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Multiple Random Oracles Are Better Than One

Jan Arpe and Elchanan Mossel
U.C. Berkeley ar pe, nossel | @t at . ber kel ey. edu

Abstract

We study the problem of learningjuntas given access to examples drawn from a number of dif-
ferent product distributions. Thus we wish to learn a functfon{—1,1}" — {—1,1} that depends
on k (unknown) coordinates. While the best known algorithms for the general problem of learning a
k-junta require running time af” poly(n, 2¥), we show that given access kadifferent product distri-
butions with biases separated py> 0, the functions may be learned in tipely(n, 2%, v~*). More
generally, given access to< k different product distributions, the functions may be learned in time
n*¥/tpoly(n, 2, ~~*). Our techniques involve novel results in Fourier analysis relating Fourier expan-
sions with respect to different biases and a generalization of Russo’s formula.

Keywords: learning juntas, PAC learning, biased product distributions, Fourier analysis of Boolean func-
tions, Russo’s formula

1 Introduction

1.1 Motivation

A k-juntais a functionf : {—1,1}" — {—1,1} that only depends on a subsettofariablesz;,, ..., z;,.

Blum and Langleyl[6] proposed the problem of learning the clagsjahtas, which we refer to as thenta
learning probemas a clean and appealing model of learning in the presence of much irrelevant information.
It is considered to be among the most important problems in computational learning theory tol date [4,
23]. In addition to being an interesting class in itself, the importance of learning juntas is supported by its
connections to learning decision trees and DNFs,[see [23]. Mossel, O’Donnell, and Serviedio [23] observed
that junta learning is efficiently solvable in the membership query model and in the random walk model,
whereas it is provably hard in the statistical query model. What lies in between is the uniform distribution
PAC model for which[[2B] presented an algorithm with running time rougity* , being the currently

best improvement upon a straightforward algorithm that runs in roughbteps. For general distributions,

no such improvement is known. The little progress on the junta learning problem in the PAC model to date
might be considered evidence of the hardness of the problem in this model. At the same time, however, no
lower bounds are available, either.

Apart from devisingfastlearning algorithms, another goal is often to hése sample complexitgi.e.,

a small number of examples needed to learn). Information-theoretiéallylogn + 2) examples are
necessary and sufficient for learnikguntas onn bits ([7,(26, 1]). The algorithm of [23], however, needs
to draw roughlyn®-3* examples in the worst case.

It thus seems reasonable to ask if we can find a natural extension of the PAC learning model under fixed
distributions that admits junta learning algorithms that run in tifidg - poly(n) for some functiort that is
independent of: and some polynomial that is independent&oMoreover, such algorithms should ideally
uses(k) - O(log n) examples for some functionindependent of..

In this paper, we propose such a model: instead of giving the learner access to only one oracle, we study
the setting in which a learner has accessndltiple oracles that generate examples according to different



distributions. Although in this paper, we are mainly intdegl in learning from product distributions, we
introduce the model in more generality since we believe shadlying the learnability of other classes in
this model, possibly under less restricted distributiaesa worthwhile goal for future research. In data
mining and applied machine learning, researchers ofteartd&mm the assumption of having access to
only one source of data in order to capture more realistioates such as having multiple sources of
different quality [10/ 111], receiving partial informatiabout tuples of examples [12], or observing sets of
different attributes for the same examples![21]. We mentivee possible real-world learning scenarios
in which our model can be applied: e.g., the examples couldldieined as series of measurements in
certain experimental setups, so that different oraclesespond to different setups, resulting in different
distributions over the instance space. Or, examples caelgampled from disjoint populations in which
the distributions of attributes differ significantly. Ama&r application comes into mind when considering
data generated by mixture of distributions. After applying algorithms to tell the ttibutions apart (say,
from unlabeled examples) [19,128,/13], one could use alymstdesigned for the model of learning from
multiple distributions to finally learn the concept undensioleration.

For our results on the junta learning problem, we considbiased oracleghat generate examples
(x, f(x)) according tor-biased product distributiong,- on {—1,1}" for biasesr € (—1,1). These are
distributions such that every variabtgindependently takes on valued and+1 with probability (1 —r) /2
and(1 + r)/2, respectively (so thd,,, [z;] = r).

As in the setting with one uniform distribution oracle [234}i6 is the case = 0), we show that the
junta learning problem from multiple oracles reduces ta#s& of identifying at least one relevant variable.
In general, a conceptual method to identify relevant véegls to find non-vanishingourier coefficients
f(S,r), S C [n], wherer denotes the bias of the underlying distribution. The Fawafficient (S, r)
measures the correlation between the function vl and the functionys(x,r) = [[,c,(z; — r) (see
Sectior 2.8 for details). Most of the literature focusestmndase: = 0, in which xs(x,0) reduces to the
parity of the variables indexed iy, andf(S 0) is commonly denoted by]( ). The point is that whenever
f(S, r) # 0, then all variables:; with i € S are relevant. If we pursue the search by starting with stogke
S and then move on to higher levels, this method takes timetatyati f(S, r) = 0 for all S of size up tos.
The question is how to proceed if such a situation occursdoress € w(1). In [23] it is proposed to use a
second approach based on the calculation of the coefficxéti® polynomial representation gfover the
two-element field and shown a trade-off betweemd the degree of this polynomial. In a different direction,
Aticl and Servedid [3] enhance the uniform PAC model by a tuarsubroutine to circumvent exhaustive
search for non-zero Fourier coefficients. Our solution t@ gine learner access to several (classical) oracles
can be considered as another (and maybe more realistin)atite.

From a conceptual viewpoint, our main result shows thatuhégjlearning problem is efficiently solv-
able in apassivelearning model (as opposed to allowing the learner to dgti@sk membership queries)
with independent random exampl@s opposed to learning from, say, random walks, where elesnape
highly correlated).

1.2 Our Results

We solve the problem of vanishing Fourier coefficients upigh evels by considering Fourier coefficients
with respect to multiple distributions: we show that if abluier coefficientsf (S, ;) of ak-junta f vanish
up to levels with respect ta different biases, ..., r, thens -t < deg(f), where

deg(f) = max {|S| | f($) #0} <k

is thedegreeof f. Specifically, we prove



Theorem 1. Letf : {—1,1}" — {—1, 1} be non-constant function andt € N be such that-¢ > deg(f).
Letry,...,r € (—1,1) be arbitrary pairwise different biases. Then there exists & [¢] and a setS C [n]
with 1 < |S| < s such thatf (S, r;) # 0.

Letting s = 1 andt = k, TheoreniIL implies that there are at mbst 1 different biases such that all
r-biased first-level Fourier coefficients fifvanish. As a consequence, whenever a learner has acdess to
biased oracles fat pairwise distinct biases, it suffices to consider, for each given bigonly coefficients
f(S,r) at all singletonsS in order to find at least one relevant variable. The main tieethissue we have
to take care of is that Theoredm 1 does not rule out the poisgithiat |f(S, r;)| could be extremely small,
so that it would require a large amount of examples to tellthwiea coefficient is nonzero. To take this
into account, we add the requirement that the biases aresegdirated, i.e., have pairwise distance at least
~ > 0. In addition, we allow the running time to also depend on tivetise of the minimum distance of the
biases to-1 or 1 since the degenerate cases- —1 or r = 1 only produce the single exampl(e, f (7)),
from which we cannot learn anything. Heralenotes the vector with all entries equal te. Our main
learning theory application of Theorém 1 (in the speciakeas 1 andt = k) is:

Theorem 2. Let—1 4+ a < r; < ... < ry < 1 — « for somea > 0 such that for alli € [k — 1],
ri+1 — 1 > v > 0. Then the class df-juntas is exactly learnable with accessrtebiased oracles; € [£],
fromm = poly(logn, 2%, (1/7)*,1/a,log(1/68)) examples in tim@oly(m,n).

Theoren{ P immediately follows from the following generatibn which is based on the general case
(s-t > k) in Theoreni 1. The trade-off between the number-bfased oracles to which a learner has access
and the level up to which the learner has to inspect the Focoefficients results in a trade-off between the
number of oracles and the running time:

Theorem 3. Letk,s,t € Nsuchthats-¢t > kand—-1+a <r < ... <r, <1—«aforsomex > 0
such that for all; € [t — 1], r;41 — r; >~ > 0. Then the class di-juntas is exactly learnable with access
to r;-biased oracles; € [t], usingm = poly(logn, 2%, (1/7), (1/a)*,1og(1/5)) examples and running in
timen® - poly(m,n).

In other words, given access tdiased oracles with biases separatedyby 0, the class of-juntas
is learnable in time*/! poly(n, 2¥,v~*). We should mention that we must haye> 2/t to be able to
separate biases, so thag~* > (¢/2)%. If t = k, the running time is thus at least polynomiaffios .

Theorem$ 2 and] 3 are valid even if the biases are not knowrettetiner in advance. This follows
since given the promise that the examples are generateddaugdo r-biased product distributions, the
learner can efficiently approximate these biases to witigh laccuracy (even from unlabeled examples)
and working with such approximate biases is sufficient t@geze non-vanishing Fourier coefficients of
the true biases (see Sectidn 6).

It is observed in[[23] that except for a set of measure zeroradlyrct distributions with bias vectors
r = (ry,...,m) € [—1,1]" (i.e., E[z;] = r;), everyk-junta f has nonzero correlation with each of its
relevant variables. They concluded that for each such vettmasesk-juntas are learnable with confidence
1—dintimepoly(2*,n, log(1/6)). However, the correlations may become arbitrarily smalthst in order
to identify nonzero correlations, these have to be apprataohvery precisely. As a consequence, the growth
of the poly expression heavily depends on the bias vectavliore precisely, the running time depends on
2¢k \where the constanrtdepends on the choice of

When we restrict the product distributionsrtdviased distributions, we can improve from a set of mea-
sure zero of exceptional bias vectordfitately many exceptional biases: for fixédand arbitraryn, there
are only finitely manycritical biasesr € (—1,1) such that there exists/ajunta f with f(z‘,r) = 0 for all
i € [n]. As an application, we show



Theorem 4. Letk € N. Then for all but finitely many biasesc (—1, 1), there exists a functiot) : N — N
such thatk-juntas are exactly learnable under thebiased distribution in time,. (k) - poly(n, log(1/9)).

Note that, unlike this rather non-constructive result, algorithm for the “multiple-oracles model”
works for k arbitrary and unknown biased product distributions.

1.3 Our methods

Denote byE,[f] the expected value of (x) under ther-biased distribution7( € (—1,1)). Our main

technical tool is a formula that connects the higher-ordeivdtives ofE, [ f] with respect to- to the Fourier

weights at certain levels of the Fourier spectrum. The fdanisi close in spirit to Russo’s well-known

formula for monotone functions and generalizations thigkearbitrary bounded functions on the hypercube.
Russo’s formula [24] states that foronotoneBoolean functions : {—1,1}" — {—1,1},

SR =Y ]
1=1

More generally, the following connection between the dgaive of the expectation (with respect to the bias)
and correlations between the function value and the vaaiblknown (see Grimmett [15, Theorem 2.34]):
d 2\—1 &
B[] = (1=7%)7" Covi, [£(x), ) wi] (1)

i=1

(here, we have translated Grimmett's notation to our sgttand Cov denotes the covariance). Since
f@,r) =07t Cov,[f,z; — r] = 0~ Cov,[f, z;] (see Section 213} (1) can be rewritten as

CE[f]= () > fin). 2)
Define theweightw,(f,r) of the s-th r-biased Fourier level off as the sum of alF-biased Fourier
coefficients at levet, i.e., R
ws(fir) =Y f(Sr).
SC[n]:|S|=s
We use the following generalization of formuld (2) which wtribute to folklore (and to the best of our
knowledge, has not been published before).

Theorem 5(Generalization of Russo’s Formuld)et f : {—1,1}" — R, s € [n], andr, € (—1,1). Then

ds

s!

r = @ =rzpr )

Theorenib follows from a similar statement for product distiions with arbitrary biases (see Proposi-
tion[dl). The second ingredient to prove Theotédm 1 is the @htien that we can write

Er[f] = Z wt(fa O)Tt (3)
t=0

(see Sectiofi]2) and that this is a polynomial-inof degree at mosteg(f). Moreover, this polynomial is
constant (inr) if and only if f is constant. From Theorei 5, we obtain that if for sormgethe Fourier
coefficientsf (S, r.) vanish for allS C [n] with 1 < |S| < s, then(d" /dr")E,[f]| =0forallt € [s],

T=Tr*

4



i.e., . is ans-fold root of the nonzero polynomidll/dr)E,[f], which is of degree at mosteg(f) — 1.
Since there can be at mdsteg(f) — 1)/s roots of multiplicity s, this proves Theorefd 1. To the best of our
knowledge, this is the first application of Theorem 5 in tle#ical computer science. Let us remark further
that we obtain the following relationship between Fouriaigits with respect to different measures as a
consequence of Theordh 5 and Equatidn (3):

wn(for) = 1= 3 (untr.on @
t=s

1.4 Related Work

If we restrict ourselves to subclasseskefuntasf : {—1,1}" — {—1,1} such as monotone or symmetric
juntas (i.e., juntas invariant under permutations of tHevemnt variables), there do exist at least partially
satisfying solutions to the junta learning problem: under ainiform distribution, monotonk-juntas are
learnable in timepoly(n, 2¥) from poly(log n, 2¥) examples[[28] and symmetric juntas are learnable in
time nO#/108k) holy(n, 2F) [20,[22]. Furthermore, results for other learning more ganelasses under
fixed product distributions have been obtained [14/ 16 pSnéluding the polynomial time learnability of
monotoneO (log? n/ log? log n)-juntas. Notably, also parity juntas, i.e., parities ofsets of at most vari-
ables, are efficiently learnable from product distribusigeven in the presence of attribute and classification
noise), with the restriction that every variable has a nerbias|[[2].

Recently, Atici and Servedio|[3] have studied the juntarniea problem for the case that the learner
has access to a uniform distribution PAC oracle plus a quardtacle. They showed thatjuntas are
learnable within accuragyfrom O (e~ 'k log k) quantum examples ari@(2* log(1/¢)) classical (uniformly
distributed) examples, both bounds being independent &fiven this dramatic speed-up (which is impos-
sible to achieve from classical queries only), we ask theemealistic question what can be done if we are
given access tmultiple classicabracles.

Interestingly, our results are obtained in terms of purédgistical evaluation of the given data, i.e., one
can interpret the Fourier algorithm as a statistical qu&)(algorithm with respect to several distributions.
While in the original SQ model [18], in which queries are exiéd with respect to the uniform distribution
on the input space, (parity) juntas are provably not effitydearnable([5, 8, 23], our results show that such
a lower bound is not valid if queries are evaluated with resfeseveral distributions.

1.5 Organization of this Paper

We introduce all necessary prerequisites in Se¢tion 2. ti@¥3 we present the generalization of Russo’s
formula. The reduction to identifying only one relevantiabte is shown in Sectionl 4. In Sectiéh 5,
we prove Theorern]3 that addresses learnability viasthte level Fourier algorithm from several oracles.
Section[6 shows that the biases do not have to be known in eglvakinally, we prove Theorefd 4 in
Sectior 7.1l and propose open problems in Se€tidn 7.2.

2 Preliminaries

2.1 General Notation, Juntas, and Probability Theory

LetN = {0,1,2,...}, and forn € N, let [n] = {1,...,n}. We use boldface letters suchgsx, ando
to denote (real) vectors of length The corresponding entries are denoted-Qyz;, o;, and so forth. For
x € {—1,41}™ andi € [n], denote byx(®) the vectorx with the sign of the-th entry flipped.



Definition 1 (Relevant variables)Let f : {—1,1}" — {—1,1}. Fori € [n], the functionf dependsn
variablez; (equivalently,z; is relevantto f) if there exists ax € {—1,1}" such thatf (x()) # f(x).

Definition 2 (Junta) Let f : {—1,1}" — {—1,1} andk € [n]. The functionf is ak-juntaif it depends on
at mostk variables.

Let x1,...,z, be independent random variables taking valsésand+1 with E[z;] = r; € [-1,1].
The valuer; is called thebiasof z;. Equivalently,Pr[z; = —1] = (1 — r;)/2 andPr[z; = 1] = (1 4+ r;)/2.
In this way,{—1, 1}" is equipped with the product measwg, r = (r1,...,r,), given by

n

pr(x) = [ (1 + rizi) /2)

i=1

forx € {—1,1}". Forf : {—1,1}" — R, we denote byEy[f] the expectation of with respect tquy.
Furthermore, forf,g : {—1,1}" — R, let

Covrlf,g] = Er[(f — Er[f])(g — Exr[g])] = Ex[f - 9] — Er[f] - Er[g]

denote the covariance gfandg with respect touy. Denote byo; = (1 — r?)l/ 2 the standard deviation
of z; and leto = (o1,...,0,). We will mostly be interested in the case that all biaseare equal. For
€ [-1,1], let7 = (r,...,r) be the vector that consists ofentries that are all equal to In this case, we
write o = o(r) = v/ 1 — r2. We will frequently use that ifr| < 1 — « for somea > 0, theno > /. The
measureur is called ther-biased product distributionWe also writeu,- instead ofur, E,. instead oft, etc.

2.2 Learning Theory

We introduce an extension of the classical PAC model [27]t A.e= |J,,.yCn be a class of functions,
where eacl, contains some functiong : {-1,1}" — {-1,1} and letM = |J, .y M, be a class of
input distributions where eachM,, contains distributions o§—1,1}". For f € C, and a distribution
uw € M,, denote byEX (f, 1) anoraclethat on request generates= {—1, 1}" according tqu and returns
the example(x, f(x)). Forr € [—1,1], we call EX(f, 1) anr-biased oracle Let us first review the
original PAC model. The class is PAC-learnable under distributiond if there is an algorithmA that
for all n € N, all functionsf € C,, and all distributiong: € M,, on{—1,1}", givend,e > 0 and access
to EX (f, 1) but no further knowledge ofi and ., outputs ehypothesig : {—1,1}" — {—1,1} such that
with probability at least — ¢ (taken over all random draws of the oraclB)x.,[h(x) # f(x)] < e. If
M,, is the class ol distributions on{—1,1}", we say that is distribution-free PAC-learnablelf M,,
only contains theiniform distributionon {—1, 1}", we say that is uniform distribution PAC-learnablef
M,, is the class of alt-biased product distributions,. on{—1, 1}", we say that is learnable from biased
distributions If A even manages to output exacfly(i.e.,e = 0), we say that is exactly learnable

The performance of a learning algorithm is measured by tinebeun of examples it requests and by its
running time, both of course depending @, n, and possibly further parameters involved in the definition
of the clas<.

Now we study what happens if, instead of having access toglesoracle EX (f, 1), we admit the
learning algorithm to have accessniltiple (pairwise different) oracle®X (f, u;), i € M,, fori € [t]. If
we do not impose any restrictions other than being pairwiféerent on the distributiong,;, then the learner
does not gain any power since the distributions could berarlty close to each other. Thus, we allow the
running time to depend on the minimum distancbetween pairs of distributions (at this point, we leave
open the choice of appropriate distance measures).



The notion of learnability is the same as above, except tlateguire that the hypothesis output by a
learning algorithm has to satisfy with probability at le@st § thatPr,.,, [h(x) # f(z)] < eforall i € [t].

In this case, we say thétis PAC-learnable front oracles under distributiong1 with separationy.

In the following, we motivate in which variants of this vergrmeral new learning model we are interested.
Our goal is to find efficient learning algorithms for the clags-juntas. More precisely, for a non-decreasing
functionk : N — N, we want to learn the class = |J,,yCn, WhereC,, consists of allk(n)-juntas
f:{-1,1}" — {-=1,1}. The fastest known (exact) learning algorithm ¢bin the uniform distribution
PAC-learning model runs in time” 7% poly(n, 2¥,1og(1/6)) [23]. Moreover, fork € w(1), there isnot any
explicit distribution . for which C is known to be PAC-learnable undgrin time ¢(k) - poly(n,log(1/6))
with an arbitrary functiort : N — N. It thus seems reasonable to ask if we can do any better if eve ar
given access to more than one oracle with sevampledistributions (possibly known to the learner). We
will show that this is in fact the case if the distributionse driased product distributions,, with well-
separated biases, even without prior knowledge on the biases (except thah éacshould be bounded
away from1). Consequently, we manage to learn efficiently in the moflé&AC-learning from multiple
biased product distributionsThe separation of biases will be reflected in the dependehtige running
time ony = min;; [r; — 7.

2.3 Fourier Coefficients
Fort € R™ andS C [n], definets = [[;.qt:. In particular, forx € {—1,1}", xg is theparity of bits in
x indexed bysS, and forr € [—1,1]", Er[xgs] = [[,cg Er[zi] = rs. Fori € [n] andr € (—1,1)", define

Xi(x,r) = (x; — r;)/o; and forS C [n], let xs(x,r) = Hies Xi(x,7).
The measurey induces the inner product

Foge =Exlf-gl= S mr(x)f(x)g(x)

Xe{-1,1}"
onR{-L1}" The associated norm is

[ fllox = (£, )x'* = ExlF7V/2.
The functionsys = xs(-,r), S C [n], form an orthonormal basis of this space with respe¢t,tor:

(xs:xs)r =EBr[x3 =] w =1,

ics i
and ifi € S\ T for some setsS, T' C [n], thenEr[xsx7] = Er[x:]Er[xs\ (i3 x1] = 0 sinceEr[x;] = 0.

We can expand any functiof: {—1,1}" — R as a linear combination of the functions (-, r), called
the Fourier expansiorof f with respect tquy:

F=Y(fxs)rxs

SC[n]

and we callf(S,r) = (f, xs)r the Fourier coefficient off at S with respect tquy. Note thaty;(-,r) is a
linear function inz; and thusys(-, r) is a multi-linear polynomial in the variables, i € S (of degregS|).
Consequently, the Fourier expansion (with respect toragy(—1, 1)") provides a representation gfas a
real multi-linear polynomial of degree

deg(f,r) = max{k € [n] | 3S C [n]: |S| = kA f(S,r) #0} .



Since this degree does actually not depend (there is exactly one polynomial representatiory pfwe let

deg(f) = deg(f,0). ) A A
If S = {i} is a singleton set, we also wrif, r) instead off({i},r). Note that forS # ), f(S,r) =
Covr[f, xs(-,r)] sinceEr[xs(-,r)] = 0. Putin another way,

olS| -f(S, r) = Covy [f,H(xl — n)] )

€S

In case we consider thebiased product measure for some (—1,1), we call f(S,r) = f(S,7) anr-
biased Fourier coefficientin particular,f(@, r) = (f,1), = E,[f] (again using- as subscripts rather thah
For the uniform measurgr with » = 0, the Fourier expansion of directly results in the representation
of f as a real multilinear polynomial in canonical form (i.e.jreear combination of monomialsg) since
Xs(x,0) = xg0 f(x) = X gc i £(5,0) - xs. Since forr € [~1,1]", Ex[xs] = rg, we obtain

Er[f]= Y f(S,0)rs, (5)
SC[n]

of which (3) is the special case=7 for r € [—1, 1].
Theweightof thei-th Fourier level off with respect tquy is defined to be

wi(fry= Y f(Sr).
SCln]:|S|=i
Lemmal. Letf: {—1,1}" — {—1,1}. If >, w;(f,0) = 0, thenf is constant.
Proof. We have
Fam) =" £(5,00=> wi(f,0)
SCln] i=0
is eitherl or —1. Thus, if S, w;(f,0) = 0, then|f(0,0)| = [wo(f,0)| =1,i.e.,f=lorf=—-1. O

The connection between juntas and Fourier coefficientsvisngby the following characterization of
relevant variables:

Lemma 2([2,23]). Letf : {-1,1}" — {-1,1},r € (—1,1), andi € [n]. Thenz; is relevant tof if and
only if there existsS C [n] withi € S and f(.S,r) # 0.

In particular, if f(S,r) # 0 for someS C [n] and some- € (—1,1), then all variables:;, i € S,
are relevant tgf. Thus, one way to find relevant variables is to look for nonistaing Fourier coefficients.
Furthermore, iff is ak-junta, thenf(S,r) = 0 for all S with |S| > k, i.e., looking at coefficients up to
level k is sufficient for finding all relevant variables.

2.4 Sampling Fourier Coefficients

To approximate biased Fourier coefficients, we will makeafdbe Hoeffding bound [17]:

Fact 1 (Hoeffding bound,[[1/7]) Let X;, i € [m], be mutually independent random variables taking values

in [a,b], a < b. Then for any € [0, 1],
m m > <2 —2me”
m X D ra—— .
= =P = a)?

Y Xi— ) E[X]]

1=1 i=1

Pr




Lemma 3. Letf: {-1,1}" — {-1,1},r € (=1,1), S C [n], andd > 0. Given access t&X (f,r), we
can estimatef (S, r) within accuracye > 0 fromm = poly(21°l, (1/0)1%1 1og(1/6), 1/¢) examples in time
O(m - n) with confidence — ¢, provided that- is given exactly.

Proof. Draw m = 2 - In(2/6) - (2!1/€)% - (1/0)?5 examples(x!, f(x!)) from EX,.(f). DefineA =
(maxg,e—11} [z — )15 = (1 + [7)IS] < 2151 Letg(x) = o/*l f(x")xs(x",7) € [-A,A]. Then, by
Fact1,

1 & R
— > g(x") = ¥lf(S,r)| < el
m
t=1
with probability at least — 6. O
We will deal with the case thatis not exactly given in advance in Sectign 6. To distingulsh ¢ases

f(S,i) = 0and f(S,i) # 0, we also need that a non-vanishifi¢S, i) is not too small. For this, we will
use the following (straightforward) lemma:

Lemma 4. Leth € R[z] be a polynomial of degreé with leading coefficienbt and rootst, ... ,t; € C.
Lett € R ande > 0 such thatlt — Ret;| > e forall i € [d]. Then|h(t)| > |b] - °.

Proof. Sinceh(z) =b - [[;cq(z — i),

h(t)] = 1B - Tlicq It — til = [b] - Tlicq It — Rets| > [b] - e?. O

2.5 Derivatives

For ak-fold differentiable functionf : R® — R andS = {i,...,ix} C [n] with pairwise different

elements;, denote by(%f = %f the k-th order partial derivative with respecttg,, ..., z;,.
S Liq - OTqp,

Lemmabs. Letg € R[ty,...,t,] be a multilinear polynomial (i.e., all exponents are at must) and define

h € R[t] by h(t) = g(t,...,t). Then

d* ok
— = k! il
h(t) = ! > 8th(t, L)
SC[n):|S|=k

Proof. The easy way to see the claim is to simply apply the chain rier multi-linear polynomials,
though, we can as well check the claim “by hand”: By lineaatyhe construction of, it suffices to check
the claim for the case thatis a monomial. Without loss of generality, assume y{at, ..., t,) = t1 ... t.

Let S C [n] with |S| = k. If S € [/], then clearly(0¥/dts)g = 0 = (d*/dt*)h. If S C [¢], then
(0F/0ts)g(t,. .., t) = t'F, so that

oF 0\ 14 _
K> —g(t...,t)zk!-<k>tf b= (g_k)!te i

SCln:IS|=k Ots

On the other handy(t) = t* and thug(d* /dtF)h(t) = £- (£ —1) ... (L —k+1)-t'7F = ﬁtf—k. O

3 An Extension of Russo’s Formula to General Product Distrilutions and
Higher Order Derivatives

In this section, we derive our connection between derieatirEy[f] and Fourier levels. In particular, we
prove Theorerfi]5 stated in Sect{dn 1.



Proposition 1. Let f : {—1,1}" — R, S C [n] with |S| = k, andr* € (—1,1)". Then

S | RS 1@w*kly —ﬁiza?”ﬂ&ﬁ%

€S €S

ak
81’5

Proof. Expandingf with respect tq.,.x, we see that

= 3 Jsa st = 3 fisr =

SCln] ies i

is simply the Taylor expansion of the multi-linear polynaity|f], and the claim follows. O

Putting together Propositidd 1 and Equatioh (5), we obtadnrélationship

fSr)=05> F(T,0rps. 6)

T2S

Theoreni b in the introduction now follows from Propositidarid Lemmalb, and{4) is a special casé bf (6).

4 Identifying One Relevant Variable Is Enough

In analogy to Proposition 6 in_[23], we show that if we have #&oathm that identifies jusbnerele-
vant variable of a non-constaitjunta f usingm = poly(logn,2*, (1/a)¥, log(1/5)) examples from
EX(f,r1),..., EX(f,r:) (Wherea > 0 bounds away the biasesfrom —1 and1) in time n* poly(m, n),
then we can construct an algorithm that identiiiselevant variables and outputs the truth tablg¢ oking
m! = t-poly(logn, 2%, (1/a)¥,1og(1/8)) examples in time** poly(m/, n) (for the sames, but a different
polynomial):

Proposition 2. Let.A be an algorithm that, given accessitX (f, ), . .., EX(f,r;) for some non-constant
E-junta f : {-1,1}" — {—1,1} and some" € (-1 + a,1 — a) (o > 0) and givens > 0, outputs with
probability at leastl — & one relevant variable of usingm = poly(logn, 2%, (1/a),log(1/5)) examples
in timen®* - poly(m, n). Then there is an algorithis that, for anyk-junta f : {—1,1}* — {—1,1}, given
access t&#X (f,r1),..., EX(f,r)andd > 0, outputs with probability at least — ¢ all relevant variables
and a truth table off, usingm’ = t - poly(log n, 2%, (1/a)¥,1og(1/6)) examples in time’* poly(m/, n).

Proof. The proposition can be proved by an adaption of the proof op&sition in [23], so we only point
to the necessary modifications of the latter. Firsy, i6 non-constant, then each output vajie) is drawn
from EX,,(f) with frequency at leastmin{(1 — 7;)/2, (1 + r;)/2})* > (a/2)*. Thus, the check for
constancy with confidencgrequiresO((2/a)* log(1/4)) examples angoly((2/a)*, n,log(1/5)) steps.
Next, for restrictionsf|, of f fixing at mostk variables, each simulation of a draw froB¥X ., (f|,)
requires the draw a®((2a)" log(m/d)) from EX . (f).
SinceA is run at mosk2” times with confidence — §/(k2*) each, it suffices to draw

O(m(2/a)* log(mk2"/8)) = mlog(m/3) poly(2*, (1/a)*)

examples from each oracleX (f,r;) (note that4 run on different restrictions may ask examples from
different oracles).

Finally, to read off a truth table of from the examplesyoly((2/a)*, (1/5)) examples (from any of the
oracles) are again sufficient to ensure with probability § that every possible assignment of the relevant
variables appears in the examples. The claim follows since poly(log n, 2, (1/a)*,log(1/6)). O
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5 Learning Relevant Variables via thes-th Level Fourier Algorithm

The goal of this section is to prove TheorEin 3. Far [n], let

Rs(f) = {ro € (—1,1) | 1o = Re(r) for some root- € C of diEr[f] of multiplicity at leasts } .
T
By TheorenibR,(f) contains all- € (—1,1) such thatw; (f,”) = ... = w,(f,r) = 0 and in particular
all r € (—1,1) for which f(S,r) = 0forall S C [n] of sizel < |S| < s.

Lemma6. Let f : {—1,1}" — {-1,+1} be a non-constant-junta, s € [k], andr € (-1, 1) such that
dist(r, Rs(f)) > v > 0. Then there exists C [n] with 1 < |S| < s such that|f(S,7)| > o*(v/4)F. In
particular, all variablesz; with: € S are relevant.

Proof. Let rg = r. Letg(r) = E,[f]. By (3) and Lemmally is a non-constant polynomial of degree
d = deg(g) < deg(f) < k with leading coefficientvy(f,0). Lett > 1 be minimal with(d' /dr!)g|,—,, #

0. Sincerg € Rs(f), t < s. Leth = (d'/drt)g. Thenh is a non-zero polynomial of degree— t <
deg(f)—t < k—t. The highest coefficientdfisb=d-(d—1)-...-(d—t+1)-wy(f,0). By Lemmd4,
|h(ro)| > |b] - v¢t. Sincewy is a non-zero integer multiple &%, |b| > (df’t)!Q"“. By Theoren b,
h(ro) = tlo~tw(f,70), SO that

[we(f,mo0)l = (1) o' |h(ro)| 2 <Zl> 2 Fatyd=t

Hence there existS C [n] with |S| = ¢ such that

72 <k> h <?> 2oy 2 (S) _1(7/2)’“05 > (y/4)ko® .

t
U

For the remainder of this section, we assume that a learigogitam has exact knowledge of all biases.
However, we will show in Sectidnl 6 that this assumption ismetessary.

Proposition 3. There is an algorithm such that ff: {—1,1}" — {—1,41} is a non-constank-junta and
r € (=14 a,1 — a) (for somea > 0) is such thatdist(r, Rs(f)) > ~ for somey > 0, having access
to the oracleEX (f,r), for anyd > 0 outputs at least one relevant variable pfwith probability at least
1 — 6 usingm = poly(logn, 2%, (1/7), (1/a)®,log(1/§)) examples and running in time - poly(m, n).
Furthermore, for arbitraryr € [—1 + «, 1 — «], with probability at leastl — 4, any variable output by the
algorithm is relevant.

Proof. By Lemma®, there existS C [n] with 1 < |S| < s such that f(S,r)| > o%(y/4)F > a5/2(~/4)".
Thus, it suffices to estimate all coefficierftss, ), S C [n] with 1 < |S| < s, within accuracyy®/2(y/4)% /2,
each with confidencé—4d-n—*, to identify (with probability at least—4) at least on&' such thatf(S, r) #0
with confidencel — 4. This takespoly(21°!, (1/a)1%l log(n?/6), (4/~)* (1/a)®) examples from the oracle
EX(f,r) by Lemm&8, and we can reuse the same examples to estimatefiitients (since we use a
union bound for the confidence). Overall, the number of exaspsed is

m = poly(logn, 2%, (1/7)*, (1/a)*log(1/4)) .

The algorithm outputs all variablas for which it finds a nonzero Fourier coeﬁicieﬁ@S) withi € S. Since
we have to check?_, (") = O(n®) coefficients in the worst-case, the running time is boundexe by
n® - poly(m,n).
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For the second part of the claim, note thatf (fS,Ar) = 0 (and especially, ifS contains an index
of some non-relevant variable), then the estimate| f@6, )| will with high probability be smaller than
@ (v/4)k /2. O

Theorem 6. Lets,t € [k] such thats -t > k, a,y > 0, and—1+a < r; < ... <r < 1—awith
rjt1 —r; > ~ forall j € [t — 1]. Then there is an algorithm that, for any non-constarunta f :
{-1,1}" — {—1,+1}, givend > 0 and having access to the oracl&X (f,r1),..., EX(f, ), outputs a
relevant variable off with probability at leastl — &, usingm = poly(logn, 2%, (1/7)*, (1/a)*,1log(1/6))
examples and running in time’ - poly(m, n).

Proof. Leth(r) = wi(f,r)/o = (d/dr)E,[f]. Sinceh is a nonzero polynomial of degree at masg(f) —
1 < k—1andsinces -t > k, h has less than roots of multiplicity at least. Consequently, there exists
J € [t] such thatlist(r;, Rs(f)) > ~/2. Running the algorithm from Propositiin 3 for every singiash;,
Jj € [t], (each time with confidence parameigt, reusing the same examples) yields the claim. O

Proof of Theorerhl3Theoreni 6 shows that it is possible to identify at least otevaat variable from the
claimed number of examples in timé - poly (m, n). By Propositiori 2, the claim follows. O

We note that sincé(r) is of degree at mosteg(f) — 1, it actually suffices to have -t > d oracles if
we are given the promise thagg(f) < d.

6 Biases Unknown in Advance

The algorithms provided in Section 5 require that all biasesre precisely known to the learner. As one
might expect, this assumption is not necessary since adeaan get good estimates of the biases from
(unlabeled) random examples. The main technical issuevistashow that using good estimatesstill
leads to sufficiently close approximations of the Fouriegfficients with respect to the true biasgs For
this it suffices to show thags (-, 7;) andys(-, %) are close inL2.

Lemma?7. Leta,y > 0, 7,7’ € (—1,1) such thafr| <1 —«and|r — | <~, S C [n]. Then

S|+ 1

||XS('>T/) - XS('?T)HZT = a1/2o'/s

To prove Lemmal]7, we will first compute, givenr’ € (—1,1)", the Fourier coefficients ofs(-,r’)
with respect tquy. Although we only need = 7 andr’ = 7/ for our applications, we state the result for
general bias vectonsandr’ since the proof does not simplify for the special case.

Lemma 8. Letr,r’ € (—1,1)" andS, T C [n]. Then

I ) 0 ifT"gZ S
xs( 1) (T, r) = (xs(, "), xr (- 0))r = ZFr—r)ey HTCS.

Proof. We haveEr|x;(-,r")] = (r; — 7)/0%, Er[xi(-,r)] = 0, andEr[x;(-,r) - xi(-,r’)] = 0i/0}. The
claim now follows from

<XS('>r,)>XT('>r)>r = EP[XS('>r,) : XT('? I')]
= H Er[xi(,1")] - H Er[xi(-r)] - H Erlxi(,1) - xi(,1')] -
1€S\T 1€T\S iesSNT
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Now we bound the.2-norm of the difference betweeps(-,7) andys(-,r’). Here we do restrict our-
selves tar = 7 andr’ = 7’ to avoid an increase in technicality:

Proof of Lemmal]7 By Parseval’s equation,

IxsCor) = xsCr) B, = 3 (@) —xsGr@n)

TC[n]

By Lemmal8 and smcqs( r)(T,r) = 0 unlessT" = S, all summands foff" Z S vanish. Furthermore,
Lemma8 states that f&f C S, xs(-,7")(T,r) = (ot /0’®)(r — r')*~t, where we lets = |S| andt = |T|.
Thus,

IesCor) = xsGr)lE, < (sGr)Sr) = 0%+ S xs( ) (T,r)?
TCS

= (08/0'3— +Z<> t/ Is st)2
= (@) (0" = 0" + (P + D) — 0] |
Now we use the following two facts:
Fact 2. Foranya,b € [0, 1] with [b — a| < p, |a® — b°| < s p.
Proof. Leta < b. Then by convexity of the functiom — 2*, b5 < a® + sb*~1(b — a) < a* + s0. O
Fact 3. If |’ — r| < v, then|o’ — o] < ~v/0.

Proof. Leto(r) = V1 — r2. The derivative ob is (d/dr)o(r) = —ﬁ. Sinceos is concave, we have that
for anyd such that,r + 6 € (—1,1), o(r +0) < o(r) + (d/dr)o(r)é = o(r) —rd/o(r). Sincelr| < 1,
the claim follows withr’ = o' =o(r'),ando = o(r). O

Letp = va~!/2. By Fac{B3 and since? =1 — 12> 1 —r > o, |0’ — 0| < p. From FaciR2, we obtain
lo"s — o%| < spand(a? ++2)* — (02)* < sy2. Consequently,

o xs( 1) = xsCor) 3, < (sp)° + 57" = %2 fa+ 59" < (s +1)*7% a .
This proves the lemma. O
As a corollary, we obtain an estimate of how wgfl x(-, 7)), approximatesf (S, r):
Corollary 1. Letf : {—1,1}" — {-1,1},v > 0,r,7" € (—1,1) such thatr’ —r| <+, andS C [n]. Then

. S
(. xsCr = F57)| < o

Proof. By Cauchy-Schwartz,

FoxCr e = F080)| = [(£xs (o) = xsCore] < I 2w lixs (o) = xs () .
The claim follows since| f |2, = 1. O

Next we show how to closely approximafés, r) given no a priori knowledge on
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Lemma 9. Let f : {-1,1}" — {-1,1}, a > 0,7 € [-1+a,1 —a], § C [n], andd > 0. Given
access tdX (f,r), we can estimatg (S, ) within accuracye fromm, = poly (251, (1/a)!51, log(1/6),1/¢)
examples in tim@& (m - n) with confidencd — § without any a priori knowledge on

Proof. Lety = o(ISIFD/2/(2(|S| + 1)) < o'/26"151/(2|S| + 1), so that, in particulary < a/2 < ¢2/2
(note that we may assumé&| > 1 without loss of generality). First, we approximateo within v by
requestingm; = 81n(4/6)/v% = poly(|S|?, (1/a)!®! 1og(1/6)) examplesx’, f(x*)) from EX(f,r) to
computer’ = (1/mq) >_; «k. With probability at least /2, |’ — r| < ~.

Now, letting g(x) = "SI f(x)xs (x,1"), & = (maoIS1) 71 S0 g(x") approximates(f, xs(- ")),
within accuracye/2 givenms = poly (2191, (1/6")%51 1og(1/6), 1/¢) examples. Since

o >c—v/c>0/2> a1/2/2
implies (1/0")%51 < (4/a)!51, my is dominated byoly(21°!, (1/a)!%!,1og(1/5),1/¢). Finally,
(6 — F(S, 1) < 16— (FoxsCor el + 1 xsCor e — F(S.7)] < /2 + (18] + 1a~ 20" 181y < e.
The total number of examples to be drawmisx{m,, ms }, which is of the order indicated in the claim(]

Using LemmaD in place of Lemnha 3 shows that Propositlon 3piiére 6, and finally also Theoreinls 2
and3 even hold if the biasegsare not known in advance (except for the bolnd< 1 — «).

7 Further Results and Open Problems

7.1 Learning in Polynomial Time for All But Finitely Many Bia ses

We have seen that for eagHunta f, there are at mogt— 1 biases in—1, 1) for whichw; (f,r) = 0. Since
for the r-biased product measure; (f, ) does not depend omherethe relevant variables are hidden, it is
not hard to see that there are at mg@st- 1) - 20**) biases for which there exissomek-junta f (for any
n) with wy(f,r) = 0. Let us call these biasesitical. Let S;, denote the set of biasese (—1,1) such
that there exists a function : N — N and ak-junta-learning algorithm that learns froB\X (f, r) in time
tr(k) - poly(n). ThenSy is exactly the complement of the critical points. This isduese the minimum
distance between any two distinct critical points is a fiorcof k& only. This proves Theorefd 4 stated in the
introduction. Consequently, for eaghthere are only finitely many biases for which junta-leagnmay not
be feasible in time polynomial in. The next step (left for future research) is to find lower ksiont, (k).
Generalizing to arbitrary product distributions with bisstorr € (—1,1)", we obtain thatv, (f,r) is
zero only for a set of biases of measure zero (since it is theesat of a non-constant multi-linear polyno-
mial). Considering the polynomiatsf (1) separately for eache [n], we recover the statement 0f [23] that

A~

f(i,r) = 0foralli € [n] only for a set of measure zero.

7.2 Open Problems

Next to the notoriously hard problem of designing more effitialgorithms for the junta learning problem
under the uniform distribution, it would also constitutensilerable progress to have, for any concretely
given fixed bias- # 0, somealgorithm improving over the* bound. Note that we have shown in Secfiod 7.1
that for all but finitely manyr, the degree-one algorithm works. However, it is not cleav kmdecide in
general whether a given bias is critical. We believe thatrétationship [(B) between Fourier coefficients
with respect to different biases could be useful to this end.

In a different direction, it seems worthwhile to further dguour newly introduced model of learning
from multiple oracles. Can we show positive results for otharning problems that appear to be hard in the
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classical PAC setting? In particular, is there an efficiégbathm for learning DNFs or decision trees from
multiple distributions? What general conditions on theribations are required to make efficient learning
possible? As theumberof oracles obviously constitutes a significant resourcamater, it is natural to
ask if polynomial time learning of juntas is also possibleniro(k) oracles (maybe at least for important
subclasses).
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