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Multiple Random Oracles Are Better Than One

Jan Arpe and Elchanan Mossel
U.C. Berkeley[arpe,mossel]@stat.berkeley.edu

Abstract

We study the problem of learningk-juntas given access to examples drawn from a number of dif-
ferent product distributions. Thus we wish to learn a functionf : {−1, 1}n → {−1, 1} that depends
on k (unknown) coordinates. While the best known algorithms for the general problem of learning a
k-junta require running time ofnk poly(n, 2k), we show that given access tok different product distri-
butions with biases separated byγ > 0, the functions may be learned in timepoly(n, 2k, γ−k). More
generally, given access tot ≤ k different product distributions, the functions may be learned in time
nk/tpoly(n, 2k, γ−k). Our techniques involve novel results in Fourier analysis relating Fourier expan-
sions with respect to different biases and a generalization of Russo’s formula.

Keywords: learning juntas, PAC learning, biased product distributions, Fourier analysis of Boolean func-
tions, Russo’s formula

1 Introduction

1.1 Motivation

A k-junta is a functionf : {−1, 1}n → {−1, 1} that only depends on a subset ofk variablesxi1 , . . . , xik .
Blum and Langley [6] proposed the problem of learning the class ofk-juntas, which we refer to as thejunta
learning probem, as a clean and appealing model of learning in the presence of much irrelevant information.
It is considered to be among the most important problems in computational learning theory to date [4,
23]. In addition to being an interesting class in itself, the importance of learning juntas is supported by its
connections to learning decision trees and DNFs, see [23]. Mossel, O’Donnell, and Servedio [23] observed
that junta learning is efficiently solvable in the membership query model and in the random walk model,
whereas it is provably hard in the statistical query model. What lies in between is the uniform distribution
PAC model for which [23] presented an algorithm with running time roughlyn0.7·k , being the currently
best improvement upon a straightforward algorithm that runs in roughlynk steps. For general distributions,
no such improvement is known. The little progress on the junta learning problem in the PAC model to date
might be considered evidence of the hardness of the problem in this model. At the same time, however, no
lower bounds are available, either.

Apart from devisingfast learning algorithms, another goal is often to havelow sample complexity(i.e.,
a small number of examples needed to learn). Information-theoretically,Θ(k log n + 2k) examples are
necessary and sufficient for learningk-juntas onn bits ([7, 26, 1]). The algorithm of [23], however, needs
to draw roughlyn0.3k examples in the worst case.

It thus seems reasonable to ask if we can find a natural extension of the PAC learning model under fixed
distributions that admits junta learning algorithms that run in timet(k) · poly(n) for some functiont that is
independent ofn and some polynomial that is independent ofk. Moreover, such algorithms should ideally
uses(k) · O(log n) examples for some functions independent ofn.

In this paper, we propose such a model: instead of giving the learner access to only one oracle, we study
the setting in which a learner has access tomultiple oracles that generate examples according to different



distributions. Although in this paper, we are mainly interested in learning from product distributions, we
introduce the model in more generality since we believe thatstudying the learnability of other classes in
this model, possibly under less restricted distributions,is a worthwhile goal for future research. In data
mining and applied machine learning, researchers often depart from the assumption of having access to
only one source of data in order to capture more realistic scenarios such as having multiple sources of
different quality [10, 11], receiving partial informationabout tuples of examples [12], or observing sets of
different attributes for the same examples [21]. We mentionthree possible real-world learning scenarios
in which our model can be applied: e.g., the examples could beobtained as series of measurements in
certain experimental setups, so that different oracles correspond to different setups, resulting in different
distributions over the instance space. Or, examples could be sampled from disjoint populations in which
the distributions of attributes differ significantly. Another application comes into mind when considering
data generated by amixtureof distributions. After applying algorithms to tell the distributions apart (say,
from unlabeled examples) [19, 28, 13], one could use algorithms designed for the model of learning from
multiple distributions to finally learn the concept under consideration.

For our results on the junta learning problem, we considerr-biased oraclesthat generate examples
(x, f(x)) according tor-biased product distributionsµr on {−1, 1}n for biasesr ∈ (−1, 1). These are
distributions such that every variablexi independently takes on values−1 and+1 with probability(1−r)/2
and(1 + r)/2, respectively (so thatEµr

[xi] = r).
As in the setting with one uniform distribution oracle [23] (this is the caser = 0), we show that the

junta learning problem from multiple oracles reduces to thetask of identifying at least one relevant variable.
In general, a conceptual method to identify relevant variables is to find non-vanishingFourier coefficients
f̂(S, r), S ⊆ [n], wherer denotes the bias of the underlying distribution. The Fourier coefficientf̂(S, r)
measures the correlation between the function valuef(x) and the functionχS(x, r) =

∏

i∈r(xi − r) (see
Section 2.3 for details). Most of the literature focuses on the caser = 0, in whichχS(x, 0) reduces to the
parity of the variables indexed byS, andf̂(S, 0) is commonly denoted bŷf(S). The point is that whenever
f̂(S, r) 6= 0, then all variablesxi with i ∈ S are relevant. If we pursue the search by starting with singletons
S and then move on to higher levels, this method takes time about ns if f̂(S, r) = 0 for all S of size up tos.
The question is how to proceed if such a situation occurs for somes ∈ ω(1). In [23] it is proposed to use a
second approach based on the calculation of the coefficientsof the polynomial representation off over the
two-element field and shown a trade-off betweens and the degree of this polynomial. In a different direction,
Atıcı and Servedio [3] enhance the uniform PAC model by a quantum subroutine to circumvent exhaustive
search for non-zero Fourier coefficients. Our solution to give the learner access to several (classical) oracles
can be considered as another (and maybe more realistic) alternative.

From a conceptual viewpoint, our main result shows that the junta learning problem is efficiently solv-
able in apassivelearning model (as opposed to allowing the learner to actively ask membership queries)
with independent random examples(as opposed to learning from, say, random walks, where examples are
highly correlated).

1.2 Our Results

We solve the problem of vanishing Fourier coefficients up to high levels by considering Fourier coefficients
with respect to multiple distributions: we show that if all Fourier coefficientsf̂(S, ri) of ak-juntaf vanish
up to levels with respect tot different biasesr1, . . . , rt, thens · t < deg(f), where

deg(f) = max
{

|S| | f̂(S) 6= 0
}

≤ k

is thedegreeof f . Specifically, we prove
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Theorem 1. Letf : {−1, 1}n → {−1, 1} be non-constant function ands, t ∈ N be such thats ·t ≥ deg(f).
Letr1, . . . , rt ∈ (−1, 1) be arbitrary pairwise different biases. Then there exists an i ∈ [t] and a setS ⊆ [n]
with 1 ≤ |S| ≤ s such thatf̂(S, ri) 6= 0.

Letting s = 1 andt = k, Theorem 1 implies that there are at mostk − 1 different biasesr such that all
r-biased first-level Fourier coefficients off vanish. As a consequence, whenever a learner has access tok r-
biased oracles fork pairwise distinct biasesr, it suffices to consider, for each given biasr, only coefficients
f̂(S, r) at all singletonsS in order to find at least one relevant variable. The main technical issue we have
to take care of is that Theorem 1 does not rule out the possibility that |f̂(S, ri)| could be extremely small,
so that it would require a large amount of examples to tell whether a coefficient is nonzero. To take this
into account, we add the requirement that the biases are wellseparated, i.e., have pairwise distance at least
γ > 0. In addition, we allow the running time to also depend on the inverse of the minimum distance of the
biases to−1 or 1 since the degenerate casesr = −1 or r = 1 only produce the single example(r, f(r)),
from which we cannot learn anything. Herer denotes the vector with alln entries equal tor. Our main
learning theory application of Theorem 1 (in the special case s = 1 andt = k) is:

Theorem 2. Let −1 + α ≤ r1 < . . . < rk ≤ 1 − α for someα > 0 such that for alli ∈ [k − 1],
ri+1 − ri ≥ γ > 0. Then the class ofk-juntas is exactly learnable with access tori-biased oracles,i ∈ [k],
fromm = poly(log n, 2k, (1/γ)k , 1/α, log(1/δ)) examples in timepoly(m,n).

Theorem 2 immediately follows from the following generalization which is based on the general case
(s · t ≥ k) in Theorem 1. The trade-off between the number ofr-biased oracles to which a learner has access
and the level up to which the learner has to inspect the Fourier coefficients results in a trade-off between the
number of oracles and the running time:

Theorem 3. Let k, s, t ∈ N such thats · t ≥ k and−1 + α ≤ r1 < . . . < rt ≤ 1 − α for someα > 0
such that for alli ∈ [t − 1], ri+1 − ri ≥ γ > 0. Then the class ofk-juntas is exactly learnable with access
to ri-biased oracles,i ∈ [t], usingm = poly(log n, 2k, (1/γ)k , (1/α)s, log(1/δ)) examples and running in
timens · poly(m,n).

In other words, given access tot biased oracles with biases separated byγ > 0, the class ofk-juntas
is learnable in timenk/t poly(n, 2k, γ−k). We should mention that we must haveγ ≥ 2/t to be able to
separatet biases, so thatγ−k ≥ (t/2)k. If t = k, the running time is thus at least polynomial in2k log k.

Theorems 2 and 3 are valid even if the biases are not known to the learner in advance. This follows
since given the promise that the examples are generated according to r-biased product distributions, the
learner can efficiently approximate these biases to within high accuracy (even from unlabeled examples)
and working with such approximate biases is sufficient to recognize non-vanishing Fourier coefficients of
the true biases (see Section 6).

It is observed in [23] that except for a set of measure zero of product distributions with bias vectors
r = (r1, . . . , rn) ∈ [−1, 1]n (i.e., E[xi] = ri), everyk-junta f has nonzero correlation with each of its
relevant variables. They concluded that for each such vector of biases,k-juntas are learnable with confidence
1−δ in timepoly(2k, n, log(1/δ)). However, the correlations may become arbitrarily small, so that in order
to identify nonzero correlations, these have to be approximated very precisely. As a consequence, the growth
of thepoly expression heavily depends on the bias vectorr. More precisely, the running time depends on
2c·k, where the constantc depends on the choice ofr.

When we restrict the product distributions tor-biased distributions, we can improve from a set of mea-
sure zero of exceptional bias vectors tofinitely many exceptional biases: for fixedk and arbitraryn, there
are only finitely manycritical biasesr ∈ (−1, 1) such that there exists ak-juntaf with f̂(i, r) = 0 for all
i ∈ [n]. As an application, we show
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Theorem 4. Letk ∈ N. Then for all but finitely many biasesr ∈ (−1, 1), there exists a functiontr : N → N

such thatk-juntas are exactly learnable under ther-biased distribution in timetr(k) · poly(n, log(1/δ)).

Note that, unlike this rather non-constructive result, ouralgorithm for the “multiple-oracles model”
works fork arbitrary and unknown biased product distributions.

1.3 Our methods

Denote byEr[f ] the expected value off(x) under ther-biased distribution (r ∈ (−1, 1)). Our main
technical tool is a formula that connects the higher-order derivatives ofEr[f ] with respect tor to the Fourier
weights at certain levels of the Fourier spectrum. The formula is close in spirit to Russo’s well-known
formula for monotone functions and generalizations thereof to arbitrary bounded functions on the hypercube.

Russo’s formula [24] states that formonotoneBoolean functionsf : {−1, 1}n → {−1, 1},

d

dr
Er[f ] = Er[f ·

n
∑

i=1

xi] .

More generally, the following connection between the derivative of the expectation (with respect to the bias)
and correlations between the function value and the variables is known (see Grimmett [15, Theorem 2.34]):

d

dr
Er[f ] = (1 − r2)−1 Covx∼µr

[f(x),
n

∑

i=1

xi] (1)

(here, we have translated Grimmett’s notation to our setting, andCov denotes the covariance). Since
f̂(i, r) = σ−1 Covr[f, xi − r] = σ−1 Covr[f, xi] (see Section 2.3), (1) can be rewritten as

d

dr
Er[f ] = (1 − r2)−1/2

n
∑

i=1

f̂(i, r) . (2)

Define theweightws(f, r) of thes-th r-biased Fourier level off as the sum of allr-biased Fourier
coefficients at levels, i.e.,

ws(f, r) =
∑

S⊆[n]:|S|=s

f̂(S, r) .

We use the following generalization of formula (2) which we attribute to folklore (and to the best of our
knowledge, has not been published before).

Theorem 5(Generalization of Russo’s Formula). Letf : {−1, 1}n → R, s ∈ [n], andr∗ ∈ (−1, 1). Then

ds

drs
Er[f ]

∣

∣

∣

r=r∗
=

s!

(1 − r2
∗)

s/2
· ws(f, r∗) .

Theorem 5 follows from a similar statement for product distributions with arbitrary biases (see Proposi-
tion 1). The second ingredient to prove Theorem 1 is the observation that we can write

Er[f ] =
n

∑

t=0

wt(f, 0)rt (3)

(see Section 2) and that this is a polynomial inr of degree at mostdeg(f). Moreover, this polynomial is
constant (inr) if and only if f is constant. From Theorem 5, we obtain that if for somer∗, the Fourier
coefficientsf̂(S, r∗) vanish for allS ⊆ [n] with 1 ≤ |S| ≤ s, then(dt/drt)Er[f ]

∣

∣

r=r∗
= 0 for all t ∈ [s],
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i.e., r∗ is ans-fold root of the nonzero polynomial(d/dr)Er[f ], which is of degree at mostdeg(f) − 1.
Since there can be at most(deg(f)− 1)/s roots of multiplicitys, this proves Theorem 1. To the best of our
knowledge, this is the first application of Theorem 5 in theoretical computer science. Let us remark further
that we obtain the following relationship between Fourier weights with respect to different measures as a
consequence of Theorem 5 and Equation (3):

ws(f, r) = (1 − r2)s/2
n

∑

t=s

(

t

s

)

wt(f, 0)rt−s . (4)

1.4 Related Work

If we restrict ourselves to subclasses ofk-juntasf : {−1, 1}n → {−1, 1} such as monotone or symmetric
juntas (i.e., juntas invariant under permutations of the relevant variables), there do exist at least partially
satisfying solutions to the junta learning problem: under the uniform distribution, monotonek-juntas are
learnable in timepoly(n, 2k) from poly(log n, 2k) examples [23] and symmetric juntas are learnable in
time nO(k/ log k) poly(n, 2k) [20, 22]. Furthermore, results for other learning more general classes under
fixed product distributions have been obtained [14, 16, 25, 9], including the polynomial time learnability of
monotoneO(log2 n/ log2 log n)-juntas. Notably, also parity juntas, i.e., parities of subsets of at mostk vari-
ables, are efficiently learnable from product distributions (even in the presence of attribute and classification
noise), with the restriction that every variable has a non-zero bias [2].

Recently, Atıcı and Servedio [3] have studied the junta learning problem for the case that the learner
has access to a uniform distribution PAC oracle plus a quantum oracle. They showed thatk-juntas are
learnable within accuracyǫ from O(ǫ−1k log k) quantum examples andO(2k log(1/ǫ)) classical (uniformly
distributed) examples, both bounds being independent ofn. Given this dramatic speed-up (which is impos-
sible to achieve from classical queries only), we ask the more realistic question what can be done if we are
given access tomultiple classicaloracles.

Interestingly, our results are obtained in terms of purely statistical evaluation of the given data, i.e., one
can interpret the Fourier algorithm as a statistical query (SQ) algorithm with respect to several distributions.
While in the original SQ model [18], in which queries are evaluated with respect to the uniform distribution
on the input space, (parity) juntas are provably not efficiently learnable [5, 8, 23], our results show that such
a lower bound is not valid if queries are evaluated with respect to several distributions.

1.5 Organization of this Paper

We introduce all necessary prerequisites in Section 2. In Section 3 we present the generalization of Russo’s
formula. The reduction to identifying only one relevant variable is shown in Section 4. In Section 5,
we prove Theorem 3 that addresses learnability via thes-th level Fourier algorithm from several oracles.
Section 6 shows that the biases do not have to be known in advance. Finally, we prove Theorem 4 in
Section 7.1 and propose open problems in Section 7.2.

2 Preliminaries

2.1 General Notation, Juntas, and Probability Theory

Let N = {0, 1, 2, . . .}, and forn ∈ N, let [n] = {1, . . . , n}. We use boldface letters such asr, x, andσ

to denote (real) vectors of lengthn. The corresponding entries are denoted byri, xi, σi, and so forth. For
x ∈ {−1,+1}n andi ∈ [n], denote byx(i) the vectorx with the sign of thei-th entry flipped.
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Definition 1 (Relevant variables). Let f : {−1, 1}n → {−1, 1}. For i ∈ [n], the functionf dependson
variablexi (equivalently,xi is relevantto f ) if there exists anx ∈ {−1, 1}n such thatf(x(i)) 6= f(x).

Definition 2 (Junta). Let f : {−1, 1}n → {−1, 1} andk ∈ [n]. The functionf is ak-junta if it depends on
at mostk variables.

Let x1, . . . , xn be independent random variables taking values−1 and+1 with E[xi] = ri ∈ [−1, 1].
The valueri is called thebiasof xi. Equivalently,Pr[xi = −1] = (1− ri)/2 andPr[xi = 1] = (1 + ri)/2.
In this way,{−1, 1}n is equipped with the product measureµr, r = (r1, . . . , rn), given by

µr(x) =

n
∏

i=1

((1 + rixi)/2)

for x ∈ {−1, 1}n. For f : {−1, 1}n → R, we denote byEr[f ] the expectation off with respect toµr.
Furthermore, forf, g : {−1, 1}n → R, let

Covr[f, g] = Er[(f − Er[f ])(g − Er[g])] = Er[f · g] − Er[f ] · Er[g]

denote the covariance off andg with respect toµr. Denote byσi = (1 − r2
i )

1/2 the standard deviation
of xi and letσ = (σ1, . . . , σn). We will mostly be interested in the case that all biasesri are equal. For
r ∈ [−1, 1], let r = (r, . . . , r) be the vector that consists ofn entries that are all equal tor. In this case, we
write σ = σ(r) =

√
1 − r2. We will frequently use that if|r| ≤ 1 − α for someα > 0, thenσ ≥ √

α. The
measureµr is called ther-biased product distribution. We also writeµr instead ofµr, Er instead ofEr, etc.

2.2 Learning Theory

We introduce an extension of the classical PAC model [27]. Let C =
⋃

n∈N Cn be a class of functions,
where eachCn contains some functionsf : {−1, 1}n → {−1, 1} and letM =

⋃

n∈N Mn be a class of
input distributions, where eachMn contains distributions on{−1, 1}n. For f ∈ Cn and a distribution
µ ∈ Mn, denote byEX (f, µ) anoracle that on request generatesx ∈ {−1, 1}n according toµ and returns
the example(x, f(x)). For r ∈ [−1, 1], we call EX (f, µr) an r-biased oracle. Let us first review the
original PAC model. The classC is PAC-learnable under distributionsM if there is an algorithmA that
for all n ∈ N, all functionsf ∈ Cn, and all distributionsµ ∈ Mn on {−1, 1}n, givenδ, ǫ > 0 and access
to EX (f, µ) but no further knowledge onf andµ, outputs ahypothesish : {−1, 1}n → {−1, 1} such that
with probability at least1 − δ (taken over all random draws of the oracle),Prx∼µ[h(x) 6= f(x)] ≤ ǫ. If
Mn is the class ofall distributions on{−1, 1}n, we say thatC is distribution-free PAC-learnable. If Mn

only contains theuniform distributionon{−1, 1}n, we say thatC is uniform distribution PAC-learnable. If
Mn is the class of allr-biased product distributionsµr on{−1, 1}n, we say thatC is learnable from biased
distributions. If A even manages to output exactlyf , (i.e.,ǫ = 0), we say thatC is exactly learnable.

The performance of a learning algorithm is measured by the number of examples it requests and by its
running time, both of course depending onδ, ǫ, n, and possibly further parameters involved in the definition
of the classC.

Now we study what happens if, instead of having access to a single oracleEX (f, µ), we admit the
learning algorithm to have access tomultiple(pairwise different) oraclesEX (f, µi), µi ∈ Mn for i ∈ [t]. If
we do not impose any restrictions other than being pairwise different on the distributionsµi, then the learner
does not gain any power since the distributions could be arbitrarily close to each other. Thus, we allow the
running time to depend on the minimum distanceγ between pairs of distributions (at this point, we leave
open the choice of appropriate distance measures).
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The notion of learnability is the same as above, except that we require that the hypothesis output by a
learning algorithm has to satisfy with probability at least1− δ thatPrx∼µi

[h(x) 6= f(x)] ≤ ǫ for all i ∈ [t].
In this case, we say thatC is PAC-learnable fromt oracles under distributionsM with separationγ.

In the following, we motivate in which variants of this very general new learning model we are interested.
Our goal is to find efficient learning algorithms for the classof k-juntas. More precisely, for a non-decreasing
function k : N → N, we want to learn the classC =

⋃

n∈N Cn, whereCn consists of allk(n)-juntas
f : {−1, 1}n → {−1, 1}. The fastest known (exact) learning algorithm forC in the uniform distribution
PAC-learning model runs in timen0.7k poly(n, 2k, log(1/δ)) [23]. Moreover, fork ∈ ω(1), there isnot any
explicit distributionµ for which C is known to be PAC-learnable underµ in time t(k) · poly(n, log(1/δ))
with an arbitrary functiont : N → N. It thus seems reasonable to ask if we can do any better if we are
given access to more than one oracle with severalsimpledistributions (possibly known to the learner). We
will show that this is in fact the case if the distributions are biased product distributionsµri

with well-
separated biasesri, even without prior knowledge on the biases (except that each |ri| should be bounded
away from1). Consequently, we manage to learn efficiently in the model of PAC-learning from multiple
biased product distributions. The separation of biases will be reflected in the dependenceof the running
time onγ = mini6=j |ri − rj |.

2.3 Fourier Coefficients

For t ∈ Rn andS ⊆ [n], definetS =
∏

i∈S ti. In particular, forx ∈ {−1, 1}n, xS is theparity of bits in
x indexed byS, and forr ∈ [−1, 1]n, Er[xS ] =

∏

i∈S Er[xi] = rS . For i ∈ [n] andr ∈ (−1, 1)n, define
χi(x, r) = (xi − ri)/σi and forS ⊆ [n], let χS(x, r) =

∏

i∈S χi(x, r).
The measureµr induces the inner product

〈f, g〉r = Er[f · g] =
∑

x∈{−1,1}n

µr(x)f(x)g(x)

on R{−1,1}n

. The associated norm is

‖f‖2,r = 〈f, f〉1/2
r = Er[f2]1/2 .

The functionsχS = χS(·, r), S ⊆ [n], form an orthonormal basis of this space with respect to〈·, ·〉r:

〈χS , χS〉r = Er[χ2
S ] =

∏

i∈S

Er[(xi − ri)
2]

σ2
i

= 1 ,

and if i ∈ S \ T for some setsS, T ⊆ [n], thenEr[χSχT ] = Er[χi]Er[χS\{i}χT ] = 0 sinceEr[χi] = 0.
We can expand any functionf : {−1, 1}n → R as a linear combination of the functionsχS(·, r), called

theFourier expansionof f with respect toµr:

f =
∑

S⊆[n]

〈f, χS〉rχS ,

and we callf̂(S, r) = 〈f, χS〉r theFourier coefficient off at S with respect toµr. Note thatχi(·, r) is a
linear function inxi and thusχS(·, r) is a multi-linear polynomial in the variablesxi, i ∈ S (of degree|S|).
Consequently, the Fourier expansion (with respect to anyr ∈ (−1, 1)n) provides a representation off as a
real multi-linear polynomial of degree

deg(f, r) = max{k ∈ [n] | ∃S ⊆ [n] : |S| = k ∧ f̂(S, r) 6= 0} .
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Since this degree does actually not depend onr (there is exactly one polynomial representation off ), we let
deg(f) = deg(f, 0).

If S = {i} is a singleton set, we also writêf(i, r) instead off̂({i}, r). Note that forS 6= ∅, f̂(S, r) =
Covr[f, χS(·, r)] sinceEr[χS(·, r)] = 0. Put in another way,

σ|S| · f̂(S, r) = Covr

[

f,
∏

i∈S

(xi − ri)

]

.

In case we consider ther-biased product measure for somer ∈ (−1, 1), we callf̂(S, r) = f̂(S, r) anr-
biased Fourier coefficient. In particular,f̂(∅, r) = 〈f, 1〉r = Er[f ] (again usingr as subscripts rather thanr).
For the uniform measureµr with r = 0, the Fourier expansion off directly results in the representation
of f as a real multilinear polynomial in canonical form (i.e., a linear combination of monomialsxS) since
χS(x, 0) = xS : f(x) =

∑

S⊆[n] f̂(S, 0) · xS . Since forr ∈ [−1, 1]n, Er[xS ] = rS, we obtain

Er[f ] =
∑

S⊆[n]

f̂(S, 0)rS , (5)

of which (3) is the special caser = r for r ∈ [−1, 1].
Theweightof thei-th Fourier level off with respect toµr is defined to be

wi(f, r) =
∑

S⊆[n]:|S|=i

f̂(S, r) .

Lemma 1. Letf : {−1, 1}n → {−1, 1}. If
∑n

i=1 wi(f, 0) = 0, thenf is constant.

Proof. We have

f(1n) =
∑

S⊆[n]

f̂(S, 0) =
n

∑

i=0

wi(f, 0)

is either1 or −1. Thus, if
∑n

i=1 wi(f, 0) = 0, then|f̂(∅, 0)| = |w0(f, 0)| = 1, i.e.,f ≡ 1 or f ≡ −1.

The connection between juntas and Fourier coefficients is given by the following characterization of
relevant variables:

Lemma 2 ([2, 23]). Let f : {−1, 1}n → {−1, 1}, r ∈ (−1, 1), andi ∈ [n]. Thenxi is relevant tof if and
only if there existsS ⊆ [n] with i ∈ S and f̂(S, r) 6= 0.

In particular, if f̂(S, r) 6= 0 for someS ⊆ [n] and somer ∈ (−1, 1), then all variablesxi, i ∈ S,
are relevant tof . Thus, one way to find relevant variables is to look for non-vanishing Fourier coefficients.
Furthermore, iff is ak-junta, thenf̂(S, r) = 0 for all S with |S| > k, i.e., looking at coefficients up to
levelk is sufficient for finding all relevant variables.

2.4 Sampling Fourier Coefficients

To approximate biased Fourier coefficients, we will make useof the Hoeffding bound [17]:

Fact 1 (Hoeffding bound, [17]). Let Xi, i ∈ [m], be mutually independent random variables taking values
in [a, b], a < b. Then for anyǫ ∈ [0, 1],

Pr

[∣

∣

∣

∣

∣

m
∑

i=1

Xi −
m

∑

i=1

E[Xi]

∣

∣

∣

∣

∣

≥ ǫm

]

≤ 2 exp

( −2mǫ2

(b − a)2

)

.
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Lemma 3. Let f : {−1, 1}n → {−1, 1}, r ∈ (−1, 1), S ⊆ [n], andδ > 0. Given access toEX (f, r), we
can estimatêf(S, r) within accuracyǫ > 0 from m = poly(2|S|, (1/σ)|S|, log(1/δ), 1/ǫ) examples in time
O(m · n) with confidence1 − δ, provided thatr is given exactly.

Proof. Draw m = 2 · ln(2/δ) · (2|S|/ǫ)2 · (1/σ)2|S| examples(xt, f(xt)) from EX r(f). Define∆ =
(maxxi∈{−1,1} |xi − r|)|S| = (1 + |r|)|S| ≤ 2|S|. Let g(x) = σ|S|f(xt)χS(xt, r) ∈ [−∆,∆]. Then, by
Fact 1,

∣

∣

∣

∣

∣

1

m

m
∑

t=1

g(xt) − σ|S|f̂(S, r)

∣

∣

∣

∣

∣

≤ ǫσ|S|

with probability at least1 − δ.

We will deal with the case thatr is not exactly given in advance in Section 6. To distinguish the cases
f̂(S, i) = 0 and f̂(S, i) 6= 0, we also need that a non-vanishinĝf(S, i) is not too small. For this, we will
use the following (straightforward) lemma:

Lemma 4. Let h ∈ R[x] be a polynomial of degreed with leading coefficientb and rootst1, . . . , td ∈ C.
Let t ∈ R andǫ > 0 such that|t − Re ti| ≥ ǫ for all i ∈ [d]. Then|h(t)| ≥ |b| · ǫd.

Proof. Sinceh(x) = b · ∏i∈[d](x − ti), |h(t)| = |b| · ∏i∈[d] |t − ti| ≥ |b| · ∏i∈[d] |t − Re ti| ≥ |b| · ǫd.

2.5 Derivatives

For a k-fold differentiable functionf : Rn → R and S = {i1, . . . , ik} ⊆ [n] with pairwise different
elementsij , denote by ∂k

∂xS
f = ∂k

∂xi1
...∂xik

f thek-th order partial derivative with respect toxi1 , . . . , xik .

Lemma 5. Letg ∈ R[t1, . . . , tn] be a multilinear polynomial (i.e., all exponents are at mostone) and define
h ∈ R[t] byh(t) = g(t, . . . , t). Then

dk

dtk
h(t) = k! ·

∑

S⊆[n]:|S|=k

∂k

∂tS
g(t, . . . , t) .

Proof. The easy way to see the claim is to simply apply the chain rule.For multi-linear polynomials,
though, we can as well check the claim “by hand”: By linearityof the construction ofh, it suffices to check
the claim for the case thatg is a monomial. Without loss of generality, assume thatg(t1, . . . , tn) = t1 . . . tℓ.
Let S ⊆ [n] with |S| = k. If S 6⊆ [ℓ], then clearly(∂k/∂tS)g = 0 = (dk/dtk)h. If S ⊆ [ℓ], then
(∂k/∂tS)g(t, . . . , t) = tℓ−k, so that

k! ·
∑

S⊆[n]:|S|=k

∂k

∂tS
g(t . . . , t) = k! ·

(

ℓ

k

)

tℓ−k =
ℓ!

(ℓ − k)!
tℓ−k .

On the other hand,h(t) = tℓ and thus(dk/dtk)h(t) = ℓ · (ℓ− 1) · . . . · (ℓ− k + 1) · tℓ−k = ℓ!
(ℓ−k)!t

ℓ−k.

3 An Extension of Russo’s Formula to General Product Distributions and
Higher Order Derivatives

In this section, we derive our connection between derivatives orEr[f ] and Fourier levels. In particular, we
prove Theorem 5 stated in Section 1.
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Proposition 1. Letf : {−1, 1}n → R, S ⊆ [n] with |S| = k, andr
∗ ∈ (−1, 1)n. Then

∂k

∂rS
Er[f ]

∣

∣

∣

r=r
∗

=
∏

i∈S

(1 − r∗i
2)−1 · Cov

r
∗

[

f,
∏

i∈S

(xi − r∗i )

]

= σ
∗

S

−1 · f̂(S, r∗) .

Proof. Expandingf with respect toµ
r
∗, we see that

Er[f ] =
∑

S⊆[n]

f̂(S, r∗)Er[χS(·, r∗)] =
∑

S⊆[n]

f̂(S, r∗)
∏

i∈S

ri − r∗i
σ∗

i

is simply the Taylor expansion of the multi-linear polynomial Er[f ], and the claim follows.

Putting together Proposition 1 and Equation (5), we obtain the relationship

f̂(S, r) = σS

∑

T⊇S

f̂(T, 0)rT\S . (6)

Theorem 5 in the introduction now follows from Proposition 1and Lemma 5, and (4) is a special case of (6).

4 Identifying One Relevant Variable Is Enough

In analogy to Proposition 6 in [23], we show that if we have an algorithm that identifies justone rele-
vant variable of a non-constantk-junta f using m = poly(log n, 2k, (1/α)k , log(1/δ)) examples from
EX (f, r1), . . . ,EX (f, rt) (whereα > 0 bounds away the biasesri from−1 and1) in timenβk poly(m,n),
then we can construct an algorithm that identifiesall relevant variables and outputs the truth table off using
m′ = t ·poly(log n, 2k, (1/α)k , log(1/δ)) examples in timenβk poly(m′, n) (for the sameβ, but a different
polynomial):

Proposition 2. LetA be an algorithm that, given access toEX (f, r1), . . . ,EX (f, rt) for some non-constant
k-junta f : {−1, 1}n → {−1, 1} and somer ∈ (−1 + α, 1 − α) (α > 0) and givenδ > 0, outputs with
probability at least1− δ one relevant variable off usingm = poly(log n, 2k, (1/α)k , log(1/δ)) examples
in timenβk ·poly(m,n). Then there is an algorithmB that, for anyk-juntaf : {−1, 1}n → {−1, 1}, given
access toEX (f, r1), . . . ,EX (f, rt) andδ > 0, outputs with probability at least1− δ all relevant variables
and a truth table off , usingm′ = t · poly(log n, 2k, (1/α)k , log(1/δ)) examples in timenβk poly(m′, n).

Proof. The proposition can be proved by an adaption of the proof of Proposition in [23], so we only point
to the necessary modifications of the latter. First, iff is non-constant, then each output valuef(x) is drawn
from EX ri

(f) with frequency at least(min{(1 − ri)/2, (1 + ri)/2})k ≥ (α/2)k . Thus, the check for
constancy with confidenceδ requiresO((2/α)k log(1/δ)) examples andpoly((2/α)k , n, log(1/δ)) steps.

Next, for restrictionsf |ρ of f fixing at mostk variables, each simulation of a draw fromEX ri
(f |ρ)

requires the draw ofO((2α)k log(m/δ)) from EX ri
(f).

SinceA is run at mostk2k times with confidence1 − δ/(k2k) each, it suffices to draw

O(m(2/α)k log(mk2k/δ)) = m log(m/δ) poly(2k, (1/α)k)

examples from each oracleEX (f, ri) (note thatA run on different restrictions may askm examples from
different oracles).

Finally, to read off a truth table off from the examples,poly((2/α)k , (1/δ)) examples (from any of the
oracles) are again sufficient to ensure with probability1 − δ that every possible assignment of the relevant
variables appears in the examples. The claim follows sincem = poly(log n, 2k, (1/α)k , log(1/δ)).
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5 Learning Relevant Variables via thes-th Level Fourier Algorithm

The goal of this section is to prove Theorem 3. Fors ∈ [n], let

Rs(f) =
{

r0 ∈ (−1, 1) | r0 = Re(r) for some rootr ∈ C of
d

dr
Er[f ] of multiplicity at leasts

}

.

By Theorem 5,Rs(f) contains allr ∈ (−1, 1) such thatw1(f, r) = . . . = ws(f, r) = 0 and in particular
all r ∈ (−1, 1) for which f̂(S, r) = 0 for all S ⊆ [n] of size1 ≤ |S| ≤ s.

Lemma 6. Let f : {−1, 1}n → {−1,+1} be a non-constantk-junta, s ∈ [k], andr ∈ (−1, 1) such that
dist(r,Rs(f)) ≥ γ > 0. Then there existsS ⊆ [n] with 1 ≤ |S| ≤ s such that|f̂(S, r)| ≥ σs(γ/4)k. In
particular, all variablesxi with i ∈ S are relevant.

Proof. Let r0 = r. Let g(r) = Er[f ]. By (3) and Lemma 1,g is a non-constant polynomial of degree
d = deg(g) ≤ deg(f) ≤ k with leading coefficientwd(f, 0). Let t ≥ 1 be minimal with(dt/drt)g|r=r0

6=
0. Sincer0 6∈ Rs(f), t < s. Let h = (dt/drt)g. Thenh is a non-zero polynomial of degreed − t ≤
deg(f)− t ≤ k− t. The highest coefficient ofh is b = d · (d− 1) · . . . · (d− t + 1) ·wd(f, 0). By Lemma 4,
|h(r0)| ≥ |b| · γd−t. Sincewd is a non-zero integer multiple of2−k, |b| ≥ d!

(d−t)!2
−k. By Theorem 5,

h(r0) = t!σ−twt(f, r0), so that

|wt(f, r0)| = (t!)−1σt|h(r0)| ≥
(

d

t

)

2−kσtγd−t .

Hence there existsS ⊆ [n] with |S| = t such that

|f̂(S)| ≥
(

k

t

)−1(d

t

)

2−kσtγd−t ≥
(

k

d

)−1

(γ/2)kσs ≥ (γ/4)kσs .

For the remainder of this section, we assume that a learning algorithm has exact knowledge of all biases.
However, we will show in Section 6 that this assumption is notnecessary.

Proposition 3. There is an algorithm such that iff : {−1, 1}n → {−1,+1} is a non-constantk-junta and
r ∈ (−1 + α, 1 − α) (for someα > 0) is such thatdist(r,Rs(f)) ≥ γ for someγ > 0, having access
to the oracleEX (f, r), for anyδ > 0 outputs at least one relevant variable off with probability at least
1 − δ usingm = poly(log n, 2k, (1/γ)k , (1/α)s, log(1/δ)) examples and running in timens · poly(m,n).
Furthermore, for arbitraryr ∈ [−1 + α, 1 − α], with probability at least1 − δ, any variable output by the
algorithm is relevant.

Proof. By Lemma 6, there existsS ⊆ [n] with 1 ≤ |S| ≤ s such that|f̂(S, r)| ≥ σs(γ/4)k ≥ αs/2(γ/4)k.
Thus, it suffices to estimate all coefficientsf̂(S, r), S ⊆ [n] with 1 ≤ |S| ≤ s, within accuracyαs/2(γ/4)k/2,
each with confidence1−δ·n−s, to identify (with probability at least1−δ) at least oneS such thatf̂(S, r) 6= 0
with confidence1 − δ. This takespoly(2|S|, (1/α)|S|, log(ns/δ), (4/γ)k(1/α)s) examples from the oracle
EX (f, r) by Lemma 3, and we can reuse the same examples to estimate all coefficients (since we use a
union bound for the confidence). Overall, the number of examples used is

m = poly(log n, 2k, (1/γ)k , (1/α)s, log(1/δ)) .

The algorithm outputs all variablesxi for which it finds a nonzero Fourier coefficientf̂(S) with i ∈ S. Since
we have to check

∑s
i=1

(

n
i

)

= O(ns) coefficients in the worst-case, the running time is bounded above by
ns · poly(m,n).
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For the second part of the claim, note that iff̂(S, r) = 0 (and especially, ifS contains an indexi
of some non-relevant variable), then the estimate for|f̂(S, r)| will with high probability be smaller than
αs/2(γ/4)k/2.

Theorem 6. Let s, t ∈ [k] such thats · t ≥ k, α, γ > 0, and−1 + α ≤ r1 < . . . < rt ≤ 1 − α with
rj+1 − rj ≥ γ for all j ∈ [t − 1]. Then there is an algorithm that, for any non-constantk-junta f :
{−1, 1}n → {−1,+1}, givenδ > 0 and having access to the oraclesEX (f, r1), . . . ,EX (f, rt), outputs a
relevant variable off with probability at least1 − δ, usingm = poly(log n, 2k, (1/γ)k , (1/α)s, log(1/δ))
examples and running in timens · poly(m,n).

Proof. Let h(r) = w1(f, r)/σ = (d/dr)Er[f ]. Sinceh is a nonzero polynomial of degree at mostdeg(f)−
1 ≤ k − 1 and sinces · t ≥ k, h has less thant roots of multiplicity at leasts. Consequently, there exists
j ∈ [t] such thatdist(rj ,Rs(f)) ≥ γ/2. Running the algorithm from Proposition 3 for every single biasrj,
j ∈ [t], (each time with confidence parameterδ/t, reusing the same examples) yields the claim.

Proof of Theorem 3.Theorem 6 shows that it is possible to identify at least one relevant variable from the
claimed number of examples in timens · poly(m,n). By Proposition 2, the claim follows.

We note that sinceh(r) is of degree at mostdeg(f) − 1, it actually suffices to haves · t ≥ d oracles if
we are given the promise thatdeg(f) ≤ d.

6 Biases Unknown in Advance

The algorithms provided in Section 5 require that all biasesri are precisely known to the learner. As one
might expect, this assumption is not necessary since a learner can get good estimates of the biases from
(unlabeled) random examples. The main technical issue is now to show that using good estimatesr′i still
leads to sufficiently close approximations of the Fourier coefficients with respect to the true biasesri. For
this it suffices to show thatχS(·, ri) andχS(·, r′i) are close inL2.

Lemma 7. Letα, γ > 0, r, r′ ∈ (−1, 1) such that|r| ≤ 1 − α and |r − r′| ≤ γ, S ⊆ [n]. Then

‖χS(·, r′) − χS(·, r)‖2,r ≤ |S| + 1

α1/2σ′s
γ .

To prove Lemma 7, we will first compute, givenr, r′ ∈ (−1, 1)n, the Fourier coefficients ofχS(·, r′)
with respect toµr. Although we only needr = r andr

′ = r′ for our applications, we state the result for
general bias vectorsr andr

′ since the proof does not simplify for the special case.

Lemma 8. Letr, r′ ∈ (−1, 1)n andS, T ⊆ [n]. Then

̂χS(·, r′)(T, r) = 〈χS(·, r′), χT (·, r)〉r =

{

0 if T 6⊆ S
σT

σ
′
S

(r − r
′)S\T if T ⊆ S .

.

Proof. We haveEr[χi(·, r′)] = (ri − r′i)/σ
′
i, Er[χi(·, r)] = 0, andEr[χi(·, r) · χi(·, r′)] = σi/σ

′
i. The

claim now follows from

〈χS(·, r′), χT (·, r)〉r = Er[χS(·, r′) · χT (·, r)]
=

∏

i∈S\T

Er[χi(·, r′)] ·
∏

i∈T\S

Er[χi(·, r)] ·
∏

i∈S∩T

Er[χi(·, r) · χi(·, r′)] .
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Now we bound theL2-norm of the difference betweenχS(·, r) andχS(·, r′). Here we do restrict our-
selves tor = r andr

′ = r′ to avoid an increase in technicality:

Proof of Lemma 7.By Parseval’s equation,

‖χS(·, r) − χS(·, r′)‖2
2,r =

∑

T⊆[n]

(

̂χS(·, r′)(T, r) − χ̂S(·, r)(T, r)
)2

.

By Lemma 8 and sincêχS(·, r)(T, r) = 0 unlessT = S, all summands forT 6⊆ S vanish. Furthermore,

Lemma 8 states that forT ⊆ S, ̂χS(·, r′)(T, r) = (σt/σ′s)(r − r′)s−t, where we lets = |S| andt = |T |.
Thus,

‖χS(·, r′) − χS(·, r)‖2
2,r ≤ ( ̂χS(·, r′)(S, r) − 1)2 +

∑

T(S

̂χS(·, r′)(T, r)2

= (σs/σ′s − 1)2 +

s−1
∑

t=0

(

s

t

)

(

(σt/σ′s)γs−t
)2

= (σ′)−2s
[

(σs − σ′s)2 + (σ2 + γ2)s − σ2s
]

.

Now we use the following two facts:

Fact 2. For anya, b ∈ [0, 1] with |b − a| ≤ ρ, |as − bs| ≤ s · ρ.

Proof. Let a < b. Then by convexity of the functionx 7→ xs, bs ≤ as + sbs−1(b − a) ≤ as + sδ.

Fact 3. If |r′ − r| ≤ γ, then|σ′ − σ| ≤ γ/σ.

Proof. Let σ(r) =
√

1 − r2. The derivative ofσ is (d/dr)σ(r) = − r
σ(r) . Sinceσ is concave, we have that

for anyδ such thatr, r + δ ∈ (−1, 1), σ(r + δ) ≤ σ(r) + (d/dr)σ(r)δ = σ(r) − rδ/σ(r). Since|r| ≤ 1,
the claim follows withr′ = r + δ, |δ| ≤ γ, σ′ = σ(r′), andσ = σ(r).

Let ρ = γα−1/2. By Fact 3 and sinceσ2 = 1 − r2 ≥ 1 − r ≥ α, |σ′ − σ| ≤ ρ. From Fact 2, we obtain
|σ′s − σs| ≤ sρ and(σ2 + γ2)s − (σ2)s ≤ sγ2. Consequently,

σ′2s‖χS(·, r′) − χS(·, r)‖2
2,r ≤ (sρ)2 + sγ2 = s2γ2/α + sγ2 ≤ (s + 1)2γ2/α .

This proves the lemma.

As a corollary, we obtain an estimate of how well〈f, χ(·, r′)〉r approximateŝf(S, r):

Corollary 1. Letf : {−1, 1}n → {−1, 1}, γ > 0, r, r′ ∈ (−1, 1) such that|r′− r| ≤ γ, andS ⊆ [n]. Then

∣

∣

∣
〈f, χS(·, r′)〉r − f̂(S, r)

∣

∣

∣
≤ |S| + 1

α1/2σ′|S|
γ .

Proof. By Cauchy-Schwartz,
∣

∣

∣
〈f, χ(·, r′)〉r − f̂(S, r)

∣

∣

∣
=

∣

∣〈f, χS(·, r′) − χS(·, r)〉r
∣

∣ ≤ ‖f‖2,r‖χS(·, r′) − χS(·, r)‖2,r .

The claim follows since‖f‖2,r = 1.

Next we show how to closely approximatêf(S, r) given no a priori knowledge onr:
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Lemma 9. Let f : {−1, 1}n → {−1, 1}, α > 0, r ∈ [−1 + α, 1 − α], S ⊆ [n], and δ > 0. Given
access toEX (f, r), we can estimatêf(S, r) within accuracyǫ fromm = poly(2|S|, (1/α)|S|, log(1/δ), 1/ǫ)
examples in timeO(m · n) with confidence1 − δ without any a priori knowledge onr.

Proof. Let γ = α(|S|+1)/2/(2(|S| + 1)) ≤ α1/2σ′|S|/(2|S| + 1), so that, in particular,γ ≤ α/2 ≤ σ2/2
(note that we may assume|S| ≥ 1 without loss of generality). First, we approximater to within γ by
requestingm1 = 8 ln(4/δ)/γ2 = poly(|S|2, (1/α)|S|, log(1/δ)) examples(xt, f(xt)) from EX (f, r) to
computer′ = (1/m1)

∑m1

t=1 xt
i. With probability at leastδ/2, |r′ − r| ≤ γ.

Now, letting g(x) = σ′|S|f(xt)χS(xt, r′), φ = (m2σ
′|S|)−1

∑m2

t=1 g(xt) approximates〈f, χS(·, r′)〉r
within accuracyǫ/2 givenm2 = poly(2|S|, (1/σ′)2|S|, log(1/δ), 1/ǫ) examples. Since

σ′ ≥ σ − γ/σ ≥ σ/2 ≥ α1/2/2

implies(1/σ′)2|S| ≤ (4/α)|S|, m2 is dominated bypoly(2|S|, (1/α)|S|, log(1/δ), 1/ǫ). Finally,

|φ − f̂(S, r)| ≤ |φ − 〈f, χS(·, r′)〉r| + |〈f, χS(·, r′)〉r − f̂(S, r)| ≤ ǫ/2 + (|S| + 1)α−1/2σ′−|S|γ ≤ ǫ .

The total number of examples to be drawn ismax{m1,m2}, which is of the order indicated in the claim.

Using Lemma 9 in place of Lemma 3 shows that Proposition 3, Theorem 6, and finally also Theorems 2
and 3 even hold if the biasesri are not known in advance (except for the bound|ri| ≤ 1 − α).

7 Further Results and Open Problems

7.1 Learning in Polynomial Time for All But Finitely Many Bia ses

We have seen that for eachk-juntaf , there are at mostk−1 biases in(−1, 1) for whichw1(f, r) = 0. Since
for ther-biased product measure,w1(f, r) does not depend onwherethe relevant variables are hidden, it is
not hard to see that there are at most(k − 1) · 2O(k2) biases for which there existssomek-juntaf (for any
n) with w1(f, r) = 0. Let us call these biasescritical. Let Sk denote the set of biasesr ∈ (−1, 1) such
that there exists a functiontr : N → N and ak-junta-learning algorithm that learns fromEX (f, r) in time
tr(k) · poly(n). ThenSk is exactly the complement of the critical points. This is because the minimum
distance between any two distinct critical points is a function of k only. This proves Theorem 4 stated in the
introduction. Consequently, for eachk, there are only finitely many biases for which junta-learning may not
be feasible in time polynomial inn. The next step (left for future research) is to find lower bounds ontr(k).

Generalizing to arbitrary product distributions with biasvectorr ∈ (−1, 1)n, we obtain thatw1(f, r) is
zero only for a set of biases of measure zero (since it is the zero set of a non-constant multi-linear polyno-
mial). Considering the polynomialsσf̂(i) separately for eachi ∈ [n], we recover the statement of [23] that
f̂(i, r) = 0 for all i ∈ [n] only for a set of measure zero.

7.2 Open Problems

Next to the notoriously hard problem of designing more efficient algorithms for the junta learning problem
under the uniform distribution, it would also constitute considerable progress to have, for any concretely
given fixed biasr 6= 0, somealgorithm improving over thenk bound. Note that we have shown in Section 7.1
that for all but finitely manyr, the degree-one algorithm works. However, it is not clear how to decide in
general whether a given bias is critical. We believe that therelationship (3) between Fourier coefficients
with respect to different biases could be useful to this end.

In a different direction, it seems worthwhile to further study our newly introduced model of learning
from multiple oracles. Can we show positive results for other learning problems that appear to be hard in the
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classical PAC setting? In particular, is there an efficient algorithm for learning DNFs or decision trees from
multiple distributions? What general conditions on the distributions are required to make efficient learning
possible? As thenumberof oracles obviously constitutes a significant resource parameter, it is natural to
ask if polynomial time learning of juntas is also possible from o(k) oracles (maybe at least for important
subclasses).
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