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Clustered Treatment Assignments and Sensitivity to Unmeasured Biases
in Observational Studies

Abstract
Clustered treatment assignment occurs when individuals are grouped into clusters prior to treatment and
whole clusters, not individuals, are assigned to treatment or control. In randomized trials, clustered
assignments may be required because the treatment must be applied to all children in a classroom, or to all
patients at a clinic, or to all radio listeners in the same media market. The most common cluster randomized
design pairs 2S clusters into S pairs based on similar pretreatment covariates, then picks one cluster in each
pair at random for treatment, the other cluster being assigned to control. Typically, group randomization
increases sampling variability and so is less efficient, less powerful, than randomization at the individual level,
but it may be unavoidable when it is impractical to treat just a few people within each cluster. Related issues
arise in nonrandomized, observational studies of treatment effects, but in this case one must examine the
sensitivity of conclusions to bias from nonrandom selection of clusters for treatment. Although clustered
assignment increases sampling variability in observational studies, as it does in randomized experiments, it
also tends to decrease sensitivity to unmeasured biases, and as the number of cluster pairs increases the latter
effect overtakes the former, dominating it when allowance is made for nontrivial biases in treatment
assignment. Intuitively, a given magnitude of departure from random assignment can do more harm if it acts
on individual students than if it is restricted to act on whole classes, because the bias is unable to pick the
strongest individual students for treatment, and this is especially true if a serious effort is made to pair clusters
that appeared similar prior to treatment. We examine this issue using an asymptotic measure, the design
sensitivity, some inequalities that exploit convexity, simulation, and an application concerned with the
flooding of villages in Bangladesh.
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Clustered Treatment Assignments and Sensitivity to Unmeasured Biases

in Observational Studies

Ben B. Hansen, Paul R. Rosenbaum, and Dylan S. Small1

Abstract. Clustered treatment assignment occurs when individuals are grouped into clusters

prior to treatment and whole clusters, not individuals, are assigned to treatment or control.

In randomized trials, clustered assignments may be required because the treatment must be

applied to all children in a classroom, or to all patients at a clinic, or to all radio listeners in the

same media market. The most common cluster randomized design pairs 2S clusters into S

pairs based on similar pretreatment covariates, then picks one cluster in each pair at random for

treatment, the other cluster being assigned to control. Typically, group randomization increases

sampling variability and so is less efficient, less powerful, than randomization at the individual

level, but it may be unavoidable when it is impractical to treat just a few people within each

cluster. Related issues arise in nonrandomized, observational studies of treatment effects, but

in this case one must examine the sensitivity of conclusions to bias from nonrandom selection

of clusters for treatment. Although clustered assignment increases sampling variability in

observational studies, as it does in randomized experiments, it also tends to decrease sensitivity

to unmeasured biases, and as the number of cluster pairs increases the latter effect overtakes

the former, dominating it when allowance is made for nontrivial biases in treatment assignment.

Intuitively, a given magnitude of departure from random assignment can do more harm if it acts

on individual students than if it is restricted to act on whole classes, because the bias is unable

to pick the strongest individual students for treatment, and this is especially true if a serious

1Ben B. Hansen is Associate Professor, Department of Statistics, University of Michigan, Ann Arbor, MI
48109 (E-mail: bbh@umich.edu). Paul R. Rosenbaum (E-mail: rosenbaum@wharton.upenn.edu) is Professor
and Dylan S. Small (E-mail: dsmall@wharton.upenn.edu) is Associate Professor, Department of Statistics,
The Wharton School, University of Pennsylvania, Philadelphia, PA 19104. This study was supported by
grants SES-0753164 and SES-1260782 from the Measurement, Methodology and Statistics Program of the
U.S. National Science Foundation. The authors acknowledge very helpful comments from three referees,
an associate editor, David Silver and Joseph Ibrahim.
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effort is made to pair clusters that appeared similar prior to treatment. We examine this issue

using an asymptotic measure, the design sensitivity, some inequalities that exploit convexity,

simulation, and an application concerned with the flooding of villages in Bangladesh.
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Keywords: Design sensitivity; group randomization; sensitivity analysis.

1 Introduction; motivating example; outline

1.1 Clustered experiments and observational studies

Some treatments can be applied to a cluster of individuals but not to a single individual.

For instance, the Prospect Randomized Trial (Bruce, Ten Have, Reynolds et al. 2004,

Small, Ten Have and Rosenbaum 2008) paired 20 medical practices into 10 pairs of two

practices so that paired practices were similar, then selected one practice in each pair at

random to receive a “depression care manager” – a psychiatric nurse with special training –

who provided depression-related services to patients at that practice and depression-related

guidance to physicians at that practice. Similarly, Hansen and Bowers (2009) discuss

the effects of a randomized get-out-the-vote campaign that could not be applied at the

individual level. The same situation arises when a treatment must be applied or withheld

from a school rather than from individual student, or when a public health campaign must

be applied to a community rather than to individuals within that community.

In randomized experiments, clustered treatment assignment may be necessary, but it

tends to reduce efficiency compared to assignment at the individual level, particularly when

individuals in the same cluster tend to exhibit similar responses for reasons unrelated to

the treatment (Cornfield 1978, Murray 1998).

In nonrandomized studies of treatment effects, efficiency is a secondary concern, and

biases from nonrandomized treatment assignment are the primary concern (Cochran 1965).

To some extent, biases from nonrandom assignment can be removed by adjustments for

measured covariates, for instance, by matching or covariance adjustment. However, the

concern is invariably raised that individuals or clusters that appear similar in measured

covariates may differ in ways not measured, so adjustments for measured covariates may
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fail to compare comparable units under alternative treatments. A sensitivity analysis asks

about the magnitude of the departure from random assignment that would need to be

present to alter the conclusions of a naive analysis that assumes adjustments for measured

covariates suffice to remove all bias. The power of a sensitivity analysis and the design

sensitivity anticipate the outcome of a sensitivity analysis under an assumed model for the

generation of the data, and in this sense they parallel and generalize the power of a test in

a randomized experiment.

As demonstrated in the current paper, clustered treatment assignments are less suscep-

tible to biases from unmeasured covariates than are assignments at the individual level. At

an intuitive level, a bias of a given magnitude in treatment assignment can do more harm

if it can pick and choose among individuals, and does somewhat less harm when forced to

make the more constrained choice of picking and choosing among clusters of individuals.

If a depression-care manager focused her attention on the most depressed patients then

the biases could be much larger than if she elected to work at a medical practice whose

patients tended to be more depressed.

1.2 Motivating example: Flooding in Bangladesh

In 1998, parts of Bangladesh experienced massive floods, while other areas were spared.

Del Ninno, Dorosh, Smith and Roy (2001) conducted an observational study of the effects

of flooding on health and other outcomes. We use their data to illustrate issues that arise

in observational studies with clustered treatment assignments. Massive floods affect or

spare villages, not individuals.

Table 1 describes 27 pairs of two villages in Bangladesh, one severely flooded, the other

not exposed to the flood. Within each village, a small number of children were sampled

and covariates and outcomes describe these children. In total, there were 291 children.

4



The outcome is the number of sick days in the two weeks following the flood. The villages

were paired using three covariates: the proportion of boys among the sampled children,

the mean age of the sampled children, and the median preflood assets of their families.

The pairing was based on a rank-based Mahalanobis distance and the optimal assignment

algorithm as implemented in the pairmatch function of the optmatch package in R; see

Hansen (2007) or Stuart (2010). Additional adjustments will be made later by covariance

adjustment for differences among the 291 children. The general impression in Table 1 is

that children in flooded villages had more sick days than children in villages not exposed

to the flood.

A group randomized experiment would have treated one village picked at random within

each pair, but obviously, villages were not selected for flooding at random. Because villages

were flooded, the deviations from random assignment affect whole villages: the nonrandom

assignment cannot pick and choose for flooding among children in the same village.

2 Treatments assigned to paired clusters

2.1 Clusters matched for covariates

There are S strata or pairs, s = 1, . . . , S, of two clusters, k = 1, 2, so the ordered pair (s, k)

(or briefly sk) identifies a unique cluster. In Table 1, there are S = 27 pairs of two villages.

Cluster sk contains nsk ≥ 1 individuals, i = 1, . . . , nsk. A covariate is a variable whose

value is determined prior to treatment assignment and hence is unaltered when treatments

are assigned. Individual i in cluster sk is described by an observed covariate xski and

an unobserved covariate uski. The covariate (xski,uski) may describe the individual ski

and/or the cluster sk containing this individual and/or the stratum s containing this pair

of clusters. In the example, there are six covariates, the child’s age and gender, the child’s

family’s preflood assets, the proportion of boys in the village sample, the mean age in the
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village sample and the median of preflood assets in the village sample. Whole clusters are

assigned to treatment, denoted Zsk = 1, or to control, denoted Zsk = 0, where each pair

contains one treated and one control cluster, 1 = Zs1 +Zs2 for each s. The pairs of clusters

are typically formed by matching for observed covariates xski describing the clusters and

the individuals within the clusters, as was done in Table 1.

Write Z = (Z11, . . . , ZS2)T for the treatment assignments for all 2S clusters. If S is a

finite set, write |S| for the number of elements of S. Write Z for the set of possible values

z of Z, so z ∈ Z if z = (z11, . . . , zS2)T with zs1 + zs2 = 1 for s = 1, . . . , S, and |Z| = 2S .

Conditioning on the event Z ∈ Z is abbreviated as conditioning on Z. If nsk = 1 for all

sk, then the clusters are individuals, so there is no need for a separate notation for studies

with unclustered treatment assignment.

2.2 Responses of individuals when whole clusters are assigned to treatment

Each individual ski has two potential responses, namely response rTski if cluster sk is

assigned to treatment, Zsk = 1, or response rCski if cluster sk is assigned to control, Zsk = 0.

There is no presumption here that individuals within the same cluster do not interfere with

one another; rather, rTski describes the response of ski if all individuals in cluster sk receive

the treatment, Zsk = 1, and rCski describes the response of individual ski if all individuals

in cluster sk receive the control, Zsk = 0, and there is no presumption that these same

responses would be seen from ski if treatments were assigned to some but not all individuals

in cluster sk. Because each cluster receives either treatment or control, either rTski is

observed or rCski is observed but never both — that is, Rski = Zsk rTski + (1− Zsk) rCski

is observed — and the effect on individual ski of treating cluster sk, namely rTski − rCski,

is not observed for any individual, in parallel with the situation without clusters described

by Neyman (1923), Welch (1937) and Rubin (1974). Here, the observed response Rski
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changes when treatment changes Zsk if rTski−rCski 6= 0, but (rTski, rCski) does not change

as Zsk changes.

In the flood example, rTski is the number of sick days that child ski would exhibit if

her village were severely flooded and rCski is the number of days this same child would

exhibit if her village were not exposed to the flood. The effect rTski − rCski on the sick

days of child ski of severe flooding of her village could in part reflect a shortage of clean

water and overwhelming of medical staff in her village. Quite plausibly, the flooding of

just her house but not the village would have had a very different effect on her, because

then clean water and medical staff would not have been in short supply. Because the

flood affected regions and not isolated homes, the available data speak to the issue of the

effects of flooding of villages, not the effects of flooding of individual homes in otherwise

dry villages. See Small et al. (2008) for discussion of treatment effects rTski− rCski at the

individual level when whole clusters are assigned to treatment or control.

In the Bangladesh example, part of the treatment effect may be produced by over-

whelming the village’s community services, so the effect of flooding on an individual may

reflect the presence of many individuals experiencing flooding at the same time. There are

other contexts in which it is convenient to assign treatment or control to whole clusters, but

the effect of the treatment on an individual does not depend upon the treatments received

by other individuals. Cox (1952, §2.4) refers to this as “no interference between units.”

Typically, an antihypertensive drug affects only the person who receives it, and in this case

there is no interference between units, whether treatments are assigned to individuals or

clusters. When there is no interference between units, the investigator has a choice of

study designs, clustered or individual treatment assignment, but the effect caused by the

treatment is the same. When an investigator can study the same effect in two different

ways, it is of interest to know whether one design has advantages over the other.
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Fisher’s (1935) sharp null hypothesis of no treatment effect asserts that changing the

treatment assigned to cluster sk would leave the response of individual ski unchanged for

all individuals ski, that is, H0 : rTski = rCski, ∀ski. Write rC = (rC111, . . . , rCS2,nS2
)T for

the N =
∑

s,k nsk dimensional vector, with a similar notation for rT , R, u, etc. If Fisher’s

H0 were true, Rski = rCski for all ski or R = rC . Write

F = {(rTski, rCski,xski, uski) , i = 1, . . . , nsk, s = 1, . . . , S, k = 1, 2} ,

noting that, unlike R, the quantities in F are fixed, not changing as Z changes.

2.3 Random assignment of treatment to clusters; randomization inference

To say that treatment assignment is randomly assigned to clusters is to say that random

numbers were used in the assignment of treatment in such a way that Pr (Z = z | F , Z) =

1/ |Z| = 1/2S for each z ∈ Z; equivalently, Zs2 = 1 − Zs1, the Zs1 are independent for

distinct s, and Pr (Zs1 = 1 | F , Z) = 1/2 for every s.

A test statistic T is a function of Z and R, that is, T = t (Z,R). If the null hypothesis

H0 were true then R = rC , so T = t (Z, rC). If Z were randomly assigned, then the

randomization distribution of T under the null hypothesis H0 would be:

Pr { t (Z,R) ≥ c | F , Z} = Pr { t (Z, rC) ≥ c | F , Z} =
|{z ∈ Z : t (Z, rC) ≥ c}|

|Z|
, (1)

because rC is fixed by conditioning upon F , and Pr (Z = z | F , Z) = 1/ |Z|.

Let qski be a score or rank given to Rski, so that under H0 the qski are functions of the

rCski and xski, and they do not vary with Zsk. Taking qski = Rski yields the randomization

distribution of the mean or the so-called “permutational t-test,” as discussed by Pitman

(1937) and Welch (1937). In practice, it will often be appropriate to stabilize Rski through
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covariance adjustment for xski and to use scores qski resistant to outliers. In the example,

as in Small et al. (2008), the qski in Table 1 are ranks of the residuals of Rski when regressed

on the six covariates in xski using Huber’s m-estimation (with the default settings in R);

see Rosenbaum (2002a) for discussion of covariance adjustment of permutation tests as

well as pivoting to produce point estimates and confidence intervals.

Under H0, the observed response Rski equals rCski, and rCski is in F , so under H0 the

ranks qski are fixed by conditioning on F in (1); hence, also, the mean rank n−1
sk

∑
i qski in

cluster sk is fixed, not changing with Zsk. Consider as a test statistic T a weighted sum

over the S pairs of the mean rank in the treated cluster (Zsk = 1) minus the mean rank

in the control cluster (Zsk = 0 or 1 − Zsk = 1), where the weight ws ≥ 0 for pair s is a

function of the nsk. Under H0, using Zs2 = 1− Zs1, the statistic T is

T =

S∑
s=1

wsZs1

(
1

ns1

ns1∑
i=1

qs1i −
1

ns2

ns2∑
i=1

qs2i

)
+ wsZs2

(
1

ns2

ns2∑
i=1

qs2i −
1

ns1

ns1∑
i=1

qs1i

)
(2)

=
S∑
s=1

ws (2Zs1 − 1)

(
1

ns1

ns1∑
i=1

qs1i −
1

ns2

ns2∑
i=1

qs2i

)
=

S∑
s=1

Bs Qs

where

Bs = 2Zs1 − 1 = ±1, Qs =
ws
ns1

ns1∑
i=1

qs1i −
ws
ns2

ns2∑
i=1

qs2i. (3)

In (1) in a cluster randomized experiment, under H0 given F , Z, the statistic T in (2) is

the sum of S independent random variables taking the value ±Qs each with probability

1/2, so E (T ) = 0 and var (T ) =
∑S

s=1Q
2
s. Under H0 in a group randomized experiment,

for reasonable ranks, qski, as S → ∞ with nsk bounded, 1 ≤ nsk ≤ ν , the central limit

theorem implies T/
√

var (T ) converges in distribution to the standard Normal distribution,

Φ (·).

Because of its analytical simplicity, several results that we present will concern the
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“permutational t-test” which uses the responses directly, qski = Rski, so that Qs is propor-

tional to difference in mean responses in two paired clusters, and T is the weighted sum

over pairs s of the treated-minus-control difference in mean responses. See Pitman (1937)

and Welch (1937) for discussion of randomization inference with qski = Rski. Other results

will concern ranks calculated separately within each pair of clusters, so that T is linearly

related to a weighted combination of Wilcoxon rank sum statistics (e.g., van Elteren 1960,

Lehmann 1975, §3.3). In simulations, statistics that rank across clusters are also consid-

ered; see, for instance, Mantel (1977), Conover and Iman (1981) and Lam and Longnecker

(1983).

In a randomized experiment, the analysis described in the current section is the same as

the analysis proposed by Small, Ten Have and Rosenbaum (2008). If this randomization

test is applied to the data in Table 1 with equal weights ws = 1, then an approximate

one-sided P -value of 0.0064 is obtained, rejecting H0 in favor of greater illness in flooded

villages. Of course, Table 1 is not from a randomized experiment.

2.4 Biased assignment of treatments to clusters; sensitivity analysis

In a nonrandomized observational study, there is nothing to ensure Pr (Z = z | F , Z) =

1/ |Z|, and treatment assignments may exhibit systematic biases; for instance, Pr (Zsk = 1 | F , Z)

might vary with the unobserved covariates uski describing individuals in a cluster. To

say that the assignment of treatments to clusters may be biased after matching clusters

for observed covariates is to say that Pr (Zsk = 1 | F , Z) may deviate from 1/2 because

Pr (Zsk = 1 | F , Z) is varying with elements of F that were not controlled by the matching,

that is, typically, the elements of F that were not observed.

The possible impact of biases of various magnitudes in assignment of treatments to

clusters is examined using a sensitivity analysis model that asserts the Zs1 are independent
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for distinct s with

1

1 + Γ
≤ Pr (Zs1 = 1 | F , Z) ≤ Γ

1 + Γ
, Zs2 = 1− Zs1, (4)

for each s, where Γ ≥ 1 is a sensitivity parameter whose value is varied to examine

the degree of sensitivity of conclusions to unmeasured biases. In words, (4) allows

Pr (Zs1 = 1 | F , Z) and Pr (Zs2 = 1 | F , Z) to differ by at most a factor of Γ, so (4)

introduces a bias in treatment assignment whose magnitude is controlled by the value of Γ.

For treatment assignment at the individual level, the model (4) was proposed in Rosen-

baum (1987), and various generalizations and alternative descriptions of the this model are

developed in Rosenbaum (2002b, §4). Using Wolfe’s (1974) semiparametric family of defor-

mations of a symmetric distribution, Rosenbaum and Silber (2009) interpret Γ in terms of

two parameters, one connecting uski with treatment assignment, the other connecting uski

with outcomes. For alternative models for sensitivity analysis in observational studies,

see Cornfield et al. (1959), Copas and Eguchi (2001), Gastwirth (1992), Hosman, Hansen

and Holland (2010), Imbens (2003), Marcus (1997), Rosenbaum and Rubin (1983), Small

(2007) and Yu and Gastwirth (2005).

Let θ = Γ/ (1 + Γ) and define πs = θ if Qs > 0 and πs = 1 − θ otherwise, and define

π̃s = 1 − πs. Let TΓ be a random variable formed as the sum of S independent random

variables taking the value Qs with probability πs and the value −Qs with probability 1−πs,

and let T̃Γ be defined in the same way but with π̃s in place of πs. Then it is not difficult

to show (Rosenbaum 1987; 2002b, §4) that (4) implies

Pr
(
T̃Γ ≥ t

∣∣∣ F , Z) ≤ Pr (T ≥ t | F , Z) ≤ Pr
(
TΓ ≥ t

∣∣ F , Z) for each t. (5)

For large S, the distribution of TΓ in (5) may be approximated by a Normal distribution
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with expectation

E
(
TΓ

∣∣ F , Z) =
S∑
s=1

(2πs − 1)Qs =
Γ− 1

Γ + 1

S∑
s=1

|Qs|

and variance

var
(
TΓ

∣∣ F , Z) = 4
S∑
s=1

πs (1− πs)Q2
s =

4 Γ

(1 + Γ)2

S∑
s=1

Q2
s

so the upper bound on the approximate one-sided P -value is less than or equal to α if

T/S − [(Γ− 1) / {S (Γ + 1)}]
∑S

s=1 |Qs|√[
4Γ/

{
S2 (1 + Γ)2

}]∑S
s=1 Q

2
s

≥ Φ−1 (1− α) , (6)

where Φ (·) is the standard Normal cumulative distribution.

If each cluster contains a single individual, nsk = 1 for all sk, then the analysis described

in §2.4 is the same as the analysis in Rosenbaum (1987; 2002b, §4). For nsk ≥ 1 with

Γ = 1, the analysis is the same as for group randomized experiments in §2.3 or Small, Ten

Have and Rosenbaum (2008).

2.5 Sensitivity analysis of the flooding in Bangladesh

As noted in §2.3, the covariance adjusted permutation test followed Small et al. (2008),

setting qski equal to the rank of the residual of Rski when regressed on the six covariates

in xski using Huber’s m-estimates (with the default settings of rlm, in R’s MASS package

[Venables and Ripley, 2002]). In a randomization test, Γ = 1, this yields a 1-sided P -value

of 0.0064 testing Fisher’s sharp null hypothesis H0 of no treatment effect. The upper

bound on this one-sided P -value is ≤ 0.045 for Γ 6 1.5, so the finding that children in

flooded villages were sicker is insensitive to small biases but is sensitive to moderately
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large biases.

If the null hypothesis of no effect is replaced by the hypothesis Hτ0 of a shift effect,

rTski = rCski + τ0, then Rski−Zskiτ0 = rCski, so that, in the usual way, the randomization

test yields a Hodges-Lehmann (1963) point estimate of effect, τ̂ ; see Small et al. (2008).

In the absence of bias, Γ = 1, the point estimate is τ̂ = 1.04 additional sick days. In a

sensitivity analysis, there is not a single Hodges-Lehmann point estimate but an interval

of estimates, the interval collapsing to a point when Γ = 1; see Rosenbaum (1993). When

Γ = 1.5, the interval of point estimates is entirely positive, from 0.68 days to 1.41 days.

The interval of point estimates just barely includes 0 days at Γ = 4.1.

How does clustered treatment assignment affect sensitivity to unmeasured biases? In

designing a study, one might take one child per village, nsk = 1, in effect yielding a study

without grouped assignment. In the absence of bias, Γ = 1, such a design would be

more efficient than a clustered study of the same size N =
∑
nsk, although it would entail

collecting survey data at many more villages 2S, and so might be prohibitively expensive.

How do changes in the degree of clustering affect the conclusions of a sensitivity analysis

(6) with Γ > 1? These questions are discussed beginning in §3. In light of this discussion,

§3.5 performs some additional analyses of the flooding in Bangladesh.

3 Design Sensitivity with Clustered Treatment Assignment

3.1 Power of a sensitivity analysis; design sensitivity

The power of a sensitivity analysis is the probability, for a given value Γ of the sensitivity

parameter and a given test size α, that the null hypothesis of no treatment effect H0 will

be rejected when it is in fact false and a treatment effect, not a bias, is responsible for the

behavior of the test statistic, T . More precisely, for given α the power of a sensitivity

analysis with parameter Γ is the probability that the upper bound on the P -value will
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be at most α when there is actually a treatment effect, so H0 is false, and there is no

bias from nonrandom treatment assignment, so Pr (Z = z | F , Z) = 1/ |Z| = 1/2S for

each z ∈ Z; that is, as S → ∞, it is the probability of the event (6) under some specific

model for a treatment effect without bias. For any stochastic model with a treatment

effect, that is, for any model for the generation of F , the probability of the event (6)

with Pr (Z = z | F , Z) = 1/2S may be determined analytically in simple situations or by

simulation in complex situations. In general, refer to the situation in which H0 is false

and Pr (Z = z | F , Z) = 1/ |Z| = 1/2S for each z ∈ Z as the “favorable situation,” so

the power of a sensitivity analysis is computed in the favorable situation. Importantly,

in an observational study we cannot recognize when we are in the favorable situation

even as S → ∞; that is, in an observational study, we cannot know that we are looking

at a treatment effect without unmeasured bias rather than an unmeasured bias without

a treatment effect. In general, the power of a sensitivity analysis depends upon the

research design, that is the stochastic process that generated the data, and upon the

selected methods of analysis. The power of a sensitivity analysis may guide the choice of

research design for fixed methods of analysis, the choice of methods of analysis for a fixed

research design, or the choice of research design when the method of analysis must change

to accommodate the change in research design.

If we cannot know when we are in the favorable situation, and if we may not be in

the favorable situation, then why should we be interested in the power computed in the

favorable situation? In computing power in the favorable situation we are asking about

the ability of a particular research design and method of analysis to discriminate between

two situations in which we know unambiguously what answer is desired of the sensitivity

analysis. If there is a moderate bias Γ in treatment assignment and no treatment effect,

then we hope that the sensitivity analysis will tell us that the observed association between
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treatment and outcome can be explained by a bias of magnitude Γ, and by construction

we take only a risk of at most α that the sensitivity analysis will report otherwise in this

situation. If there is no bias in treatment assignment, Γ = 1, and there is a treatment

effect then we hope to reject the null hypothesis H0 of no effect, and the power of a

sensitivity analysis in the favorable situation is the chance that our hope will be realized.

If there were both a bias in treatment assignment and also a treatment effect, then we

must be ambivalent about rejecting the hypothesis of no effect, H0, even though it is false.

Suppose, for example, that there was a large bias in treatment assignment and a small

treatment effect, so that rejection of H0 is nearly assured for all small or moderate Γ; then,

we cannot be pleased to reject H0 for small or moderate Γ because we know we would also

have rejected H0 in this situation had it been true.

In computing the power of a sensitivity analysis, we may, of course, substitute another

definite null hypothesis about the effect, say the hypothesis Hτ0 of a shift effect, rTski =

rCski + τ0, for the null hypothesis of H0 of no effect. For instance, in the absence of bias

in treatment assignment, Γ = 1, we may ask: what is the probability that the sensitivity

analysis will reject Hτ0 allowing for bias Γ ≥ 1 when Hτ0 is false and Hτ1 is true for a

specific τ1 > τ0? However, this calculation reduces to the calculation already performed.

If Hτ0 were true, then the Rski − Zskiτ0 = rCski satisfy the null hypothesis of no effect,

H0, and if Hτ1 is true then Rski − Zskiτ0 satisfy the hypothesis Hτ1−τ0 . If the sensitivity

analysis is applied to Rski − Zskiτ0, the the power to reject Hτ0 in favor of Hτ1 equals the

power to reject H0 for Rski − Zskiτ0 = rCski against Hτ1−τ0 .

In general, the power depends upon S. For asymptotics, one considers a stochastic

process that generates an F for each sample size S and then allows S →∞. For instance,

the S cluster pairs s might be an independent and identically distributed sample of size

S from an infinite population of cluster pairs. For each such stochastic process, we may
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study the probability of the event (6) with Pr (Z = z | F , Z) = 1/2S as S →∞.

Under mild conditions, as S → ∞, there is a value Γ̃ called the design sensitivity

such that the power of the sensitivity analysis – the probability of the event (6) with

Pr (Z = z | F , Z) = 1/2S – tends to 1 if the sensitivity analysis is performed with Γ < Γ̃

and it tends to zero if Γ > Γ̃; see Rosenbaum (2004; 2010, Part III). In words, as the sample

size increases, we can distinguish a specified treatment effect without bias from all biases

smaller than Γ̃ but not from some biases larger than Γ̃. In general, the design sensitivity

Γ̃ depends upon the stochastic process that generated F and on the choice of test statistic

T . Among other things, the design sensitivity is a guide to designing observational studies

to be less sensitive to unmeasured biases; see, for instance, Stuart and Hanna (2013) and

Zubizarreta et al. (2013).

3.2 A formula for design sensitivity with clustered treatment assignment

If a clustered observational treatment assignment were not biased, so that Pr (Z = z | F , Z) =

1/ |Z| = 1/2S for each z ∈ Z, then we could not discern this from the data, and the best

we could hope to say is that conclusions are insensitive to a moderately large bias Γ.

The current section calculates the design sensitivity Γ̃ in a simplified situation. Specif-

ically, three conditions are required, and these are first stated, then discussed:

a1 We are in the favorable situation, so H0 is false and Pr (Z = z | F , Z) = 1/ |Z| = 1/2S

for each z ∈ Z.

a2 The pair of cluster sizes, (ns1, ns2), is constant, (ns1, ns2) = (n1, n2) for all s, with

n1 ≥ 1, n2 ≥ 1, and ws = 1 for each s.

a3 The Qs are independent and identically distributed with finite variance.

Condition a1 simply says we are in the situation in which the power of a sensitivity
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analysis and design sensitivity are computed. Condition a2 does not require n1 = n2;

however, this equality would be common when cluster sizes are constant. If n1 = 1 and

n2 = 2, then some cluster pairs contain 1 treated subject from one cluster and 2 controls

from a paired cluster while other cluster pairs contain one control from one cluster and

two treated subjects from a paired cluster. Condition a3 is a statement about the treated-

minus-control difference in mean scores qski in cluster pair s, and it can be true in a variety

of ways. For the permutational t-test with qski = Rski, a3 would follow from a1 and

a2 if n1 = n2 and cluster pairs were sampled at random from an infinite population of

cluster pairs in which var (Rski) <∞. For the permutational t-test with qski = Rski with

n1 6= n2, additional assumptions analogous to Gauss-Markov assumptions (i.e., additive

effects, constant variance), would ensure that the mean differences Qs satisfy a3. Condition

a3 would also hold with n1 = n2 if the permutational t-test were replaced by the sum of S

separately computed rank sum statistics, with qski equal to the rank of Rski within cluster

pair s, ranking from 1 to n1 +n2. Conditions a2 and a3 are one simple way of saying that

as the number of clusters increases, S →∞, the added clusters are similar to the original

ones, that the sequence of clusters is not evolving.

Assuming a3, let λ = E (Qs) and η = E (|Qs|), noticing that η > λ unless Pr (Qs < 0) =

0. To have Pr (Qs < 0) = 0, the treatment effect would need to be so large that a cluster

pair s with a negative sample mean difference, Qs < 0, never occurs.

Proposition 1 Assume a1-a3. If η > λ then the design sensitivity is

Γ̃ =
η + λ

η − λ
(7)

and otherwise Γ̃ =∞.

Proof. By the weak law of large numbers, as S → ∞ in (6), the following quantities
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converge in probability:

T

S
→ λ

Γ− 1

S (Γ + 1)

S∑
s=1

|Qs| →
(Γ− 1) η

(Γ + 1)√√√√ 4Γ

S2 (1 + Γ)2

S∑
s=1

Q2
s =

√
1

S

√√√√ 4Γ

(1 + Γ)2 ·
1

S

S∑
s=1

Q2
s → 0

It follows that the probability of the event (6) tends to 1 as S →∞ if λ > (Γ− 1) η/ (Γ + 1)

and to 0 if λ < (Γ− 1) η/ (Γ + 1) from which the proposition follows.

There are many ways to weaken assumptions a2 and a3 yet retain a conclusion similar

to (7). Essentially, one needs the three in-probability limits that appear in the proof,

where these limits now define λ and η, and TΓ/var1/2(TΓ) must be approximable as a

standard Normal random variable.

When conditions a1-a3 hold, the computation or simulation of the design sensitivity Γ̃

is straightforward as it is requires two expectations, λ = E (Qs) and η = E (|Qs|), both of

which are determined by a conventional model for clustered data with a treatment effect and

randomized assignment of one cluster in a pair to treatment. If the distribution ofQs has an

explicit mathematical form, then the needed expectations may be determined by numerical

integration. When the distribution of Qs does not have a tractable mathematical form,

but data sets yielding values of Qs may be simulated, sampling many Qs and averaging Qs

and |Qs| yields estimates of λ and η and estimated standard errors of those estimates.

3.3 Some numerical evaluations of design sensitivity for the permutational t-test

A simple common model for pairs of clusters F has an additive treatment effect, rTski =

rCski + τ , and rCski = φs + ξsk + εski where the cluster errors ξsk are independent and

identically distributed with a Normal distribution having expectation 0 and finite variance
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σ2
ξ , the individual errors εski are independent and identically distributed with a Normal

distribution having expectation 0 and finite variance σ2
ε , and the ξsk and εski are inde-

pendent of each other. Then Rski = Zskτ + φs + ξsk + εski. The intra-cluster correlation

(ICC) ζ2 = σ2
ξ/
(
σ2
ξ + σ2

ε

)
is the fraction of the variance in rCski that is due to the cluster

error ξsk rather than the individual error εski. If treatment assignment is not biased, so

that Pr (Z = z | F , Z) = 1/2S , and the permutational t-test is used, so that qski = Rski

and φs cancels upon taking differences within cluster pair s, then τ = λ = E (Qs) and

var (Qs) = σ2 = 2σ2
ξ + (1/n1 + 1/n2)σ2

ε . A study without clusters (or a study that sam-

pled one subject per cluster) would have n1 = n2 = 1 and var (Qs) = 2σ2
ξ + 2σ2

ε and for

numerical comparisons we set this equal to 1, so τ = λ = E (Qs) is the expected treat-

ment effect in units of the standard deviation without clusters, n1 = n2 = 1, that is, the

expected effect when a matched pair difference has variance 1. If ζ2 > 0 then increas-

ing n1 or n2 leaves τ = λ = E (Qs) unchanged but has a less than proportional effect

on var (Qs) = σ2 = 2σ2
ξ + (1/n1 + 1/n2)σ2

ε = ζ2 + (1/n1 + 1/n2)
(
1− ζ2

)
/2 because the

between cluster component 2σ2
ξ = ζ2 is not reduced.

Table 2 concerns the permutational t-test, that is qski = Rski, for S independent clus-

ter pairs, each cluster being of same size n = n1 = n2, each pair having expected mean

difference τ = λ = E (Qs), variance var (Qs) = σ2
n = ζ2 +

(
1− ζ2

)
/n, with the added

assumption that the Qs are Normally distributed. Table 2 lets S → ∞ in this situation

and displays the design sensitivity, Γ̃. The value of η = E (|Qs|) is obtained by numerical

integration.

For instance, in Table 2, Γ̃ = 7.47 for ζ2 = .25, n = 5, τ = 1/2. This says that

the power of a sensitivity analysis in this sampling situation tends to 1 as S → ∞ if the

analysis is performed with Γ < Γ̃ = 7.47 and the power tends to 0 if Γ > Γ̃ = 7.47. To

illustrate this, drawing a single sample of S = 100, 000 pairs from this sampling situation,
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the upper bound on the P -value using the permutational t-test is 0.014 for Γ = 7.3 and is

0.987 for Γ = 7.7.

In Table 2, the cluster size n does not matter if all of the variation is between clusters,

ζ2 = 1, and the percent of variation between clusters ζ2 does not matter if each cluster is of

size n = 1. Of course, the design sensitivity is larger when the treatment effect τ is larger.

The important pattern in Table 2 is that increasing the cluster size n when the variation

between clusters is at most 50% ≥ ζ2 substantially increases the design sensitivity Γ̃: the

larger the cluster size, the larger the bias needed to explain away a treatment effect of fixed

size τ . Table 3 is similar to Table 2, except n1 and n2 may differ. The pattern is similar.

Tables 2 and 3 indicate that a selection bias of magnitude Γ does more harm if it

selects individuals than if it selects clusters, providing there is meaningful variation within

clusters, say 50% ≥ ζ2. For instance, if the clusters were schools, you could more severely

bias a treatment-control comparison by picking the best individual students for treatment

than if you could only pick schools with a disproportionate number of the best students.

If the clusters were hospitals, you could more severely bias a treatment-control comparison

by selecting the sickest patients for treatment than by selecting hospitals with many sick

patients. Mechanisms of selection for treatment that merely favor stronger students or

schools, rather than consciously engineering the strongest possible treatment group, are

modeled by (4) with 1 < Γ < ∞, and Tables 2 and 3 confirm that such probabilistic

selection biases also can cause more harm when individuals rather than clusters are selected

for treatment. In both cases, a larger departure from random assignment measured by Γ

would need to be present to explain the same treatment effect if the assignment were at

the cluster level.

As a general principle, it is known that if one can change the study design to reduce

the heterogeneity of unit responses without altering the magnitude of the treatment effect,
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then one will make the study less sensitive to unmeasured biases; see Rosenbaum (2005).

This general principle plays a role in clustered treatment assignments, because the units

are now clusters rather than individuals. As noted above, under the model Rski = Zskτ +

φs + ξsk + εski with Pr (Z = z | F , Z) = 1/2S , the expectation of the treated-minus-

control difference in cluster means in pair s is τ = λ = E (Qs) with variance var (Qs) =

σ2 = 2σ2
ξ + (1/n1 + 1/n2)σ2

ε . It follows that increasing the cluster sizes, n1 and n2,

under this model increases the size of the effect relative to the standard deviation, τ/σ,

approaching an asymptote of τ/
(√

2σξ
)

as min (n1, n2) → ∞. In brief, the difference in

cluster means in pair s has expectation τ but is less heterogeneous than the difference of

a pair of individual responses (with n1 = n2 = 1); hence, we expect the results to be less

sensitive to unmeasured biases.

3.4 Some power comparisons: Does Γ̃ provide useful guidance for moderate S?

Table 4 simulates power of a α = 0.05 level, one-sided sensitivity analysis performed with

Γ = 4, so it is estimating the probability of the event (6). The sampling situation is the

same as in §3.3. In Table 4, there are S pairs of two clusters of equal size, n1 = n2, and

the study contains S (n1 + n2) individuals in total, either 500 or 1000 individuals. The

situation with n1 = n2 = 1 is indistinguishable from a paired study without clusters. The

intra-cluster correlation (ICC) is ζ2 = 1/4 or ζ2 = 0, but its value does not matter when

n1 = n2 = 1. The treatment effect τ is expressed in units of the standard deviation

of treated-minus-control pair difference when n1 = n2 = 1, so for two individuals from

paired but different clusters, the expected effect is τ standard deviations. Each sampling

situation is replicated 10,000 times, so the standard error of the estimated power is at most

0.005 =
√

1/ (4× 10, 000).

Table 4 considers both the permutational t-test with qski = Rski and Wilcoxon’s two-
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sample ranks with qski = rank (Rski) where the ranks are from 1 to S (n1 + n2), as in

Conover and Iman (1981) and Lam and Longnecker (1983). In the t-test, the cluster pair

term φs cancels when differences are taken in (2), but this is no longer quite true when

ranks are used. Rather than introduce an additional factor in the simulation for the rank

statistic, we take φs = 0 in this simulation. With short-tailed Gaussian data, the t-test

and the rank test have similar powers in Table 4.

In Table 4, the number of pairs of clusters S is finite. For the t-test, the power should

tend to 0 as S → ∞ if Γ̃ < Γ = 4 in Table 2, and it should tend to 1 if Γ̃ > Γ = 4, and

the patterns in Table 4 are consistent with that anticipation. For instance, with ζ2 = 1/4,

τ = 1/2, n1 = n2 = 5 in Table 2, Γ̃ = 7.47 > 4 = Γ, and the power in Table 4 increases

with S.

There are two notable conclusions from Table 4. First, consistent with the asymptotic

results in Table 2, a study with clustered treatment assignments may have substantial

power in a sensitivity analysis when an otherwise identical study that sampled one person

from each cluster would have negligible power. This is in marked contrast to randomized

experiments where clustered treatment assignments tend to reduce power. The reduction

in effective sample size from clustered assignment is reducing power in an observational

sensitivity analysis, as in a randomization test, but in the sensitivity analysis this may be

offset by an increase in design sensitivity. Second, although the design sensitivities Γ̃ in

Table 2 describe the situation as S →∞, Table 4 indicates that Γ̃ provides useful guidance

with S = 50 clusters.
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3.5 Additional analyses of the flood in Bangladesh: using multiple weights; role of

covariance adjustment

The current section presents some additional analyses of the flood in Bangladesh in light

of considerations earlier in §3. Specifically, we reconsider the weights, ws, in (2), and the

role of covariance adjustment at the individual level, as discussed in §2.3. In §2.5, the

weights were constant, ws ∝ 1, and the permutation inference was applied to residuals

from a robust covariance adjustment as in Rosenbaum (2002a).

One commonly used and natural set of weights ws is proportional to the total number of

children in a cluster pair, ws ∝ ns1+ns2, or specifically, ws = (ns1 + ns2) /
∑S

`=1 (n`1 + n`2).

If treatments had been randomly assigned to clusters, Pr (Z = z | F , Z) = 1/2S , then

with qski = Rski and these weights, the statistic T in (2) would be unbiased for the

average treatment effect, E (T ) =
{∑S

s=1 (ns1 + ns2)
}−1∑S

s=1

∑2
k=1

∑nsk
i=1 (rTski − rCski).

Weights ws ∝ ns1 + ns2 are particularly relevant when one suspects that the treatment

effect may be larger in some cluster pairs than in others. In contrast, if one believed that

the treatment effect was constant, rTski− rCski = τ , then one would have some freedom to

adjust the weights to reduce the variance of T as an estimate of τ , as will now be described

in detail.

Sections 3.3 and 3.4 asked what would happen in a sensitivity analysis using the permu-

tational t-test if, in fact, there were a treatment effect and no bias in treatment assignment,

considering in particular the model Rski = Zskτ +φs+ ξsk + εski with Pr (Z = z | F , Z) =

1/2S , var (ξsk) = σ2
ξ , var (εski) = σ2

ε and independence of all ξsk and εski. In this case,

for the permutational t-test with qski = Rski, we have var (Qs) = 2σ2
ξ + (1/ns1 + 1/ns2)σ2

ε

and E (T ) = τ , providing the weights, ws ≥ 0, sum to one, 1 =
∑S

s=1ws. Among

weights that sum to 1, the weights that minimize var (T ) are inversely proportional to

var (Qs), that is, ws ∝
{

2σ2
ξ + (1/ns1 + 1/ns2)σ2

ε

}−1
. If there were no variability among
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individuals in the same cluster, σ2
ε = 0, then var (Qs) would be minimized by constant

weights, ws ∝ 1, whereas if there were no extra variability from clusters, σ2
ξ = 0, then

var (Qs) would be minimized by weights suggested in Kalton (1968, his expression (9)),

ws ∝ (1/ns1 + 1/ns2)−1 = ns1ns2/ (ns1 + ns2).

In brief, three possible weights with somewhat incompatible motivations are ws ∝

ns1 + ns2, ws ∝ 1, and ws ∝ ns1ns2/ (ns1 + ns2). In testing the null hypothesis H0 of no

effect, each set of weights is valid, in the sense that if the bias is at most Γ then an α-

level sensitivity analysis falsely rejects H0 with probability at most α when the sensitivity

analysis is performed at Γ. The weights will affect the power of the sensitivity analysis. In

this context, one attractive approach is to perform three sensitivity analyses with different

weights, to select the smallest or most significant of the three upper bounds on P -values,

and to correct that smallest P -value for multiple testing, as discussed in Rosenbaum (2012).

This method has the best or largest of the three design sensitivities of the three component

tests. Moreover, because the three tests are very highly correlated, the correction for

multiple testing is small, much smaller than a correction using the Bonferroni inequality;

see Rosenbaum (2012, Table 4).

For the data from Bangladesh, at Γ = 1.5: (i) constant weights ws ∝ 1 yield an upper

bound on the P -value of 0.045, as in §2.5; (ii) Kalton’s weights ws ∝ ns1ns2/ (ns1 + ns2)

yield an upper bound of 0.0498; (iii) weighting proportional to the sample size in a cluster

pair, ws ∝ ns1 +ns2, yields an upper bound of 0.0432. In effect, the combined test corrects

the smallest of these three P -values, namely 0.0432, for multiple testing, taking account

of the high correlation among the three tests. Correction for multiple testing yields an

upper bound of 0.0499 at Γ = 1.5. In this example, the choice of weights did not matter

much, perhaps because the clusters were of similar size.

A treatment effect could vary in magnitude with cluster size. For instance, a treatment
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might be more or less effective in large schools as opposed to small schools. If the cluster

sizes varied markedly and the treatment effect did vary with cluster size, then the choice of

weights might matter more than it did in the data from Bangladesh. In such a situation,

the use of more than one set of weights, as above, may avoid a loss of power in a sensitivity

analysis as a consequence of an unwise choice of weights.

As discussed in §2.3, the analysis in §2.5 used robust covariance adjustment to remove

variation in the outcome, days ill, that could be predicted from covariates xski that de-

scribe individuals. In a randomized experiment, there is no bias in treatment assignment,

Pr (Z = z | F , Z) = 1/2S , and covariance adjustment serves to reduce variability, roughly

speaking to reduce σ2
ε and possibly σ2

ξ . As discussed in §3.3 and in Rosenbaum (2005),

a reduction in unit heterogeneity with no change in the treatment effect is expected to

reduce sensitivity to unmeasured biases. This may have occurred to a small degree in the

data from Bangladesh. With constant weights, ws ∝ 1, and with covariance adjustment

as in §2.5, the upper bound on the P -value is 0.045 at Γ = 1.5, but without covariance

adjustment, the upper bound on the P -value is 0.064 at Γ = 1.5, so in this example there

is somewhat more sensitivity to unmeasured bias if covariance adjustment is not used.

In observational studies, covariance adjustment aims to both reduce heterogeneity and to

reduce bias from measured covariates, and these cannot be distinguished in an empirical

study in which the actual effects and biases are unknown.

4 Contrasting clustered and individual analyses when clusters are assigned

treatments

4.1 Overview: A finite sample inequality and an asymptotic comparison

What happens if a sensitivity analysis is performed at the individual level when treatments

are assigned to clusters, not individuals? That is: How would the results of the sensitivity
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analysis be different if the clustering were simply ignored? Given (4), of course, one of these

two sensitivity analyses is incorrect: if clusters are assigned to treatment or control, then (6)

is correct, and ignoring the clustered treatment assignment is not correct. If the clustering

is known, as in Table 1, the correct analysis (6) may be performed, and there is no need to

perform an incorrect analysis at the individual level. There are, however, several reasons

to be interested in the relationship between the clustered and individual analyses. At an

entirely practical level, in some public use data sets, identifying information is removed

to preserve confidentiality, with the consequence that it may not be possible to tell when

two individuals attend the same school or were treated in the same hospital. That is, in

some observational studies, the clustering itself is not observed. At a conceptual level,

some modeling situations may not present a clear choice between clustered and individual

models of treatment assignment. For example, to study a resource present at some clinics

but not others, one ordinarily models the assignment of resources to clinic populations; yet

in certain circumstances, as in Baiocchi et al. (2010), it may be possible to model more

persuasively the individual patient’s selection of a clinic. How in general does the choice

between models of individual or of cluster-level assignment bear on sensitivity to hidden

bias?

Here again, intuition derived from randomized experiments turns out to be an imperfect

guide. For simplicity of discussion in the current paragraph, consider a study with clusters

of constant size. Under random assignment, ignoring the clustering of treatment assign-

ments does not bias treatment-control comparisons, but it does exaggerate effective sample

size: the correct sample size is the number of clusters, not the total number of individuals

within those clusters. So tests and confidence intervals that do not account for clustering

are straightforwardly anticonservative. By contrast, with Γ > 1 in (4), treatment-control

comparisons may be biased whether or not treatment is assigned by cluster, and a larger
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potential bias under the individual assignment model may overwhelm its advantage in stan-

dard errors. Indeed, (4) allows for bias in T/S that need not diminish as the sample size

increases, while var(T/S) decreases in the ordinary way, as O(S−1). Does an allowance

for bias of fixed size Γ > 1 partially address the tendency of clustering to understate the

magnitude of sampling variability? It depends. When Γ ≈ 1 and S is small, the answer

is no; but when Γ � 1 and S is large, the answer is yes. Sections 4.2 and 4.3 make this

precise in two different ways.

Two related results are presented. In §4.2, the two test statistics, with and without

allowance for clustering, are compared as functions of the data. In particular, Proposition

2 says that the individual level analysis can be rendered conservative by making a correction

that adjusts the effective sample size from the number of individuals to the smaller number

of clusters. In §4.3, the two test statistics are compared as the number of cluster pairs

increases, S →∞, with clusters of fixed size. Proposition 3 gives fairly general conditions

such that, in very large samples S, the sensitivity analysis with Γ > 1 at the individual

level is conservative even without correction for the sample size.

4.2 Comparing the test statistics as functions of the data: an inequality derived from

convexity

Some further insight is provided by viewing the test statistic on the left in (6) as a function

of the data and comparing it to the test statistic that would be used in a sensitivity analysis

performed at the individual level. There is a sense in which an analysis at the individual

level exaggerates the effective sample size, because only S independent assignments of

whole clusters were made, but if a simple correction is made for the exaggeration of the

sample size, then the individual analysis is conservative when compared to (6). The issue

is made explicit in Proposition 2 below.
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The structure is as follows. A total of S cluster pairs are sampled. After sampling a

cluster pair, s, then n subjects from one cluster in the pair, s1, are individually matched

for observed covariates xski to n distinct subjects in the other cluster in the pair, s2, so in

the end we have a pair of clusters and n pairs of individuals, one individual in each pair

coming from each cluster. It is notationally convenient to renumber the individuals so that

individual s1i is paired with s2i, i = 1, . . . , n. Because each cluster contributes the same

number, n, of individuals, take ws = 1 for all s. Clustered treatment assignment means

that there are not 2n possible treatment assignments within cluster pair s, but rather 2

possible treatment assignments, with all n pairs assigned at once based on the assignment of

their clusters sk. In total, there are not 2Sn but rather 2S possible treatment assignments

for S pairs, so the effective sample size is S cluster pairs, not Sn individual pairs. If

qski = Rski then T/S in (2) is simultaneously the mean of the S cluster pair differences

and the mean of the Sn individual pair differences. If qski is the rank of Rski within the 2n

units in cluster pair s, then T in (2) is linearly related to the sum of S Wilcoxon rank sum

statistics but it is also the sum of S individually paired Wilcoxon statistics as discussed by

Lam and Longnecker (1983).

Fix a number κ > 0. If one performed the sensitivity analysis at the individual level

ignoring the clustered assignment, then one would incorrectly conclude that the upper

bound on the one-sided P -value testing the null hypothesis H0 of no effect is less than α

at a specific Γ if the following inequality held with κ = 1:

T/S − [(Γ− 1) / {S n (Γ + 1)}]
∑S

s=1

∑n
i=1 |qs1i − qs2i|√[

4Γ/
{

(S n)2 (1 + Γ)2
}]∑S

s=1

∑n
i=1 (qs1i − qs2i)2

≥ κΦ−1 (1− α) . (8)

With κ = 1, (8) makes two miscalculations that work in opposite directions: (i) it exagger-

ates the effects of a bias of magnitude Γ because it imagines that bias acts on individuals
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rather than clusters, (ii) it exaggerates the effective sample size from S pairs to Sn pairs.

Proposition 2 shows that if κ = 1 is replaced by κ =
√
n, then the exaggeration of sam-

ple size in (ii) is eliminated and (8) becomes conservative when compared to the correct

analysis based on (6).

Proposition 2 With S pairs of two clusters of equal size n, and hence with equal weights

ws = 1, the statistics on the left sides of (6) and (8) are related by:

T
S −

Γ−1
S (Γ+1)

∑S
s=1 |Qs|√

4Γ
S2(1+Γ)2

∑S
s=1 Q

2
s

≥ 1√
n

T
S −

Γ−1
S n(Γ+1)

∑S
s=1

∑n
i=1 |qs1i − qs2i|√

4Γ
(S n)2(1+Γ)2

∑S
s=1

∑n
i=1 (qs1i − qs2i)2

. (9)

If, for each cluster pair s, qs1i − qs2i is constant, not varying with i, then equality holds in

(9).

Proof. Because
∑n

i=1 |ai| is a convex function of (a1, . . . , an) andQs = n−1
∑n

i=1 (qs1i − qs2i),

it follows that |Qs| = n−1
∑n

i=1 |Qs| ≤ n−1
∑n

i=1 |qs1i − qs2i|, so that the numerators in

(9) are related by

T

S
− (Γ− 1)

S (Γ + 1)

S∑
s=1

|Qs| ≥
T

S
− (Γ− 1)

Sn (Γ + 1)

S∑
s=1

n∑
i=1

|qs1i − qs2i| . (10)

Turning to the denominators and applying the Cauchy-Schwartz inequality yields

Q2
s =

{
n−1

n∑
i=1

(qs1i − qs2i)

}2

≤ n−1
n∑
i=1

(qs1i − qs2i)2 ,

with equality if and only if qs1i− qs2i is constant as i varies for fixed s. It follows that the

denominator on the right in (9) is greater than or equal to the denominator on the left,

with equality if and only if qs1i − qs2i is constant, not varying with i. Together with (10),

this proves (9).
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4.3 Asymptotic comparison as the number S of cluster pairs increases

The situation is simpler in the limit as the number the number S of clusters increases, S →

∞. Suppose that the S cluster pairs are independently sampled from an infinite population

of cluster pairs, and let S →∞ with n fixed and ws = 1. One cluster in each pair is assigned

to treatment, the other to control, with independent assignments in distinct clusters, with

possibly biased assignment probabilities that may not satisfy (4), and the treatment may or

may not have an effect. In this population, assume that Qs−(Γ− 1) |Qs| / (Γ + 1) and Qs−

[(Γ− 1) / {n (Γ + 1)}]
∑n

i=1 |qs1i − qs2i| have finite expectations ηΓ and η
′
Γ, respectively,

and finite variances. For Γ = 1, the expectations are equal, ηΓ = η
′
Γ. Let ΠΓS be the

probability of the event (6), let Π
′
ΓS be the probability of the event (8), and let ΨΓS be

the probability of (8) but not (6), so ΨΓS is the probability that the individual analysis

rejects H0 for the given Γ and S but the clustered analysis does not reject. In essence,

for Γ > 1 and for all κ > 0, Proposition 3 says that (8) may not be conservative for finite

S but becomes nearly so as S → ∞. Expressed informally, for sufficiently large S, part

(ii) of Proposition 3 says that (6) is more likely than (8) to reject H0 for whatever reason,

while part (iii) speaks specifically about false rejection of a true null hypothesis when the

sensitivity analysis model holds, saying the rate of false rejection is controlled.

Proposition 3 Under the assumptions of the previous paragraph: (i) ηΓ ≥ η
′
Γ; (ii) if

ηΓ 6= η
′
Γ then ΨΓS → 0 as S → ∞ for all κ > 0; (iii) if ηΓ 6= η

′
Γ and, in addition, the

null hypothesis of no effect H0 and the sensitivity model (4) are both true, then as S →∞,

lim sup ΠΓS ≤ α and lim sup Π
′
ΓS ≤ α.

Proof. The left and right sides of (10) are each means of S independent and identically

distributed observations with expectations ηΓ and η
′
Γ, respectively, so (i) follows from (10)

in the case of S = 1. Given (i), if ηΓ 6= η
′
Γ, then ηΓ > η

′
Γ, and this in turn implies that
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either ηΓ > 0 or η
′
Γ < 0. As S →∞, by the weak law of large numbers, the left and right

sides of (10) converge in probability to ηΓ and η
′
Γ, respectively. At the same time, the

denominators on both sides of (9) tend to 0 as S → ∞. If ηΓ > 0, the probability of the

event (6) will tend to 1 as S → ∞, whereas if η
′
Γ < 0 the probability of (8) will tend to

0 for all κ > 0. Therefore, if ηΓ 6= η
′
Γ, as S → ∞, the probability that (8) occurs but (6)

does not is tending to zero for all κ > 0, proving (ii). If H0 and the sensitivity model (4)

are both true, then lim sup ΠΓS ≤ α from (5) and the central limit theorem approximation

(6) to TΓ. Combining lim sup ΠΓS ≤ α with ΨΓS → 0 from (ii) yields lim sup Π
′
ΓS ≤ α.

The caveat ηΓ 6= η
′
Γ in (ii) of Proposition 3 is not a trivial matter. It precludes two

important cases: (I) a conventional randomization test with Γ = 1, and (II) clusters with

unit intracluster correlation, as seen from the case of equality in Proposition 2. In neither

case (I) nor case (II) is (8) conservative even as S → ∞, and (8) is not conservative for

small S. That said, in a sensitivity analysis performed with Γ > 1, with clusters that

are internally heterogeneous, the individual analysis ignoring clustering (8) is conservative

even for κ = 1 for sufficiently large S, and it can be made conservative for all S by taking

κ =
√
n.

The results in Propositions 2 and 3 suggest that, with many clusters of moderate size, a

sensitivity analysis that allows for a nontrivial degree of bias, Γ� 1, may be conservative

even if clustering is ignored. In this same situation, a randomization test, Γ = 1, may

easily be anti-conservative, rejecting H0 too often, because ηΓ = η
′
Γ in Proposition 3.

5 Discussion

Intuitions forged in randomized experiments do not always carry over to nonrandomized

observational studies. In a flawless randomized experiment, all uncertainty comes from a

limited sample size; that is, a consistent estimate of the treatment effect is available. In a
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nonrandomized observational study, there are at least two sources of uncertainty, namely

a limited sample size and unmeasured biases in treatment assignment whose effects do not

diminish with increasing sample size. Even as the sample size increases, S → ∞, in an

observational study, a consistent estimate of the treatment effect is not available so long

as biased treatment assignment of fixed size Γ > 1 remains a possibility. In a randomized

experiment, clustered treatment assignment may be necessary for practical reasons, but

it reduces power, efficiency, and effective sample size relative to treatment assignment at

the individual level. In an observational study, clustered treatment assignment has two

consequences pulling in opposite directions. As in experiments, with clustered treatment

assignment there is a reduction in effective sample size. Unlike randomized experiments,

deviations from random treatment assignment of a given magnitude Γ have a smaller impact

when forced to select whole clusters than when permitted to select individuals. Clustered

treatment assignments have been found to be less sensitive to bias using an asymptotic

measure (§3.2-§3.3), using simulation in finite samples (§3.4), and using an inequality that

compares the values of clustered and unclustered test statistics (§4).

A word of caution is in order. We have contrasted sensitivity analyses for treatment

assignment at the individual or group level in situations that are essentially the same apart

from the differing modes of treatment assignment. It may happen, of course, that treat-

ments are assigned at the individual level in one situation and at the group level in some

very different situation. In that case, the differing situations need to be taken into account

in thinking about the best research design. For instance, in the US, alcohol consumption

is largely self-inflicted by individual adults, whereas in some nations, alcohol consumption

is banned by the government for religious reasons. One might study the health benefits or

harms of alcohol consumption in the US with individual treatment assignment or switch

to study it internationally with elements of grouped assignment, but clearly this switch
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changes the situation in several important ways, not just in terms of individual or grouped

assignment. Our abstract results are relevant to thinking about one aspect of such a

switch, but the results provide no guidance about many other aspects.
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Table 1: Days ill for sampled children during two-weeks following a flood in S = 27 pairs of
villages, one severely flooded, Zsk = 1, the other not flooded, Zsk = 0. The ranks qski are
ordinary ranks of residuals of individual sick days Rski when regressed using m-estimation
on covariates describing individuals and villages.

Pair Sample size Mean days sick Mean rank Rank

nsk n−1
sk

∑
iRski n−1

sk

∑
i qski difference

Flooded Not Flooded Not Flooded Not
s Zsk = 1 Zsk = 0 Zsk = 1 Zsk = 0 Zsk = 1 Zsk = 0 Qs
1 5 6 0.0 3.0 93.4 141.7 -48.3
2 6 5 3.5 1.4 186.0 170.2 15.8
3 4 7 6.2 2.0 211.0 97.0 114.0
4 4 4 5.5 5.0 214.5 207.8 6.8
5 5 4 4.6 2.2 167.8 134.0 33.8
6 4 6 4.0 0.2 152.5 79.5 73.0
7 4 6 7.0 3.5 194.8 177.3 17.4
8 5 6 7.0 4.8 195.6 132.8 62.8
9 4 12 3.0 1.1 183.0 120.2 62.8

10 5 6 0.0 1.7 121.2 160.2 -39.0
11 6 6 8.8 0.3 236.2 104.7 131.5
12 5 5 11.8 0.0 274.4 124.2 150.2
13 4 4 3.5 1.2 211.8 164.0 47.8
14 5 5 4.2 1.0 180.0 126.2 53.8
15 9 5 7.9 3.4 220.7 128.6 92.1
16 7 5 0.1 0.0 86.1 76.4 9.7
17 5 2 7.6 7.0 143.2 131.0 12.2
18 6 6 1.7 8.2 136.3 230.0 -93.7
19 6 7 2.7 0.6 161.7 108.3 53.4
20 6 5 5.5 2.8 194.8 184.6 10.2
21 5 3 0.0 0.0 90.8 91.0 -0.2
22 6 10 7.7 2.8 208.5 123.3 85.2
23 4 9 7.0 0.3 136.0 35.4 100.6
24 5 5 1.4 3.0 116.0 124.4 -8.4
25 5 6 0.0 4.5 85.4 174.2 -88.8
26 4 4 3.5 0.0 151.8 125.0 26.8
27 5 3 0.0 0.0 76.2 83.3 -7.1

Medians, Quartiles, Extremes

Sample size Mean days sick Mean rank Difference

Flooded Not Flooded Not Flooded Not

Min 4 2 0.0 0.0 76.2 35.4 -93.7
Q-1 4 4 1.6 0.3 128.6 106.5 3.3

Med 5 5 4.0 1.7 167.8 126.2 26.8
Q-3 6 6 7.0 3.2 202.1 162.1 67.9

Max 9 12 11.8 8.2 274.4 230.0 150.237



Table 2: Design sensitivity Γ̃ of the permutational t-test with Gaussian errors, paired
clusters of equal size n̄ = n1 = n2, and intracluster correlation coefficient (ICC) of ζ2.

Treatment effect τ = 1/4

Cluster size ICC ζ2

n̄ 100% 50% 25% 10% 0%

1 1.87 1.87 1.87 1.87 1.87
2 1.87 2.06 2.21 2.33 2.43
5 1.87 2.25 2.70 3.29 4.10
10 1.87 2.33 3.02 4.26 7.47
25 1.87 2.39 3.29 5.57 25.71

Treatment effect τ = 1/2

Cluster size ICC ζ2

n̄ 100% 50% 25% 10% 0%

1 3.53 3.53 3.53 3.53 3.53
2 3.53 4.30 4.95 5.52 6.01
5 3.53 5.12 7.47 11.22 17.89
10 3.53 5.52 9.37 19.36 66.08
25 3.53 5.80 11.22 34.57 1248.42

Treatment effect τ = 3/4

Cluster size ICC ζ2

n̄ 100% 50% 25% 10% 0%

1 6.72 6.72 6.72 6.72 6.72
2 6.72 9.11 11.34 13.40 15.31
5 6.72 11.94 21.53 41.17 87.73
10 6.72 13.40 30.87 99.95 801.84
25 6.72 14.48 41.17 263.30 178310.41
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Table 3: Design sensitivity Γ̃ of the permutational t-test with Gaussian errors, paired
clusters of possibly unequal cluster sizes n1 ≤ n2, intracluster correlation coefficient (ICC)
of ζ2, and treatment effect τ = 1/2.

Cluster size n1 = 1

Cluster size ICC ζ2

n2 100% 50% 25% 10% 0%

1 3.53 3.53 3.53 3.53 3.53
2 3.53 3.85 4.06 4.20 4.30
5 3.53 4.10 4.53 4.86 5.12
10 3.53 4.20 4.73 5.16 5.52
25 3.53 4.26 4.86 5.37 5.80

Cluster size n1 = 2

Cluster size ICC ζ2

n2 100% 50% 25% 10% 0%

2 3.53 4.30 4.95 5.52 6.01
5 3.53 4.66 5.88 7.19 8.62
10 3.53 4.80 6.30 8.11 10.31
25 3.53 4.89 6.60 8.82 11.75

Cluster size n1 = 5

Cluster size ICC ζ2

n2 100% 50% 25% 10% 0%

5 3.53 5.12 7.47 11.22 17.89
10 3.53 5.31 8.29 14.15 28.82
25 3.53 5.43 8.90 16.86 44.34

Table 4: Power of a 0.05-level, one-sided sensitivity analysis at Γ = 4 when one of two
clusters in each pair of clusters is picked for treatment. Each situation is sampled 10,000
times.

Individuals Cluster Pairs Cluster Size ICC Effect Power
500 S n1 = n2 ζ2 τ Γ t-test Wilcoxon

500 50 5 1/4 1/2 4 0.2490 0.2262
500 50 5 0 1/2 4 0.8862 0.8572
500 250 1 NA 1/2 4 0.0040 0.0017

1000 100 5 1/4 1/2 4 0.5266 0.4850
1000 100 5 0 1/2 4 0.9979 0.9959
1000 500 1 NA 1/2 4 0.0023 0.0009
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