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Edward George, Emil Pitkin, Kai Zhang, Linda Zhao

Department of Statistics

Department of Criminology
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December 23, 2013

Abstract

There are over three decades of largely unrebutted criticism of regres-
sion analysis as practiced in the social sciences. Yet, regression analysis
broadly construed remains for many the method of choice for characteriz-
ing conditional relationships. One possible explanation is that the existing
alternatives sometimes can be seen by researchers as unsatisfying. In this
paper, we provide a di↵erent formulation. We allow the regression model
to be incorrect and consider what can be learned nevertheless. To this
end, the search for a correct model is abandoned. We o↵er instead a rigor-
ous way to learn from regression approximations. These approximations,
not “the truth,” are the estimation targets. We provide estimators that
are asymptotically unbiased and standard errors that are asymptotically
correct even when there are important specification errors. Both can be
obtained easily from popular statistical packages.

1 Introduction

There is a large literature on the many di�culties with regression modeling in
the social sciences (e.g., Box, 1976; Leamer, 1983; Holland, 1986; Rubin, 1986;
2008; Freedman, 1987; Breiman, 2001; Berk, 2004; Imbens, 2009; Angrist and
Pischke, 2010). By and large, this literature is unrebutted (Freedman, 2005:
Section 8.9). Yet, even revised editions of popular methods textbooks continue
to appear with new material essentially appended to the old (e.g., Aron et al.,
2010; Stock andWatson, 2010; Greene, 2011). Rarely are fundamentals revisited

˚Thanks go to John MacDonald, Charles Loe✏er, Chris Winship, and three anomymous
referrees for helpful comments on an earlier draft of this paper. The research was supported
in part by NSF Grant DMS-1007657.
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except to tinker around the margins or to attach more elaborate formulations.
Research practice proceeds in much the same manner.

Studies on the deterrent e↵ect of capital punishment are an instructive il-
lustration because the literature is an interdisciplinary product of economics,
sociology, criminology, political science, and law. In 1978, a National Research
Council committee charged with reviewing the relevant research was “skeptical
that the death penalty [as practiced in the United States] can ever be subjected
to the kind of statistical analysis that would validly establish the presence or
absence of a deterrent e↵ect” (Blumstein, 1978: 62). But researchers proceeded
with regression modeling as usual. Thirty-four years later, another National
Research Council committee was given a similar charge. Although there were
strong criticisms of the theoretical foundations on which the research rested,
regression modeling was again indicted.

“The standard procedure in capital punishment research has been
to impose su�ciently strong assumptions to yield definitive findings
on deterrence. ... The use of strong assumptions hides the problem
that the study of deterrence is plagued by model uncertainty and
that many of the assumptions used in the research lack credibility”
(Nagin and Pepper, 2012: 7).

Further,

“The committee concludes that research to date on the e↵ect of
capital punishment on homicide is not informative about whether
capital punishment decreases, increases, or has no e↵ect on homi-
cide rates. ... Consequently, claims that research demonstrates that
capital punishment decreases or increases the homicide rate by a
specific amount or has no e↵ect on the homicide rate should not
influence policy judgments about capital punishment” (Nagin and
Pepper, 2012: 2).

Why would so many social science researchers maintain their attachment to
traditional regression modeling? One reason may be that the existing analysis
alternatives for observational data can sometimes be unattractive. For example,
multiple equation and hierarchical models layer on additional complexity with-
out really addressing the regression modeling critique (Freedman, 2005: Chapter
8). Matching methods are more robust (Rosenbaum, 2002; 2010), but borrow
heavily from the experimental paradigm, which some find limiting (Heckman
and Smith, 1995). Although combining the formal logic of causal inference with
acyclic graphs (Morgan and Winship 2007) has considerable appeal, the em-
pirical leverage provided by graphical models of causation can be overstated
(Freedman, 2004).

There is another way. Rather than trying to find acceptable alternatives to
regression modeling, researchers can perhaps learn to make better use of the
regression tools they already have. A key may be to make research aspirations
more consistent with what can actually be accomplished with observational
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data. From this point of view, Manski (2003) places bounds around parameter
estimates to capture the impact of identification weaknesses in certain esti-
mation procedures. Imbens and Angrist (1994) provide “local” estimates for
subpopulations within which the modeling assumptions may be more credible.

We o↵er another approach that depends on reduced aspirations. In contrast
to conventional regression practice, we explicitly discard the goal of getting a
model “right.” We consider what can be learned from empirical results that
are manifestly approximations of unknown relationships in a target population.
Our formulation has much in common with the “correlation model” proposed by
Freedman (1981) and with procedures developed by White (1980). Its founda-
tions are similar to those found in computational learning theory from computer
science (Vapnick, 1998; Bishop, 2006: Section 7.1.5). Angrist and Pischke (2009:
Section 3.1.2) provide very accessible motivation for regression as approxima-
tion.

Section 2 reviews briefly some key properties of the linear regression mean
function with fixed predictors. This is the conventional formulation and pro-
vides an important baseline. Section 3 considers the regression mean function
when predictors are random. We introduce key issues at a broad conceptual
level and show how predictors that are random variables can do more than
simply increase conventional uncertainty. When coupled with a misspecified
mean function, joint distribution of the predictors can perversely a↵ect regres-
sion estimates. This is an additional source of bias that is irrelevant in fixed-X
regression. In Section 4, we provide the technical background and justifications
for working with linear approximations. Some readers may choose to skip this
section if they are prepared to accept our main arguments at face value. Sec-
tion 5 turns to implementation and practice. In particular, we focus on the
meaning of regression coe�cients in the setting characterized in Sections 3 and
4. In section 6, there is a example using real data. The example is kept simple
so that instructive visualizations can be provided. Section 7 briefly broadens
the discussion to include parametric nonlinear regression and smoothers. The
earlier discussion carries over to parametric approaches, but there are new dif-
ficulties working with nonparametric and semiparametic procedures. Section
8 o↵ers some broad conclusions. Rather than trying to estimate the parame-
ters of the “correct” model, it can be more honest, more instructive, and even
liberating to estimate the parameters of its linear approximation, even though
the linear approximation is assumed to be “incorrect.” Omitted variables may
imply that one’s findings are incomplete. But unlike conventional regression,
omitted variables do not jeopardize the desirable statistical properties of our
estimators. These conclusions apply to model endogeneity more generally.
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2 Conventional Linear Regression with Fixed Pre-

dictors: The Conventional Baseline

In this section and the next, we raise issues that help motivate the rest of the
paper. The intent is to highlight problems in a relatively nontechnical manner,
which we later intend to solve. Readers seeking a more formal treatment will
have to wait until Section 4.

The standard formulation for linear regression takes the following form:

Y “ X� ` ✏, ✏ „ Np0
N

,�2I
NˆN

q, (1)

where Y is the response variable, N is the number of observations, and X has
p predictors with an additional column of 1s for the intercept.1

The usual interpretation attached to Equation 1 is that one has a true ac-
count of how the N values of the response variable Y are produced by “nature.”
For each case i, one might say that nature first determines the values of the
p predictors in X, then combines them and the leading constant in a linear
fashion using the corresponding regression coe�cients, and adds a random, in-
dependent draw from a distribution of disturbances that has a mean of 0 and a
single variance applicable to each case. That distribution is taken to be normal,
although in our context, normality is not an important assumption. Nature is
able to repeat this process independently a limitless number of times for each
case using the given, fixed values of the predictors. The disturbances are the
only source of randomness in Y. Over realizations for a given case, the response
values can change, but the predictor values cannot.

Equation 1 is “first order correct” if the mean function corresponds to na-
ture’s true conditional means: µ

i

|X
i

.2 These conditional means are found in
the real process that nature employs to generate the response. Unbiased esti-
mates of � and �2 require that Equation 1 be first order correct. Equation 1
is “second order correct” if the disturbances have the properties specified in
Equation 1, although formally, normality is really not a second order condition,
but a convenient assumption about a distributional form.3 Given a model that
is first order correct, second order correctness is necessary for statistical tests
and confidence intervals to perform as they should.

When researchers consider whether a regression model is second order cor-
rect, they usually assume that the model is already first order correct. Otherwise
it is very di�cult to empirically distinguish between first order errors and sec-
ond order errors. For example, if the mean function is incorrect, there will likely
be the appearance of nonconstant variance even if �2

i

is the same for each case.
Such confounding can undermine a range of diagnostic tools.

Regression models and their close cousins have been quite properly criticized
because there is usually no definitive way to know if either the first order or

1X has N rows and p ` 1 columns.
2That is, µi|Xi “ Xi�.
3With a su�ciently large sample size, the normality assumption can be safely ignored.
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the second order conditions are met.4 The result too often is science by hand
waving. There is a large, accessible literature on such matters that can be
consulted. However, to help motivate our alternative perspective, we have to
briefly consider a particular set of di�culties. We focus on the regression mean
function, which is the statistical bedrock for conventional regression analysis.

2.1 Regression Mean Functions with Fixed X

For initial expositional purposes, suppose for the moment that the response is a
linear, deterministic function of a single, fixed predictor — there are no distur-
bances. When there are no disturbances, the regression mean function, which
for now is our primary concern, can be more easily represented and studied.

X

Y

Fixed X and Linear Mean Function

Imputed 

Imputed 

Figure 1: The Canonical Regression Formulation with Y a Deterministic Linear
Function of a Fixed X

Figure 1 shows the relationship between the response and that single predic-
tor for the conventional linear model. The black line is nature’s mean function;
it represents the true relationship between the predictor and the response. The
blue circles are hypothetical observations for the response at some predictor
values assuming no disturbances. The observations are hypothetical because
we are showing a part of nature’s machinery, not a conventional scatter plot
constructed from real data.

Because one has the correct linear function, one can determine the value of
the response for any value of the predictor, even when the value of the predictor

4Close cousins include the generalized linear model and extensions to models with more
than one response variable. The defining feature is a focus on the conditional distribution of
one or more responses that depend on one or more predictors.
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is not observed. In e↵ect, one can impute the value of the response using the
correct linear function. This means that the regression results can be properly
generalized beyond the data’s predictor values. Put another way, no matter
what fixed values X one has, the conditional means of the response map out
the correct linear function.

Under these circumstances, the location of the predictor values is unrelated
to estimated slope �̂. Whether, for instance, the predictor values are skewed
to the left or to the right does not a↵ect formal properties of the regression
estimates. In either case, one has an unbiased estimate of the same population
regression line. Nor does it a↵ect the validity of conventional statistical tests.
For example, the usual F-test still performs as it should.

It follows that one can condition on the predictor values, the usual practice,
and obtain valid estimates of the regression parameters from the data. This
is the usual backstory in a wide variety of applications for which the mean
function is really linear and the researcher knows it. One can think of this as
the conventional hubris (Freedman, 2005).

3 Regression Mean Functions with Random X

Fixed regressors can be an under-appreciated constraint on the conventional
regression model. From the fixed-regressor perspective, uncertainty is solely
a function of the disturbances. Regression estimates are seen as varying over
realizations of the data with the predictor values unchanged.

Complications follow. First, if the predictors are actually random variables,
an additional source of uncertainty is neglected. For example, survey data con-
structed by random sampling necessarily makes all predictors random variables.
Predictors generated in other ways can be random as well. With predictors
as random variables, some important properties of least squares regression no
longer hold (Freedman, 2005: section 4.11).5

The conventional response is to treat predictor values as fixed once they ma-
terialize in the sample and to condition on the observed predictor values. That
leads to a second complication: generalizations beyond the data on hand can be
jeopardized. Formally, the regression results apply only to the particular pre-
dictor values appearing in the sample.6 Still, as long as the true mean function
is linear and the researcher knows it, generalization beyond the predictor values
in the data can be justified.

5With fixed X, when the regression model is first order and second order correct, regression
coe�cient estimates from least squares regression are the “best linear unbiased estimates”
(BLUE) available. But with random X, least squares estimates are nonlinear in X. Predictors
and functions of predictors are no longer constants. The predictor matrix is a random matrix,
which means that the predictor covariance matrix is also random. As a result, the expectations
of the regression estimates depend upon the expectations of the predictor covariance matrix.
This is where the estimator nonlinearity enters (Rice 2007: Section 14.6). Least squares
regression estimators are no longer BLUE because they are no longer linear.

6This is necessarily true when the predictors are fixed.
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X

Y

Random X and Linear Mean Function

Imputed 

Imputed 

Figure 2: The Canonical Regression Formulation with Y a Deterministic Linear
Function of a Random X

Figure 2 illustrates why. The predictor values in the data are random re-
alizations from the predictor’s underlying distribution. Any time that Y and
X are observed, the values of both random variables could have been di↵erent,
not just for Y . In Figure 2, the black line is again nature’s mean function. The
blue circles are observations for one random data realization. The red circles
are observations from another random data realization. The implications for a
correct mean function are much the same as before with one important addi-
tion: we are able to map the correct, linear form for the conditional means of
the response no matter which predictor values happen to appear in the data.
Conditioning on the predictor values once again permits valid estimates. This
is another backstory, perhaps less common, but like the first requires that the
mean function is linear and the researcher knows it. Generalizations to nonlin-
ear relationships can sometimes be justified by a similar account, but there can
also be complications we will address later.

Figure 3 tells a much darker and more complicated tale. Just as in Figure 2,
both the response and the predictor are random variables. Nature’s mean func-
tion, shown by the broken line in black, is now nonlinear. Clearly, any linear
function will fail to reproduce nature’s true mean function. But there is much
more to the story.

Because of the nonlinear mean function, the predictor values in one’s sample
matter in new and important ways. If a researcher happens to get the data
shown with the red circles, the conditional means from a linear least squares
regression result in a substantially steeper slope than if the researcher happens
to get the data shown with the blue circles. �̂ now depends on the nature’s
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X

Y

Population Linear 
Approximation 

An Observation

Random X and a Nonlinear Mean Function

Red Sample Estimate

Blue Sample Estimate

Figure 3: Nonlinear Mean Function and Random X

predictor distribution. For example, if that predictor distribution is concentrated
at low values, blue circles rather than red circles are more likely to be realized.
If that predictor distribution is concentrated at high values, the reverse is true.
Hence, the expected value of the slope can di↵er depending on the nature’s
predictor distribution. Moreover, the usual statistical tests will not perform as
they should. These are not issues for the conventional linear regression model
because nature’s predictor distribution is treated as “ancillary” (Brown, 1990).

Here is the reasoning in more detail. For the moment, imagine a large
population that could be generated by nature. Imagine being able to compute a
bivariate least squares regression in that population. That is, one can treat the
population values of the response and the predictor as a dataset analyzed by
least squares regression. Then, one can quite properly interpret the regression
as a feature of that population. In the population, the nonlinear mean function
is still the correct functional form. The population regression is a best linear
approximation of the true mean function. The approximation is shown as the
straight gray line in Figure 3.

Suppose data on hand can be seen as random sample from such a population.
How well do linear regressions computed from di↵erent samples estimate the
population linear approximation? Figure 3 shows the least squares regressions
computed from the red data or the blue data failing systematically to get the
population linear approximation right.

This disappointing result is shaped on two factors. As already noted, when

8



researchers apply least squares regression, they condition on the predictor values
realized in the sample. There is no allowance for any predictor values beyond
those actually observed. In addition, any random subset of predictor values pro-
vides access to only a random piece of that nonlinear truth. A complete picture
of how the response and predictor are related is unavailable; the researcher is
necessarily working with fragmentary information.

As shown in Figure 2, this is not a problem when the true relationship is
actually linear. From Figure 3, one learns that with a true nonlinear mean
function and random variable predictor, a linear mean function computed from
real data will misrepresent the nonlinear population mean function and likely
misrepresent a linear population least squares mean function as well. For either
estimation target, �̂ will be biased.

The bias with respect to the population linear approximation can be small,
especially in moderate to large samples. We more formally consider this result
shortly. We also consider how with random X, the combination of a population
nonlinear mean function and a population linear least squares approximation
leads to a nasty form of heteroscdasticity regardless of sample size. Conventional
standard errors are no longer valid. Highly misleading statistical tests and
confidence intervals can follow.

Building on random X, there is nevertheless a defensible way to proceed.
The true mean function is taken to be unknown and not necessarily linear. One
accepts that the true mean function cannot be properly estimated from the
data. The population linear approximation of the truth has useful substantive
information nevertheless even through it is almost surely incorrect. It is this
population linear approximation that one seeks to estimate. The same approach
can apply when there are many predictors. The estimation target is then a pop-
ulation hyperplane. We will see that it is possible to obtain suitable estimates
of the linear approximation and appropriate standard errors, at least in large
samples.

We turn now to a more technical discussion to make the rationale and results
much more precise. Readers interested primarily in practical implications may
wish to skip to Section 5.

4 Conceptual Formalities

We expand our discussion to regression with more than one predictor. There is
a set of q random variables Z1, Z2, . . . , Zq

characterized by a joint probability
distribution. Because Z1, Z2, . . . , Zq

are random variables, they have mathemat-
ically defined properties rather like sample means (usually called expectations),
variances, and covariances. It can be instructive, therefore, to treat the joint
probability distribution as a “population.” We will on occasion refer to this
population as a feature of “nature.”

It is important to stress that in contrast to populations associated with
conventional regression, in this population all variables are random variables.
We assume each random variable has second moments that exist and that the
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covariance matrix of the random variables is full rank (i.e., no subset of variables
is an exact linear function of another subset of variables). These requirements
for the random variables are not important constraints in practice. No particular
distributional form is imposed (e.g., multivariate normality).

A researcher designates one of the random variables as a response variable,
denoted by Y. The researcher also designates p other random variables as pre-
dictors, denoted by X1, X2, . . . , Xp

. All predictors are collected in a matrix X
with p ` 1 columns that includes a leading column of 1s. The distinction be-
tween a response and its predictors is not inherent in nature’s population. It
derives from subject-matter knowledge and interests that a researcher imposes
on the random variables.

Data on hand are treated as random realizations from nature’s joint prob-
ability distribution. Each observation i is one such realization, and all of the
observations are realized independently. One usefully can think of each obser-
vation as a random, independent draw from nature’s population. Even though
a researcher has made a distinction between Y and X, the data are not in gen-
eral a realization from the regression formulation shown in Equation 1. This
is a fundamental di↵erence between conventional regression modeling and the
formulation to follow.7

4.1 Some Features of the Population

For this formulation to play through, it is essential to be far more precise about
the population and its properties. For a more detailed discussion see Buja et al.
(2013).

1. As a notational convenience, we write the set of random variables
›Ñ
X “

p1, X1, . . . , Xp

qT as a column vector that includes a 1 for the intercept.
The variables may be quantitative or categorical. This notation will make
some of the expressions to follow seem unfamiliar.

2. There is a “true response surface” µp›Ñ
Xq in nature’s population, that is the

expectation of the response conditional on given values for the predictors›Ñ
X. More formally,

µp›Ñ
Xq “ ErY |›ÑXs. (2)

A possible population target for estimation is a set of expected values one
might conventionally denote by µ

i

|X
i

. But the conventional notation does
not indicate that the population “means” are actually expected values, so
the notation in Equation 2 is preferred. This is a key di↵erence from the

7The researcher really cares about Z as measured, commonly recaste as Y and X. Z is
not a set of imperfect measures of some other set of random variables W that the researcher
actually wants to study. Therefore, just as in conventional regression, there is no measurement
error. This simplification creates no problems as long as the researcher is comfortable working
with Z as measured. Allowing for the study of Z to be formally a study of W, introduces new
layers of complexity that are beyond the scope of this paper. Fuller’s early treatment (1987)
remains an excellent reference.
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usual inferential approach and is a game-changer. There is randomness in
the population that cascades though any regression analysis.

3. There is no assumption of linearity for the true response surface. Indeed,
the working assumption is that it is nonlinear. It might be truly nonlinear
or be nonlinear because of omitted variables or other factors. At this point,
no distinctions are made between di↵erent reasons for the nonlinearity.

4. There is a population ordinary least squares linear approximation of the
response variable’s conditional expectations.

�T

›Ñ
X “ �0 ` �1X1 ` . . . ` �

p

X
p

, (3)

where

� “ argmin
�̃

ErpY ´ �̃T

›Ñ
Xq2s “ Er›ÑX›Ñ

X
T s´1Erµp›Ñ

Xq›Ñ
Xs. (4)

The regression coe�cients are a function of expectations that depend on
the predictors. In e↵ect, one is working with expectations of cross-product
matrices rather than realized cross-product matrices. One has in the pop-
ulation the best linear approximation of the truth.

5. The usual covariance adjustments are in play, but are now a function of
the random predictors. Consider the p-vector of regression coe�cients
denoted by �

j‚:

�
j‚ “ argmin

�̃

ErpX
j

´ �̃T

›Ñ
X

notj

q2s “ Er›ÑX
notj

›Ñ
X

T

notj

s´1Er›ÑX
notj

X
j

s.
(5)

Then the adjusted jth predictor is8

X
j‚ “ X

j

´ �T

j‚
›Ñ
X

notj

(6)

Each predictor in turn is regressed on all other predictors. Each set of
fitted values is then subtracted from its corresponding predictor. Linear
dependence between each predictor and all others is removed. Finally, the
population regression coe�cient for each “residualized” predictor is

�
j

“ ErY X
j‚s

ErX2
j‚s , (7)

which is just the jth component of Equation 4.

6. With respect to the population response surface in Equation 2, the pop-
ulation linear approximation in Equation 4 has a mean function that is
misspecified. We introduce an explicit allowance for the linear mean func-
tion error ⌘p›Ñ

Xq that is responsible for disparities between the two:

⌘p›Ñ
Xq “ µp›Ñ

Xq ´ �T

›Ñ
X. (8)

8The subscript notj is all predictors but the jth predictor. The intercept �0 is also subject
to adjustment, but it is still interpreted as a constant.
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Both terms to the right of the equal sign are random variables because
›Ñ
X

is random. Hence, the di↵erence between the two right hand side terms is a
random variable as well. In e↵ect, there is a new kind of disturbance term.
This will have important implications for how uncertainty in statistics
from samples is addressed.

7. There is, in addition, “pure noise” (also called “irreducible error”) ✏ de-
fined as

✏ “ Y ´ µp›Ñ
Xq. (9)

Even if one knows the true response surface, the population fit of Y will
not likely be exact. The best one can possibly do is the true conditional
means, and there will be a distribution of response values around each.
This is a consequence of the joint probability distribution formulation.
The variance of ✏ can vary over predictor values. There is no requirement
of homoscedasticity. Even more, the conditional distribution itself of ✏ can
di↵er over di↵erent locations in the predictor space.9

8. It follows that in the population the total disparity between any hypothet-
ical value of the response and the population linear approximation can be
written as,

⇠ “ Y ´ �T

›Ñ
X “ ⌘p›Ñ

Xq ` ✏. (10)

Moreover, ⇠ is uncorrected with
›Ñ
X because the population linear approx-

imation is derived from ordinary least squares.10 There can be no endo-
geneity in the population linear approximation.

Figure 4 is a visual aide with one predictor. The di↵erence between a hypo-
thetical value of the response and the population mean function ⌘p›Ñ

Xq we call
“total error.” It can be decomposed into mean function error and irreducible
error, both random quantities. The decomposition will figure significantly in
later material.11

4.2 Sample Properties

Suppose least squares regression computations are applied to the realized data
in the usual way. In conventional matrix notation (because we are working with
a sample),

�̂ “ p�̂0, �̂1, . . . , �̂p

qT “ (11)

argmin
�̃

pY ´ X�̃q2 “ (12)

pXTXq´1XTY. (13)

9In general, the “pure noise” ✏ is not stochastically independent of the predictors, though
it is uncorrelated with them. Also, its conditional mean is 0.

10The orthogonality between ⇠ and
›Ñ
X is built in, just as it is for ordinary least squares

estimates from a sample.
11In equation form, Y “ �T ›Ñ

X ` ⌘p›Ñ
Xq ` ✏.
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Figure 4: A Decomposition of “Total Error” in the Population

This is just ordinary least squares. The intent is not to estimate nature’s true
mean function. The intent is to estimate the best population linear approxima-
tion of µ|X. We have given up on trying to estimate the true mean function,
and the model we are applying is explicitly permitted to be wrong. Nevertheless,
several of the usual expressions follow. For the hat or projection matrix:

H “ XpXTXq´1XT . (14)

For the fitted values:
Ŷ “ X�̂ “ HY. (15)

For sample residuals, which are not the population “residuals” ⇠,

r “ Y ´ X�̂ “ pI ´ HqY. (16)

In summary, the estimation target is not nature’s response surface. The
estimation target is nature’s linear approximation of that surface. How closely
the two correspond is unknown. Researchers are to make the best they can of
the linear approximation that with respect to the truth is explicitly allowed to
be wrong. We have even more thoroughly parted company with conventional
least squares regression.

5 Working with the Linear Approximation

A commitment to estimation of population linear approximations rather than
the true response surface leaves unaddressed what subject-matter sense one is
to make of the regression output from a dataset. All of the usual output is still
available. Now what?
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5.1 Interpreting the Regression Coe�cients

The estimated regression coe�cients are just the usual slopes of a linear least
squares fit. But because we are drawing inferences about the best linear least
squares fit within a joint probably distribution, the interpretation is a somewhat
di↵erent. Each slope �̂

j

is an estimate of the di↵erence in the expectation of the
response for a unit di↵erence in the predictor, after adjusting for the predictor’s
linear association with all other predictors.

For ease of interpretation, consider the population slope when there is a
single predictor.

� “ E

»

–
Y ´EpY q
X´EpXq pX ´ EpXqq2
ErpX ´ EpXqq2s

fi

fl . (17)

Equation 17 unpacks the estimation target. From the fraction in the numerator,
the slope for any hypothetical case is based on the slope of a line segment from
the center point pEpXq, EpY qq to a hypothetical data point pX,Y q.12 Each such
slope is weighted by the ratio of the squared deviation score pX ´ EpXqq2 and
the expected value of such squared deviation score in the population. Slopes of
line segments farther from the EpXq are given more weight because, thanks to
least squares, they have greater influence.

X

Y

Population Linear Approximation as an Average Slope

E(X),E(Y)

Linear Approximation

Figure 5: Linear Approximation Slope as an Average of Slopes for a Single
Predictor

One can interpret � as an average slope. Figure 5 provides a visual rendering
of what is being estimated. (As before, one allows the true mean function to be

12The term “hypothetical” is used because the population is a joint probability distribution.
There are no realized observations.
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nonlinear.) In Figure 5, there are six line segments, one for each hypothetical
observation shown. These are slopes. Each slope goes through the expectations
of the response and the predictor, shown by the large black circle, as it should.
In the joint probability distribution, best linear approximation, shown with a
thick black line, has a slope that is the weighted average of the six. It gets
the slope wrong for each hypothetical observation. Nevertheless, it may be an
instructive summary of how X and Y are related within their joint probability
distribution.

Given our earlier discussion, it is easy to consider how one interprets the slope
when there is more than one predictor. The same interpretation of Equation
17 applies with the qualification that each slope is a “partial” slope subject
to the usual covariance adjustments. In e↵ect, each predictor is residualized
by removing any linear associations it has with all other predictors. Each slope
represents the average di↵erence in the expectation of the response for a one unit
di↵erence in the residualized predictor. Linear dependence among the predictors
has been removed.

One must be careful not to ask more of the linear approximation than it can
deliver. First, if the true response surface is nonlinear, no linear approxima-
tion can properly capture it. The linear approximation in the joint probability
distribution is wrong from the start.

Second, the impacts of any omitted variables that are true confounders13 are
absorbed in the regression coe�cients for the population linear approximation.
The residualization process cannot address that confounding. One’s estimation
target is the population linear approximation with its omitted-variable warts
and all. The same reasoning applies to any sources of endogeneity. Although
this is no doubt disappointing, it forces researchers to squarely face some real
limitations in their regression estimates. It also imposes a direct correspondence
between the regression equation applied to data and the regression equation to
be estimated. A happy result, discussed shortly, is that estimators with good
statistical properties can follow.

Third, the slope is an average. Consequently, it will likely overstate or
understate the slope at any particular observation. For example, the slope
for one more year of education beyond 9th grade could be very di↵erent from
the slope for one more year of education beyond 11th grade. Yet, the linear
approximation requires the same slope for each case.

Because of these three limitations, any step from estimation to causal infer-
ence will be challenging. There are the usual conceptual issues such as how to
map covariance adjusted regression coe�cients to real-world manipulations of
causal variables. But in addition, under what circumstances does it make sense
to use linear approximations as the basis for any causal claims?

There may be some important precedents from randomized experiments in
which it is common to seek estimates of the average treatment e↵ect (ATE). This
is an average over study subjects for which heterogeneity in potential responses
under both the experimental or control condition is assumed (Holland, 1986).

13They are correlated with the response variable and one or more predictors.
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The slope of our linear approximation can be seen in the same spirit. But the
issues are complicated, and we have yet to consider them in su�cient depth.

5.2 Estimation

We have abandoned trying to estimate nature’s true conditional expectations
µ|›ÑX, and are prepared to settle for a linear approximation �T

›Ñ
X. We seek to

estimate the linear conditional mean function within nature’s joint probability
distribution. We do this with the available data.

But, as already noted, the estimated least squares regression coe�cients
depend on which predictor values happen to appear in the data. Moreover, the
estimates from any given sample will be derived from incomplete information
because response values can only be observed for a random subset of predictor
values. Empirical realizations for the full response surface are not available.
The result is that any given sample will provide incorrect estimates of the linear
approximation, and over realizations of the data, those mistakes do not cancel
out. There is bias.

With larger samples, however, the regions of the true response surface that
are not observed will be fewer. One can imagine that as the sample size grows
without limit, the entire response surface will be observed. There is, then,
no bias in the estimated linear approximation. Stated more conventionally,
the population linear approximation can be estimated with conventional least
squares so that the bias disappears asymptotically (Buja et al., 2013). This
means that in practice, the bias can be small in large samples.

The joint distribution of the estimated regression coe�cients is asymptoti-
cally normal. The marginal distributions are as well. This means that the stage
is nearly set for conventional statistical inference, at least in large samples (Buja
et al., 2013).

It may be important to underscore that the regression coe�cients can be
estimated in an asymptotically unbiased manner even in the presence of endo-
geneity. Omitted variables, for instance, can raise interpretative problems to be
sure, but in contrast to conventional regression, do not preclude valid statistical
inference.

5.3 Standard Errors

If uncertainty in estimates of the linear approximation is to be properly ad-
dressed, appropriate standard errors can be essential. One might think that
because the linear approximation is just least squares regression, the usual re-
gression standard errors would su�ce. They don’t.

One problem is that by working with random rather than fixed predictors,
there is an additional source of uncertainty. Estimates are not limited to the
predictor values in the data. Another problem is that because the disparities
between the expectations of the fitted values from the linear approximation
and the expectations of nature’s conditional mean are not constant, neither
is the variance around the linear approximation. There can be nonconstant
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variance in the overall error ⇠ even if the variance in the irreducible error ✏ is
constant (i.e., homoscedastisic).To emphasize this point, the expression for the
misspecification disparities in the joint distribution is reproduced subscripted
for each potential observation.

⌘p›Ñ
X

i

q “ µp›Ñ
X

i

q ´ �T

›Ñ
X

i

. (18)

Because ⌘p›Ñ
X

i

q is a function of the random predictors, it is also a random
quantity. And as such, it contributes to the random variation around the ex-
pectations of the linear approximation’s fitted values and causes the variances
to di↵er.

X

Y
Expectations of Conditional Means (μ)

Linear Approximation 
βTX

An Observation

Total Error ξi

Nonconstant Variance for the Fitted Values

Y2

Total Error ξi
Total Error ξi

Irreducible 
Error εi

Mean Function 

Error ηi

Y1

Figure 6: Source of Nonconstant Variance in Linear Approximation Estimates

Figure 6 illustrates how. Hypothetical observations Y1 and Y2 happen to
have the same sized irreducible errors shown in blue. Yet, the total error, shown
in red, is larger for Y2. The reason is that the mean function error, shown in ma-
genta, is larger for Y2. Because the true mean function is nonlinear, its distance
from the linear approximation will vary, and that varying distance is built into
the variance of disparities between observations and the linear approximation.
The result in the joint distribution is nonconstant variance around the linear
approximation. Conventional least squares regression standard errors estimated
from the data are incorrect and potentially misleading. In general, they will be
too small. There is false power.

One might think that the problems with the conventional standard errors
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are less serious in larger samples. Actually, the problems remain. As the sample
size increases, the mean squared error of the estimated approximation decreases.
However, it still will have two components. The first is the irreducible error
resulting from variation around nature’s true conditional means. The second
results from the misspecification inherent in the linear approximation coupled
with random predictors. Both decline in larger samples, but at the same rate;
the consequences of model misspecification do not decline relative to the irre-
ducible error. No matter what the sample size, therefore, one is still faced with
nonconstant variability in the estimated linear approximation.

5.3.1 Huber-White Standard Errors

There are two good ways to obtain asymptotically valid standard errors (Buja
et al., 2013). The first uses Huber-White robust standard errors, sometimes
called the “sandwich estimator.” Its trick is to allow the square of each case’s
residual, which will vary in response to nonconstant variance, one-by-one to
directly a↵ect the calculations.14

Within our joint probability distribution framework, the Huber-White variance-
covariance matrix for the linear approximation’s regression coe�cients can be
written as,

VC
�̂

“ Er›ÑX›Ñ
X

T s´1Er�2p›Ñ
Xq›Ñ

X
›Ñ
X

T sEr›ÑX›Ñ
X

T s´1. (19)

The square root of the main diagonal elements are the standard errors. In

practice, estimates will depend on the usual predictor matrix X. Er›ÑX›Ñ
X

T s is
estimated pXTXq{N , and the estimated mean squared error �̂2p›Ñ

Xq is obtained
from the standard regression output. The notation underscores that �2 depends
on

›Ñ
X.

5.3.2 Bootstrap Standard Errors

The bootstrap is essentially a simulation of the frequentist thought experiment.
There are two approaches. The “parametric” method takes the regression model
as at least first order correct. It follows that the simulation addresses uncertainty
in Y caused by the disturbances only. Because the predictors are taken to
be fixed, they cannot be a source of uncertainty in Y . The “nonparametric”
method, consistent with the perspective taken here, treats uncertainty in Y as a
result of the disturbances and the predictors, which are random variables. The
nonparametric approach proceeds in the following manner.

1. There is a joint probability distribution F , as described earlier, that is the
source of the data.

2. The data are a random realization of size n.
14There are several proposals that appear to improve the perfomance of Huber-White stan-

dard errors in remarkably small samples (Long and Ervin, 2000). The formal rationale,
however, is incomplete and may not be appropriate in our setting.
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3. There are in the data observed units u1, u2, . . . , un

that are of the same
type as found in the population. Here, the units might be individual
o↵enders.

4. For each realized unit, there are observed measurements for the response
variable and the predictor variables that are the same types as in the
joint probability distribution. For example, there might be measures of
criminal activity and the usual background variables. These measures
have an empirical joint distribution F̂ . F̂ is an estimate of F .

5. There are “plug-in” estimates for the parameter(s) ✓ “ tpF q that take the
form ✓̂ “ tpF̂ q. One can use the same function tp.q with the data that one
would use in the population if one could get to it. For example, ✓ can be
the set of regression coe�cients from the population linear approximation
and ✓̂ could be the regression coe�cient estimates from the data.

6. There are B samples drawn from the dataset sometimes called bootstrap
samples, s˚1, s˚2, . . . , s˚B . The samples at generated by random sampling
with replacement, although more complicated sampling designs are used
if they were used to generate the actual data originally. In practice, B
can be as small as 30 or larger than 1,000, depending on the data and the
purpose of the bootstrap.

7. There are plug-in estimates one computes for each of the B bootstrap
samples is tpY ˚1,X˚1q, tpY ˚2,X˚2q, . . . , tpY ˚B ,X˚Bq. For example, from
each bootstrap sample one might compute regression coe�cients.

8. The set of plug-in estimates can be used to construct an empirical sam-
pling distribution ✓̂. The standard deviation of the empirical sampling
distribution for each plug-in estimate is an estimate of the standard error.
For example, the standard deviation for each regression coe�cient over
bootstrap samples is an estimate of each regression coe�cient’s standard
error. It is also possible to undertake statistical tests and/or confidence
intervals directly from the empirical sampling distribution of the plug-in
estimates.

Both the Huber-White standard errors and the bootstrap standard errors
are only justified asymptotically and are asymptotically comparable. Which one
uses seems at this point to be a matter of convenience. We are exploring whether
the two approaches have di↵erent performance characteristics in samples of the
size one often sees in the social sciences.

6 A Simple Example

Consider a joint probability distribution of random variables for individuals
on probation in a large city. There is a dataset that can be sensibly seen
as a random realization from that joint distribution. For example, the joint

19



distribution characterizes all individuals on probation in that city for a five year
period, whereas the data are for all individuals from an arbitrary four-month
interval.15

Although the joint probability distribution is composed of many random
variables, only two are used in this example:

1. The number of prior charges for a serious crime at the time the individual
was sentenced to probation; and

2. The age at which an o↵ender had his/her first arrest leading to a court
appearance charged an adult.

The researcher treats the first as the response and treats the second as a pre-
dictor. A “serious” prior charge includes murder, attempted murder, robbery,
aggravated assault, and rape. At the time when an individual begins probation
supervision, what is the relationship between the age at which a first arrest
occurs and the number of prior charges for serious crimes?

Our primary goals are to show visually key features of our approach and
to illustrate what sorts of substantive issues that can be usefully addressed.
Including more predictors is no doubt a better approximation of usual practice,
but introduces many extra details without adding much additional insight.

The blue dots in Figure 7 represent the conditional expectations in the joint
probability distribution, which can be seen as the population. These conditional
expectations constitute the unknowable true response surface. Although for
visualization purposes they are plotted against the single predictor, they would
in practice be related to other predictors not included in the available data.
Those missing predictors might help explain why the conditional expectations
for the number of serious priors does not decline for the two youngest age groups
in contrast to the smooth, nearly monotonic decline thereafter. For example,
some of the charges for those under 18 may be treated as juvenile o↵enses and
not become part of the adult record. The number of prior charges is too small.
The conditional expectation for the youngest age group could be 13, not 10.2.16

The smaller red dots are a random realizations from the joint probability
distribution. The red dots are what the researcher gets to see. In this example,
the sample size is small to make the plot more visually accessible.17 The solid
black line is the estimated linear approximation. Its intercept is 6.2, and its
slope is -.13. As usual, the intercept is required to vertically locate the estimated
linear approximation, but in this instance has no substantive interpretation.18

15In practice, one would have to establish that the composition of the probationer population
and the process by which individuals were sentenced to parole did not change in important
ways over that five-year period.

16For this illustration, the blue dots are the means of the response for each arrest age from a
real dataset with nearly 200,000 observations. With so large a dataset, conditional means can
be treated for this illustration as if they were the population conditional expectations. Our
theoretical work, however, is based on a joint probability distribution, not a finite empirical
population.

17The realizations were randomly drawn for the empirical, finite population.
18It is the estimated mean number of serious priors at birth.
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Figure 7: A Linear Approximation in Practice

The estimated slope indicates that on the average, the estimated mean number
of serious priors declines by .13 for every additional year of age at first arrest. For
some age intervals, however, the true slope is more steep. For other age intervals,
the true slope is less steep. For the two youngest ages, the true slope is actually
positive. Clearly, the linear approximation is missing important features of
the true relationship between conditional expectations of the response and the
predictor.

At the same time, both the estimated intercept and slope are asymptotically
unbiased estimates of the intercept and slope of the linear approximation within
nature’s joint probability distribution. In practice, a researcher would need to
decide whether the estimated linear approximation is substantively instructive.
Is it instructive to know the average slope between the age at first arrest and
the number of priors for serious priors?

Some might argue that the relationship is uninteresting because criminal
activity that starts at an earlier age simply provides more time to acquire pri-
ors. However, individuals who start committing serious crimes at an early age
probably spend more time incarcerated. Despite being incapacitated for signif-
icant intervals, criminals who start early still manage to accumulate a greater
number of serious priors. One policy implication may be that the incarcerations
do not overcome a proclivity of early o↵enders to commit serious crimes. An-
other policy implication may be that the criminogenic impact of prison coupled
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with its impact of subsequent employment dilute incapacitation and potential
deterrence.19

The conventional standard error for the slope is .021. The Huber-White
standard error .032. Even with larger Huber-White standard error, one would
reject the null hypothesis that the slope of the population linear approximation
was equal to zero. However, one would have more confidence in the test’s
validity with a somewhat larger sample. Because the Huber-White estimate is
substantially di↵erent from the conventional standard error, there is evidence
that there is misspecification of first order (nonlinearity) and/or second order
(heteroscedasticity) (Buja et al., 2013).

In most applications, there would likely be additional predictors included in
analysis. Then the estimated slopes would be adjusted in the usual manner. One
would be estimating the population hyperplane in an asymptotically unbiased
fashion, and each regression coe�cient would be an average slope with all other
predictors “held constant.” The same asymptotically justified tests could follow.

7 Extensions

All of the discussion to this point applies to any conventional parametric regres-
sion. Any sensible functions can be used for the population approximation as
long as they are determined before the data analysis begins.20 For example, one
might decide in advance that the approximation in the joint probability distri-
bution should be represented by the log of a linear combination of predictors.
As a descriptive matter, interesting features of any associations will perhaps
be captured that otherwise would have been missed. Whether the new formu-
lation is a more accurate rendering of the true response surface is unknown.
The regression equation one computes with the data is then formulated in the
same fashion. One is not limited to linear relationships between the response
and the predictors. In short, it is possible to work with linear or nonlinear
approximations as long as they are parametric.

More challenging is nonparametric regression in which tuning parameters
are determined by the data. Consider, for example, smoothing splines.21 There

19An o↵ender’s current age would seem to be an obvious confounder. Older individuals
have more time to accumulate priors. However, whether current age is also related to the age
at which a first arrest occurs is an empirical question. And in these data, there is e↵ectively
no relatonship. Current age is not a confounder.

20If they are determined as part of a data analysis in which di↵erent mean functions are
examined, there will be model selection bias. Estimates from the model selected will be biased,
and statistical tests and confidence intervals will be invaldiated. The only question is how
serious in practice those problems will be (Berk et al., 2010).

21For a single predictor,

PSSpf̂ ,�q “
Nÿ

i“1

rYi ´ f̂pXiqs2 ` �

ª
rf̂2ptqs2dt. (20)

PSS denotes penalized sum of squares to be minimized subject to a penalty tuning parameter
�, and f̂pXiq is the unknown function to be determined. The integral of the second derivatives
over X defines the complexity penalty. The expression can be generalized so that for p
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can be one smoothed function with the response for each predictor, and each
smoothed function can have its own tuning parameter determining the degree
of smoothing.

A key complication is that the tuning parameters can legitimately vary with
sample size. With a larger sample, one can fit a more complex function to
reduce the bias with no necessary increase in the variance. Smaller values for
the tuning parameters follow. Under these circumstances, it is di�cult to think
about smoothers for a joint probability distribution in part because the number
of hypothetical observations is limitless. What does a population of limitless
size mean for the values of a tuning parameter? And how can any population
smoother be a legitimate estimation target for a smoother from a finite sample
of a particular size? The sample function and the population function will not
be the same.

A major challenge, therefore, is how to arrive at sensible values for the tun-
ing parameters. In the case of a single predictor with a single tuning parameter,
Chaudhuri and Marron (2000) propose using a number of di↵erent tuning pa-
rameter values chosen to represent a range of sensible possibilities. Any given
turning parameter would define a smoother in the joint probability distribution.
That tuning parameter would also be applied to the sample. Then, fitted values
from the sample would be an asymptotically unbiased estimate of the fitted,
conditional expectations in the joint probability distribution for that turning
parameter. The same approach would follow for each tuning parameter value.
One would not have single set of fitted values, but a suite of fitted values. The
estimation target would not be a approximation line, but an approximation
band.

Although this idea has real merit, there are to date serious practical limi-
tations. For example, it is not clear how one would work with more than one
predictor if for no other reason than computational demands. One would re-
quire a multidimensional grid of tuning parameter values. A second di�culty
is constructing proper confidence intervals and statistical tests. Although there
has been some progress (Chaudhuri and Marron, 1999), the existing procedures
are not designed for conventional confidence intervals or tests and are based on
incomplete formal justification. In short, smoothers as an estimation target for
a joint probability distribution is an ongoing research topic.22

These concerns about smoothers are not relevant when smoothers are used to
characterize associations in a given dataset. Then, the goals are data exploration
and description. Inferences beyond the data are not on the table. In that setting,
smoothers can be very useful.

predictors there are p such expressions combined additively to form the generalized additive
model (Hastie et al., 2009: section 9.1)

22Using smoothing results from a sample to estimate nature’s true response surface, raises
another set of very di�cult problems (Chaudhuri and Marron, 1999, section 2; Berk et al.,
2013).
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8 Conclusions

The good news is that by and large, one can work with linear and nonlinear
parametric approximations using conventional regression software. The bad
news is that nevertheless, interpretation of the results requires substantial care.

A major concern is getting the right standard errors. One can properly in-
terpret the estimated regression coe�cients obtained from the usual regression
output, but the usual standard errors will be wrong. Fortunately, many statis-
tical packages provide access to Huber-White and/or nonparametric bootstrap
standard errors for regression coe�cients. As long as one keeps in mind that the
estimated approximation and standard errors are only justified asymptotically,
proper use can follow. In practice, this means that all bets are o↵ in small
samples (e.g., † 50) or when the sample size is not least several times larger
than the number of predictors. Then the only legitimate regression enterprise is
description of relationships in the data on hand. And that can be very useful.
It is still possible to learn lots of interesting things.

Proper interpretation of the results is more challenging. One has an esti-
mate of the approximation only. One does not have an estimate of the true
mean function. All substantive conclusions must rest on how instructive the
approximation is for the questions being addressed. Recall that in the para-
metric case, each slope estimates a weighted average slope over the range of a
given predictor once that predictor is residualized for all other predictors. But
as noted earlier, if the average treatment e↵ect (ATE) is instructive for analyses
of randomized experiments, perhaps the average slope is instructive for analyses
of observational data.

If one is only working with approximations, why not proceed with a conven-
tional regression analysis and just interpret the regression as a linear approxi-
mation? We suspect that this is often de facto practice. Researchers are often
unprepared to defend their models as truth.

There are several reasons why reinterpreting conventional regression as a
linear approximation is a bad idea. First, in conventional regression the esti-
mation target is the true conditional means of Y with X fixed. Within our
formulation, the estimation target is the best linear approximation in a joint
probability distribution with X random. There two di↵erent answers to the
question “estimates of what?” If one’s regression estimates are only from a lin-
ear approximation, it seems that the estimation target should be no di↵erent.

Second, it follows that in conventional regression, the estimates are likely to
be biased in finite samples and asymptotically as well. The bias is undesirable in
its own right, and undermines statistical tests and confidence intervals. In our
approach, the estimates are unbiased asymptotically. Surely this is preferable.

Third, conventional estimates of the standard errors are likely to be biased in
finite samples and asymptotically. All statistical tests and confidence intervals
can be very misleading. Huber-White standard error estimates can provide
asymptotically unbiased standard error estimates for the regression coe�cients,
but one is still undercut by the biased estimates of regression coe�cients and
fitted values; the regression estimates used in the tests and confidence intervals
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will be systematically too large or too small. Statistical tests and confidence
intervals will not perform as intended. In our approach, the estimated standard
errors are asymptotically unbiased and at least in reasonably large samples,
statistical tests and confidence intervals will behave as they should. This too
should be preferable.

Fourth, in conventional regression, there can be strong incentives to treat
regression coe�cients as estimates of causal e↵ects even though it is very unusual
for a social science causal model to meet the requisite assumptions when the
data are observational. Our approximation approach is explicitly agnostic with
respect to cause and e↵ect, and there are no claims that one is getting causal
e↵ect estimates. In that sense, our approach is conservative.

Finally, the usual concerns about model misspecification, endogeneity, and
other properties of the model’s disturbances (and all the diagnostics that can
follow) are at least substantially diluted. For example, recall that estimates of
the best linear approximation in the joint probability distribution are asymptot-
ically unbiased even in the presence of unknown confounders. Valid statistical
inference can follow.

In short, to the degree that the many critiques of conventional regression
analysis have merit, we o↵er a constructive option. But one must be prepared
to abandon a framework in which with observational data one proceeds as if
valid estimates of nature’s true conditional means can be routinely obtained.
In practice, however, not much is being given up. Such estimates are rarely
available anyway.
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