung cancer and leukemia studies. The classifier performs

favorably in comparison to existing methods.

Keywords: Classification, constrained l1-minimization, Fisher’s rule, linear discriminant

analysis, naive Bayes rule, sparsity.
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1 Introduction

Classification is an important problem which has been well studied in the classical low-

dimensional setting. In particular, linear discriminant analysis (LDA), which uses a linear

combination of features as the criterion for classification, has been shown to perform well

and enjoy certain optimality as the sample size tends to infinity while the dimension is

fixed. Consider two p-dimensional normal distributions N(µ1,Σ) (class 1) and N(µ2,Σ)

(class 2) with the same covariance matrix. Let Z be a random vector that is drawn from

one of these two distributions with equal prior probabilities. The goal of classification is

to determine from which class Z is drawn. The problem is simple in the ideal setting

where the parameters µ1, µ2, and Σ are known in advance. In this case, Fisher’s linear

discriminant rule

ψF (Z) = I{(Z − µ)
′

Ωδ ≥ 0}, (1)

where µ = (µ1 + µ2)/2, δ = µ1 − µ2 and Ω = Σ−1, classifies Z into class 1 if and only

if ψF (Z) = 1. This classifier is the Bayes rule with equal prior probabilities for the two

classes and is thus optimal in such an ideal setting.

Fisher’s rule can be used to serve as an oracle benchmark, but it is typically not

directly applicable in real data analysis as the parameters are usually unknown and need

to be estimated from the samples. It is a standard practice to separately estimate Ω and

δ and then plug the estimates into (1) to construct a classifier. Let {Xk; 1 ≤ k ≤ n1}

and {Y k; 1 ≤ k ≤ n2} be independent and identically distributed random samples from

N(µ1,Σ) and N(µ2,Σ) respectively. The classical estimates of µ1,µ2 and Ω in the low-

dimensional setting are the sample means X̄ and Ȳ and the inverse sample covariance

matrix Σ̂
−1

n . Plugging these estimates into (1) results in ψ̂F (Z), the empirical version of

ψF (Z). Theoretical properties of ψ̂F (Z) has been well studied when p is fixed and can
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be found, for example, in Anderson (2003).

With dramatic advances in technology, high-dimensional data are now routinely col-

lected in a wide range of applications and classification for these data has drawn con-

siderable recent attention. Examples include genomics, functional magnetic resonance

imaging, risk management and web search problems. In the high-dimensional settings,

the standard LDA performs poorly and can even fail completely. For example, Bickel

and Levina (2004) showed that the LDA can be no better than random guessing when

p/(n1 + n2) → ∞. In such a setting, the sample covariance matrix Σ̂n is singular and its

inverse is not well defined. One natural remedy is to use instead the generalized inverse

of the sample covariance matrix. However, such an estimate is highly biased and unstable

and will lead to a classifier with poor performance when p is large. A naive method in

this case is to simply ignore the dependence among the variables and replace Σ with

the diagonal of the sample covariance matrix. This leads to the so-called naive Bayes

rule, also called the independence rule; see Bickel and Levina (2004). Assuming that the

difference δ is sparse, Fan and Fan (2008) proposed the features annealed independence

rule which applies the naive independence rule to a set of selected important features of δ

that are chosen by thresholding. This rule ignores the correlations between the variables

and can be inefficient. See Section 6 for further discussions.

In the high-dimensional setting, regularity conditions on Ω (or Σ) and δ are needed

to ensure that they can be estimated consistently. The most commonly used structural

assumptions are that Ω (or Σ) and δ are sparse. Under such assumptions, Ω and δ

are estimated separately and are then plugged into the Fisher’s rule (1). Assuming the

covariance matrix Σ and the difference δ are sparse, Shao, et al. (2011) used the thresh-

olding procedures for estimating Σ and δ. More commonly in applications the sparsity

assumption is on the precision matrix Ω instead of Σ. In such a setting, Rothman, et al.
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(2008) used the Glasso estimator for Ω in (1). Witten and Tibshirani (2009) proposed

the scout procedure for classification in which they replaced Ω with a shrunken estimate.

See also Friedman (1989), Tibshirani, et al. (2002), Guo, et al. (2007), Wu, et al. (2009),

and Hall, et al. (2009) and the reference therein.

A simple but important observation is that the Fisher’s discriminant rule (1) depends

on Ω and δ only through their product Ωδ. In the present paper, we shall show that the

productΩδ can be estimated directly and efficiently, even when Ω and/or δ cannot be well

estimated individually. We introduce the following direct estimation method for sparse

linear discriminant analysis by estimating Ωδ through a constrained ℓ1 minimization

method. Specifically, we propose to estimate β∗ := Ωδ by

β̂ ∈ argmin
β∈IRp

{|β|1 subject to |Σ̂nβ − (X̄ − Ȳ )|∞ ≤ λn},

where λn is a tuning parameter, and classify Z to class 1 if and only if

(Z − µ̂)
′

β̂ ≥ 0,

where µ̂ = (X̄ + Ȳ )/2. The estimator β̂ can be implemented easily using linear pro-

gramming. The resulting classification procedure is thus called the linear programming

discriminant (LPD) rule. The LPD rule is data-driven and easy to implement. It has

significant computational advantage over the existing methods that require separate es-

timation of Ω (or Σ) and δ, because it only requires the estimation of a p-dimensional

vector via linear programming instead of the estimation of the inverse of a p×p covariance

matrix.

Both the theoretical and numerical properties of the LPD rule are studied in this

paper. The LPD rule performs well when Ωδ is approximately sparse, which is a weaker

and more flexible assumption than that both Ω and δ are sparse. In particular, under

this assumption the precision matrix Ω is not required to be sparse and may not be
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consistently estimable. The asymptotic properties of the LPD rule are investigated and

consistency and rate of convergence results are given. In addition to the Gaussian case,

extensions to the non-Gaussian distributions are also considered. Numerical performance

of the LPD classifier is investigated using both simulated and real data. A simulation

study is carried out and the numerical results show that the LPD rule has superior finite

sample performance in comparison to several other classifiers. It significantly outperforms

the alternative methods in terms of the average misclassification rate. The LPD rule is

also applied to the analysis of real datasets from lung cancer and leukemia studies and

performs favorably in comparison to existing methods.

The rest of the paper is organized as follows. Section 2 introduces a constrained ℓ1

minimization method for the direct estimation of Ωδ which leads to the LPD classification

rule. Section 3 investigates the asymptotic properties of the LPD rule in the Gaussian

setting. Extensions to non-Gaussian distributions are given in Section 4. Section 5 first

discusses the linear programming implementation of the LPD classifier, and then investi-

gates the numerical performance of the LPD rule by simulations and by applications to

lung cancer and leukemia datasets. Discussions of our results and other related work are

given in Section 6. The main results are proved in Section 7.

2 Classification via direct estimation of Ωδ

In this section we introduce a constrained ℓ1 minimization method for estimating the

product Ωδ directly. It will be shown in Sections 3 - 5 that the resulting classification

rule enjoys desirable properties theoretically, computationally, and numerically. For ease

of presentation, we shall focus on the Gaussian case in this section and Section 3. The

non-Gaussian case is considered in Section 4. We begin by reviewing basic notation and

definitions.
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For a vector β = (β1, . . . , βp)
′ ∈ IRp, define the ℓ0 norm by |β|0 =

∑p
j=1 I{βj 6= 0};

the ℓq norm by |β|q = (
∑p

i=1 |βi|q)1/q for 1 ≤ q ≤ ∞ with the usual modification for

q = ∞. The vector β is called k-sparse if it has at most k nonzero entries. For a matrix

Ω = (ωij)p×p, the matrix 1-norm is defined to be the maximum absolute column sum,

‖Ω‖L1
= max1≤j≤p

∑p
i=1 |ωij|. For a matrix Ω, we say Ω is k-sparse if each row/column

has at most k nonzero entries. For two sequences of real numbers {an} and {bn}, write

an = O(bn) for n ≥ 1 if there exists a constant C such that |an| ≤ C|bn|, write an = o(bn)

if limn→∞ an/bn = 0, and write an ≍ bn if there are positive constants c and C such that

c ≤ an/bn ≤ C for all n ≥ 1.

Recall that {Xk; 1 ≤ k ≤ n1} and {Y k; 1 ≤ k ≤ n2} are independent and identically

distributed random samples from N(µ1,Σ) and N(µ2,Σ) respectively. Set

X̄ =
1

n1

n1
∑

i=1

X i, Ȳ =
1

n2

n2
∑

i=1

Y i, δ̂ = X̄ − Ȳ , µ̂ = (X̄ + Ȳ )/2. (2)

Denote the sample covariance matrices by

Σ̂X =
1

n1

n1
∑

i=1

(X i − X̄)(X i − X̄)
′

, Σ̂Y =
1

n2

n2
∑

i=1

(Y i − Ȳ )(Y i − Ȳ )
′

,

and set

Σ̂n =
1

n
(n1Σ̂X + n2Σ̂Y ),

where n = n1 + n2.

As mentioned in the introduction, most of the classification methods in the literature

involve separate estimation of the unknown precision matrix Ω = Σ−1 and the difference

of the means δ in the Fisher’s rule (1). In the high-dimensional setting, the sample

covariance matrix Σ̂n is typically not invertible and regularity conditions are needed in

order to be possible to construct good estimators. It should be noted that accurate

estimation of a large sparse precision matrix is a difficult and computationally costly

7



problem itself. See, e.g., Ravikumar, et al. (2008), Yuan (2009), and Cai, Liu and Luo

(2011).

It is clear that the Fisher’s rule (1) depends on Ω and δ only through their product

Ωδ. We now introduce a constrained ℓ1 minimization method to directly estimate the

product Ωδ by exploiting the (approximate) sparsity of Ωδ. We should note here that

the sparsity of Ωδ is a weaker and more flexible condition than the sparsity of both Ω and

δ. In particular, it does not require the precision matrix Ω to be sparse. See Remark 1

below for more discussions. Specifically, we propose to estimate β∗ := Ωδ by the solution

to the following optimization problem:

β̂ ∈ argmin
β∈IRp

{|β|1 subject to |Σ̂nβ − (X̄ − Ȳ )|∞ ≤ λn}, (3)

where λn is a tuning parameter which will be specified later. The constrained ℓ1 min-

imization method (3) is known to be an effective way for reconstructing sparse signals.

The readers are referred to Donoho, et al. (2006) and Candès and Tao (2007) for more

details on the ℓ1 minimization methods for sparse signal recovery. We shall show that the

direct estimate leads to a classifier that is more effective and efficient than those based

on estimating Ω and δ separately.

Given the solution β̂ to (3), we propose the following classification rule: classify Z to

class 1 if and only if

(Z − µ̂)
′

β̂ ≥ 0. (4)

The optimization problem (3) can be cast as a linear program. We shall call the discrim-

inant in (4) the Linear Programming Discriminant (LPD) and the classification rule (4)

the LPD rule.

The motivation behind the constrained ℓ1 minimization method (3) for estimating

β∗ = Ωδ directly can be easily seen as follows. Note that β∗ is the solution to the
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equation Σβ− δ = 0. When Σ and δ are unknown, they are replaced by their respective

sample versions Σ̂n and δ̂ = X̄ − Ȳ . We then seek the most sparse solution within the

feasible set

{β : |Σ̂nβ − (X̄ − Ȳ )|∞ ≤ λn}

to account for the variability in Σ̂n and δ̂. The convex relaxation of using ℓ1 minimization

in place of ℓ0 minimization is a standard technique in sparse signal recovery. We shall

show in the next sections that the resulting classification rule (4) has desirable properties

both asymptotically and numerically. The ℓ1 minimization method (3) works well when

Ωδ is approximately sparse. It thus allows the case where Ω itself is not sparse. In other

words, it is possible to classify Z with accuracy using the classifier (4) even when Ω

cannot be estimated consistently.

In addition to its good performance in terms of classification accuracy, the classifier

given in (4) also enjoys significant computational advantages over existing methods that

require separate estimation of Ω and δ. This can be seen at an intuitive level. There

is only p parameters in Ωδ, while one needs to estimate p2/2 parameters if Ω and δ

are estimated separately. More discussions on the computational issues will be given in

Section 5.

Remark 1 It is easy to see that if δ is k1-sparse and Ω is k2-sparse, then Ωδ is at most

k1k2-sparse. Furthermore, the sparsity of Ωδ does not require Ω being sparse. Suppose

δ is k1-sparse and without loss of generality assume the nonzeros are among the first k1

coordinates. (In general we can always re-order the rows/columns of Ω accordingly.) So,

δ can be written as

δ =







δ1

0
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where δ1 is a k1-dimensional vector. Write Ω as

Ω =







Ω11 Ω′
21

Ω21 Ω22






,

where Ω11 is k1×k1, Ω21 is (p−k1)×k1, and Ω22 is (p−k1)× (p−k1). Then the sparsity

of Ωδ does not depend on the submatrix Ω22 at all. Ωδ =
(

Ω11δ1
Ω21δ1

)

is sparse if Ω21 is

sparse. In particular, if there are at most k2 nonzero elements on each column of Ω21,

then Ωδ is k1(k2+1) sparse. No condition on Ω22 is needed. In general, it is not possible

to consistently estimate Ω under the spectral norm without regularity conditions on Ω22.

The consistency of Ω̂ was required by Shao, et al. (2011) through the invertibility of the

estimated covariance matrix Σ̂ and for the good asymptotic performance of the resulting

classification rule. In fact, even when Ω is the identity matrix, joint estimation of Ωδ by

(3) may lead to a better misclassification rate than estimating Ω and δ separately as in

Shao, et al. (2011). See Remark 5 for more details.

Finally we note that there are also cases that neither Ω nor δ is sparse, but Ωδ is.

For example, if δ = (σ11, . . . , σp1)
′

, the first column of Σ, then Ωδ = (1, 0, . . . , 0)
′

. Hence

the sparsity on Ωδ is more flexible than assuming both Ω and δ are sparse.

3 Asymptotic properties

We now turn to the theoretical properties of the LPD classifier given in (4). Both consis-

tency and convergence rate results are given. We shall focus on the Gaussian case in this

section. Extensions to the non-Gaussian case are discussed in Section 4 and numerical

performance of the classifier will be considered in Section 5.

The misclassification rate of the Fisher’s rule (see, e.g., Anderson (2003)) is

R := 1− Φ(∆1/2
p ) with ∆p = δ

′

Ωδ, (5)
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which is the best possible performance in the ideal setting where all the parameters µ1, µ2,

and Σ are known in advance. This can serve as an oracle benchmark for the performance

of any data-driven classifier based on the samples {Xk} and {Y k}.

It is not difficult to calculate that, given the samples {Xk} and {Y k}, the conditional

misclassification rate of the LPD rule is

Rn := 1− 1

2
Φ
(

− (µ̂− µ1)
′

β̂

(β̂
′

Σβ̂)1/2

)

− 1

2
Φ
((µ̂− µ2)

′

β̂

(β̂
′

Σβ̂)1/2

)

where β̂ is given in (3). The performance of the LPD rule can then be naturally measured

by the difference (or ratio) between Rn and the Bayes misclassification rate R. In this

section we will study the difference and ratio between Rn and R. To this end, we need to

introduce some conditions.

(C1). n1 ≍ n2, log p ≤ n, c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0 for some constant c0 > 0 and

∆p ≥ c1 for some c1 > 0.

Here we assume that the two samples are of comparable sizes and the eigenvalues of

the covariance matrix Σ are bounded from below and above. These are commonly used

conditions in the high dimensional setting. In addition, we also assume ∆p is bounded

away from zero. If ∆p → 0, then it can be seen easily from (5) that even the oracle rule

is no better than random guessing.

Our first result is on the consistency of Rn.

Theorem 1 Let λn = C
√

∆p log p/n with C > 0 being a sufficiently large constant.

Suppose (C1) holds and

|Ωδ|0 = o

(
√

n

log p

)

. (6)

Then we have as n→ ∞ and p→ ∞,

Rn − R → 0 (7)
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in probability.

This theorem shows that the LPD rule is consistent when Ωδ is sparse. In practice, the

value of the tuning parameter λn is chosen by cross-validation. See Section 5 for further

discussions on the implementation of the LPD rule.

Remark 2 As mentioned earlier, the condition |Ωδ|0 = o
(

√

n/ log p
)

does not require Ω

to be sparse. Therefore, by estimating Ωδ directly, we do not need a consistent estimate

for Ω or Σ under the spectral norm to get the asymptotically optimal misclassification

rate. In contrast, consistent estimation of Ω is required by Shao, et al. (2011). A basic

condition in Shao, et al. (2011) is that Σ =: (σij)p×p is (approximately) sparse with the

sparsity s0(p) ofΣ satisfying s0(p)(log p/n)
(1−q)/2 = o(1) and max1≤i≤p

∑p
j=1 |σij |q ≤ s0(p)

for 0 ≤ q < 1. It follows from Cai and Zhou (2010) on the minimax rate of convergence

for estimating sparse covariance matrices, this condition is necessary for the consistency

under the spectral norm.

Theorem 1 can be extended to a more general setting where Ωδ is only approximately

sparse. To state this result, we first relax the condition (C1) as follows.

(C2). n1 ≍ n2, log p ≤ n, max1≤i≤p σii ≤ K for some constant K > 0 and ∆p ≥ c1 for

some constant c1 > 0.

Theorem 2 Let λn = C
√

∆p log p/n with C being a sufficiently large constant. Suppose

(C2) holds and

|Ωδ|1
∆

1/2
p

+
|Ωδ|21
∆2

p

= o

(√

n

log p

)

. (8)

Then we have as n→ ∞ and p→ ∞,

Rn − R → 0 (9)

in probability.
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Remark 3 It follows from the Cauchy-Schwarz inequality and (C1),

|Ωδ|21 ≤ |Ωδ|0|Ωδ|22 ≤ c20|Ωδ|0|δ|22

and ∆p ≥ c−1
0 |δ|22. Thus (6) implies (8). The condition (6) can be further relaxed if

the minimum magnitude of the nonzero elements of Ωδ is relatively large. Let S =

{i : (Ωδ)i 6= 0}. If mini∈S |(Ωδ)i| ≥ C(log p/n)1/4, then a sufficient condition of (8) is

|Ωδ|0 = o(n/ log p). Condition (8) allows the case where Ωδ is only approximately sparse

with many small entries.

Remark 4 The condition max1≤i≤p σii ≤ K can be relaxed. Let Kp := max1≤i≤p σii and

λn = C
√

Kp∆p log p/n. Theorem 2 still holds under the condition

|Ωδ|1
∆

1/2
p

+
|Ωδ|21
∆2

p

= o

(
√

n

Kp log p

)

.

Here Kp can grow and may tend to infinity as p→ ∞.

Theorems 1 and 2 provide the consistency results for the LPD rule. Consistency is

important, but the fact Rn−R → 0 does not give a detailed description of the properties

of a classifier. For example, when the Bayes misclassification rate R → 0, any classifier

with Rn → 0 is consistent. Stronger results on the rate of convergence can be obtained.

Theorem 3 Let λn = C
√

∆p log p/n with C being a sufficiently large constant. Suppose

(C2) holds and

|Ωδ|1∆1/2
p + |Ωδ|21 = o

(√

n

log p

)

.

Then

Rn

R
− 1 = O

(

(|Ωδ|1∆1/2
p + |Ωδ|21)

√

log p

n

)

with probability greater than 1− O(p−1). In particular, if (C1) holds and

|Ωδ|0∆p = o
(

√

n

log p

)

,

13



then

Rn

R
− 1 = O

(

|Ωδ|0∆p

√

log p

n

)

with probability greater than 1− O(p−1).

Theorem 3 shows that a larger ∆p implies a worse convergence rate for the relative

classification error Rn/R. This is in fact to be expected. When ∆p is large, the classifi-

cation problem is easy and the Bayes misclassification rate R can be very small. It then

becomes harder for any data-driven classification rule to mimic the performance of the

oracle rule.

Remark 5 Due to the differences in setting, it is not directly comparable between our

results and the results in Shao, et al. (2011). To make them comparable, it is necessary

to assume both Σ and Ω are sparse. For simplicity, we consider the case Σ = Ip×p.

Suppose that |δ|1 ≤ K for some constant K and log p = o(n). Theorem 3 shows that

Rn/R− 1 = OP(
√

log p/n). Let R∗
n be the conditional misclassification rate of the SLDA

rule proposed in Shao, et al. (2011). Their results show that R∗
n/R − 1 = OP(bn) with

bn = (log p/n)α(1−g)|δ|g2g for some 0 < α < 1/2 and 0 ≤ g < 1. It is easy to see that

bn/
√

log p/n→ ∞. So the LPD rule outperforms the SLDA rule in this case.

The convergence rate in Theorem 3 can be further improved under stronger conditions.

Theorem 4 Let λn = C
√

∆p log p/n with C being a sufficiently large constant. Suppose

(C2) holds and

‖Ω‖L1
|Ωδ|0 + |Ωδ|1∆1/2

p = o

(√

n

log p

)

. (10)

Then

Rn

R
− 1 = O

(

|Ωδ|1∆1/2
p

√

log p

n

)
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with probability greater than 1− O(p−1). In particular, if (C1) holds and

‖Ω‖L1
|Ωδ|0 + |Ωδ|1/20 ∆p = o

(

√

n

log p

)

,

then

Rn

R
− 1 = O

(

|Ωδ|1/20 ∆p

√

log p

n

)

with probability greater than 1− O(p−1).

4 Extensions

Section 3 establishes the theoretical properties of the LPD classifier in the Gaussian

setting. The results can be extended to a class of non-Gaussian distributions satisfying

certain moment conditions.

Let X and Y be two p-dimensional random vectors satisfying

X = µ1 +U 1 and Y = µ2 +U 2,

where U 1 and U 2 are independent and identically distributed random vectors with mean

zero and covariance matrix Σ = (σij)p×p. Fang and Anderson (1990) showed that the

Fisher’s rule is still optimal when U 1 has an elliptical distribution with zero mean and

density

cp|Σ|−1/2f
(

u
′

Σ−1u
)

, (11)

where f is a monotone function on [0,∞) and cp is a normalizing constant. The optimal

misclassification rate in this case is

R =
1

2
P

(

U
′

1Ωδ < −δ
′

Ωδ
)

+
1

2
P

(

U
′

2Ωδ ≥ δ
′

Ωδ
)

.
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As in Shao, et al. (2011), we relax the normality of U 1 to that, for any p dimensional

non-random vector l with |l|2 = 1 and any t ∈ R,

P

(

l
′

Ω1/2U 1 ≤ t
)

=: Ψ(t)

is a continuous distribution function symmetric about 0 and does not depend on l. The

elliptical distributions (such as (11)) and the multivariate scale mixture of normals satisfy

this condition. The conditional classification error of the LPD rule (4) given {Xk} and

{Y k} is

Rn := 1− 1

2
Ψ
(

− (µ̂− µ1)
′

β̂

(β̂
′

Σβ̂)1/2

)

− 1

2
Ψ
((µ̂− µ2)

′

β̂

(β̂
′

Σβ̂)1/2

)

.

To obtain the convergence rate for Rn, we shall impose an additional condition: for any

x < 0 and |δ| ≤ 1,

∣

∣

∣

Ψ(x+ δ)

Ψ(x)
− 1
∣

∣

∣
≤ c1|δ|(|x|+ 1)ec2|xδ| (12)

for some positive constants c1, c2 which do not depend on x and δ. Note that the distri-

bution with density function p(x) = c3(1 + |x|)−we−c4|x|ϕ satisfies (12), where c3 and c4

are positive constants, ϕ and w are constants with 0 < ϕ ≤ 2, w ≥ 0, or ϕ = 0, w > 1.

The moment conditions are divided into two cases: the sub-Gaussian-type tails and

the polynomial-type tails. Let U 1 =: (U1, . . . , Up)
′

and Uδ = U
′

1Ωδ/∆
1/2
p . Note that Uδ

is a standardized random variable with zero mean and unit variance.

(C3). (Sub-Gaussian-type tails) Suppose that log p ≤ n and there exist some con-

stants η > 0 and K1 > 0 such that

E exp
(

ηU2
δ

)

≤ K1, and E exp
(

ηU2
i /σii

)

≤ K1 for all i. (13)

(C4). (Polynomial-type tails) Suppose that for some γ, c1 > 0, p ≤ c1n
γ , and for

some ǫ > 0

E|Uδ|4γ+4+ǫ ≤ K1 and E|Ui/σ
1/2
ii |4γ+4+ǫ ≤ K1 for all i. (14)

16



Theorem 5 (i). Assume that the conditions in Theorem 2 hold. By replacing the nor-

mality with elliptical distributions satisfying (C3) or (C4), we have as n→ ∞ and p→ ∞,

Rn − R→ 0 in probability. (15)

(ii). Under the conditions in Theorem 3, (12) and (C3) (or (C4)),

Rn

R
− 1 = O

(

(|Ωδ|1∆1/2
p + |Ωδ|21)

√

log p

n

)

with probability greater than 1− O(p−1 + n−ǫ/8).

Similarly, Theorem 4 remains valid if the normality assumption is replaced by elliptical

distributions satisfying (C3) or (C4). For reasons of space, we do not restate the results

here.

5 Numerical Investigation

We now turn to the numerical performance of the LPD rule using both simulated and real

data. We begin in Section 5.1 with a discussion on the implementation of the classifier

using linear programming and the selection of the tuning parameter λn through cross-

validation. Section 5.2 presents simulation results and comparisons with other methods

including oracle features annealed independence rule (OFAIR) (the support of δ is as-

sumed to be known), the nearest shrunken centroids method (NSC) proposed by Tibshi-

rani, et al. (2002), the sparse linear discriminant (SLD) introduced in Shao, et al. (2011),

the Naive-Bayes rule (Naive-LDA), the LDA rule with a generalized inverse (GLDA) as

well as the oracle Fisher’s rule (Oracle). The applications of the LPD rule to the analysis

of a lung cancer dataset and a leukemia dataset are given in Section 5.3.
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5.1 Implementation of LPD

Recall that the estimate of β∗ = Ωδ is obtained by solving the constrained ℓ1 minimization

problem

β̂ ∈ argmin
β∈IRp

{|β|1 subject to |Σ̂nβ − (X̄ − Ȳ )|∞ ≤ λn}.

This optimization problem is convex, and can easily be recast as the following linear

program,

min

p
∑

j=1

uj

subject to: − βj ≤ uj for all 1 ≤ j ≤ p

+ βj ≤ uj for all 1 ≤ j ≤ p

− σ̂
′

kβ + δ̂k ≤ λn for all 1 ≤ k ≤ p

+ σ̂
′

kβ − δ̂k ≤ λn for all 1 ≤ k ≤ p,

(16)

where (δ̂1, . . . , δ̂p)
′

:= δ̂ and (σ̂1, . . . , σ̂p) := Σ̂n.

This linear programming implementation is similar to that of the Dantzig selector in

high-dimensional linear regression. See Candès and Tao (2007). We then apply the primal-

dual interior-point method to solve (16). See, for example, Boyd and Vandenberghe (2004)

for more details on the primal-dual interior-point method. We should note that there are

other stable algorithms based on first-order method that may be used to implement the

optimization problem (3); see Becker, Candès and Grant (2010). Similar to many iterative

methods, one needs to specify a feasible initialization. To this end, we replace Σ̂n in (3)

by Σ̂ρ = Σ̂n + ρIp×p with a small positive number ρ (e.g. ρ =
√

log p/n) and take the

initial value to be Σ̂
−1

ρ δ̂. Such a perturbation does not noticeably affect the computational

accuracy of the final solution in our numerical experiments. All the theoretical properties

in Sections 3 and 4 still hold for ρ ≤
√

log p/n with the additional condition λmax(Σ) ≤ K

for some constant K > 0.
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The computational cost of estimating Ωδ directly through linear programming as

described above is much smaller than that of estimating the precision matrix Ω. For

example, if one estimates Ω using the method in Yuan (2009) or the CLIME method in

Cai, Liu and Luo (2011), the computation cost is p times to that of estimating Ωδ directly

by (3).

There is a tuning parameter λ = λn in the algorithm. As mentioned before, λ can

be chosen empirically by cross validation (CV). This can be done as follows. Divide the

sets {1, 2, . . . , n1} and {1, 2, . . . , n2} into 2N subgroups H11, . . . , H1N and H21, . . . , H2N .

Thus the samples {X i,Y j; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} are divided into Xk := {X i,Y j ; i ∈

H1k, j ∈ H2k}, 1 ≤ k ≤ N . Let µ̂(k), δ̂(k) and Σ̂(k) be defined as in (2), based on

{X i,Y j ; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} \ Xk. For any given choice of λ, calculate β̂(k)(λ) based

on δ̂(k) and Σ̂(k) by (3). Let I
(k)
j1 = 1 if (Xj − µ̂(k))

′

β̂(k)(λ) ≥ 0 for Xj ∈ Xk; else I
(k)
j1 = 0.

Similarly, define I
(k)
j2 = 1 if (Y j − µ̂(k))

′

β̂(k)(λ) < 0 for Y j ∈ Xk; else I
(k)
j2 = 0. Then

CV (λ) =

N
∑

k=1

(

∑

i∈H1k

I
(k)
i1 +

∑

j∈H2k

I
(k)
j2

)

is the total number of correctly classified cases among the validation sets for the classifier

with a given choice of λ. The final choice of λ is λ̂ = maxλCV (λ). If the maximum is

attained at several λ’s, the minimum value of these λ’s is selected.

5.2 Simulation results

We now present simulation results and compare the numerical performance of the LPD

classifier with the oracle features annealed independence rule (OFAIR) (Fan and Fan

(2008)) where the support of the difference δ is assumed to be known, the nearest shrunken

centroids method (NSC) (Tibshirani, et al. (2002)), the sparse linear discriminant (SLD)

(Shao, et al. (2011)), the Naive-Bayes rule (Naive-LDA), the LDA rule with a generalized
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inverse (GLDA) and the oracle Fisher’s rule (Oracle). The oracle rule is included as a

benchmark.

The setup in the simulation study is as follows. We fix the sample sizes n1 = n2 = 200

and set µ1 = 0 and µ2 = (1, . . . , 1, 0, . . . , 0)
′

, where the number of 1’s is s0 = 10. Three

models are considered.

• Model 1. Ω = (σij)
−1
p×p with σii = 1 for 1 ≤ i ≤ p and σij = ρ with ρ = 0.5 for i 6= j.

• Model 2. Ω = (B + δI)/(1 + δ), where B = (bij)p×p with independent bij = bji =

0.5×Ber(1, 0.2) for 1 ≤ i ≤ s0, i < j ≤ p; bij = bji = 0.5 for s0+1 ≤ i < j ≤ p; bii =

1 for 1 ≤ i ≤ p. Here Ber(1, 0.2) is a Bernoulli random variable which takes value 1

with probability 0.2 and 0 with probability 0.8; and δ = max(−λmin(B), 0)+0.05 to

ensure that Ω is positive definite. Finally, the matrix is standardized to have unit

diagonals.

• Model 3. Ω = Σ−1, where Σ = (σij)p×p with σij = 0.8|i−j| for 1 ≤ i, j ≤ p.

Ω in Model 1 is an approximately sparse matrix. It is diagonally dominant with the

off-diagonal entries of order p−1. In Model 1 Ωδ is also approximately sparse. In Model

2, only the first s0 rows and columns of Ω are sparse and the rest of the matrix is not

sparse. In Model 3, Σ can be well approximated by a sparse matrix and the inverse Ω is

a 3-sparse matrix. Model 3 satisfies the conditions in both Shao, et al. (2011) and the

present paper. This enables a fair comparison between the SLD in Shao, et al. (2011)

and the LPD rule.

In the simulation, we generate n1 = n2 = 200 training and test samples of the same size

according to Models 1-3 with the multivariate normal distribution and the multivariate t

distribution with five degrees of freedom. The tuning parameter λn is chosen by five-fold

cross validation as described in Section 5.1. Note that the covariance matrix Σ in Models
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1 and 2 are not sparse. So the thresholding estimator forΣ used in Shao, et al. (2011) may

be not invertible. The generalized inverse of the thresholding estimator is used when the

estimator itself is not invertible. The SLD rule in Shao, et al. (2011) requires to choose

two tuning parameters by cross validation. To reduce the computational cost, when

implementing the SLD rule we assume the support of δ is known so that only the tuning

parameter for estimating the covariance matrix is needed. The average classification

errors for the test samples and the standard deviations based 100 replications are stated

in Tables 1 and 2.

Table 1 displays the numerical results of the six classifiers as well as the oracle Fisher’s

rule in the Gaussian case. For Model 1, the performance of the LPD rule is similar to

that of the oracle Fisher’s rule, and is better by a large margin than those of the other

five classifiers OFAIR, NSC, SLD, Naive-LDA and GLDA. Comparing to these methods,

LPD has the smallest classification errors with the smallest standard deviations. The

classification error is also quite stable as p increases from 100 to 800. The performance

of SLD is not stable in Model 1 because Σ is not sparse and the generalized inverse of

the thresholding estimator is used. For Models 2 and 3, the LPD rule again significantly

outperforms the other five classifiers. The misclassification rate of the LPD rule in Model

2 is less than half of those of the other five methods.

Table 2 shows the corresponding numerical results in the case of the multivariate t5

distribution. In comparison to the results for the Gaussian case given in Table 1, it can

be seen from Table 2 that the classification errors of all methods including the oracle rule

increase when the tail of the distribution becomes heavier. In this case the performance

of the LPD rule remains close to that of the oracle rule in Model 1 and the LPD classifier

again significantly outperforms OFAIR, NSC, SLD, Naive-LDA and GLDA in all of the

three models.
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p LPD OFAIR NSC SLD Naive-LDA GLDA Oracle

Model 1

100 2.42(0.78) 25.07(2.01) 18.58(8.27) 3.20(0.89) 21.39(11.53) 3.54(1.00) 1.60(0.07)

200 2.45(0.75) 24.80(1.85) 17.70(9.18) 6.23(1.35) 25.51(11.94) 7.28(1.53) 1.51(0.60)

400 2.27(0.83) 24.28(2.28) 19.35(8.35) 41.45(4.32) 32.12(12.16) 41.95(4.18) 1.41(0.57)

800 2.51(1.08) 24.51(2.03) 19.40(8.31) 13.28(1.97) 39.57(9.43) 17.24(2.20) 1.30(0.61)

Model 2

100 3.23(0.99) 13.88(3.10) 13.38(4.90) 10.73(5.15) 19.08(6.57) 3.53(0.98) 1.62(0.64)

200 5.12(1.24) 25.75(4.07) 26.13(5.88) 18.92(7.61) 36.15(5.05) 8.21(1.37) 1.83(0.64)

400 8.18(1.59) 18.04(3.24) 21.01(5.61) 20.87(8.32) 37.85(4.70) 43.90(3.70) 2.64(0.78)

800 14.87(2.27) 23.52(2.69) 30.40(4.49) 26.48(4.82) 45.59(3.38) 32.12(2.92) 3.12(0.80)

Model 3

100 18.93(2.08) 24.92(2.00) 25.06(2.04) 25.09(2.61) 25.65(2.22) 22.63(2.25) 16.55(1.74)

200 19.42(2.14) 24.81(1.95) 25.02(2.07) 25.40(4.96) 26.23(2.18) 29.31(2.42) 16.47(1.94)

400 19.64(2.47) 24.50(2.31) 24.73(2.47) 24.60(2.49) 27.56(2.39) 47.46(3.21) 16.44(2.21)

800 19.90(2.34) 24.94(2.26) 25.24(2.43) 25.37(3.25) 29.70(2.36) 34.41(2.61) 16.61(2.04)

Table 1: Average classification error for the test samples in percentage in the normal

distribution case. Standard deviations are given in parentheses.
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p LPD OFAIR NSC SLD Naive-LDA GLDA Oracle

Model 1

100 6.70(1.20) 30.12(2.26) 23.84(8.33) 7.79(1.36) 27.22(10.82) 8.50(1.42) 5.02(1.17)

200 6.64(1.28) 30.12(2.07) 24.98(8.26) 11.76(1.80) 31.23(12.37) 13.59(2.07) 4.61(1.06)

400 6.29(1.38) 29.90(2.47) 25.40(8.29) 43.05(4.95) 39.37(8.85) 44.19(3.71) 4.38(0.85)

800 5.86(1.09) 30.02(2.21) 26.60(7.81) 19.73(2.40) 41.83(10.24) 25.25(2.56) 4.06(1.09)

Model 2

100 8.02(1.35) 19.90(3.51) 20.60(6.04) 17.25(8.80) 27.34(6.85) 8.46(1.47) 4.91(0.92)

200 11.06(1.89) 30.40(4.15) 31.67(5.30) 42.73(13.97) 40.80(4.08) 14.57(2.09) 5.15(1.04)

400 15.15(1.96) 25.10(3.80) 30.13(5.71) 39.12(8.33) 42.63(3.63) 45.20(3.40) 6.33(1.28)

800 23.19(2.12) 30.60(3.73) 36.40(4.08) 31.17(4.08) 47.25(2.55) 38.00(2.75) 7.28(1.33)

Model 3

100 24.04(2.34) 29.30(2.13) 29.55(2.24) 29.80(3.19) 30.52(2.23) 28.81(2.55) 21.46(1.95)

200 25.01(2.18) 29.23(2.02) 29.39(2.12) 29.74(4.00) 31.80(2.20) 34.88(2.49) 21.76(1.98)

400 25.61(3.08) 29.27(2.29) 29.57(2.30) 29.79(4.41) 33.26(2.77) 48.00(2.79) 21.70(2.25)

800 25.92(2.59) 28.88(2.12) 29.08(2.27) 29.11(2.09) 35.50(2.51) 39.43(2.61) 21.60(2.52)

Table 2: Average classification error for the test samples in percentage in the t5 distribu-

tion case. Standard deviations are given in parentheses.
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Support recovery by β̂ is also considered in the simulation. We only consider Model

3, in which Ωδ has 11 nonzero elements. Note that in Model 1 all of the elements of Ωδ

are nonzero and most of the elements of Ωδ (more than 88%) in Model 2 generated by

our simulation are nonzero. We thus do not consider support recovery for Models 1 and

2. In Model 3, the number of nonzero elements (POS) and true nonzero elements (TPOS)

in β̂ are calculated. The ability to recover the support is evaluated via the true positive

rate (TPR) in combination with the false positive rate (FPR), defined respectively as

TPR =
#{i : β̂i 6= 0 and (Ωδ)i 6= 0}

#{i : (Ωδ)i 6= 0} and FPR =
#{i : β̂i 6= 0 and (Ωδ)i = 0}

#{i : (Ωδ)i = 0} .

The simulation results are summarized in Table 3. We can see that our method leads to

a sparse solution β̂. It correctly recovers more than 8 nonzero elements in the normal

distribution case and more than 7 nonzero elements in the t5 distribution case in average.

Note that FPR is low, and thus most of zero positions can be recovered by β̂.

Finally, we carry out a simulation study to investigate the accuracy between the tuning

parameter λ̂ chosen by CV and the optimal value λopt which minimizes the misclassifi-

cation rate for the test samples. The results are stated in Table 4 for Models 1-3 with

the multivariate normal distribution. It can be seen that the value λ̂ chosen by CV

and the optimal choice λopt are quite close. Additional simulation results show that the

performance of the LPD rule using λ̂ is similar to that using the optimal choice λopt.

5.3 Real data analysis

In addition to the simulation results presented above, we also apply the LPD classifier to

the analysis of two real datasets, one from a lung cancer study (Gordon, et al. (2002)) and

another from a leukemia study (Golub, et al. (1999)) to further examine the performance

of the LPD rule. The lung cancer dataset is available at http://www.chestsurg.org and the

leukemia dataset is available at http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.
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p 100 200 400 800

Normal distribution

POS 21.92(9.75) 26.39(17.88) 23.06(14.14) 25.67(16.96)

TPOS 8.47(0.36) 8.14(0.36) 8.25(0.36) 8.36(0.36)

TPR 0.77(0.11) 0.74(0.11) 0.75(0.11) 0.76(0.11)

FPR 0.15(0.11) 0.10(0.10) 0.04(0.04) 0.02(0.02)

t5 distribution

POS 18.69(10.17) 23.97(17.65) 22.98(16.96) 21.48(14.90)

TPOS 7.15(0.33) 7.15(0.40) 7.15(0.36) 7.05(0.43)

TPR 0.65(0.10) 0.65(0.12) 0.65(0.11) 0.64(0.13)

FPR 0.13(0.11) 0.09(0.09) 0.04(0.04) 0.02(0.02)

Table 3: Support recovery of Ωδ for Model 3. Standard deviations are given in parenthe-

ses.

Table 4: Average of λ̂ and λopt (SD).

p λ̂ λopt λ̂ λopt λ̂ λopt

Model 1 Model 2 Model 3

100 0.13(0.05) 0.12(0.05) 0.14(0.09) 0.11(0.07) 0.18(0.02) 0.14(0.06)

200 0.15(0.05) 0.14(0.04) 0.13(0.04) 0.11(0.04) 0.19(0.02) 0.17(0.06)

400 0.20(0.05) 0.18(0.05) 0.19(0.06) 0.18(0.08) 0.24(0.05) 0.21(0.05)

800 0.23(0.05) 0.20(0.04) 0.17(0.06) 0.15(0.03) 0.26(0.05) 0.24(0.04)
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5.3.1 Lung cancer data

The lung cancer dataset in Gordon, et al. (2002) consists of 181 tissue samples and

each sample is described by 12533 genes. Among the 181 tissue samples, there are two

classes of tissue samples including 31 malignant pleural mesothelioma (MPM) and 150

adenocarcinoma (ADCA). Distinguishing MPM from ADCA is important and challenging

from both clinical and pathological perspectives. This dataset has been analyzed in Fan

and Fan (2008) using FAIR and NSC. In this section we apply the LPD rule to this dataset

for disease classification.

The sample variances of the genes range over a wide interval. After rescaled by a factor

of 104, there are 165 genes with the sample variances larger than 102 and 41 genes with the

sample variances smaller than 10−2. See Figure 1 for a plot of the sorted sample variances.

To ensure numerical stability, we drop these 206 genes to control the condition number of
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Figure 1: The diagonal of the sample covariance matrix

Σ̂ρ so that the numerical solution of Σ̂
−1

ρ is accuracy. We use 32 training samples with 16

from MPM and 16 from ADCA. The rest 149 samples with 15 from MPM and 134 from

ADCA are used for testing. To reduce the computational costs, only 3000 genes with the
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largest absolute values of the two sample t statistics are used. The classification result is

satisfactory, although only 3000 genes are used. Two-fold cross validation method is used

for choosing the tuning parameter λn. The resulting estimate of Ωδ contains 369 nonzero

elements, which is about 12.3% of all elements. Classification results are summarized in

Table 5. The LPD rule classifies all of 149 testing samples correctly. In contrast, the

navie-Bayes rule misclassifies 12 of 149 testing samples and GLDA misclassifies 7 of 149

testing samples. Fan and Fan (2008) report a test error rate of 7/149 for FAIR and a test

error rate of 11/149 for NSC proposed by Tibshirani, et al. (2002).

Table 5: Classification error of Lung cancer data by various methods.

LPAD FAIR NSC Naive-LDA GLDA

Training error 0/32 0/32 0/32 0/32 0/32

Testing error 0/149 7/149 11/149 12/149 7/149

5.3.2 Leukemia data

The leukemia dataset in Golub, et al. (1999) consists of 72 tissue samples, which were

all from acute leukemia patients, either acute lymphoblastic leukemia (ALL) or acute

myelogenous leukemia (AML). Each sample is described by 7129 genes. Distinguishing

ALL from AML is critical for a successful treatment. The dataset has been analyzed by

Fan and Fan (2008). In this section, we apply the LPD rule to this dataset and compare

the classification results with those obtained in Fan and Fan (2008) using FAIR and NSC.

As in the analysis of the lung cancer data, we first drop 129 genes with extreme sample

variances, either larger than 102 or smaller than 10−2 after rescaled by a factor of 105.

See Figure 1. Among the 72 tissue samples, there are 38 training samples (27 in class
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ALL and 11 in class AML) and 34 test samples (20 in class ALL and 14 in class AML).

Similarly to the analysis of the lung cancer data, to control the computational costs, we

only use 3000 genes with the largest absolute values of the two sample t statistics. The

estimate of Ωδ contains 206 nonzero elements, which is about 6.87% of all elements. The

classification results are summarized in Table 6. The LPD rule only misclassifies 1 of

the 34 testing samples and makes 0 training error. In comparison, the navie-Bayes rule

misclassifies 7 of 34 testing samples and 1 of 38 training samples. GLDA misclassifies 3 of

34 testing samples and 1 of 38 training samples. From Fan and Fan (2008), FAIR makes

1/34 test error rate and 1/38 training error rate, and NSC makes 3/34 test error rate and

1/38 training error rate.

Table 6: Classification error of Leukemia data by various methods.

LPAD FAIR NSC Naive-LDA GLDA

Training error 0/38 1/38 1/38 1/38 1/38

Testing error 1/34 1/34 3/34 7/34 3/34

6 Discussions

In this paper we introduced the LPD rule for sparse linear discriminant analysis of high-

dimensional data. The LPD classifier is based on the direct estimation of the product

Ωδ through constrained ℓ1 minimization which can be implemented efficiently using lin-

ear programming. The classifier has desirable theoretical and numerical properties and

performs well in the real data analysis.

The LPD rule exploits the approximate sparsity of Ωδ which can be estimated more

efficiently than Ω can.The sparsity of Ωδ can be viewed as a relaxation of the conventional
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assumption on the sparsity of both Ω and δ. In certain settings, Ωδ can be well estimated

even when Ω is not estimable consistently which leads to the failure of some conventional

classification methods. An interesting consequence is that the LPD classifier can still

perform well even when Ω cannot be estimated well. This is a major advantage of the

LPD rule over classification methods that are based on separate and good estimates of

Ω (or Σ) and δ. Furthermore, as shown both in the theoretical results (Theorems 2 and

3 only require conditions on |Ωδ|1 and not on |Ωδ|0) and in the simulation (In Models 1

and 2 nearly all of the elements of Ωδ are nonzero), only approximate sparsity of Ωδ is

need in order for the LPD rule to perform well.

In this paper we have focused on the case where the new observation Z has equal prior

probabilities of belonging to either class 1 or class 2. The procedure can be extended easily

to the case of unequal prior probabilities π1 and π2. In this case, we can define the LPD

rule by classifying Z to class 1 if and only if

(Z − µ̂)
′

β̂ ≥ log(π2/π1).

When the unequal prior probabilities π1 and π2 are unknown, we can simply estimate them

by π̂1 = n1/n and π̂2 = n2/n respectively. The LPD rule also can be directly extended

to multi-group classification problems. Suppose there are K classes with distributions

N(µk,Σ) for 1 ≤ k ≤ K. In the ideal setting where all the parameters are known, the

oracle rule classifies Z to class k if and only if

(Z − µkl)
′

Ωδkl ≥ 0 for all l 6= k,

where δkl = µk − µl and µkl = (µk + µl)/2. When the parameters are unknown and

random samples from the distributions are available, the products Ωδkl can then be

estimated by solving a similar linear programming as in (3) and an LPD classifier can be

constructed accordingly.
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6.1 Consequence of feature selection on classification

In the high dimensional setting, it is a common practice to exploit sparsity by first

selecting a small number of important features (typically by thresholding) and then make

inference based only on the selected features. A common aspect of these methods is that

the correlations between the variables are ignored. It should be noted that these methods

are inefficient in general even when the zero features are known in advance and all the

important features are selected correctly. The main reason is that those “unimportant”

features are in fact useful and even potentially important for classification because of the

correlations. This can be seen as follows by considering the oracle rules in various settings.

Let us first consider the oracle independence rule which classifies Z into class 1 if and

only if (Z−µ)
′

D−1δ ≥ 0, where D = diag(Σ). It is easy to see that the misclassification

rate of the oracle independence rule is

1− Φ(Υp), where Υp =
δ

′

D−1δ

(δ
′

D−1ΣD−1δ)1/2
with D = diag(Σ). (17)

It can be shown that the Fisher’s rule based only on the important features outperforms

the oracle independence rule. Write

δ =







δ1

δ2






and Σ =







Σ11 Σ′
12

Σ12 Σ22






, (18)

where δ1 is a k1-dimensional vector, Σ11 is k1×k1, Σ12 is (p−k1)×k1, and Σ22 is (p−k1)×

(p− k1). Suppose δ2 is known to be 0. Then it follows from (5) that the oracle Fisher’s

rule based only on the first k1 variables has misclassification rate 1 − Φ((δ
′

1Σ
−1
11 δ1)

1/2).

Note that in this case the oracle independence rule only depends on the important features

and Υp in (17) can be re-expressed as

Υp =
δ

′

1D
−1
11 δ1

(δ
′

1D
−1
11 Σ11D

−1
11 δ1)1/2

with D11 = diag(Σ11).
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It is easy to verify that

δ
′

1Σ
−1
11 δ1 = max

x∈Rk1

x
′

δ1δ
′

1x

x
′Σ11x

.

Thus we have δ
′

1Σ
−1
11 δ1 ≥ Υ2

p, which implies that the oracle Fisher’s rule based only on

the important features (the first k1 variables) outperforms the independence rule. This

shows that, given only the important features are used for classification, the independence

rule can be inefficient and correlations among the features should be taken into account.

Although the oracle Fisher’s rule based on the important features is better than the

independence rule, it is not an efficient rule itself because ignoring the zero (or “unim-

portant”) features also leads to inefficiency. Write δ as in (18) and suppose the fact that

δ1 6= 0 and δ2 = 0 is known. We next show that the oracle Fisher’s rule based on all the

features outperforms the Fisher’s rule based only on the important features. Note that

∆p = δ′Ωδ can be decomposed as follows:

δ
′

Ωδ = δ
′

1Σ
−1
11 δ1 + (δ2 −Bδ1)

′

W−1(δ2 −Bδ1), (19)

where B = Σ−1
22 Σ12. Note that W = Σ22−Σ12Σ

−1
11 Σ

′

12 is positive definite. Consequently,

if Bδ1 6= 0, then the last term in (19) is positive and hence ∆p ≥ δ1Σ
−1
11 δ1. This means

that even if the fact that δ1 6= 0 and δ2 = 0 is known in advance, dropping the zero

features would lead to inefficiency because of the correlations among all the features.

Therefore classifiers based only on the important features are not efficient in general.

The above analysis shows that ignoring the correlations and feature selections in gen-

eral lead to inefficient classifiers. A better alternative is to construct a classification rule

taking into account of all the features and their correlations. This analysis makes the LPD

rule even more attractive in the ultra-high dimensional case where p is very large. In such

a setting estimating the full precision matrix Ω well is very difficult if not impossible. In
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contrast, it is relatively easy to estimate the vector Ωδ directly.

7 Proofs

Throughout this section, we denote by C, C1, C2,. . . generic constants which may vary

from place to place. We shall omit the proof of Theorem 1 as it follows directly from

Theorem 2; see Remark 3 in Section 3. Before proving the other main theorems, we first

collect some technical lemmas. The following lemma is an exponential inequality from

Cai and Liu (2011a). The proof also can be found in Cai and Liu (2011b).

Lemma 1 Let ξ1, · · · , ξn be independent random variables with mean zero. Suppose that

there exist some t > 0 and B̄n such that

n
∑

k=1

Eξ2ke
t|ξk | ≤ B̄2

n.

Then uniformly for 0 < x ≤ B̄n and n ≥ 1,

P

(

n
∑

k=1

ξk ≥ CtB̄nx
)

≤ exp(−x2), (20)

where Ct = t+ t−1.

The next lemma shows that the true Ωδ belongs to the feasible set of (3) with high

probability.

Lemma 2 (i). Under (C2) and (C3), we have with probability greater than 1− O(p−1),

|Σ̂nΩδ − (X̄ − Ȳ )|∞ ≤ λn. (21)

(ii). Under (C2) and (C4), (21) holds with probability greater than 1− O(p−1 + n−ǫ/8).

Proof of Lemma 2. We only prove the lemma under (C3). The proof under (C4)

is similar by using a truncation technique as in Cai, Liu and Luo (2011). The details
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are given in Cai and Liu (2011b). Write Xk = µ1 + U k1 and Y k = µ2 + U k2. Set

X̄ = (X̄1, . . . , X̄p)
′

and µ1 = (µ1, . . . , µp)
′

. By Lemma 1, we have for any M > 0, there

exists some C1 > 0 such that

max
1≤i≤p

P

(

|X̄i − µi| ≥ C1

√

σii log p

n

)

≤ 2p−M (22)

and

P

(

|(X̄ − µ1)
′

Ωδ| ≥ C1

√

∆p log p

n

)

≤ 2p−M . (23)

Similar inequalities hold for Ȳ and µ2. Note that

Σ̂n =
1

n

(

n1
∑

i=1

U i1U
′

i1 +

n2
∑

j=1

U j2U
′

j2

)

− n1

n
(Ū 1 − µ1)(Ū 1 − µ1)

′ − n2

n
(Ū 2 − µ2)(Ū 2 − µ2)

′

=: Σ̃− n1

n
(Ū 1 − µ1)(Ū 1 − µ1)

′ − n2

n
(Ū 2 − µ2)(Ū 2 − µ2)

′

.

Thus by (22) and (23), it suffices to show that with probability greater than 1−O(p−1),

|Σ̃Ωδ − (µ1 − µ2)|∞ ≤ C

√

maxi σii∆p log p

n
.

For briefness, we set Zi = U i1 for 1 ≤ i ≤ n1 and Zi+n1
= U i2 for 1 ≤ i ≤ n2. Note that

Σ̃Ωδ − (µ1 − µ2) = (Σ̃−Σ)Ωδ

which can be further written as

1

n

n
∑

i=1

(ZiZ
′

iΩδ − E(ZiZ
′

iΩδ)).

We use Lemma 1 to bound the above partial sums. Write Zi = (Zi1, . . . , Zip)
′

. By (C3),

we have E exp(t0|ZijZ
′

iΩδ|/(σjjδ
′

Ωδ)1/2) ≤ K0 for some bounded constants t0 > 0 and

K0 > 0. For any constant τ > 0, let ξi = (ZijZ
′

iΩδ−EZijZ
′

iΩδ)/(σjjδ
′

Ωδ)1/2) in Lemma

1 and B̄2
n = cτn with some large constant c depending on τ, t0, K0. Then we can get that

for any τ > 0, there exists some constant C2 > 0 depending only on c, τ , t0 and K0,

max
1≤j≤p

P

(∣

∣

∣

n
∑

i=1

ξi

∣

∣

∣
≥ C2

√

n log p
)

33



≤ max
1≤j≤p

P

(∣

∣

∣

n1
∑

i=1

ξi

∣

∣

∣
≥ 2−1C2

√

n log p
)

+ max
1≤j≤p

P

(∣

∣

∣

n
∑

i=n1+1

ξi

∣

∣

∣
≥ 2−1C2

√

n log p
)

≤ 4p−τ .

This implies that for any τ > 0,

P

(

|Σ̃Ωδ − (µ1 − µ2)|∞ ≥ C2

√

max
i
σii∆p log p/n

)

≤ 4p−τ+1.

Lemma 2 is proved.

We are now ready to prove Theorems 2-5. Throughout the proof, we assume (21),

|δ̂ − δ|∞ ≤ C
√

log p/n, |µ̂ − µ|∞ ≤ C
√

log p/n and |Σ̂n − Σ|∞ ≤ C
√

log p/n for some

large constant C > 0. The above four inequalities hold with probability greater than

1−O(p−1) or 1− O(p−1 + n−ǫ/8) under (C3) or (C4) respectively.

Proof of Theorems 2 and 5 (i). By the definition of β̂, we have

|(Ωδ)
′

Σ̂nβ̂ − (Ωδ)
′

δ| ≤ λn|Ωδ|1 + |δ̂ − δ|∞|Ωδ|1 ≤ 2λn|Ωδ|1. (24)

By (21), we have

|(Ωδ)
′

Σ̂nβ̂ − δ
′

β̂| ≤ λn|β̂|1 + |δ̂ − δ|∞|β̂|1 ≤ 2λn|Ωδ|1,

which together with (24) implies that

|(β̂ −Ωδ)
′

δ| ≤ 4λn|Ωδ|1. (25)

Thus we have

|(µ̂− µ1)
′

β̂ +
1

2
δ

′

Ωδ| ≤ |(µ̂− µ)
′

β̂|+ 1

2
|δ′

β̂ − δ
′

Ωδ|

≤ |(µ̂− µ)
′

β̂|+ 2λn|Ωδ|1

≤ C

√

log p

n
|Ωδ|1 + 2λn|Ωδ|1. (26)
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Similarly

|(µ̂− µ2)
′

β̂ − 1

2
δ

′

Ωδ| ≤ C

√

log p

n
|Ωδ|1 + 2λn|Ωδ|1.

We next consider the denominator in Rn. We have

|Σβ̂ − δ|∞ ≤ |Σβ̂ − Σ̂nβ̂|∞ + 2λn ≤ C|Ωδ|1
√

log p

n
+ 2λn.

Therefore

|β̂
′

Σβ̂ − β̂
′

δ| ≤ C|Ωδ|21
√

log p

n
+ 2λn|Ωδ|1.

By (25), we have

|β̂
′

Σβ̂ − δ
′

Ωδ| ≤ C|Ωδ|21
√

log p

n
+ 6λn|Ωδ|1. (27)

Suppose that δ
′

Ωδ ≥M for some M > 0. By (8), (26) and (27), we have

∣

∣

∣

(µ̂− µ1)
′

β̂
√

β̂
′

Σβ̂

∣

∣

∣
≥ C

∣

∣

∣

δ
′

Ωδ
√

β̂
′

Σβ̂

∣

∣

∣
≥ C

(

∆−1
p + o(1)

)−1/2

≥ CM1/2.

This inequality implies that

|Rn − R| ≤ exp(−CM). (28)

Suppose that δ
′

Ωδ ≤M . By (8) and (27), we have

∣

∣

∣

β̂
′

Σβ̂

δ
′

Ωδ
− 1
∣

∣

∣
= o(1). (29)

This together with (26) yields that

∣

∣

∣

(µ̂− µ1)
′

β̂
√

β̂
′

Σβ̂

+
1
2
δ

′

Ωδ
√

β̂
′

Σβ̂

∣

∣

∣
≤ C

|Ωδ|1
(δ

′

Ωδ)1/2
λn. (30)

By (27) and some simple calculations,

∣

∣

∣

1
√

β̂
′

Σβ̂

− 1√
δ

′

Ωδ

∣

∣

∣
≤

C|Ωδ|21
√

log p
n

+ 6|Ωδ|1λn
√

β̂
′

Σβ̂
√
δ

′

Ωδ(

√

β̂
′

Σβ̂ +
√
δ

′

Ωδ)
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≤ C(δ
′

Ωδ)−3/2(|Ωδ|21
√

log p

n
+ |Ωδ|1λn) (31)

and

∣

∣

∣

1
2
δ

′

Ωδ
√

β̂
′

Σβ̂

− 1

2
(δ

′

Ωδ)1/2
∣

∣

∣
≤ C

|Ωδ|21
(δ

′

Ωδ)1/2

√

log p

n
+ C

|Ωδ|1
(δ

′

Ωδ)1/2
λn =: rn. (32)

Note that by (12), (30) and (32),

Rn = R×
(

1 +O(1)rn(δ
′

Ωδ)1/2 exp
(

O(1)(δ
′

Ωδ)1/2rn

))

. (33)

By the condition (8) and the assumption δ
′

Ωδ ≤ M , we have (|Ωδ|1+ |Ωδ|21)
√

log p/n =

o(1). Thus Rn = (1 + o(1))R. This together with (28) prove the theorems by letting

n, p→ ∞ first and then M → ∞.

Proof of Theorems 3 and 5 (ii). Under the conditions of Theorem 3 or 5 (ii), we have

(29)-(32) hold without assuming δ
′

Ωδ ≤ M . So Theorems 3 and 5 (ii) follow from (33)

and the fact (δ
′

Ωδ)1/2rn = o(1) immediately.

Proof of Theorem 4. We shall prove a better rate for |β̂
′

Σβ̂−δ
′

Ωδ| under the condition

(10). We have

|Σ(β̂ −Ωδ)|∞ ≤ |Σ̂n(β̂ −Ωδ)|∞ + |(Σ̂n −Σ)(β̂ −Ωδ)|∞

≤ 2λn + C|β̂ −Ωδ|1
√

log p

n

≤ 2λn + C|Ωδ|0
√

log p

n
|β̂ −Ωδ|∞

≤ 2λn + C‖Ω‖L1
|Ωδ|0

√

log p

n
|Σ(β̂ −Ωδ)|∞.

This together with ‖Ω‖L1
|Ωδ|0

√

log p
n

= o(1) implies that |Σ(β̂ − β)|∞ ≤ Cλn. Thus we

have

|β̂
′

Σβ̂ − β̂
′

ΣΩδ| ≤ C|Ωδ|1λn
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and

|β̂
′

ΣΩδ − δ
′

Ωδ| ≤ C|Ωδ|1λn.

The remaining steps follow from the proof of (33).
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