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Randomization Inference in a Group–Randomized Trial of Treatments for
Depression: Covariate Adjustment, Noncompliance and Quantile Effects

Abstract
In the Prospect Study, in ten pairs of two primary-care practices, one practice was picked at random to receive
a “depression care manager” to treat its depressed patients. Randomization inference, properly performed,
reflects the assignment of practices, not patients, to treatment or control. Yet, pertinent data describe
individual patients: depression outcomes, baseline covariates, compliance with treatment. The methods
discussed use only (i) the random assignment of clusters to treatment or control and (ii) the hypothesis about
effects being tested or inverted for confidence intervals, so they are randomization inferences in Fisher's strict
sense. There is no assumption that the covariance model generated the data, that compliers resemble
noncompliers, that dependence is from additive random cluster effects, that individuals in a same cluster do
not interfere with one another, or that units are sampled from a population. We contrast methods of
covariance adjustment, never assuming the models are “true,” obtaining exact randomization inferences. We
consider exact inference about effects proportional to doses with noncompliance and effects whose
magnitude varies with the degree of improvement that would occur without treatment. A simulation examines
power.
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RANDOMIZATION INFERENCE IN A GROUP-RANDOMIZED
TRIAL OF TREATMENTS FOR DEPRESSION: COVARIATE

ADJUSTMENT, NONCOMPLIANCE AND QUANTILE EFFECTS

DYLAN SMALL, TOM R. TEN HAVE, AND PAUL R. ROSENBAUM

Abstract: In the Prospect Study, in ten pairs of two primary care practices, one

practice was picked at random to receive a �depression care manager� to treat its

depressed patients. Randomization inference, properly performed, re�ects the as-

signment of practices, not patients, to treatment or control. Yet, pertinent data

describe individual patients: depression outcomes, baseline covariates, compliance

with treatment. The methods discussed use only (i) the random assignment of

clusters to treatment or control and (ii) the hypothesis about e¤ects being tested

or inverted for con�dence intervals, so they are randomization inferences in Fisher�s

strict sense. There is no assumption that the covariance model generated the data,

nor that compliers resemble noncompliers, nor that dependence is from additive ran-

dom cluster e¤ects, nor that individuals in a same cluster do not interfere with one

another, nor that units are sampled from a population. We contrast methods of

covariance adjustment, never assuming the models are �true,�obtaining exact, ran-

domization inferences. We consider exact inference about e¤ects proportional to

doses with noncompliance, and e¤ects whose magnitude varies with the degree of

improvement that would occur without treatment. A simulation examines power.

Date: 28 February 2007.
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1. Introduction: Example; Goals; Notation; Tests of No Effect

1.1. A Group-Randomized Trial of Treatment for Depression. The Prospect

Study (Prevention of Suicide in Primary Care Elderly: Collaborative Trial) was a

group-randomized trial of treatments for depression among adults over the age of 60

(Bruce, et. al 2004). Twenty primary care practices of varied sizes were paired into

ten pairs on the basis of region (urban/other), a¢ liation, size and population type,

and randomization was used to select one practice in each pair for the intervention,

the other practice serving as a control. The intervention provided the practice

with a depression care manager who was a social worker, a nurse or a psychologist,

with weekly supervision of the manager by a psychiatrist. The depression care

managers provided guideline-based treatment recommendations to physicians at the

practice and interpersonal psychotherapy to some patients; see Bruce, et al. (2004,

p. 1082) for a detailed description of the managers�activities. The control practices

provided �usual care,�with certain enhancements involving diagnosis and education

of physicians about treatment guidelines.

In a group randomized trial, clusters are assigned to treatment or control, but

individuals are of interest. Group randomized trials are discussed by Corn�eld (1978),

Gail, et al. (1996), Brookmeyer and Chen (1998), Donner (1998), Murray (1998),

Braun and Feng (2001), Frangakis, Rubin and Zhou (2002), and Murray et al. (2006),

among others.

Figure 1 displays the Hamilton Depression Score, a 24-item measure of depression

severity, for the 253 treated patients and 234 control patients who had scores at

baseline, before treatment, and at four months. For these patients, the Hamilton

Scores look similar in treated and control groups at baseline, and there appears to be
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some improvement at 4 months in both groups, but the improvement looks somewhat

larger in the treated group. We also consider two baseline covariates, namely age

and a binary indicator of suicidal ideation. For the patients in Figure 1, the median

age was 70 in the treated group and 69 in the control group, and the frequency of

suicidal ideation was 30% in the treated group and 21% in the control group.

For the treated and control practice in each pair, Table 1 displays the number of

depressed patients and the mean change in the Hamilton Score from baseline to four

months. In the �rst pair, the control practice had 44 depressed patients with a mean

change of �4:7, while the treated practice had 49 depressed patients with a mean

change of�4:6, so there is little di¤erence observed in this pair. The results are fairly

erratic, but larger improvements are often found in treated practices. Although all

depressed patients at treated practices were referred to the depression care manager,

some refused treatment from the depression care manager. Table 1 gives the percent

compliance at four months in the treated practice, that is, the percent of depressed

patients who accepted treatment from the depression care manager.

A test of a hypothesized treatment e¤ect is a strict randomization inference if

it uses just the null hypothesis under test and the randomization actually used in

the experiment; it does not entail an assumption about a stochastic process that

generated the data (Fisher 1935, Pitman 1937, Welch 1937, Lehmann 1998, §1, Cox

and Reid 2000, §2.2.5). If the test rejects when this signi�cance level is less than

or equal to �, then randomization ensures that the test has level �, that is, the

probability of falsely rejecting a true hypothesis is at most �. Let H be a set

of hypotheses about the treatment e¤ect, where at most one hypothesis in H is

true. Applying a strict randomization test to each hypothesis in H divides H into
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hypotheses Hr that are rejected at level � and hypotheses Ha not rejected at level

�, forming a 1 � � con�dence set. Randomization ensures that a true hypothesis

in H will fall in the rejected subset Hr with probability at most �. (The previous

sentence is true whether or not H contains a true hypothesis, so the hypotheses Hr

excluded from the con�dence set have been validly rejected even if, unknown to us,

the entire model, H, is false in the sense that every H 2 H is false; see Rosenbaum

2002, Rejoinder §6, pp. 324-325, for discussion.)

1.2. Notation: Random Assignment of Clusters of Patients. There are S

strata, s = 1; : : : ; S, with Ks clusters in stratum s, where cluster k in stratum s

contains nsk individuals, i = 1; : : : ; nsk, k = 1; : : : ; Ks. There are ns =
PKs

k=1 nsk

individuals in stratum s and N =
PS

s=1 ns individuals in total. In stratum s, a �xed

number, ms, of clusters are picked at random for treatment, the others receiving con-

trol, with independent selections in distinct strata. If every cluster sk contained just

one individual, nsk = 1, then this would describe an experiment that is completely

randomized within each stratum. In the Prospect Study, there were S = 10 pairs of

Ks = 2 clinics, and ms = 1 clinic was picked at random for treatment, and the nsk�s

are displayed in Table 1. If the kth cluster in stratum s is randomly assigned to

treatment, write Zski = 1 for all i = 1; : : : ; nsk; otherwise, if this cluster is assigned

to control write Zski = 0 for all i = 1; : : : ; nsk. Let Z = (Z111; Z112; : : : ; ZS;KS ;nS)
T .

The response is the decline in Hamilton Score from baseline to four months. The

ith patient in the kth cluster of stratum s (or patient ski) has two potential responses,

rTski if the cluster containing i is assigned to treatment, and rCski if this cluster

is assigned to control. The e¤ect on patient ski of assigning the kth cluster in

stratum s to treatment rather than control is a comparison of rTski and rCski, such
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as rTski � rCski; see Neyman (1923), Rubin (1974). Because each cluster receives

either treatment or control, either rTski or rCski is observed, not both, so rTski�rCski

cannot be calculated from observable data. As rTski is observed only if Zski = 1

and rCski is observed only if Zski = 0, the observed response is Rski = Zski rTski +

(1� Zski) rCski. Each individual has a (row) vector xski of pretreatment covariates;

in the Prospect Study, xski contains patient�s age and a binary indicator of suicidal

ideation at baseline. Write rT , rC , and R, for the corresponding N -dimensional

vectors, and X for the matrix whose N rows are the xski.

There are also two potential compliance outcomes, one under treatment, dTski,

the other under control, dCski, so the observed compliance is Dski = Zski dTski +

(1� Zski) dCski. Write dT , dC and D for the corresponding N -dimensional vectors.

In the Prospect Study, compliance is binary, 1 if the patient accepts treatment from

the depression care manager, 0 otherwise. Although treatment assignment Zski is

randomized, compliance Dski may be highly nonrandom, and a comparison of com-

pliers and noncompliers, or compliers and controls, may be severely biased as an

estimate of the treatment e¤ect. For instance, perhaps a patient ski who would

decline treatment by a depression care manager if it were available, dTski = 0, is

a patient who, based on the patient�s own past experience, tends to recover some-

what from depression without treatment, that is, has a somewhat more favorable,

more negative rCski. Alternatively, perhaps a patient who declines treatment when

available tends to greater hopelessness, inactivity and a poorer prognosis. A cor-

rect analysis must not mistake self selection biases for treatment e¤ects. Write

F = hrT ; rC ; dT ; dC ; Xi, so F does not change as the treatment assignments, Z,

change, whereas R and D are functions of Z and F , so they may change with Z.



6 DYLAN SMALL, TOM R. TEN HAVE, AND PAUL R. ROSENBAUM

A special feature of the Prospect Study is that if a patient ski is at a clinic which

receives a depression care manager, so Zski = 1, then the patient may or may not

accept treatment, and dTski may equal 0 or 1, but if patient ski is at a clinic that does

not receive a depression care manager, Zski = 0, then necessarily the patient does

not receive care from a depression care manager, so necessarily dCski = 0. Unlike

the Prospect Study, in studies of widely available treatments, such as aspirin or

vitamins, controls may fail to comply by taking the treatment anyway, so that some

dCski 6= 0. The methods we discuss may be used with or without the special feature

of the Prospect Study, and with binary or continuous measures of compliance.

There are L =
QS
s=1

�
Ks

ms

�
possible values z of the treatment assignment Z; collect

these possible z in a set 
. For a �nite set G, write jGj for number of elements of

G, so j
j = L. Because random numbers are used to assign clusters to treatments,

Pr (Z = z j F) = 1=L for each z 2 
. In the Prospect Study, there were N = 487

patients in total in these clinics, so Z is of dimension N = 487, with all patients in a

clinic assigned to the same treatment. Hence, there were L =
Q10
s=1

�
2
1

�
= 210 = 1024

possible treatment assignments z in 
 and each had probability 1=1024.

In a subtle way, the issue of �interference between patients in the same cluster�

does not arise. Cox (1958a, §2.4) said there is no interference between units if �the

observation on one unit [is] una¤ected by the particular assignment of treatments to

other units;�Rubin (1986) calls this the �stable unit-treatment value assumption.� A

�unit�is an opportunity to apply the treatment, so it is a cluster, not an individual.

In the Prospect Study, it is unlikely that patients in di¤erent practices interfere

with each other, and if so, then patient ski has only two potential responses in this

experiment, rTski if cluster sk is assigned to treatment, and rCski if cluster sk is
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assigned to control. Patient ski might have other responses in another experiment

in which treatments were assigned at the individual level, but this possibility does

not invalidate hypotheses about (rTski; rCski).

1.3. Tests of No E¤ect. Let e be a function of F = hrT ; rC ; dT ; dC ; Xi, and let

t (Z; e;X) be any function of Z, e and X. Because e andX are functions of F , and

randomization ensures Pr (Z = z j F) = 1= j
j = 1=L, it follows that, for all v,

(1.1) Pr ft (Z; e;X) � v j Fg = jfz 2 
 : t (z; e;X) � vgj
j
j ;

which is the randomization distribution of t (Z; e;X). In words, given F , the chance

that t (Z; e;X) � v is simply the proportion of treatment assignments z 2 
 such

that t (z; e;X) � v. Moreover, (1.1) is the distribution of t (Z; e;X) given F no

matter what process produced F . Fisher�s (1935) description of randomization as

the �basis for inference�refers to the fact that randomization creates the distribution

(1.1) for every function e of F without further assumptions.

The sharp null hypothesis of no e¤ect asserts that the response of each individual is

unchanged by receiving the treatment, H0 : rT = rC . If H0 were true, randomization

labels people treated or control, but their depression is unchanged. If H0 were true,

the observed response Rski = Zski rTski + (1� Zski) rCski equals rCski, or R = rC .

If the null hypothesis of no e¤ect, H0 : rT = rC , were true, then R = rC , where rC

is a function of F , so the null randomization distribution of t (Z;R;X) = t (Z; rC ;X)

is given by (1.1) with e = rC = R, where both t (Z; rC ;X) and its null distribution

(1.1) can be calculated from the observed data when H0 is true. For instance, in

completely randomized experiments, Welch (1937) tested H0 : rT = rC using the

randomization distribution of a test statistic suggested by analysis of variance, Gail,
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Tan, and Piantadosi (1988) used the randomization distribution of a test statistic

suggested by a generalized linear model, and Raz (1990) used the randomization

distribution of a test statistic that adjusted for X using a data smoother, and Rosen-

baum (2002) reviewed a class of randomization based covariance adjustments. In

group randomized trials, Gail, et al. (1996) and Braun and Feng (2001) test no

e¤ect, H0 : rT = rC , using the group-randomization distribution (1.1) of a test sta-

tistic suggested by a generalized linear model. In some of these cases, the form of

the test statistic is suggested by a model for parts of F , but for a test of no e¤ect,

H0 : rT = rC , the signi�cance level from (1.1) has the correct level whether or not

that model actually generated F .

Having tested the null hypothesis of no e¤ect, it is natural to draw inferences about

the magnitude of e¤ect. Gail, et al. (1996) and Braun and Feng (2001) do this using

a generalized linear model for the process that generates F , so the parameters that

de�ne the magnitude of e¤ect are now parameters of the model, and the associated

con�dence statements have the correct levels if the model is true. This is an entirely

reasonable approach, but it is done �at the expense of modelling assumptions,�to use

Gail, et al.�s (1996, p. 1083) description. If the model is false, then the parameters

that de�ne the nonnull e¤ect are not well de�ned. In particular, a stochastic model

for the process that generates F , say a logit model in which the treatment e¤ect is

identi�ed with a log-odds ratio as in Gail, et. al. (1996, p. 1083), would not generally

determine rC from R, and so one could generally calculate neither t (Z; rC ;X) nor

(1.1) with e = rC . This says that these inferences about hypotheses other than no

e¤ect are valid inferences assuming the model for F is true, but they are no longer

strict randomization inferences based on (1.1).
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The approach we take is di¤erent in the following sense. Like Gail, et al. (1996)

and Braun and Feng (2001), we test no treatment e¤ect, H0 : rT = rC , using (1.1).

Unlike these authors, and paralleling more closely the literature on randomization

inference in randomized experiments (e.g., Lehmann 1986, §5.14, pp. 245-248), we

consider null hypotheses about treatment e¤ects that relate rT and rC in such a way

that if the null hypothesis were true, then the unobservable rC could be calculated

from the observed R and the null hypothesis. Having calculated rC under the

null hypothesis, we test exactly at level � the null hypothesis using (1.1). This

approach will falsely reject a true null hypothesis with probability at most � with no

assumption about a stochastic model that generated F . To emphasize, there is no

stochastic model for rCski, and no appeal to asymptotics. Speci�cally, §2.1 discusses

hypotheses of constant e¤ects as in Lehmann (1986, §5.14), §2.2 discusses e¤ects in

the presence of noncompliance, and §4 discusses dilated e¤ects.

2. Randomization Inference When the Treatment Has an Effect

2.1. Hypotheses of Constant E¤ect. The hypothesis of a constant treatment ef-

fect says

(2.1) rTski � rCski = � , for i = 1; : : : ; nsk; k = 1; : : : ; Ks; s = 1; : : : ; S,

or a shift of � , that is, rT = rC + � 1, or R = rC + � Z, where 1 is an N -dimensional

vector of 1�s. To test H0 : � = � 0, compute A�0;ski = Rski � � 0 Zski or A�0 =

R � � 0 Z. If H0 : � = � 0 were true, then A�0 = rC = e, say, is a function of

F , so t (Z;A�0 ;X) = t (Z; rC ;X) = t (Z; e;X) is compared to (1.1) computed with

e = rC = A�0. The test is inverted to obtain a con�dence interval for � , and
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a Hodges-Lehmann point estimate is obtained by equating t (Z;A�0 ;X) to its null

expectation and solving as closely as possible for the estimator b� . In a completely

randomized experiment using Wilcoxon�s rank sum test, this yields the standard,

exact randomization-based con�dence interval for a shift and the Hodges-Lehmann

point estimate; see Lehmann (1998, §2).

2.2. Noncompliance Hypotheses: E¤ect Proportional to Dose Received.

Treatment is assigned at random, but patients decide for themselves whether, and

to what extent, to comply with treatment. The degree of compliance is subject to

biases of self-selection, similar to those that arise in nonrandomized observational

studies. For a clear and memorable example of the problems that can arise, see

May, et al. (1981). One good solution to these problems uses the random assign-

ment of treatments as an instrument for the treatment actually received; see Angrist,

Imbens and Rubin (1996). The random assignment of treatments is untainted by

the patient�s willingness to comply with the assigned treatment, but the treatment

the patient actually receives is determined by a combination of random assignment

and compliance, so it is tainted by self-selection. The basic idea behind the method

of instrumental variables is to use an instrument, here random assignment of treat-

ments, to extract variation in the treatment actually received that is independent

of unmeasured confounding variables that determine compliance. This basic idea

is formalized below. The approach we take here uses randomization inference with

an instrumental variable (Rosenbaum 1996, 1999a, §5; Greevy, et al. 2004, Imbens

and Rosenbaum 2005); however, we use the group randomization (1.1) together with

patient level compliance.
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An alternative to (2.1) says e¤ect on response is proportional to e¤ect on dose of

treatment, that is,

(2.2) rTski � rCski = � (dTski � dCski) , for all ski;

see Rosenbaum (1996; 1999a, §5). This hypothesis says the treatment works solely

by manipulating the dose received, a statement that is sometimes called the exclusion

restriction. In the Prospect Study, dTski� dCski is either 1� 0 = 1 for a complier or

0� 0 = 0 for a noncomplier, so the model says rTski � rCski = � for a complier and

rTski� rCski = 0 for a noncomplier; that is, a patient who does not accept treatment

from the depression care manager receives no bene�t from being at a practice with a

depression care manager. If a depression care manager bene�ted depressed patients

who did not accept care from the manager, then (2.2) would be false. This could

happen if the manager a¤ects the behavior of primary care physicians at the practice.

To test H0 : � = �0 in (2.2), compute A�0;ski = Rski� �0Dski or A�0 = R� �0D.

In the Prospect Study, dCski = 0, so if H0 : � = �0 is true in (2.2), then A�0 =

rC = e, say, so t
�
Z;A�0 ;X

�
= t (Z; rC ;X) = t (Z; e;X), and (1.1) is computed with

e = rC = A�0.

This argument works in general, without the special structure that dCski = 0 in the

Prospect Study. Consider the outcome (aTski; aCski) given by aTski = rTski�� dTski

and aCski = rCski � � dCski, so that (2.2) implies this outcome is una¤ected by

treatment, aTski = aCski = aski, say. Write a the vector of aski�s and notice that a

is a function of F . If H0 : � = �0 is true in (2.2), then A�0 = R � �0D = a = e,

say, so t
�
Z;A�0 ;X

�
= t (Z; a;X) = t (Z; e;X) is compared with a randomization
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distribution (1.1) with e = a = A�0. See Rosenbaum (1999a, §5) for an example in

which dTski and dCski are continuous.

2.3. Covariance Adjustment in Randomization Tests. The discussion in §2.1

and §2.2 made no use of the covariates, X, but it is straightforward to incorporate

them, with no change in the logic; see Rosenbaum (2002). Consider testing the

hypothesis H0 : � = � 0 in (2.1) with covariance adjustment. If H0 : � = � 0 were

true, then A�0 = R� � 0 Z= rC would be a function of F , and X is a function of F ,

so any function of (A�0 ; X) would also be a function of F . One speci�c function of

(A�0 ; X) is the vector, say e, of residuals when A�0 is regressed on X by any method

of regression. Here, the regression is a �t, not a model; that is, it is simply a function

of data (A�0 ; X) that produces residuals, e, with no assumption that the regression

is in any way related to whatever process produced F . If H0 : � = � 0 were true,

then these residuals, e, are functions of (A�0 ; X), where A�0 = R � � 0 Z= rC and

X are functions of F , so the randomization distribution of t (Z; e;X) would be given

by (1.1). Inverting this test yields a con�dence set for an additive treatment e¤ect

� . A parallel argument works for � in (2.2).

3. Exact Inference in Group Randomized Trials

3.1. A Test Statistic and its Null Distribution in Group Randomized Tri-

als. De�ne uski`j = 1 if eski > es`j, uski`j = �1 if eski < es`j, and uski`j = 0 if

eski = es`j, and calculate

W =

SX
s=1

1

ns + 1

KsX
k=1

nskX
i=1

KsX
`=1

nsX̀
j=1

Zski (1� Zs`j) uski`j =

SX
s=1

KsX
k=1

Zsk1 qsk+
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where qski = (ns + 1)
�1PKs

`=1

Pns`
j=1 uski`j and qsk+ =

Pnsk
i=1 qski, using Zski = Zsk1 for

i = 1; :::; nsk and the fact, due toMantel (1967), that 0 =
PKs

k=1

Pnsk
i=1

PKs

`=1

Pns`
j=1 Zski Zs`j uski`j,

because Zski Zs`j uski`j = �Zs`j Zski us`jki both appear in this sum and they cancel.

Here, W is essentially a weighted sum of S Mann-Whitney-Wilcoxon statistics us-

ing van Elteren�s (1960) optimal weights 1= (ns + 1); see Noether (1963), Lehmann

(1998, §3.3) and Rosner, et al. (2003, 2006). The validity of the randomization test

is not a¤ected by the choice of weights, but its power is a¤ected, and the weights

1= (ns + 1) are nearly optimal when the treatment e¤ect is small and the intracluster

correlation is low. More precisely, as can be quickly seen from the discussion in

Noether (1963, §1), these standard weights would be proportional to weighting stra-

tum speci�c results inversely as their variances if: (i) the null hypothesis of no e¤ect

were true, and (ii) if, contrary to fact, within strata, the clusters themselves had

been formed by random assignment. See §5 for more about weights. When the null

hypothesis is true, the group-randomization distribution (1.1) of W has E (W ) = 0

and var (W ) =
PS

s=1 fms (Ks �ms)g = fKs (Ks � 1)g
PKs

k=1 q
2
sk+. The exact null

distribution (1.1) is easily determined by direct calculation.

3.2. Constant E¤ects in the Prospect Study. The last two columns of Table

1 give the ranks qsk+, s = 1; : : : ; 10, k = 1; 2, for testing one speci�c hypothesis,

namely the hypothesis of no e¤ect on the change in Hamilton Depression Scores,

H0 : rTski = rCski, after adjustment for Age and Suicidal Ideation. These were

obtained by regressing the decline Rski in Hamilton Scores on Age and Suicidal

Ideation using M-estimation, obtaining the N = 487 residuals, e. The Splus defaults

were used; see Rosenbaum (2007, §3.2) for discussion of the choice of  -function in m-

testing. The statisticW is the sum of the scores in the second column,W = �22:44.
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As in §2.3 and §3.1, if H0 : rTski = rCski were true, then the residual vector e would

be a function of F , so the randomization distribution of W would be given by (1.1),

which simply permutes the ranks in Table 1 in all 210 = 1024 ways corresponding

with the 210 assignments z 2 
, and of these, 8 produce values of W less than or

equal to �22:44, so the one sided signi�cance level is 8=1024 = 0:0078.

The hypothesis H0 : � = �1
2
in (2.1) is tested by the procedure applied to A�0 =

R +
�
1
2

�
Z , yielding a new regression, residuals and scores qsk+. The statistic is

then W = �19:40 and 15 of the 1024 rearrangements of the new scores yield smaller

values of W , so the exact one-sided signi�cance level is 15=1024 = 0:0146. For

H0 : � = �1:508 the one-sided signi�cance level is 51=1024 = 0:0498, whereas for

H0 : � = �1:509 the one-sided signi�cance level is 52=1024 = 0:0508, and the one-

sided, exact 95% con�dence interval is � � �1:509. The Hodges-Lehmann point

estimate b� of � in (2.1) equates W to its null expectation, namely 0, and solves for

b� . For H0 : � = �3:258 the statistic is W = �0:068, whereas with H0 : � = �3:259

the statistic is W = 0:085, so b� :
= �3:26.

Figure 2 displays the residuals eski from the constant e¤ect model (2.1), obtained

by regressing Ab� = R � b� Z with b� = �3:26 on X using M-estimation. Here, e is

plotted against the treatment group, Z, for 487 patients. The two boxplots look

similar, which is consistent with an additive e¤ect of b� = �3:26.
3.3. Alternative Methods of Covariance Adjustment. The current section

uses an additional covariate, namely the baseline Hamilton Score, and compares

several methods of covariance adjustment, including M-estimation, least squares,

generalized additive models (Buja, Hastie, Tibshirani 1989) and projection pursuit

(Friedman and Stuetzle 1981). Unlike the other methods, for projection pursuit,
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the inference about � in (2.1) is di¤erent depending upon whether the outcome is

level of the Hamilton Score or the change from baseline, and both are considered.

The default implementations in Splus are used, with loess used as the smoother for

baseline score and Age in the generalized additive models.

Table 2 compares �ve methods of covariance adjustment in testing three hypothe-

ses about a constant e¤ect, H0 : � = � 0, in (2.1). Exact, one-sided signi�cance

levels are given using (1.1). The results are similar with the exception of projection

pursuit performed on changes, which produced larger signi�cance levels.

3.4. Imperfect Compliance. Unlike (2.1), in (2.2) a patient bene�ts only if the

patient makes use of the depression care manager. To test H0 : � = �0 in (2.2), one

computes A�0 = R� �0D, which is a function of F if H0 is true, and then proceeds

exactly as in §3.2. The one-sided signi�cance level for testing H0 : � = 0 is the same

as for testing H0 : � = 0 or H0 : rT = rC , namely 8=1024 = 0:0078, because it is

the exactly same hypothesis, tested by the same test W , compared to the same null

randomization distribution (1.1).

If (2.2) were true, the e¤ect on compliers would have a one-sided exact 95% con-

�dence interval of � � �1:70 and a Hodges-Lehmann point estimate of b� = �3:49.
Although the estimated e¤ect for compliers is marginally larger than the constant

e¤ect, the di¤erence is quite small, in part because compliance was 93% overall; see

Table 1. Residuals eski for the e¤ect-proportional-to-dose of treatment model (2.2)

were obtained by regressingAb� = R�b�D onX using M-estimation with b� = �3:49.
Boxplots (not shown) of these residuals eski resemble Figure 2 and are compatible

with (2.2) with b� = �3:49.
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4. Different Effects at Different Quantiles

In place of (2.1), consider the following model for the treatment e¤ect, (rTski; rCski),

(4.1) rCski = rTski +�(rTski) ; with �(r) � 0, �(r) � �(r0) for r � r0;

so �(�) is nonnegative and nondecreasing; see Rosenbaum (1999b) where this is

called a dilated e¤ect. Here, (4.1) says that the depression care manager is never

harmful, as �(rTski) � 0 for all ski, but the bene�ts �(rTski) are greater (or at least

as great) when rTski is larger, so patients with higher values of (rTski; rCski) bene�t

most from the depression care manager. Although (4.1) describes the unobservable

joint behavior of (rTski; rCski), it may be reinterpreted as a statement about the

observable marginal distributions (Rski; Zski); see Doksum and Sievers (1976).

Some evidence for varied e¤ects consistent with (4.1) appears in Figure 3, which

is a quantile-quantile plot of changes in Hamilton Scores in the control and treated

groups. Two lines appear in Figure 3, a dotted line for y = x and a solid line for

y = x + 3:26, where b� = �3:26 in §3.2. Ignoring the issue of group randomization

for a moment, one would expect the points to fall roughly on the dotted line if

the treatment had no e¤ect, and roughly on the solid line if the treatment had a

constant e¤ect of b� = �3:26. Figure 3 suggests that the e¤ect may be larger at

upper quantiles and smaller at lower quantiles. Table 3 displays several quantiles of

changes in depression scores in treated and control groups together with the di¤erence

in those quantiles. In the context of the Prospect Study, a plot like Figure 3 might

arise if the typical patient bene�ts by about b� = �3:26 from the presence of a

depression care manager, but patients who would have gotten substantially worse
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under standard care bene�ted by more than b� = �3:26, whereas patients who would
have improved markedly under standard care bene�ted by less than b� = �3:26.
Let rC(1) � : : : � rC(N) and rT (1) � : : : � rT (N) be the unobserved, ordered

potential responses of all N = 487 subjects, which are functions of F . Because only

some of the rCski�s are observed, none of the rC(j) are observed, and similarly for

the rT (j). Fix an integer f , 1 � f � N , and write � = rT (f), and �� = �(�), so �

and �� are functions of F . In words, � = rT (f) is the f=N quantile of changes in

depression scores that would have been observed had all patients been in a practice

with a depression care manager, and �� is the e¤ect at this quantile.

For a speci�c f , such as the f=N :
= 3

4
for the upper quartile, consider testing the

hypothesis H0 : �� = �0� for some speci�ed number �0�. Write sign (y) = 1 if

y > 0, sign (y) = 0 if y = 0, sign (y) = �1 if y < 0. It is easy to verify (e.g. Rosen-

baum 1999b) that (4.1) implies sign fRski � (1� Zski) �� � �g = sign (rTski � �),

where sign (rTski � �) is a function of F ; here, Rski � (1� Zski) �� � � is not

a function of F , but its sign is a function of F . Sort the adjusted responses,

A
�0�
ski = Rski � (1� Zski) �0�, yielding order statistics, A

�0�
(1) � : : : � A

�0�
(N) , and

write e�0�ski = 1 if A�0�ski � A
�0�
(f) , e

�0�
ski = 0 otherwise. If H0 : �� = �0� is

true, then sign
n
A
�0�
ski � �

o
= sign (rTski � �) and A

�0�
(f) = �, and e

�0�
ski = 1 if

sign (rTski � �) � 0, e�0�ski = 0 otherwise, so e�0�ski is a function of F . In cluster

sk, the proportion of individuals with A
�0�
ski � A

�0�
(f) is q

�0�
sk = (1=nsk)

Pnsk
i=1 e

�0�
ski ,

which is a function of F if H0 : �� = �0� is true. With paired clusters, K2 = 2,

ms = 1, as in the Prospect Study, the treated-minus-control di¤erence in proportions

in stratum s is
P2

k=1 Zsk1 q
�0�
sk �

P2
k=1 (1� Zsk1) q

�0�
sk =

P2
k=1 Zsk1 2

�
q
�0�
sk � q

�0�
s

�
where q�0�s = (1=2)

P2
k=1 q

�0�
sk . The Cochran-Mantel-Haenszel (CMH) test (e.g.,



18 DYLAN SMALL, TOM R. TEN HAVE, AND PAUL R. ROSENBAUM

Fleiss, Leven and Paik 2003, p. 253) attaches weights ns1 ns2=ns to these di¤erences

in proportions, yielding the statistic H =
PS

s=1

P2
k=1 Zsk1

�
2ns1 ns2
ns

��
q
�0�
sk � q

�0�
s

�
whose exact group-randomization distribution (1.1) is easily determined. In paral-

lel with §3.1, the CMH weights, ns1 ns2=ns, approximate optimal weights for small

e¤ects when the intracluster correlation is low.

In the Prospect Study, there is just a little evidence of a dilated e¤ect. The

one-sided 95% con�dence interval for � in §3.2 suggested an e¤ect of at least 1.509

points. The 95% interval for �� includes 1.509 points for f = 48, 122, 244, and 366,

that is, for the lower 10% quantile, the lower quartile, the median and the upper

quartile. Only at f = 438 for the upper 10% quantile is the one sided 95% interval

shorter for ��; speci�cally it is �� � 3:33, with Hodges-Lehmman point estimateb�� = 6:0, found by setting H = 0 and solving for b��. This suggests that for the

10% of patients who would experience the smallest improvements, the e¤ect of the

depression care manager might possibly be twice as large as for the typical patient.

5. A Simulation of Power

The weighted Wilcoxon statistic, W , in §3.1 used van Elteren�s (1960) weights

which would be optimal if the intra-cluster correlation were zero. Because W is a

randomization test, the test has the correct level from (1.1) whether or not these are

the ideal weights, but the choice of weights does a¤ect the power of the test. Do van

Elteren�s (1960) weights yield reasonable power when the clustering does matter?

The size and power of the randomization test based on W were compared to size

and power of the Wald test from �tting a linear mixed model. The linear mixed

model (LMM) had an additive �xed treatment e¤ect, �xed pair e¤ects, random
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Normal cluster e¤ects, and random Normal patient errors; it was sometimes the

correct model, sometimes an incorrect model because the true distributions were not

Normal. With ten paired clusters, as in the Prospect Study, the Wald test statistic

was compared to the t-distribution with 9 degrees of freedom, as suggested by Feng,

et al. (2001, p. 175). Of course, unlike W , the LMM test is not a randomization

test, so its level is not guaranteed by random assignment of treatments � it may

have the wrong level if the model is wrong.

In most simulated situations, as in the Prospect Trial itself, there were ten pairs,

s = 1; : : : ; 10 of two clusters, k = 1; 2, with one cluster picked at random for treat-

ment within each pair. In some situations, the cluster sizes, nsk, were the unbalanced

cluster sizes in Table 1 from the Prospect Trial (labeled ACTUAL), in others they

were DOUBLE the sizes in the trial, 2nsk, and in still others they were HALF the

sizes rounded up to the nearest integer, dnsk=2e. The simulation also considered

EQUAL cluster sizes, nsk = 25 for all s; k. Finally, EQUAL IN PAIR means cluster

sizes that varied between pairs but were constant within pairs, speci�cally in pair s

both clusters had size d(ns1 + ns2) =2e where the nsk are given in Table 1, so in pair

s = 2, both clusters had size d(31 + 6) =2e = 18. Data were generated by a linear

mixed model of the form Rski = �Zski+�s+ 
sk+ �ski. Here, Zski = 1 if cluster s; k

was assigned to treatment, and Zski = 0 if the cluster was assigned to control, so � is

the constant treatment e¤ect. For � = 0, the proportion of rejections of H0 : � = 0

estimates the size of a test that aspires to have level 0.05. For � = �2, roughly

similar to the Prospect Trial estimate, the proportion of rejections estimates power

against this alternative. Also �s is a �xed pair e¤ect, 
sk is a random cluster e¤ect,
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and �ski is a random patient e¤ect, and all of the 
sk�s and �ski�s are mutually inde-

pendent and independent of the random treatment assignments Zski. As indicated

in Table 4, errors �ski had one of three distributions: a Normal distribution with ex-

pectation zero and standard deviation 7, N (0; 49), a scaled t-distribution with three

degrees of freedom, or a Cauchy distribution. In looking at Table 4, keep in mind

that a standard Cauchy distribution eventually has thicker tails than any Normal

distribution, but is typically much less dispersed than a N (0; 49). As indicated in

Table 4, the clusters 
sk were sometimes Normally distributed, sometimes standard

Cauchy, sometimes just zero, labeled ZERO. We tried several other cases, such as

clusters 
sk that were exponentially distributed, but the results were qualitatively

similar and are not reported. The pair e¤ects �s were set to zero, because for both

W and LMM, they do not a¤ect the inference.

The intra-cluster correlation � is var (
sk) = fvar (
sk) + var (�ski)g when 
sk and

�ski both have �nite variance, so the variance of the mean of nsk responses from

one cluster has variance var (
sk) + var (�ski) =nsk = f�= (1� �) + 1=nskg var (�ski).

Hannan, et al (1994) report ��s ranging from 0:002 to 0:012 for various outcomes

in the Minnesota Heart Health Community Trial. Feng, et al. (2001) report ��s

between 0.01 and 0.03 for the Working Well Trial. In the Prospect Trial, using a

linear mixed model, we estimated a � of 0.028. In Table 4, by adjusting the scale of

the cluster 
sk distribution, ��s of 0, 0.02, 0.04, 0.08 and 0.25 were obtained, where

0:08 = 2:67� 0:03 is more than two and a half times larger than the largest � found

for several outcomes in the several group randomized trials just mentioned. To put

this in perspective, if � = 0:08 and nsk = 12, then �= (1� �) > 1=nsk, so that more

than half of the variance of the mean of nsk = 12 patient responses in the same cluster
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is from cluster e¤ects. Arguably, if � = 0:25, one should not do a group-randomized

experiment, because additional observations from the same cluster are worth much

less than additional observations from a new cluster; this shows up clearly in the

simulation. With Cauchy distributions, � does not exist.

Each situation was simulated 1000 times, using antithetic variates to boost simu-

lation e¢ ciency (i.e., reversing the cluster assigned to treatment in each pair). For

� = 0, the estimated standard error of the estimated proportion of rejections is

always less than 0.007, whereas for � = �2, it is always less than 0.013.

In Table 4, the level is close to the nominal 0.05 level for both procedures. The

powers of W and LMM are remarkably similar, except in the case of Cauchy errors.

Generally, LMM has a small edge with Normal errors, and W has a small edge

with errors from a t-distribution with 3 degrees of freedom. With Cauchy errors,

W is much better. Although the intra-cluster correlation � strongly a¤ects power,

it a¤ects W and LMM in a similar way. With a high intra-cluster correlation of

� = 0:25, doubling or halving the sample size within clusters has very slight e¤ects on

power, suggesting that money spent on obtaining data on additional patients within

the same clusters is money spent unwisely.

We also tried doubling the number of clusters, with the same paired cluster sizes

as in the Prospect Study, each pair appearing twice. With j
j = 220, we used the

large sample approximation to (1.1) based on the moments of W in §3.1. With

� = 0:08 and Normal distributions, the power was 0.677 for W and 0.715 for LMM.

In short,W and LMM performed similarly, with the only decisive advantage being

the superior performance of W for Cauchy errors. The use of van Elteren�s weights,

which have optimal properties for � = 0, did not seem to create major problems for
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the relative performance of W and LMM for 0 � � � 0:25. The reported values of �

from clinical trials that we could �nd were all in 0 � � � 0:03.

6. Summary

In a group randomized trial of treatments for depression, we used the group-

randomization (1.1) as the basis for inference about the magnitude of e¤ects on

individuals in group randomized trials, without assuming a distributional model

for the generation of F . Hypothesized e¤ects included constant e¤ects, e¤ects

proportional to dose received in the case of noncompliance, and dilated e¤ects with

larger e¤ects at upper quantiles. Covariance adjustments were performed using

various methods with no need to postulate a �true�covariance model.

We found evidence that the depression care manager in the Prospect Study was

bene�cial as did Bruce et al. (2004). Using covariance adjustment with M-estimation

in the intent-to-treat analysis, the one-sided 95% con�dence bound suggests bene�ts

of at least 1.509 points on the change in Hamilton Depression Score from baseline to

4 months. Accounting for noncompliance, the e¤ect on a compliant patient appears

to be slightly larger, at least 1.70 points. There is a little evidence that the e¤ect of

the depression care manager is not constant, but dilated, with the depression care

manager being more bene�cial to those patients who would have gotten considerably

worse under the control.
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Table 1. Ten Pairs of Two Practices, One Treated (T), the Other
Control (C). For each practice, the values are: the sample size (n), the
mean change in Hamilton Depression Score, the percent compliance in
the treated practice, and the rank scores, qsk+, for testing no e¤ect.

Pair C n T n C Mean T Mean Compliance (%)
1 44 49 �4:7 �4:6 88
2 31 6 �0:3 �7:3 100
3 5 27 �2:0 �8:2 85
4 22 1 �3:7 �3:0 100
5 29 26 �2:8 �7:7 92
6 5 37 �6:6 �5:9 97
7 29 17 �5:0 �9:9 100
8 22 40 �4:7 �8:7 95
9 23 20 �4:9 �9:1 95
10 24 30 �5:9 �9:1 93
All 253 234 �3:9 �7:5 93

C qsk+ T qsk+
�0:79 0:79
3:00 �3:00
1:61 �1:61

�0:33 0:33
4:21 �4:21

�0:26 0:26
4:32 �4:32
4:49 �4:49
4:00 �4:00
2:18 �2:18
22:44 �22:44

Table 2. Exact, One-sided Signi�cance Levels with Five Types of
Covariance Adjustment, for Three Null Hypotheses.

Method of Covariance Adjustment H0 : � = 0 H0 : � = �0:5 H0 : � = �0:7
M-estimation 0.0127 0.0342 0.0479
Least Squares 0.0186 0.0352 0.0479

Generalized Additive 0.0176 0.0342 0.0537
Projection Pursuit; Changes 0.0303 0.0527 0.0605
Projection Pursuit; Levels 0.0146 0.0283 0.0430

Table 3. Observed Quantiles of Changes in Depression Scores By
Treatment Group.

Quantile 1
10

1
4

1
2

3
4

9
10

Control �13:9 �9:0 �4:0 0:9 7:0
Treated �16:0 �12:0 �7:0 �3:0 1:0

Di¤erence 2:1 3:0 3:0 3:9 6:0
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Table 4. Randomization Test (W ) versus Linear Mixed Model
(LMM), for several intra-cluster correlations (�).

Treatment Clusters Cluster Errors � LMM W
(E¤ect �) Sizes Power Power

0 N(0,1) Actual N(0,49) 0.02 0.049 0.057
0 N(0,1) Equal in Pair N(0,49) 0.02 0.034 0.037
0 Cauchy Actual N(0,49) - 0.039 0.051
-2 Zero Actual N(0,49) 0 0.805 0.798
-2 N(0,1) Actual N(0,49) 0.02 0.688 0.679
-2 N(0,1) Actual 7p

3
t(3) 0.02 0.705 0.793

-2 N(0,1) Equal N(0,49) 0.02 0.739 0.738
-2 N(0,1) Double N(0,49) 0.02 0.835 0.798
-2 N(0,1) Half N(0,49) 0.02 0.492 0.500
-2 N(0,1) Equal in Pair N(0,49) 0.02 0.751 0.724
-2 N(0,2.04) Actual N(0,49) 0.04 0.574 0.556
-2 N(0,2.04) Actual 7p

3
t(3) 0.04 0.601 0.642

-2 N(0,2.04) Equal N(0,49) 0.04 0.654 0.648
-2 N(0,2.04) Double N(0,49) 0.04 0.685 0.637
-2 N(0,2.04) Half N(0,49) 0.04 0.426 0.425
-2 N(0,2.04) Equal in Pair N(0,49) 0.04 0.658 0.629
-2 N(0,3.13) Actual N(0,49) 0.06 0.509 0.459
-2 N(0,3.13) Actual 7p

3
t(3) 0.06 0.510 0.524

-2 N(0,3.13) Double N(0,49) 0.06 0.579 0.545
-2 N(0,3.13) Half N(0,49) 0.06 0.402 0.370
-2 N(0,3.13) Equal in Pair N(0,49) 0.06 0.556 0.534
-2 N(0,4.26) Actual N(0,49) 0.08 0.455 0.441
-2 N(0,4.26) Actual 7p

3
t(3) 0.08 0.440 0.448

-2 N(0,4.26) Double N(0,49) 0.08 0.515 0.460
-2 N(0,4.26) Half N(0,49) 0.08 0.365 0.347
-2 N(0,4.26) Equal in Pair N(0,49) 0.08 0.489 0.475
-2 N(0,1) Actual Cauchy - 0.176 0.946
-2 N(0,1) Double Cauchy - 0.152 0.949
-2 N(0,1) Equal in Pair Cauchy - 0.220 0.968
-2 Cauchy Actual N(0,49) - 0.226 0.283
-2 N(0,16.33) Actual N(0,49) 0.25 0.220 0.204
-2 N(0,16.33) Actual 7p

3
t(3) 0.25 0.231 0.213

-2 N(0,16.33) Double N(0,49) 0.25 0.257 0.207
-2 N(0,16.33) Half N(0,49) 0.25 0.224 0.202
-2 N(0,16.33) Equal in Pair N(0,49) 0.25 0.252 0.233
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Figure 1:  Hamilton Depression Scores by Assigned Treatment Group for 253 Patients in 
Treated Practices and 234 Patients in Control Pratices, at Baseline Before Treatment 
(t=0) and at Four Months (t=4). 
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Figure 2:  Residuals from Constant Effect Model:  Boxplots of 487 Residuals  eski   from 
the m-Estimate Regression of R - t0 Z on X, with t0 = -3.26, for Treated  Zski = 1 and 
Control Zski = 0 Groups.   
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Figure 3:  Quantile-Quantile Plot of Changes in Hamilton Scores Rski  in Treated (Zski = 1) 
and Control (Zski = 0) Groups.  Dotted Line Is y = x.  Solid Line Is y = x + 3.26. 


	University of Pennsylvania
	ScholarlyCommons
	2008

	Randomization Inference in a Group–Randomized Trial of Treatments for Depression: Covariate Adjustment, Noncompliance and Quantile Effects
	Dylan Small
	Thomas R. Ten Have
	Paul R. Rosenbaum
	Recommended Citation

	Randomization Inference in a Group–Randomized Trial of Treatments for Depression: Covariate Adjustment, Noncompliance and Quantile Effects
	Abstract
	Keywords
	Disciplines


	tmp.1468605345.pdf.QSdGa

