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March 2006, Revised January 2007

Abstract

Suppose we observe X ∼ Nm(Aβ, σ2I) and would like to estimate the predictive density

p(y | β) of a future Y ∼ Nn(Bβ, σ2I). Evaluating predictive estimates p̂(y | x) by Kullback-

Leibler loss, we develop and evaluate Bayes procedures for this problem. We obtain general

sufficient conditions for minimaxity and dominance of the “noninformative” uniform prior Bayes

procedure. We extend these results to situations where only a subset of the predictors in A is

thought to be potentially irrelevant. We then consider the more realistic situation where there

is model uncertainty and this subset is unknown. For this situation we develop multiple shrink-

age predictive estimators and obtain general minimaxity and dominance conditions. Finally,

we provide an explicit example of a minimax multiple shrinkage predictive estimator based on

scaled harmonic priors.

Keywords: BAYESIAN PREDICTION; MODEL UNCERTAINTY; MULTIPLE SHRINKAGE;

PRIOR DISTRIBUTIONS; SHRINKAGE ESTIMATION.

∗Edward I. George is Professor, Statistics Department, The Wharton School, 3730 Walnut Street 400 JMHH,

Philadelphia, PA 19104-6340, edgeorge@wharton.upenn.edu. Xinyi Xu is Assistant Professor, Department of Statis-

tics, The Ohio State University, Columbus, OH 43210-1247, xinyi@stat.ohio-state.edu. We would like to acknowledge

Larry Brown, Feng Liang, Linda Zhao and three referees for their helpful suggestions. This work was supported by

various NSF grants, DMS-0605102 the most recent.

1



1 Introduction

We begin with the canonical normal linear model setup

X ∼ Nm(Aβ, σ2I) (1)

where X is an m× 1 vector of m observations, A is a full rank, fixed m× p matrix of p potential

predictors where m ≥ p, and β is a p × 1 vector of unknown regression coefficients. Based on

observing X = x, we consider the problem of estimating the predictive density p(y | β) of a future

n× 1 vector Y where

Y ∼ Nn(Bβ, σ2I). (2)

Here B is a fixed n × p matrix of the same p potential predictors in A, although with possibly

different values. We also assume that X and Y are conditionally independent given β. Finally, we

assume σ2 is known, and without loss of generality set σ2 = 1 throughout.

For each value of x, we evaluate a predictive estimate p̂(y | x) of p(y | β) by the well-known

Kullback-Leibler (KL) loss

L(β, p̂(y | x)) =
∫

p(y | β) log
p(y | β)
p̂(y | x)

dy. (3)

The overall quality of the procedure p̂ = p̂(y |x) for each β is then conveniently summarized by the

KL risk

RKL(β, p̂) =
∫

p(x | β)L(β, p̂(y | x))dx. (4)

Letting β̂x = (A′A)−1A′x be the traditional least squares estimate of β based on x, it is tempting

to consider the plug-in predictive estimate p̂plug−in(y | β̂x), which simply substitutes β̂x for β in

p(y | β). However, as we show in Section 2 by extending the arguments of Aitchison (1975), the

formal Bayes predictive estimate

p̂U (y | x) =
∫

p(x | β)p(y | β)dβ∫
p(x | β)dβ

. (5)

has smaller KL risk than p̂plug−in(y | β̂x) for every β. Thus, p̂plug−in(y | β̂x) should be ruled out and

we turn our focus to Bayes procedures.

For a prior π on β, the Bayes predictive estimator p̂π(y | x) is given by

p̂π(y | x) =
∫

p(x | β)p(y | β)π(β)dβ∫
p(x | β)π(β)dβ

. (6)

It also follows from the arguments of Aitchison (1975) that for proper π, p̂π minimizes the average

risk rπ(p̂) =
∫

RKL(β, p̂)π(β)dβ. Note that p̂U in (5) is the formal Bayes estimate under the

improper uniform “noninformative” density πU (β) ≡ 1, and would seem to be a good default

procedure. Indeed, p̂U has constant risk and is minimax under KL loss, see Liang (2002) and Liang
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and Barron (2004). But surprisingly, as we will show, in many cases p̂U itself can be uniformly

dominated in terms of KL risk by other Bayes predictive estimators.

In Section 2, we develop general conditions under which p̂π will be minimax and uniformly

dominate p̂U in terms of the KL risk (4) for the multiple regression prediction problem. Our results

can be seen as a substantial generalization of George, Liang and Xu (2006) who considered the

special case of this problem when X ∼ Nm(µ, σ2
xI) and Y ∼ Nm(µ, σ2

yI), where µ is the common

unknown multivariate normal mean. Moving further away from this common mean setup, we pro-

ceed in Section 3 to extend these results to the setting where only a subset of the p predictors is

considered to be potentially irrelevant. In Section 4, we consider the more realistic model uncer-

tainty setting where such a subset is unknown, and develop minimax multiple shrinkage predictive

densities that adaptively shrink towards the model most favored by the data. In Section 5, we

conclude by showing how our results can be extended for minimax shrinkage prediction towards

any linear subspaces. Although we do not consider the issue of admissibility in this paper, it may

be of interest to note that for the multivariate normal prediction problem above Brown, George

and Xu (2006) recently established that all admissible predictive densities are Bayes procedures.

2 Priors for Minimax Predictive Estimation

In this section, we develop general conditions on π for p̂π in (6) to uniformly dominate p̂U in (5)

under KL risk (4). The minimaxity of such p̂π will then follow immediately from the minimaxity

of p̂U .

We begin by establishing some convenient notation. As indicated previously, we use β̂x =

(A′A)−1A′x to denote the least squares estimate of β based on x. Although y is not observed, it

will be useful to use

β̂x,y = (C ′C)−1C ′

 x

y


 where C =


 A

B


 (7)

to denote the least squares estimate of β based on x and y. Note that β̂x ∼ Np(β,ΣA) and β̂x,y ∼
Np(β, ΣC), where for notational convenience throughout we let ΣA = (A′A)−1 and ΣC = (C ′C)−1.

It will also be useful to let RSSx = ‖x−Aβ̂x‖2 and

RSSx,y =

∥∥∥∥∥∥


 x

y


− Cβ̂x,y

∥∥∥∥∥∥

2

denote the corresponding residual sums of squares (RSS). In terms of this notation, we have the

following.

Lemma 1. The uniform prior predictive estimate p̂U in (5) can be expressed as

p̂U (y | x) =
1

(2π)
n
2

|C ′C|− 1
2

|A′A|− 1
2

exp
{
−RSSx,y −RSSx

2

}
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=
1

(2π)
p
2 |Ψ|

exp

{
(y −Bβ̂x)′Ψ−1(y −Bβ̂x)

2

}
, (8)

where Ψ = I + BΣAB′. Moreover, the KL risk of p̂U is uniformly smaller than that of the plug-in

estimator p̂plug−in(y | β̂x).

Proof. Since β̂x | β ∼ Np(β,ΣA), the posterior of β under the uniform prior is β | β̂x ∼ Np(β̂x,ΣA).

It follows that the posterior of Bβ is Bβ | β̂x ∼ Np(Bβ̂x, BΣAB′) and thus the predictive estimator

is

Y | β̂x ∼ Np(Bβ̂x, I + BΣAB′).

To calculate the risk of p̂U , let ĤA = A(A′A)−1A′ denote the hat matrix based on x and

ĤC = C(C ′C)−1C ′ denote the hat matrix based on both x and y. It is easy to see that

RKL(β, p̂U ) =
∫ ∫

p(x | β) p(y | β) log
p(y | β)
p̂U (y | x)

dxdy

=
1
2

log
|C ′C|
|A′A| −

n

2
+

1
2

∫ ∫
p(x | β) p(y | β) [RSSx,y −RSSx] dxdy

=
1
2

log
|C ′C|
|A′A| −

n

2
+

1
2

[
trace(Im+n − ĤC)− trace(Im − ĤA)

]

=
1
2

log
|C ′C|
|A′A| −

n

2
+

n

2

=
1
2

p∑

i=1

log(ei + 1),

where e1, . . . , ep are the eigenvalues of (A′A)−1B′B. Moreover,

RKL(β, p̂plug−in(y | β̂x)) =
∫ ∫

p(x | β) p(y | β) log
p(y | β)

p̂plug−in(y | β̂x)
dxdy

=
1
2

∫ ∫
p(x | β) p(y | β)

[
‖y −Bθ̂x‖2 − ‖y −Bθ‖2

]
dxdy

=
1
2

∫
p(x | β)‖Bθ̂x −Bθ‖2dx

=
1
2

trace(B(A′A)−1B′)

=
1
2

p∑

i=1

ei.

That p̂U dominates p̂plug−in(y | β̂x) follows from the fact that log(x + 1) ≤ x for any x > 0. ‡

Risk comparisons of a Bayes predictive density p̂π with p̂U are greatly facilitated by the following

representation of p̂π in terms of p̂U . An analogous representation of the posterior mean in terms of

the MLE, which simplifies multivariate normal mean estimation under quadratic risk, was proposed

by Brown (1971). For our representation, it will be useful to denote the marginal distribution of
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Z | β ∼ Np(β, Σ) under π by

mπ(z; Σ) =
∫

p(z | β)π(β)dβ. (9)

Thus, the marginal distributions of β̂x and β̂x,y under π are denoted by mπ(β̂x, ΣA) and mπ(β̂x,y, ΣC)

respectively.

Lemma 2. If mπ(z; Σ) is finite for all z and Σ, then p̂π(y | x) is a proper probability distribution.

Furthermore, it can be expressed as

p̂π(y | x) =
mπ(β̂x,y, ΣC)
mπ(β̂x, ΣA)

p̂U (y | x) (10)

where p̂U is defined by (8).

Proof. When mπ(z; Σ) is finite for all z and Σ, that p̂π(y | x) is a proper probability distribution

follows from integrating with respect to y and switching the order of integration.

Next, straightforward calculation yields
∫

p(x | β)π(β)dβ

=
∫ 1

(2π)
m
2

exp

{
−‖x−Aβ‖2

2

}
π(β)dβ

=
∫ 1

(2π)
m
2

exp

{
−‖x−Aβ̂x‖2 + ‖Aβ̂x −Aβ‖2

2

}
π(β)dβ

=
1

(2π)
m−p

2

exp

{
−‖x−Aβ̂x‖2

2

} ∫ 1

(2π)
p
2

exp

{
−‖Aβ̂x −Aβ‖2

2

}
π(β)dβ

=
|A′A|− 1

2

(2π)
m−p

2

exp
{
−RSSx

2

}
mπ(β̂x, ΣA). (11)

Similarly, we obtain
∫

p(x | β)p(y | β)π(β)dβ =
|C ′C|− 1

2

(2π)
m+n−p

2

exp
{
−RSSx,y

2

}
mπ(β̂x,y, ΣC). (12)

The representation (10) follows immediately from (6), (11) and (12). ‡

The next result provides a representation of the difference between the KL risks of p̂U and p̂π

in terms of the marginal distributions of β̂x and β̂x,y.

Lemma 3. The difference between the KL risks of p̂U and p̂π is given by

RKL(β, p̂U )−RKL(β, p̂π)

= Eβ,ΣC
log mπ(β̂x,y; ΣC)− Eβ,ΣA

log mπ(β̂x; ΣA) (13)

where Eβ,Σ(·) stands for expectation with respect to the Np(β, Σ) distribution.

5



Proof. The KL risk difference between p̂U and p̂π can be expressed as

RKL(β, p̂U )−RKL(β, p̂π)

=
∫ ∫

p(x | β) p(y | β) log
p̂π(y | x)
p̂U (y | x)

dxdy

=
∫ ∫

p(x | β) p(y | β) log
mπ(β̂x,y, ΣC)
mπ(β̂x, ΣA)

dxdy,

where the last equality follows from Lemma 2. The result then follows from the change of variable

theorem. ‡

To exploit the representation (13), we proceed to transform the distributions to canonical form.

Since ΣA and ΣC are both symmetric and positive definite, there exists an invertible p× p matrix

W such that

ΣA = WW ′ and ΣC = WΣDW ′ (14)

where

ΣD = diag(d1, . . . , dp). (15)

Since ΣC = (C ′C)−1 = (A′A+B′B)−1 and B′B is nonnegative definite, , di ∈ (0, 1] for all 1 ≤ i ≤ p

with at least one di < 1. Finally, let µ = W−1β, µ̂x = W−1β̂x, and µ̂x,y = W−1β̂x,y, so that

µ̂x ∼ Np(µ, I) and µ̂x,y ∼ Np(µ,ΣD). (16)

Lemma 4. Let πW (µ) = π(Wµ). Then, the difference between the KL risks of p̂U and p̂π is given

by

RKL(β, p̂U )−RKL(β, p̂π) = Eµ,ΣD
log mπW (µ̂x,y; ΣD)− Eµ,I log mπW (µ̂x; I) (17)

where Eµ,Σ(·) stands for expectation with respect to the Np(µ,Σ) distribution.

Proof. The result follows by transforming the expressions in Lemma 3,

Eβ,ΣA
log mπ(β̂x; ΣA) =

∫
p(β̂x | β) log

∫
p(β̂x | β)π(β)dβdβ̂x

=
∫

p(µ̂x | µ) log
∫

p(µ̂x | µ)πW (µ)dµdµ̂x

= Eµ,I log mπW (µ̂x; I).

Similarly,

Eβ,ΣC
log mπ(β̂x,y; ΣC) = Eµ,ΣD

log mπW (µ̂x,y; ΣD).

Thus, (17) equals (13). ‡

6



We now proceed to find conditions on mπ for which the risk difference (17) is nonnegative for all

µ. Because p̂U is minimax, this will then imply that p̂π is minimax under the prior π corresponding

to πW . Now for w ∈ [0, 1], let

Vw = wI + (1− w)ΣD (18)

where ΣD is defined as in (15). Next, for Z ∼ Np(µ, Vw), let

hµ(Vw) = Eµ,Vw log mπW (Z; Vw). (19)

Thus, we may rewrite (17)

RKL(β, p̂U )−RKL(β, p̂π) = hµ(V0)− hµ(V1). (20)

Since hµ(w) is continuous in w, it suffices to derive conditions on mπ such that (∂/∂w)hµ(w) < 0

for all µ and w ∈ [0, 1]. Letting vi be the ith diagonal element of Vw, we have by the chain rule

∂

∂w
hµ =

p∑

1

∂hµ

∂vi

∂vi

∂w
=

p∑

1

(1− di)
∂hµ

∂vi
(21)

The following result provides unbiased estimates of the components of (21) which, when com-

bined with (17), will be seen to play a key role in establishing sufficient conditions on mπ for p̂π

to be minimax and to dominate p̂U . As noted by George, Liang and Xu (2006), these estimates

are very similar to the unbiased estimates of risk for the estimation of a multivariate mean under

squared error loss, see Stein (1974, 1981).

Lemma 5. If mπW (z; I) is finite for all z, then for any 0 ≤ w ≤ 1, mπW (z;Vw) is finite. Moreover,

∂

∂vi
hµ = Eµ,Vw




∂2

∂z2
i

mπW (Z; Vw)

mπW (Z; Vw)
− 1

2

(
∂

∂zi
log mπW (Z;Vw)

)2


 (22)

= Eµ,Vw


2

∂2

∂z2
i

√
mπW (Z;Vw)

√
mπW (Z; Vw)


 . (23)

Proof. When mπW (z; I) is finite for all z, it is easy to check that for any fixed z and any 0 ≤ w ≤ 1,

mπW (z; Vw) ≤
(

k∏

i=1

di
− 1

2

)
mπW (z; I) < ∞.

Next, letting Z∗ = V
− 1

2
w (Z − µ) ∼ N(0, I), we have

∂

∂vi
hµ =

∂

∂vi
E log mπW (V

1
2

w Z∗ + µ; Vw)

= E

∂

∂vi
mπW (V

1
2

w Z∗ + µ; Vw)

mπW (V
1
2

w Z∗ + µ;Vw)
, (24)
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where

∂

∂vi
mπW (V

1
2

w z∗ + µ; Vw)

=
∂

∂vi

∫ 1

(2π)
p
2
√

v1 · · · vp

exp

{
−

p∑

i=1

(
√

viz
∗
i + µi − µ′i)

2

2vi

}
πW (µ′)dµ′

=
∫ (

− 1
2vi

+
(zi − µ′i)

2

2v2
i

− z∗2i

2vi
− z∗i (µi − µ′i)

2v
3/2
i

)
p(z | µ′)πW (µ′)dµ′

=
∂

∂vi
mπW (z; Vw)−

∫ (zi − µi) (zi − µ′i)
2v2

i

p(z | µ′)πW (µ′)dµ′.

Making use of the well-known univariate heat equation

∂

∂vi
mπW (z; Vw) =

1
2

∂2

∂z2
i

mπW (z;Vw), (25)

see for example Steele (2001), and the Brown (1971) representation Eπ(µ′i|zi) = zi+vi
∂

∂zi
log mπW (z),

(22) and (23) can be verified via the same steps as in the proof of Lemma 3 in George, Liang and

Xu (2006). ‡

Now we can obtain sufficient conditions for a Bayes procedure p̂π to be minimax by combining

(20), (21) and Lemma 5. The following result provides a substantial generalization of Theorem 1

of George, Liang and Xu (2006).

Theorem 1. Suppose mπ(z;WW ′) is finite for all z with the invertible matrix W defined as in

(14). Let H(f(z1, · · · , zp)) be the Hessian matrix of f .

(i) If trace {H(mπ(z;WVwW ′))[ΣA − ΣC ]} ≤ 0 for all w ∈ [0, 1], then p̂π is minimax under

RKL. Furthermore, p̂π dominates p̂U unless π = πU .

(ii) If trace
{
H(

√
mπ(z; WVwW ′))[ΣA − ΣC ]

}
≤ 0 for all w ∈ [0, 1], then p̂π is minimax under

RKL. Furthermore, p̂π dominates p̂U if for all w ∈ [0, 1], this inequality is strict on a set of

positive Lebesgue measure.

Proof. To prove the minimaxity of p̂π under RKL, it suffices to show that (22) or (23) is nonpositive

because by (21) that would imply the nonnegativity of (20). Dominance would further follow by

showing that (22) or (23) is also strictly negative on a set of positive Lebesgue measure.

Noting that mπW (z; Vw) = mπ(Wz; WVwW ′), and letting Wz = z̃, we obtain

k∑

i=1

(1− di)
∂2

∂z2
i

mπW (z; Vw) =
k∑

i=1

(1− di)
∂2

∂z2
i

mπ(z̃; WVwW ′)

8



=
k∑

i=1

(1− di)
p∑

j=1

p∑

k=1

Wji
∂2mπ(z̃; WVwW ′)

∂z̃j∂z̃k
Wki

= trace
{
(I − ΣD)W ′H(mπ(z̃;WVwW ′))W

}

= trace
{
H(mπ(z̃; WVwW ′))W (I − ΣD)W ′}

= trace
{
H(mπ(z̃; WVwW ′))[ΣA − ΣC ]

}
(26)

Similarly,

k∑

i=1

(1− di)
∂2

∂z2
i

√
mπW (z; Vw) = trace

{
H(

√
mπ(z̃; WVwW ′))[ΣA − ΣC ]

}
(27)

Now (i) and (ii) follow immediately from (22), (23), (26) and (27). ‡

The next result follows using the fact that
∂2

∂z2
i

mπW (z; Vw) ≤ 0 when
∂2

∂µ2
i

πW (µ) ≤ 0.

Corollary 1. Suppose mπ(z;WW ′) is finite for all z. Then p̂π will be minimax if

trace {H(π(β))[ΣA − ΣC ]} ≤ 0 a.e.

Furthermore, p̂π will dominate p̂U unless π = πU .

Example. (Scaled harmonic prior). Suppose A = B. In this case,

trace {H(π(β)[ΣA − ΣC ]} =
1
2
trace {H(π(β))ΣA}

=
1
2
trace

{
H(π(β))WW ′}

=
1
2
∇2πW (µ). (28)

Let πW (µ) ∝ ‖µ‖−(p−2) when p ≥ 3, and πW (µ) ∝ 1 when p < 3. Note that πW is harmonic, i.e.

∇2πW (µ) ≡ 0, and not equal to πU when p ≥ 3. For p ≥ 3, the corresponding prior on β is a

“scaled harmonic prior”

π(β) ∝ ‖W−1β‖−(p−2) = ‖diag(η
− 1

2
1 , · · · , η−

1
2

p )β‖−(p−2), (29)

where η1, · · · , ηp > 0 are the eigenvalues of ΣA, and for p < 3, π(β) ∝ 1. (The expression (29) is ob-

tained using the fact that there exists an orthonormal matrix O such that W = O diag(η
1
2
1 , · · · , η

1
2
p ) O′).

By Corollary 1 and (28), the predictive estimator pπ under this prior is minimax and dominates

p̂U when p ≥ 3. It is easy to check that these results hold when A = rB for any known constant r.

9



3 Predictive Density Estimation Near Subset Models

When a prior centered at 0 such as the scaled harmonic prior (29) is applied to β, the risk reduction

of p̂π over p̂U is greatest when all the components of β are close to 0. Thus, it would be sensible to

use this prior if it was felt that all p predictors in A and B were potentially irrelevant. However,

such a prior would be ineffectual if only a subset of the p predictors were irrelevant, inotherwords

if only a subset of the β components were close to 0. In this section, we extend our results for

the setting where such a subset is known. This will set the stage for Section 4, where develop new

results for the more realistic model uncertainty setting where such a subset is unknown.

Let S be the subset of {1, . . . , p} corresponding to the indices of the potentially irrelevant

predictors, and let qS = |S| be the number of elements in S. Let βS be the subvector of β

corresponding to the columns of A indexed by S. Similarly, let β̂S,x and β̂S,x,y be the subvectors

of β̂x and β̂x,y respectively, corresponding to βS . Finally, for notational convenience, let ΣA,S and

ΣC,S be the submatrices of ΣA and ΣC respectively, which are the covariance matrices of β̂S,x and

β̂S,x,y.

When only the elements of βS are thought to be close to zero, it would be sensible to consider

a prior which is uniform on βS̄ , where S̄ is the complement of S. We denote such a prior by πS ,

and let π∗S be the restriction of πS to βS so that

πS(β) = π∗S(βS) (30)

is a function of βS only. To exploit the possibility that βS is close to zero, π∗S would then be

centered around 0.

Lemma 6. If mπS (z; Σ) is finite for all z and Σ, then p̂πS (y |x) is a proper probability distribution.

Furthermore, it can be expressed as

p̂πS (y | x) =
mπ∗S (β̂S,x,y, ΣC,S)

mπ∗S (β̂S,x, ΣA,S)
p̂U (y | x) (31)

where p̂U is defined by (8).

Proof. The first assertion was proved in Lemma 2. Next, proceeding as in the derivation of (11)

we obtain
∫

p(x | β)πS(β)dβ

=
1

(2π)
m−p

2

exp

{
−‖x−Aβ̂x‖2

2

} ∫ 1

(2π)
p
2

exp

{
−‖Aβ̂x −Aβ‖2

2

}
π∗S(βS)dβ

=
|A′A|− 1

2

(2π)
m−p

2

exp
{
−RSSx

2

}
mπ∗S (β̂S,x,ΣA,S). (32)

10



Similarly, we obtain

∫
p(x | β)p(y | β)πS(β)dβ =

|C ′C|− 1
2

(2π)
m+n−p

2

exp
{
−RSSx,y

2

}
mπ∗S (β̂S,x,y, ΣC,S). (33)

The representation (31) follows immediately from (6), (32) and (33). ‡

The following results provide sufficient conditions for the minimaxity of p̂πS and for its domi-

nance over p̂U . We omit the proofs which are obtained using the same arguments leading to Theo-

rem 1 and Corollary 1. Analogously to our previous development there, we let WS be an invertible

qS × qS matrix such that ΣA,S = WSW ′
S and ΣC,S = WΣD,SW ′, where ΣD,S = diag(d1, . . . , dqS )

as in (15). Finally, let VS,w = wI + (1− w)ΣD as in (18).

Theorem 2. L Suppose mπ∗S (z; WSW ′
S) is finite for all z. Let H(f(z1, · · · , zqS ) be the Hessian

matrix of f .

(i) If trace
{
H(mπ∗S (z; WSVS,wW ′

S))[ΣA,S − ΣC,S ]
}
≤ 0 for all w ∈ [0, 1], then p̂πS is minimax

under RKL. Furthermore, p̂πS dominates p̂U unless πS = πU .

(ii) If trace
{
H(

√
mπ∗S (z;WSVS,wW ′

S))[ΣA,S − ΣC,S ]
}
≤ 0 for all w ∈ [0, 1], then p̂πS is minimax

under RKL. Furthermore, p̂πS dominates p̂U if for all w ∈ [0, 1], this inequality is strict on a

set of positive Lebesgue measure.

Corollary 2. Suppose mπ∗S (z;WSW ′
S) is finite for all z. Then p̂πS will be minimax if

trace {H(π∗S(βS))[ΣA,S − ΣC,S ]} ≤ 0 a.e.

Furthermore, p̂πS will dominate p̂U unless πS = πU .

Example (continued). (Scaled harmonic prior). Suppose A = B so that as in (28),

trace {H(π∗S(βS)[ΣA,S − ΣC,S ]} =
1
2
∇2πWS

(µS), (34)

where µS = W−1
S βS . Here let πWS

(µ) ∝ ‖µS‖−(qS−2) when qS ≥ 3, and πW (µS) ∝ 1 when qS < 3.

As before, πWS
is harmonic, i.e. ∇2πWS

(µ) ≡ 0, and not equal to πU when qS ≥ 3. For qS ≥ 3, the

corresponding scaled harmonic prior on β is

πS(β) = π∗S(βS) ∝ ‖W−1
S βS‖−(qS−2) = ‖diag(η

− 1
2

1 , · · · , η−
1
2

qS )βS‖−(qS−2), (35)

where η1, · · · , ηqS > 0 are the eigenvalues of ΣA,S , and for qS < 3, πS(β) ∝ 1. By Corollary 2 and

(34), pπS here is minimax and dominates p̂U when qS ≥ 3.
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4 Minimax Multiple Shinkage Predictive Estimation

We consider the more realistic model uncertainty setting where there is uncertainty about which

subset of the p predictors in A and B should be included in the model. For each choice of S, we

have obtained general sufficient conditions for p̂πS to be minimax and to dominate πU . However,

such p̂πS will only offer meaningful risk reduction when β is near the region where πS is largest.

For example, under the scaled harmonic prior in (35), such risk reduction occurs when βS is close

to 0. The difficulty then is how to proceed when the subset of irrelevant predictors indexed by

S is unknown. Rather than arbitrarily selecting S, an attractive alternative is to use a multiple

shrinkage predictive estimator which uses the data to adaptively emulate the most effective p̂πS .

The multiple shrinkage procedure here is obtained by using a finite mixture of the contemplated

priors. A similar multiple shrinkage construction for parameter estimation under squared error loss

was proposed and developed by George (1986a,b,c). Let Ω be the set of all the subsets S under

consideration, possibly even the set of all possible subsets. For each S ∈ Ω, let πS be the designated

prior of the form (30) on β, and assign it probability wS ∈ [0, 1] such that
∑

S∈Ω wS = 1. Thus we

construct the mixture prior

π∗(β) =
∑

S∈Ω

wS πS(β). (36)

This prior yields the multiple shrinkage predictive estimator

p̂∗(y | x) =
∑

S∈Ω

p̂(S | x)p̂πS (y | x). (37)

Here each p̂πS is given by (31) in Lemma (6), and each posterior probability is of the form

p̂(S | x) =
wS mπ∗S (β̂S,x, ΣA,S)

∑
S∈Ω wS mπ∗S (β̂S,x, ΣA,S)

(38)

which follows from (32).

The form (37) reveals p̂∗(y |x) to be an adaptive convex combination of the individual shrinkage

predictive estimates p̂πS . Note that through p̂(S | x), p̂∗ doubly shrinks p̂U (y | x) by putting more

weight on the p̂πS for which mπ∗S is largest and hence p̂πS is shrinking most. Thus, we expect p̂∗ to

offer meaningful risk reduction whenever βS is near the region where πS is largest for any S ∈ Ω.

For example, if every πS in π∗ is one of the scaled harmonic priors in (35), such risk reduction

occurs when βS is close to 0 for any S ∈ Ω for which qS ≥ 3. Thus, the potential for risk reduction

using p̂∗ is far greater than the risk reduction using an arbitrarily chosen p̂πS .

We should also note that the allocation of risk reduction by p̂∗ is in part determined by the

wS weights in (38). Because each p̂(S | x) is so adaptive through mπ∗S , choosing the weights to be

uniform should be adequate. However, one may also want to consider some of the more refined

suggestions for choosing such weights for the multiple shrinkage estimators in George (1986b).
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The potential for a multiple shrinkage p̂∗ to offer meaningful risk reduction in many different

regions of the parameter space is greatly enhanced when it is minimax, and therefore can only

improve on the “noninformative” minimax p̂U . The following two results show that such mini-

maxity and dominance of p̂U can be obtained. We then conclude with an explicit example of such

domination.

Theorem 3. Suppose for all S ∈ Ω, mπ∗S (z; WSW ′
S) is finite for all z. Let H(f(z1, · · · , zqS ) be the

Hessian matrix of f . If for all S ∈ Ω,

trace
{
H(mπ∗S (z; WSVS,wW ′

S))[ΣA,S − ΣC,S ]
}
≤ 0 for all w ∈ [0, 1], (39)

then p̂∗ in (37) is minimax under RKL. Furthermore, p̂∗ dominates p̂U unless π∗ = πU .

Proof. From (31), (37), and (38), it is straightforward to show that p̂∗ can be reexpressed as

p̂∗(y | x) =
∑

S∈Ω wS mπ∗S (β̂S,x,y, ΣC,S)
∑

S∈Ω wS mπ∗S (β̂S,x, ΣA,S)
p̂U (y | x) (40)

Because p∗ is of the same form as p̂πS in (31), namely a ratio of marginals times p̂U , we can apply

the same arguments leading to the proofs of Theorems 1 and 2. These steps show that a sufficient

condition for the minimaxity and dominance claims is
{∑

S∈Ω

wS H(mπ∗S (z;WSVS,wW ′
S))[ΣA,S − ΣC,S ]

}
≤ 0 for all w ∈ [0, 1].

This condition is implied if (39) holds for all S ∈ Ω. ‡

The next result follows using the same argument leading to Corollaries 1 and 2.

Corollary 3. Suppose for all S ∈ Ω, mπ∗S (z; WSW ′
S) is finite for all z. Then p̂∗ in (37) will be

minimax if for all S ∈ Ω

trace {H(π∗S(βS))[ΣA,S − ΣC,S ]} ≤ 0 a.e.

Furthermore, p̂∗ will dominate p̂U unless π = πU .

Example (continued). (Scaled harmonic prior). For each S ∈ Ω, let πS(β) be the scaled har-

monic prior given by (35) when qS ≥ 3, and by πS(β) ∝ 1 when qS < 3. When A = B, by Corollary

3, p∗ under these priors will be minimax and will dominate p̂U if qS ≥ 3 for at least one S ∈ Ω.
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5 Predictive Density Estimation Near Linear Subspaces

The harmonic prior predictive estimator p̂πS (y | x) described in Section 3, and incorporated into

the multiple shrinkage predictive estimators p̂∗(y |x) in Section 4, offers risk reduction in the region

of the parameter space where βS is close to 0. This can be seen as a special case of the following

general construction of a predictive estimator that obtains risk reduction when β is close to a linear

subspace of Rp.

Suppose one would like to obtain a predictive density estimator with greatest risk reduction in

the region where β is close to a linear subspace G ⊂ Rp. In the case of p̂πS (y | x), G would be the

subspace of all β ∈ Rp for which βS ≡ 0. Alternately, if risk reduction was desired say when the

components of β were close to equal, then one would consider G = [1], the subspace spanned by

(1, . . . , 1)′. Let PGβ ≡ argming∈G‖β−g‖ be the projection of β onto G, and define βG ≡ (I−PG)β

to be the projection of β onto the orthogonal complement of G. For the construction of p̂πS (y | x)

in Section 3, βG = βS . For G = [1], βG = (β − β̄) where β̄ is the vector of components all equal to
1
p

∑p
i=1 βi.

The main idea behind the general construction is to use a prior that leads to shrinkage of βG

towards 0 while leaving the remainder of β untouched. This can be obtained by using a prior of

the form

πG(β) = π∗G(βG), (41)

which is effectively uniform on (β − βG). This is a special case of the prior over βS in (30). Note

that since βG is qG ≡ (p− dim(G)) dimensional, π∗G is a function from RqG to R.

Analogous to the construction in Lemma 6, predictive density estimators p̂πG corresponding to

priors of the form πG in (41) can be expressed as

p̂πG(y | x) =
mπ∗G(β̂G,x,y, ΣC,G)

mπ∗G(β̂G,x, ΣA,G)
p̂U (y | x) (42)

where p̂U is defined by (8), β̂G,x = (I − PG)β̂x and β̂G,x,y = (I − PG)β̂x,y are the projections of β̂x

and β̂x,y onto the orthogonal complement of G, respectively, and ΣA,G and ΣC,G are the covariance

matrices of β̂G,x and β̂G,x,y, respectively. It is straightforward to see that Theorem 2 and Corollary

2 and their proofs can be extended to get conditions on π∗G(βG) for such p̂πG to be minimax and

to dominate p̂U . (Simply substitute the symbol “G” for the symbol “S” throughout).

Example (continued). Extending (35), consider the following scaled harmonic prior on β. For

qG ≥ 3, let

πG(β) = π∗G(βG) ∝ ‖diag(η
− 1

2
1 , · · · , η−

1
2

qG )βG‖−(qG−2), (43)

where η1, · · · , ηqG > 0 are the eigenvalues of ΣA,G, and for qG < 3, let πG(β) ∝ 1. Note that when

qG ≥ 3 the resulting p̂πG shrinks p̂U towards G, offering reduced risk when β is close G. By the
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extension of Corollary 2, such pπG will be minimax and dominate p̂U when A = B and qG ≥ 3.

Finally, following the development in Section 4 one can easily incorporate such p̂πG into multiple

shrinkage predictor estimators p̂∗. Letting Ω be a set of subspaces G under consideration, construct

the mixture prior

π∗(β) =
∑

G∈Ω

wG πG(β). (44)

where for each G ∈ Ω, πG is the designated prior of the form (41), and wG ∈ [0, 1] is such that
∑

G∈Ω wG = 1. This prior yields the multiple shrinkage predictive estimator

p̂∗(y | x) =
∑

G∈Ω

p̂(G | x)p̂πG(y | x), (45)

where each p̂πG is given by (42), and each posterior probability is of the form

p̂(G | x) =
wG mπ∗G(β̂G,x,ΣA,G)

∑
G∈Ω wG mπ∗G(β̂G,x, ΣA,G)

. (46)

Here, p̂∗(y | x) is an adaptive convex combination of the individual shrinkage predictive estimates

p̂πG , and offers risk reduction whenever βG is near the region where πG is largest for any G ∈ Ω.

Thus, the potential for risk reduction using p̂∗ is far greater than the risk reduction using an ar-

bitrarily chosen p̂πG . It is straightforward to see that Theorem 3 and Corollary 3 and their proofs

can be extended to get conditions for such p̂∗(y | x) to be minimax and dominate p̂U . (Simply

substitute the symbol “G” for the symbol “S” throughout).

Example (continued). (Scaled harmonic prior). For each G ∈ Ω, let πG(β) be the scaled har-

monic prior given by (43) when qG ≥ 3, and by πG(β) ∝ 1 when qS < 3. When A = B, by the

extension of Corollary 3, p∗ for these priors will be minimax and will dominate p̂U if qG ≥ 3 for at

least one G ∈ Ω.
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